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Quantum systems whose classical counterparts are chaotic typically have highly correlated eigenvalues and
level statistics that coincide with those from ensembles of full random matrices. A dynamical manifestation of
these correlations comes in the form of the so-called correlation hole, which is a dip below the saturation point
of the survival probability’s time evolution. In this work, we study the correlation hole in the spin-boson (Dicke)
model, which presents a chaotic regime and can be realized in experiments with ultracold atoms and ion traps.
We derive an analytical expression that describes the entire evolution of the survival probability and allows us
to determine the timescales of its relaxation to equilibrium. This expression shows remarkable agreement with
our numerical results. While the initial decay and the time to reach the minimum of the correlation hole depend
on the initial state, the dynamics beyond the hole up to equilibration is universal. We find that the relaxation
time of the survival probability for the Dicke model increases linearly with system size.

I. INTRODUCTION

The subject of equilibration and thermalization of isolated
quantum systems in the chaotic regime has seen a great deal
of advance in the last years [1–10]. Equilibration is reached
when, after a transient time, the observable under investi-
gation shows only small fluctuations around an asymptotic
value, and these fluctuations decrease with system size. Ther-
malization implies that this infinite-time average is very close
to the predictions from statistical mechanics, and the differ-
ence between the two also decreases with system size. In
this picture, an important open question is how long it takes
for isolated quantum systems to reach equilibrium. Despite
the increasing number of recent works addressing this is-
sue [6, 11–22], there is no agreement regarding how the re-
laxation timescale should depend on system size, range of in-
teractions, observables, and initial states.

The last steps of the evolution toward equilibrium, after the
dynamics resolves the discreteness of the spectrum, are deter-
mined by the properties of the eigenvalues [21]. The largest
possible timescale is the Heisenberg time [23], which is pro-
portional to the inverse of the mean level spacing of the region
of the spectrum probed by the initial state. Before reaching
this timescale, effects of the correlations between the eigen-
values may be observed. In the case of the survival probabil-
ity [24–26], which is the probability of finding the initial state
at time t, these correlations cause a decay below the saturation
value of the dynamics, known as correlation hole [27]. This
phenomenon was first studied in the context of molecules,
where the interest was not exactly in dynamics, but in alter-
native ways to detect level repulsion in systems without good
line resolution [28–30].

The correlation hole has been studied in full random ma-
trices [31], in many-body systems with [21, 32–35] and with-
out disorder [33], in the Sachdev-Ye-Kitaev model [36–38],
which is a two-body random ensemble [39], and in the finite
one-dimensional Anderson model [40]. It should be possible
to develop a semiclassical analysis connecting the correlation
hole with periodic orbits along the lines done in [41, 42]. The

hole is not exclusive to the survival probability, but emerges
also in experimental local observables [34, 35]. For the corre-
lation hole to be visible, one needs to perform large averages
over initial states and, in the case of Hamiltonian matrices
with random elements, over ensembles of Hamiltonian real-
izations. In Ref. [21], it was shown that in realistic chaotic
many-body quantum systems with local short-range interac-
tions and perturbed far from equilibrium, the time to reach
the minimum of the correlation hole increases exponentially
with system size. This timescale, which is still shorter than
the Heisenberg time, was referred to as Thouless time due to
its relationship with the Thouless energy computed from ran-
dom matrix theory. As explained in [21], the Thouless time
in interacting systems is the time that it takes for an initial
state to spread over the entire Hilbert space accessible to its
energy. Beyond this point, the dynamics becomes universal
all the way to equilibrium.

In the present work, we use the survival probability to study
the correlation hole in the Dicke model. This is a paradig-
matic spin-boson model with two degrees of freedom. It has
a classical counterpart and this quantum-classical correspon-
dence was explored e.g. in Refs. [43, 44]. It exhibits chaos
for several values of its parameters, mostly for high excitation
energies and in the superradiant phase. The model was first in-
troduced to explain superradiance [45–48] and has since then
been used in different contexts, from quantum chaos [49–52]
and quantum batteries [53] to excited-state quantum phase
transitions [54–57] and quench dynamics [58–61]. Recently,
the model was employed in a study of the out-of-time ordered
correlator (OTOC), where it was shown that, in the chaotic
regime, the OTOC increases exponentially in time with a rate
comparable to the classical Lyapunov exponent [62]. In addi-
tion to ultracold atoms in optical cavities [63, 64], the Dicke
model can now be realized also with ion traps [65]. The lat-
ter is one of the main platforms to study long-time coherence
evolution [66], which makes the analysis of the timescales in-
volved in the relaxation process of the Dicke model a timely
subject.

