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We demonstrate that with appropriate quantum correlation function, a real-space network model
can be constructed to study the phase transitions in quantum systems. For the three-dimensional
bosonic system, the single-particle density matrix is adopted to construct the adjacency matrix.
We show that the Bose-Einstein condensate transition can be interpreted as the transition into
a small-world network, which is accurately captured by the small-world coefficient. For the one-
dimensional disordered system, using the electron diffusion operator to build the adjacency matrix,
we find that the Anderson localized states create many weakly-linked subgraphs, which significantly
reduces the clustering coefficient and lengthens the shortest path. We show that the crossover from
delocalized to localized regimes as a function of the disorder strength can be identified as the loss
of global connection, which is revealed by the small-world coefficient as well as other independent
measures like the robustness, the efficiency, and the algebraic connectivity. Our results suggest that
the quantum phase transitions can be visualized in real space and characterized by the network
analysis with suitable choices of quantum correlation functions.

I. INTRODUCTION

Complex network models have been employed to inves-
tigate various real-world systems such as social networks,
information systems, biological systems, and physical
systems [1, 2]. Generally speaking, the architecture and
dynamics of complex networks could be represented by
graphs containing nodes and links. A number of mea-
sures calculated from network models have been proposed
to reveal the internal structures of graphs, which offers
valuable insights for the real-world interacting systems of
our interests. In the pioneering work done by Watts and
Strogatz,[3] the concept of the small-world network is in-
troduced to describe systems whose nodes are highly clus-
tered like regular lattices but have path lengths between
nodes as small as random graphs. It has been shown that
the small-world network has many advantages like fast in-
formation transmission, high synchronizability, etc., and
many real-world systems such as human social groups, in-
ternet world in cyberspace, and biological systems have
been shown to exhibit small-world charactersics[4–9]. It
is remarkable that all these radically different systems
could be described by the same network model, regard-
less the microscopic origins of the interactions that build
up these systems.

Phase transitions in quantum systems have been one
of the most important subjects in physics. By varying
some physical parameters, the groundstate could change
abruptly so that the system could exhibit very distinct
physical properties. In the field of the network science,
it has been shown that some network models could be
mapped into certain quantum systems, and consequently
the nature of the network properties could be understood
by the same ideas developed in quantum physics. For ex-
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ample, the model proposed by Bianconi and Barabási[10]
is shown to follow the Bose statistics and even undergo a
Bose Einstein condensation. The Fermi-Dirac statistics
is shown to emerge in growing Cayley trees with thermal
noise[11], and a class of generalized statistics for networks
has been proposed.[12] While there is a growing interest
in applying ideas from quantum systems to explore the
relations in networks,[13–19] the possibility of using the
network science to explore the nature of phase transitions
in quantum systems attracts much less attenion[20–22].
The key issue is the absence of an intuitive way to define
nodes and links representing phase transitions in quan-
tum systems. Recently, Chou[23] has demonstrated that
the topological phase transition in the p-wave supercon-
ductor can be characterized by the network science using
the pairing amplitude to construct the adjacency matrix.
This analysis, however, is based on the mean-field Hamil-
tonian that assumes the existence of superconductivity,
thus it can not be used to describe general cases of phase
transition in quantum systems.

In this paper, we demonstrate that the phase tran-
sitions in quantum systems can be studied by network
models with suitable quantum correlation functions de-
fined in real space. We test this idea in two cases that
can be solved exactly. For the three-dimensional non-
interacting bosonic system, the single-particle density
matrix is exploited to define the adjacency matrix for
the weighted network. We show that the Bose-Einstein
condensate can be viewed as a small world in our network
model due to the presence of the off-diagonal long-range
order (ODLRO)[24]. For the one-dimensional disordered
system, the weighted network is constructed using the
electron diffusion operator.[25] We find that the Ander-
son localized states create many weakly-linked subgraphs
in our network model, which greatly reduce the cluster-
ing coefficient and lengthen the shortest path. We show
that the crossover from delocalized to localized regimes
with varying disorder strength can be reflected by the loss
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of global connection in the corresponding graphs, which
can be clearly seen in the small-world coefficient as well
as other independent network measures like the robust-
ness, the efficiency, and the algebraic connectivity. Our
results suggest that the quantum phase transitions can be
visualized in real space and characterized by the network
topology with suitable quantum correlation functions.