We obtain an analytical expression that describes the entire
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evolution of the survival probability for the Dicke model in
the chaotic regime. The expression describes very accurately
our numerical results, and with it, we can derive analytically
the timescales involved in the relaxation process. We find that
the relaxation time increases linearly with system size, while
the Thouless time depends non trivially on the initial state.

The article is organized as follows. In Sec. II, we describe
the Dicke model and the properties associated with its eigen-
values. In Sec. III, we discuss the initial states considered
and present the analytical expression for the survival proba-
bility. This expression is compared with numerical results in
Sec. IV. The analytical expressions for the Thouless and re-
laxation times are given and discussed in Sec. V. We present
our conclusions in Sec. VI.

II. DICKE MODEL

The Dicke model [45] describes the interaction between a
set ofN two-level atoms with energy splitting ω0 and a single
mode of the electromagnetic field with radiation frequency ω.
By setting ~ = 1, the time-reversal symmetric Hamiltonian of
the model is written as

ĤD = ωâ†â+ ω0Ĵz +
2γ√
N
Ĵx(â† + â). (1)

The first term of the equation above accounts for the en-
ergy of the field, where â† (â) is the bosonic creation (anni-
hilation) operator. The second term corresponds to the en-
ergy of the atoms, where Ĵx,y,z = 1

2

∑N
k=1 σ

k
x,y,z are the

atomic pseudo-spin operators and σx,y,z are the Pauli matri-
ces. The third term describes the atom-field interaction with
coupling parameter γ. The eigenvalues j(j + 1) of the oper-
ator Ĵ

2
= Ĵ2

x + Ĵ2
y + Ĵ2

z determine different invariant sub-
spaces. Its maximum value, given by j = N/2, defines the
symmetric non-degenerate atomic subspace that includes the
ground-state. The Hamiltonian ĤD commutes with the parity
operator Π̂ = eiπΛ̂, where Λ̂ = â†â + Ĵz + j1̂. The operator
Λ̂ represents the total number of excitations with eigenvalues
λ = n + m + j, where n is the number of photons, m + j is
the number of excited atoms, and m is the eigenvalue of Ĵz .
In all calculations presented below, we consider the positive
parity spectrum of the model.

When the coupling parameter reaches a critical value γc =√
ωω0/2, a second-order quantum phase transition takes

place [67, 68]. The system goes from a normal phase (γ̄ < 1
with γ̄ = γ/γc), where the ground state has no photons and
all the atoms are in their lowest level, to a superradiant phase
(γ̄ > 1), where the ground state has non-zero expectation val-
ues for the number of photons and number of excited atoms.

A. Level Statistics and Density of States

The classical limit of the Dicke model can be obtained by
using Bloch and Glauber coherent states [51, 52, 56], which
allows for the identification of the parameters and energy

range that lead to chaos. A main signature of classical chaos
in the quantum regime is energy-level repulsion [69, 70].

As our case study, we choose ω = ω0 and j = 100, and we
select a coupling parameter in the superradiant phase, γ̄ = 2.
For these values, chaos is found at excitation energies above
E ≈ −1.6ω0j (see Ref. [52]). We choose an energy well
above this threshold, Ec = −0.5ω0j, for which the whole
energy shell is covered by chaotic trajectories (see Ref. [52]).
In Fig. 1 (a), we show the level spacing distribution, denoted
by P (s), where s is the spacing between nearest-neighboring
unfolded energy levels from an energy interval around Ec. In
quantum systems whose classical counterparts are chaotic, the
levels are prohibited from crossing and P (s) coincides with
the Wigner surmise [71], as indeed confirmed in Fig. 1 (a).
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Figure 1. (Color online) In (a): The level spacing distribution for the
unfolded spectrum (shaded area) in the energy region E/(ω0j) ∈
[−0.8,−0.2] agrees with the Wigner surmise (dashed line). In (b):
Density of states (DoS) evaluated numerically (blue circles) with bin
size ∆E = 0.1ω0j and analytical expression (2) indicated with the
red solid curve. Parameters: ω = ω0, γ̄ = 2, j = 100, and positive
parity. The vertical line in (b) indicates the energy Ec = −0.5ω0j
chosen for our study. A truncated Hilbert space was employed using
the basis of Refs. [72, 73], ensuring 24 453 converged eigenenergies,
which range from the ground state energy Egs = −2.125ω0j until
ET = 1.755ω0j.