II. BOSE-EINSTEIN CONDENSATE IN
NON-INTERACTING THREE-DIMENSIONAL

BOSONIC SYSTEM

Consider a three-dimensional free boson system with
fixed particle density n. The Hamiltonian can be written
as

H =

∫
d~rψ̂†(~r)(

~2∇2

2m
− µ)ψ̂(~r), (1)

where ψ̂†(~r) (ψ̂(~r)) creates (annihilates) a boson at po-

sition ~r. Introducing the Fourier transformation of b̂~k =
1√
V

∫
d~re−

~k·~rψ̂(~r), we can diagonalize the Hamiltonian
as

H =

∫
d~k

(2π)3
(E(~k)− µ)b̂†~k

b̂~k, (2)

where E(~k) = ~2k2

2m , and the particle density n can be
evaluated by

n = n0 + ne,

ne =
1

(2π)3

∫
d~k

eβ(E(~k)−µ) − 1
. (3)

n0 is the particle density occupying the groundstate,
while ne is the particle density occupying all other states.
The Bose-Einstein condenstate (BEC) is identified by µ
being equal to the groundstate energy and the emer-
gence of the off-diagonal long-range order (ODLRO)
(n0 6= 0)[24], which occurs at the temperature below the
critical temperature Tc of

kBTc = 4π
~2

2m

[
n

ζ(3/2)

] 2
3

. (4)

ζ(s) is the Riemann zeta function.
Our goal is to build a real-space network model to cap-

ture the BEC transition. A natural choice is the single-
particle density matrix defined as

ρij ≡ 〈ψ̂†(~ri)ψ̂(~rj)〉 = n0 + f(~ri − ~rj), (5)

where

f(~ri − ~rj) ≡
∫
d~k

e−i
~k·(~ri−~rj)

eβ(E(~k)−µ) − 1
. (6)

Clearly, f(~ri − ~rj) goes to 0 as |~ri − ~rj | → ∞. In gen-
eral, ρij descrbies the probability of a boson hopping
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FIG. 1: (a)The average clustering coefficient, (b) average
shortest path, and (c) small-world coefficient of the three-
dimensional non-interacting boson system as a function of
normalized Boltzmann factor defined as β = 1/t, t = T/Tc.

from ~rj to ~ri, which serves as a good quantity to rep-
resent the ’link’ between different positions. Here we
choose N points along x direction with equal spacing of

lc = 1√
4π

(
ζ(3/2)
n

)1/3
. In other words, the position of ith

point is ~ri = (ilc, 0, 0), where i = 1, 2, · · · , N . We empha-
size that the system is still three-dimensional, and we just
choose points along x direction. Different choices of the
set of points might give different values for the network
measures, but the behavior as the function of tempera-
ture will be exactly the same. Now we can construct a
network model with these N points being the nodes, and
the adjacency matrix can be constructed based on the
single-particle density matrix as

Aij = 0, i = j,

=
|ρij |

Max(|ρij |)
, i 6= j. (7)

The graph built by Eq. 7 has weighted links bounded
within [0, 1]. For the network properties, we have used
N = 50 in all the calculations presented below.

We start from the local clustering coefficient that de-
termines the connectivity of a given node in the graph.
Following Ref. [26], we define the local clustering coeffi-
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FIG. 2: The force-directed graphs of the network model using the adjacency matrix defined in Eq. 7 for the three-dimensional
non-interacting boson system as a function of normalized Boltzmann factor defined as β = 1/t, t = T/Tc for (a) β = 0.85, (b)
β = 0.89, (c) β = 0.94, and β = 1.04.

cient of ith node as

Ci =
1

ki(ki − 1)

∑
j,k∈{Ni}

Ajk (8)

where {Ni} is the set of neighboring nodes around ith
node, and ki is the number of nodes in {Ni}. In an
unweighted binary graph, {Ni} is defined as the set of
nodes j with Aij = 1. Since our graph is a complete
graph with weighted links, {Ni} should just be the set of
all the nodes other than i, which means ki = N − 1 for
every node. Eq. 8 can naturally reproduce the clustering
coefficient for an unweighted binary graph proposed in
Ref. [3]. It is noted that this definition emphasizes more
on the connections between neighboring nodes around ith
node without inputs from direct links to ith node, which
is different from another popular definition[23, 27] of

COi =
1

ki(ki − 1)

∑
j,k∈{Ni}

(AijAjkAki)
1/3

. (9)

COi counts the number of triangles attached to ith node

with an effective intensity of (AijAjkAki)
1/3

, and con-
sequently the direct links to ith node are as important
as the links between its neighbors. Nevertheless, we find
that general trends of the netowork properties are the
same regardless the choice of the definition for the clus-
tering coefficient. To measure the clustering of the entire
graph G, we can compute the average clustering coeffi-
cent as

C(G) =
1

N

∑
i

Ci. (10)

Note that in our definition, 0 ≤ C(G) ≤ 1 and C(G) = 1
only occurs in a complete graph with Aij = 1 for every
i 6= j.

Another important quantity in the network science is
the shortest path, which posts a subtle issue using the
adjacency matrix Aij defined in Eq. 7. In the network
theory, if Aij is the weighted link between ith and jth
nodes, its value is usually expected to be proportional
to the ’distance’ between these two nodes. This is, how-
ever, in contradition to the meaning of the single-particle

density matrix which is proportional to the probability
of a boson hopping from ~ri to ~rj . In other words, in our
graph, the larger Aij is, the shorter the ’distance’ be-
tween ~ri and ~rj should be. As a result, we follow Ref.
[23] to use the ’inverse’ of the adjacency matrix Aij to
represent the ’direct’ distance between nodes i and j, de-
noted as Dij = 1/Aij . The shortest path between nodes
i and j, namely dij , is defined as the minimal length be-
tween i and j on the matrix of Dij , which can be found
by Dijkstra shortest path algorithm.[28] The global path
length feature of the entire graph G can be revealed by
averaging the shortest path

L(G) =
1

N(N − 1)

∑
i 6=j∈G

dij . (11)

Fig. 1 presents C(G) and L(G) as a function of normal-
ized Boltzmann factor β = 1/t with t = T/Tc. It can
be seen clearly that as the system enters the BEC re-
gion from the normal state (β < 1), C(G) increases and
L(G) decreases abruptly at β = 1, exhibiting the BEC
transition. The kink at β = 1 associated with the BEC
transition can be further amplified in the small-world co-
efficient defined as

S(G) =
C(G)

L(G)
, (12)

which is shown in. Fig. 1(c).
These results can be well understood by the existence

of the ODLRO given in Eq. 5. In the normal state (β >
1), n0 = 0 and f(~ri − ~rj) goes to zero as |~ri − ~rj | → ∞.
Consequently, many elements in the adjacency matrix
are very small, and the normal state network tends to
have a small C(G) and long L(G). In the BEC state
(β < 1), every element in the adjacency matrix has the
same order of magnitude due to the ODLRO (n0 6= 0),
and the BEC network naturally has a large C(G) and
short L(G) which are the key properties necessary for
the small-world network.

To visualize the network constructed from Eq. 7,
we draw the force-directed graphs obtained by the
Kamada-Kawai cost function with the code developed
by NetworkX[29]. In the force-directed graphs, repulsive
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interactions similar to the electrical Coulomb interaction
are introuced among every pair of nodes, and an attrac-
tive interaction between two nodes resembling the spring
force is added with a spring constant depending on the
value of Aij . The balance of these forces determines the
positions of nodes in a two-dimensional plane, which is
shown in Fig. 2. The change of the graph topology can
be seen directly as β varies across the BEC transition.
Compared to the graphs in the normal state, the dis-
tance between nodes are much more equal in BEC graph
(Fig. 2(d)), which is a clear signature for the small-world
network. Based on the above analysis, we conclude that
the BEC transition corresponds to the transition in to a
small-world network in the graph representation.

III. ANDERSON LOCALIZATION IN 1D
FERMIONIC SYSTEMS

In this section, we employ the same idea to explore
properties of the real-space network representing the dis-
ordered fermionic system. For a proof of concept, we
consider an one-dimensional periodic fermionic system
with a Hamiltonian written as[30]

Ĥ = −t
∑
<i,j>

ĉ†i ĉj +
∑
i

[Wεi − µ] ĉ†i ĉi, (13)

where ĉ†i (ĉj) creates (annihilates) a fermion at site i, t is
the nearest-neighbor hopping integral, W is the disorder
strength, µ is the chemical potential, and εi is a random
number bounded between [− 1