With the classical Hamiltonian, it is possible to estimate the
energy averaged density of states (DoS), which is given by the
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expression [56],

ν(E) =
j

ω


1
π

∫ y+
y−

dy cos−1
(√

2(y−ε)
γ̄2(1−y2)

)
, εgs ≤ ε < −1

1+ε
2 + 1

π

∫ y+
ε

dy cos−1
(√

2(y−ε)
γ̄2(1−y2)

)
, |ε| ≤ 1

1, ε > 1
(2)

where y± = −γ̄−1
(
γ̄−1 ∓

√
2(ε− εgs)

)
and ε = E

ω0j
is the

normalized energy. The ground state energy is εgs = −1 for

the normal phase, while it is εgs = −1

2

(
γ̄2 + γ̄−2

)
in the

superradiant phase. In Fig. 1 (b), we compare the DoS ob-
tained numerically with the expression (2). The agreement is
excellent. It is evident from the figure that for |ε| ≤ 1, the
DoS shows a linear dependence on energy, ν(E) ∝ E. Our
choice of the value of Ec for the studies below falls within
this region. Notice also that the DoS in Eq. (2) scales linearly
with the number of atoms (j appears explicitly in the begin-
ning of the equation), a property that will be useful below to
determine the dependence of the timescales of the model on
the number of atoms.

III. SURVIVAL PROBABILITY AND INITIAL STATES

The survival probability, SP (t), is a dynamical observable
defined as the probability to find an arbitrary initial quantum
state |Ψ(0)〉 at a later time t,

SP (t) = |〈Ψ(0)|Ψ(t)〉|2. (3)

By writing the initial state in terms of the energy eigenba-
sis, |Ψ(0)〉 =

∑
k ck|φk〉, where Ĥ|φk〉 = Ek|φk〉 and

ck = 〈φk|Ψ(0)〉, the survival probability is

SP (t) =

∣∣∣∣∣∑
k

|ck|2e−iEkt

∣∣∣∣∣
2

. (4)

The short-time evolution depends on the energy distribution
of the initial state [60, 74], while the long-time dynamics is
determined by the properties of the spectrum [33, 34]. The
survival probability has been studied in several different con-
texts, with early works focusing on deviations from exponen-
tial behaviors [75, 76] and the quantum speed limit [77].

A. Initial States

To disentangle the effects of the spectrum from those of the
energy components of the initial state in the behavior of the
survival probability, we consider ensembles of initial states
defined in a given chaotic energy region with components ran-
domly selected [78], so that

|ck|2 =
rkf(Ek)∑
q rqf(Eq)

. (5)

Above, rk are positive random numbers from an arbitrary
probability distribution. For the numerical simulations pre-
sented below, we consider an uniform distribution in the in-
terval [0, 1] with n-th moments 〈rnk 〉 = 1/(n + 1). The func-
tion f(E) = ρ(E)/ν(E) is used to guarantee that the initial
state has a certain selected profile ρ(E), which is achieved by
compensating for changes in the density of states. We con-
sider normalized rectangular and Gaussian profiles given re-
spectively by,

ρR(E) =

{ 1

2σR
for E ∈ [Ec − σR, Ec + σR]

0 otherwise,
(6)

ρG(E) =

 e−(E−Ec)2/(2σ2
G)

CσG
√

2π
for E ∈ [Emin, Emax]

0 otherwise.
(7)

The profiles are centered at the energy Ec, where we know
that chaos dominates the dynamics. The widths of the rect-
angular and Gaussian profiles are, respectively, σR and σG.
The lower and upper energy bounds of the Gaussian profile
are Emin and Emax, and C is a normalization factor,

C =
1

2

[
erf
(
Ec − Emin√

2σG

)
− erf

(
Ec − Emax√

2σG

)]
, (8)

with erf being the error function. In the context of quench
dynamics, where the system is initially prepared in a coher-
ent state, the energy distribution of the initial state is indeed
Gaussian, which makes the Gaussian profile a realistic choice
(for some examples, see Ref. [60]). The bounds Emin and
Emax, especially Emin, are also plausible, since in quantum
systems there is always at least a ground state, whose pres-
ence should affect the dynamics by partially reconstructing
the initial state [79–81].

In Fig. 2, we show three cases of energy profiles of the ini-
tial state, one rectangular and two Gaussian profiles. The nu-
merical results are obtained by averaging over ensembles of
500 initial states. The agreement with the analytical profiles
from Eq. (6) and Eq. (7) confirms that 500 is a sufficiently
large number to obtain stable results.

B. Survival Probability: Before the Correlation Hole

The energy distribution of |Ψ(0)〉 determines the initial de-
cay of SP (t). This can be seen by expressing the survival
probability in Eq. (4) as

SP (t) =

∣∣∣∣∫ ρ0(E)e−iEtdE

∣∣∣∣2 ,
where ρ0(E) =

∑
k |ck|2δ(E − Ek) is the local density of

states (LDoS) or strength function, that is the energy distribu-
tion weighted by the components of the initial state. If we ap-
proximate the LDoS by its smoothed profile, ρ0(E) ≈ ρ(E),
we obtain for the rectangular profile,

SRP (t) =
sin2(σRt)

(σRt)2
, (9)
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Figure 2. (Color online) Local density of states (LDoS) for the rectangular (a), strongly bounded Gaussian (b) and weakly bounded Gaussian
(c) energy profiles. Numerical data averaged over 500 random initial states (blue dots) and analytical energy profiles from Eqs. (6) and (7)
(red solid lines). Bin sizes: ∆E = 0.01ω0j [(a) and (b)] and ∆E = 0.02ω0j (c). The rectangular LDoS has width σR = 0.1ω0j and the
standard deviation of the Gaussian profiles is also σG = 0.1ω0j with Emin = −0.65ω0j and Emax = −0.35ω0j for (b), whereas for (c)
Emin is given by the ground-state energy Egs = −2.125ω0j and by the largest energy obtained for the spectrum Emax = ET = 1.755ω0j
(both energies are out of the scale used in this panel).

and for the Gaussian profile,

SGP (t) =
e−σ

2
Gt

2

4C2 F(t), with (10)

F(t)=

∣∣∣∣erf
(
Ec−Emin−iσ2

Gt√
2σG

)
−erf

(
Ec−Emax−iσ2

Gt√
2σG

)∣∣∣∣2 .
For very short times, t � σ−1

R,G, both SRP (t) and SGP (t)
show the universal quadratic decay of the survival probability
1 − σ2

R,Gt
2. For longer times, both profiles lead to a power-

law decay ∝ t−2. This behavior is evident in Eq. (9) and it
can be obtained from Eq. (10) by analyzing it at long times, in
which case [80, 81],

SGP (t� σ−1
G ) ≈ 1

2πC2σ2
Gt

2
× (11)E − 2e

−

[
(Ec − Emin)2 + (Emax − Ec)2

]
2σ2

G cos[(Emax − Emin)t]

,
where

E = exp

[
− (Ec − Emin)2

σ2
G

]
+exp

[
− (Ec − Emax)2

σ2
G

]
. (12)

Power-law decays of the survival probability are caused by
the presence of energy bounds in the LDoS [75] and the
power-law exponent depends on how the bounds are ap-
proached [82].

C. Survival Probability: Analytical Expression

The expressions in Eqs. (9) and (10) describe accurately the
initial decay of SP (t), for which just the shape and bounds of
the envelope of ρ0(E) matters. However, the spectra of finite
quantum systems are discrete and, in our case, the eigenvalues
are correlated. This results in two additional features to the
evolution of SP (t), beyond the power-law behavior, which are
not captured by Eqs. (9) and (10). They are the manifestations

of the spectrum correlations, which appear at long times, and
the saturation of the dynamics to the asymptotic value

S̄P = lim
t→∞

1

t

∫ t

0

dt′SP (t′), (13)

around which the survival probability oscillates after relax-
ation.

To obtain an equation for the full dynamics, we write the
survival probability as

SP (t) =
∑
k 6=l

|cl|2|ck|2e−i(Ek−El)t + IPR, (14)

where

IPR ≡
∑
k

|〈φk|Ψ(0)〉|4 = S̄P (15)

is the so-called inverse participation ratio, which gives the
asymptotic temporal value of SP (t). The IPR is a measure
of the inverse of the number of elements of a given basis (the
energy eigenbasis, in our case) participating in an arbitrary
quantum state (|Ψ(0)〉, in our case).

For the considered ensembles of initial states, it is possible
to derive accurate estimates for the ensemble averaged 〈IPR〉
by using (see Appendix A)

〈IPR〉 =

〈 ∑
k r

2
kf

2(Ek)(∑
q rqf(Eq)

)2

〉
≈ 〈r

2
k〉

〈rq〉2
1

νc

∫
ρ2(E)dE,

(16)
which, considering random variables rk uniformly dis-
tributed, gives for the rectangular profile,〈

IRPR
〉

=
2

3σRνc
, (17)

and for the Gaussian profile,

〈
IGPR

〉
=

erf
(
Ec − Emin

σG

)
− erf

(
Ec − Emax

σG

)
3
√
πσGνcC2

. (18)
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Above, νc = ν(Ec) is the DoS evaluated at the central energy
Ec, which equals the inverse mean spacing of consecutive en-
ergy levels in the region probed by the initial state.