2 ,
1
2 ]. We set t = 1 in the

following calculations.
To construct the adjacency matrix, we use the diffusion

operator[25] defined as

Π(i, j;ω) ≡ 〈GRij(ω/2)GAji(ω/2)〉dis. (14)

Note that 〈· · · 〉dis denotes the average over different dis-

order configurations, and GR,Aij (ω) are the retarded and
the advanced Green’s functions between sites i and j

GR,Aij (ω) = 〈i|
[
(ω ± iη)Î − Ĥ

]−1
|j〉. (15)

Π(i, j;ω = 0) is a real and positive quantity which can
be interpreted as the probability of an electron diffusing
between sites i and j and is consequently a useful quan-
tity to detect the degree of localization in a disordered
system.[25] As a result, we set up the adjacency matrix
as

Âij =
Π(i, j; 0)

Max(Π(i, j; 0))
. (16)

By symmetry, Âij = Âji and we have transformed the
1D disordered system to a network model with undirected
but weighted links. We can therefore use the same defini-
tions of the clustering coefficient, the shortest path, and
the small-world coefficient introduced in the last section.

FIG. 3: (a) The average clustering coefficient and (b) the av-
erage shortest path for the graph representing a 1D disordered
system as a function of disorder strength W .

We solve the model Hamiltonian given in Eq. 13 with
500 sites. We fix the chemical potential to be µ = 0
and study the evolution of the graph as a function of the
disorder strength W . For each disorder strength, we ob-
tain Π(i, j; 0) by averaging over 5000 different disorder
configurations.

The average clustering coefficient and the average
shortest path calculated based on the adjacnecy matrix
in Eq. 16 are presented in Fig. 3 as a function of the
disorder strength W . Clearly, the clustering coefficient
C decreases as the disorder gets stronger, which can be
understood by the nature of localization. Because of
the Anderson localized states, electrons are more likely
trapped in localized states near particuar sites as the
disorder strength gets stronger. In the network model
constructed from Eq. 16, the reduction of the cluster-
ing coefficient with the increase of W is attributed to
many weakly-connected subgraphs resulted from local-
ized states. Moreover, since the probability of the elec-
tron hopping between different localized regions is gen-
erally small, the global average shortest path is expected
to increase as a function of W , which is clearly shown in
Fig. 3(b).

We shall mention that because a one dimensional sys-
tem is always in the localized regime in the presence of
any disorder strength, we would not see a sharp transition
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FIG. 4: (a) The small-world coefficient and (b) the efficiency
for the graph representing a 1D disordered system as a func-
tion of disorder strength W .

as seen in the case of BEC. However, since we consider a
finite-size system of 500 sites, we do see a crossover into
a regime in which the localization length of every single-
particle eigenstate is shorter than the system size. The
critical disorder strength (Wc ∼ 1.2t) for this crossover
can be better characterized in the small-world coefficient
plotted in Fig. 4(a). An intriguing feature in Fig. 4(a)
is that the small-world coefficient becomes almost zero
as W > Wc. This feature indicates that the system is
no longer globally connected in the strong disorder limit,
consistent with the fact that all the single-particle eigen-
states have a localization length shorter than the system
size, and consequently the electron diffusion is exponen-
tially suppressed for any state.

We can further study the loss of global connection
by other network measures. For example, the recipro-
cal shortest distance matrix is used in calculating graph
invariants such as the Harary Index[31, 32], which has
been employed to measure the compactness of molecular
structures. A measure similar to the Harary index in-
troduced in Ref. [33] has been exploited to indicate the
efficiency of the graph, which is defined as the average of
the inverse of the shortest path,

Eff(G) =
1

N(N − 1)

∑
i6=j∈G

1

dij
(17)

Higher Eff(G) corresponds to the increased ability of each
node in the graph to disperse information simultaneously.
We plot Eff(G) as a function of W in Fig. 4(b), which
demonstrates the increased difficulty in transfering in-
formation between sites in the strong disorder regime.
Another quantity to analyze is the robustness R defined
as[23, 34–37]

R(G) = ln

(
1

N

∑
i

eλi

)
, (18)

where {λi} is the set of eigenvalues of the adjacency ma-

trix Âij . R can be understood as a measure for the ability
of the network to withstand nodes being removed with-
out the global network features being affected. Generally
speaking, a highly and globally connected graph tends to
have a large value of R, meaning that removing a few
nodes from the graph would not change the global prop-
erties of the graph significantly. The robustness R as a
function of W is shown in Fig. 5(a). It can be seen that
R goes to zero in the strong disorder regime, which can
again be attributed to the loss of the global connection.
In the strong disorder regime there are many weakly-
linked subgraphs due to the localized states. As a result,
removing a few nodes could disconnect completely the
links between some subgraphs, and the connections be-
tween these affected subgraphs could be completely lost,
which explains the vanishing value of R.