Since the components ck of the initial state are random
numbers, to compute the ensemble average of SP (t), we can
treat the statistical properties of the components and of the
spectrum separately. Because the latter has level statistics
comparable to that of random matrices from Gaussian orthog-
onal ensembles (GOE), as shown in Fig. 1 (a), we can follow
steps similar to the ones described in [21, 34] to obtain (see
Appendix A for details),

〈SP (t)〉 =
1− 〈IPR〉
η − 1

[
ηSbcP (t)− b2

(
t

2πνc

)]
+ 〈IPR〉 .

(19)
Above, η is the effective dimension of the ensemble (see Ap-
pendix A) defined as,

η ≡ νc∫
ρ2(E)dE

=
〈r2
k〉

〈rk〉2
1

〈IPR〉
, (20)

where the second equality is obtained using Eq. (16). In
Eq. (19), SbcP (t) describes the behavior of the survival proba-
bility before the manifestation of the correlations between the
eigenvalues (bc stands for “before correlations”), as given by
Eqs. (9) and (10) for the rectangular and Gaussian profiles.
This behavior holds until 〈SP (t)〉 reaches its minimum value,
which is actually below 〈IPR〉. Beyond that, the dynamics
becomes controlled by the two-level form factor,

b2(t̄) = [1− 2t̄+ t̄ ln(2t̄+ 1)]Θ(1− t̄) +

+

[
t̄ ln

(
2t̄+ 1

2t̄− 1

)
− 1

]
Θ(t̄− 1), (21)

where Θ is the Heaviside step function. The two-level form
factor brings the survival probability from its minimum value
up to the asymptotic value, creating the dip that is known as
correlation hole [28–31, 71]. The hole is a direct signature
of the presence of correlated eigenvalues, and it does not de-
velop in systems with uncorrelated eigenvalues. The equation
used above for b2(t̄) is the same used for GOE full random
matrices [83]. This implies that beyond the minimum of the
correlation hole, the dynamics shows universal properties.

The analytical expression for the survival probability in
Eq. (19) describes the complete evolution of 〈SP (t)〉, from
t = 0 to saturation. The equation has no fitting parame-
ters. All the parameters entering in Eq. (19) can be determined
from the properties of the model and the energy profile of the
initial state. As we show in the next section, this analytical
expression shows remarkable agreement with our numerical
results.

IV. COMPARING NUMERICAL AND ANALYTICAL
RESULTS

In Fig. 3, we compare numerical results for the survival
probability with the analytical expression given by Eq. (19).
The light (gray) lines represent the numerical results obtained

with a single initial random state for the rectangular (a) and
Gaussian [(b) and (c)] energy profiles. The darker (blue) line
is obtained by performing ensemble averages over 500 ran-
dom initial states. The bright (green) curve, following ex-
tremely well the ensemble average, is the analytical Eq. (19).
As clear from all panels, the ensemble average is needed for
the hole to be visible.

The initial decay is determined entirely by the energy pro-
file of the initial states, which is the same for every member
of the ensemble. An oscillatory decay modulated by a power
law∝ t−λ is seen in Figs. 3 (a) and (b). As mentioned before,
this behavior is caused by the bounds in the energy profiles,
which determine also the size of the oscillations. For the rect-
angular profile (a), the exponent is indeed λ = 2, as obtained
for SbcP (t) in Eq. (9), whereas for the strongly bounded Gaus-
sian profile (b), the power-law exponent obtained numerically
is λ = 1.7, instead of 2 as in Eq. (11). This is because the
oscillations in Fig. 3 (b) start at a temporal scale where the
two-level form factor b2 is not negligible, so it affects the ex-
ponent. The power-law decay in Figs. 3 (a) and (b) is followed
by the correlation hole. In the case of the weakly bounded
Gaussian profile of panel (c), no trace of the modulated os-
cillations is left, because they occur at a temporal scale when
SbcP (t) is already extremely small with respect to the b2 term.
In all panels, once saturation is reached, the survival probabil-
ity only fluctuates around its asymptotic value.

The minimum of the correlation hole is indicated in
Figs. 3 (a), (b) and (c) with the lowest horizontal dashed line.
The dynamics beyond this minimum point depends on level
statistics, as confirmed by the fact that the behavior of the en-
semble averages is very well described by the analytical ex-
pression (19), where the same two-level form factor b2 used
for full random matrices was employed. However, the size
of the temporal fluctuations after the mimimum depends on
the fine details of the particular spectrum and on the level of
delocalization of the initial state written in the energy eigen-
basis [1–4].

Contrary to ensembles of random matrices or disordered
models, where one can further reduce the temporal fluctua-
tions of 〈SP (t)〉 with averages over many energy spectrum
realizations, in the case of the Dicke model, the spectrum is
exactly the same for every member of the ensemble. Thus,
to further reduce the fluctuations in the ensemble averaged
〈SP (t)〉, we perform an additional time average over tempo-
ral windows of constant size in logarithmic scale, i.e. temporal
windows whose sizes increase exponentially in time. By plot-
ting this temporal averages against the mean time of the re-
spective windows, we obtain the results shown in Figs. 3 (d).
This smoothing procedure results in numerical curves that are
almost identical to the analytical curves, further validating
Eq. (19) and the approach that led to it.

The fact that the dynamics beyond the minimum of the cor-
relation hole is governed entirely by the two-level form factor
implies that the time to reach saturation depends only on how
the b2 function approaches 〈IPR〉 (indicated in Fig. 3 with
the highest horizontal dashed line). Provided the initial state
is fully extended in the energy eigenbasis, counting with the
participation of all (most) energy levels in the energy interval
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Figure 3. (Color online) Survival probability for the rectangular (a) [see Fig. 2 (a)], strongly bounded Gaussian (b) [see Fig. 2 (b)], and weakly
bounded Gaussian (c) [see Fig. 2 (c)] energy profiles. In (a), (b), and (c): Light (gray) curves depict the survival probability for a single initial
random state and the dark (blue) curve represents the ensemble average over 500 random initial states. The bright (green) line is the analytical
expression in Eq. (19). The lowest horizontal dashed line is the analytical estimate for the minimum of the correlation hole (see text). The
highest horizontal dotted line shows 〈IPR〉, which is 1.106 × 10−3 for (a), 8.032 × 10−4 for (b), and 6.241 × 10−4 for (c). The leftmost
vertical line indicates the analytical value for the time when the correlation hole attains its minimum value (Thouless time, tTh). The rightmost
vertical line marks the analytically evaluated relaxation time tr . To determine tr , we fixed δ = 0.05 in Eq. (33). In (a) and (b), the black
dashed line indicates the power law decay t−λ for the initial oscillatory decay of 〈SP (t)〉. Panel (d): The dark (blue) curves represent averages
performed over both initial states and temporal windows of constant size in logarithmic scale. From top to bottom, the curves are obtained with
rectangular, strongly bounded Gaussian, and weakly bounded Gaussian energy profiles. The temporal averages are plotted against the mean
value of the respective temporal windows. Bright (green) lines depict the same temporal averages of the analytical expression in Eq. (19).

characterizing |Ψ(0)〉, the relaxation time is independent of
the initial state. Indeed, as seen in Fig. 3 (d), the time to reach
〈IPR〉, which is shown with the rightmost vertical dashed line,
is the same for the three different energy profiles.

V. TIMESCALES OF THE SURVIVAL PROBABILITY

In hands of the analytical expression for the survival proba-
bility, we can derive analytically the timescales involved in the
relaxation process. We focus on the two longest timescales:
the time to reach the minimum of the correlation hole, referred
to as Thouless time tTh, and the final relaxation time tr.

A. Thouless Time

The Thouless time divides the dynamics of chaotic systems
in two temporal regions, before tTh the dynamics is governed
by the shape of the energy distribution of the initial state and
the energy bounds, whereas after tTh the dynamics becomes
comparable to that obtained with ensembles of full random

matrices. The Thouless time marks the point where the term
ηSbcP (t) in Eq. (19) meets the function b2(t/2πνc), being de-
rived from

d 〈SP (t)〉
dt

∣∣∣∣
t=tTh

= 0. (22)

Therefore, we need to examine SbcP (t) at long times and
b2(t/2πνc) at short times, i.e. in the temporal range σ−1 �
t � νc [recall that σ is the width of the LDoS and νc is the
inverse of the mean level spacing for the eigenvalues involved
in the evolution of |Ψ(0)〉].

At long times, ηSbcP (t) shows a power-law decay ∝ t−2.
More specifically, for the rectangular energy profile, the tem-
poral average of the oscillatory decay in Eq. (9) leads to

ηSbc,RP (t� σ−1
R )→ η

2σ2
Rt

2
. (23)

For the Gaussian profile, associated with Eq. (10), if the con-
ditions

e−(Emax−Ec)2/σ2

>
1

η
and e−(Emin−Ec)2/σ2

>
1

η
(24)
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are fulfilled, the form of SbcP (t) in the timescale where it meets
b2 is given by [see Eq. (11)]

ηSbc,GP (t� σ−1
G )→ ηE

2πC2σ2
Gt

2
. (25)

This is what happens for the strongly bounded Gaussian en-
ergy profile of Fig. 2 (b). Otherwise, if the conditions in
Eq. (24) are not fulfilled, the early Gaussian decay still per-
sists at the meeting point with the b2 function and

ηSbc,GP (t� σ−1
G )→ η exp[−σ2

Gt
2]. (26)

This is what happens for the weakly bounded Gaussian energy
profile of Fig. 2 (c).