Lastly, we analyze the algebraic connectivity proposed
by Fiedler[38], which is another gauge of the connect-
edness of a graph[39]. In order to obtain the algebraic
connectivity, we introduce the degree matrix as

Kij = 0, i 6= j,

=
∑
k

Aik, i = j. (19)

The Laplacian matrix of the graph can therefore be con-
structed by

L̂ = K̂ − Â, (20)

It can be shown that the smallest eigenvalue of L̂ is al-
ways zero for any graph, which corresponds to the eigen-
vector of (1, 1, 1, · · · )T . The second smallest eigenvalue,
identified as the algebraic connectivity, is non-zero if and
only if the graph is connected, and its value is propor-
tional to the degree of the connectedness in a graph.
[39, 40]. The algebraic connectivity for the graph repre-
senting the disorder system is plotted in Fig. 5(b), which
shows the same trends as the small-world coefficient, the
robustness, and the efficiency.

To directly visualize the subgraphs in our network, we
draw the force-directed graphs[29] in Fig. 6. In the de-
localized regime (Fig. 6(a) for W = 0.5), nodes are more
evenly distributed, indicating no tendency to form sub-
graphs. On the other hand, in the localized regime nodes
tend to stay closer to particular neighbors, and conse-
quently a lot of subgraphs can be observed directly in
the plot (Fig. 6(b) for W = 1.5).
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FIG. 5: (a) The robustness R and (b) the algebraic connec-
tivity for the graph representing a 1D disordered system as a
function of disorder strength W .

IV. CONCLUSIONS

In this paper, we have studied two cases of phase tran-
sitions in quantum systems using the real-space network
models. The key step is to choose a suitable quantum
correlation function to construct the adjacency matrix,
and the natural choice is the one encoding the ’proba-
bility’ of quantum particles moving from one place to
another in real-space. For the three-dimensional bosonic
system we have chosen the single-particle density matrix,
while for the one-dimensional disordered system we have
chosen the electron diffusion operator. We have shown
that phase transitons in these model systems can be accu-
rately captured by a number of network measures, which
allows us to visualize the quantum phase transitions in
real-space in terms of the network science. For exam-
ple, the clustering coefficient measures the tendency of
the neighbors around a node to connect, and the shortest
path determines how fast the information can travel from
one node to another. In the Bose Einstein condenstate
(BEC), the off-diagonal long-range order provides global
links between every node in the graph. As a result, the
clustering coefficient increases and the shortest path de-
creases dramastically as the system undergoes the BEC
transition, and in our network model the BEC transition
can be characterized as a transition into a small-world

FIG. 6: The force-directed graphs for the 1D disordered sys-
tem in (a) delocalized (W = 0.5) and (b) localized (W = 1.5)
regimes. For the best quality, we only plot 50 out of 500 nodes
so that the distances between nodes can be clearly seen.

network. For the one-dimensional disordered system, be-
cuase of the Anderson localized states, our network has
many weakly-linked subgraphs that greatly reduce the
clustering coefficient and lengthen the shortest path. We
have shown that the crossover from delocalized to local-
ized regimes as a function of the disorder strength can
be well captured by the small-world coefficient as well
as other independent measures like the robustness, the
efficiency, and the algebraic connectivity.

Our formalism can be easily generalized to study the
quantum phase transitions in other systems. For ex-
ample, the quantum phase transitions in interacting
fermionic systems can be analyzed by network models
constructed by two-particle density matrices[24] like spin-
spin correlation function for magnetism, Cooper-pairing
correlation function for superconductivity, and density-
density correlation function for charge ordering. Similar
idea has been presented in Refs. [41] and [42] in which the
quantum mutual information matrix constructed from
one and two point correlators is introduced to study
the quantum phase transitions in the Ising spin chain.
Our results demonstrate that the quantum phase transi-
tions can be visualized in real space and characterized by
the network topology with suitable quantum correlation
functions.
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