At short times, the two-level form factor is dominated by a
linear term,

b2

(
t

2πνc

)
→ 1− t

πνc
for

t

νc
� 1. (27)

Combining Eqs. (23) and (27), we obtain the Thouless time
for the rectangular ensemble

tRTh =

(
2πν2

c

σR

)1/3

, (28)

where we used that νc = η
2σR

(see Eq. (20) and Appendix A).
From Eq. (25) and Eq. (27), we arrive at the Thouless time for
the strongly bounded Gaussian energy profile,

tGTh =

(
ηνcE
C2σ2

G

)1/3

(29)

and if the conditions (24) are not fulfilled, using Eq. (26), we
have

tGTh ≈
√

log(2πησGνc)

σ
. (30)

The Thouless time obtained in the equations above are indi-
cated in Fig. 3, showing excellent agreement with the numer-
ics.

B. Relaxation Time

The relaxation time depends only on the b2 function at long
times, which grows toward saturation following a power-law
behavior,

b2

(
t

2πνc

)
→ π2ν2

c

3t2
for

t

νc
� 1. (31)

Even though Eq. (23) and Eq. (25) decay with the same power-
law exponent 2, as in Eq. (31), the latter is proportional to η2,
since νc ∝ η, while the former equations are proportional to
η, which justifies considering only Eq. (31). We define the
relaxation time according to

〈SP (tr)〉 = (1− δ) 〈IPR〉 , (32)

where δ is a small parameter determining the point where
〈SP (t)〉 is already within the fluctuations around the asymp-
totic value. We arrive at

tr =
πνc

2
√
δ
, (33)

which holds for the three energy profiles. This time is pro-
portional to the inverse of the mean level spacing, νc, which
is the largest timescale of a quantum system and is known as
the Heisenberg time. In Fig. 3, tr is indicated with the right-
most vertical lines, showing a excellent agreement with the
numerical results.

C. Scaling with system size: Thouless and relaxation time

With Eqs. (28), (29), (30) and (33), we can determine the
dependence of the Thouless and relaxation times on the size
of the system, i.e on the number N = 2j of two-level atoms.
Both times depend on νc, which scales linearly with j. We
can write νc = νoj/ω and evaluate νo numerically, which for
the chosen energy Ec is νo = 0.6027.

The Thouless time depends additionally on the widths σR
and σG of the energy distribution of the initial state and, for
the Gaussian profile, on the energy bounds Emin and Emax.
The scaling σR,G = σoR,Gj

β of these widths, as well as the
scalings of (Ec − Emin) ∝ jα1 and (Emax − Ec) ∝ jα2 ,
can in principle be selected at will in the range −1 ≤ β ≤ 1
and −1 ≤ αi ≤ 1. The lower values β = αi = −1 are
imposed by the scaling of the mean-level spacing of consec-
utive energy levels and the upper bound is given by the scal-
ing of the energy spectrum, which is proportional to j. A
physical relevant choice for the previous scalings is β = 1/2,
which is the scaling of the energy widths of minimal uncer-
tainty coherent states [84], and αi = 1, which implies that
the bounding energy interval of the Gaussian profile scales as
the energy spectrum. Therefore for the rectangular profile and
strongly bounded Gaussian profile satisfying conditions (24),
the Thouless time scales as

tR,GTh = tR,Go j1/2, (34)

where tR,Go is a constant determined by νo, and σoR,G. For the
rectangular profile, this scaling is valid for any j, but for the
Gaussian profile, it is valid up to a finite value of j. This is
because we assume that (Ec−Emin) and (Emax−Ec) grow
with j faster than σG, which implies that for large enough j
the conditions (24) will not be satisfied anymore, switching to
the scenario of Eq. (30). For the weakly bounded Gaussian
profile, described by Eq. (30), the Thouless time for large j is
given by,

tGTh =

√
log co + 3 log j

σoGj
1/2

, (35)

where co = 4π(3/2)(σoG)2ν2
o/ω

2, and we have approx-
imated the error functions by their asymptotic values,
limz→∞ erf(z)→ 1.
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The relaxation time is independent of the details of the ini-
tial state and scales linearly with νc, so it is given simply by

tr =
πνo

2ω
√
δ
j. (36)

The distance between the Thouless and the relaxation time di-
verge with j, which means that the correlation hole gets elon-
gated as the number of atoms increases.

D. Depth of the correlation hole

With the Thouless time, we can quantify the relative depth
of the correlation hole through the expression

κ =
〈IPR〉 − 〈SP (tTh)〉

〈IPR〉
. (37)

For the ensembles considered in this paper, we can calculate
the depth of the correlation hole for j � 1. A direct substitu-
tion of the Thouless time in the analytical expression for the
survival probability in Eq. (19) allows to demonstrate that

lim
j�1
〈SP (tTh)〉 = −1

η
+ 〈IPR〉 =

〈r2
k〉 − 〈rk〉2

〈r2
k〉

〈IPR〉 ,

where in the last step we have used Eq. (20). From this result,
we obtain

κ∞ =
〈rk〉2

〈r2
k〉
. (38)

The value κ∞ gives an upper bound for the depth of the cor-
relation hole for finite j. In the case of random variables
rk uniformly distributed in the interval [0, 1], as considered
here [85], this bound is κ∞ = 3/4.

The actual values of κ for the finite systems studied, where
j = 100, are obtained by substituting Eqs. (28), (29) and (30)
in Eq. (19), which gives 〈SP (tTh)〉, and by getting 〈IPR〉
from Eqs. (17) and (18). We get κ = 0.672 for the rectangu-
lar ensemble, κ = 0.711 for the ensemble from the strongly
bounded Gaussian profile, and κ = 0.748 for the ensemble
from the weakly bounded Gaussian profile. The analytical es-
timates for 〈SP (tTh)〉 and 〈IPR〉 are depicted in Fig. 3 (a),
(b), and (c) with horizontal lines, showing excellent agree-
ment with the numerical results. This confirms that the ana-
lytical expression in Eq. (19) describes the survival probability
at any timescale.

VI. CONCLUSIONS

We obtained an analytical expression that describes remark-
ably well the entire evolution of the averaged survival proba-
bility, 〈SP (t)〉, for the Dicke model in the chaotic regime and
allowed us to derive analytical expressions for the different
timescales involved in the relaxation to equilibrium. Due to
spectral correlations, the survival probability exhibits a cor-
relation hole. We find that the initial decay of 〈SP (t)〉 and

the time tTh for it to reach the minimum of the correlation
hole (Thouless time) depend on the energy profile of the ini-
tial states. Beyond the Thouless time, the dynamics is univer-
sal, being governed by the two-level form factor of the GOE.
This implies that the time, tr, for the survival probability to
reach equilibrium (relaxation time) depends only on the ener-
gies, being proportional to the inverse of the mean level spac-
ing. An interesting extension of the studies presented here
would be to investigate the timescales involved in the relax-
ation process of other physical observables that are relevant
for the Dicke model. Another future direction would be to
study the universality of the dynamics beyond the Thouless
time for special sets of initial states, such as minimal uncer-
tainty states.
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Appendix A: Ensemble averages of the survival probability

In this appendix we present the steps involved in the deriva-
tion of the analytical expression given by Eq. (19) for the en-
semble average of the survival probability. We begin with
Eq. (14) and perform ensemble averages, taking into account
that the eigenvalues and the components |ck|2 of the initial
state are statistically independent,

〈SP (t)〉 =

〈∑
k 6=l

|cl|2|ck|2e−i(Ek−El)t

〉
+ 〈IPR〉

=
∑
k 6=l

〈
|cl|2|ck|2

〉
e−i(Ek−El)t + 〈IPR〉 . (A1)

Let us consider first the ensemble average of IPR. Using
Eq. (5), we have

〈IPR〉 =

〈∑
k

|ck|4
〉

=

〈 ∑
k r

2
kf

2(Ek)(∑
q rqf(Eq)

)2

〉

=
∑
k

〈
r2
k(∑

q rqf(Eq)
)2

〉
f2(Ek). (A2)

For a large number of components, the average of the second
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line above can be approximated as〈
r2
k(∑

q rqf(Eq)
)2

〉
≈ 〈r2

k〉(∑
q〈rq〉f(Eq)

)2

=
〈r2
k〉

〈rq〉2
1(∑

q f(Eq)
)2 , (A3)

where in the last equality we have used the fact that 〈rnq 〉 is
actually independent of index q. By inserting this result in
Eq. (A2), we obtain

〈IPR〉 =
〈r2
k〉

〈rq〉2

∑
k f

2(Ek)(∑
q f(Eq)

)2 ≡
〈r2
k〉

〈rq〉2
1

η
. (A4)

Here, we have introduced the effective dimension of the en-
semble

η =

(∑
q f(Eq)

)2

∑
k f

2(Ek)
, (A5)

whose name comes from the fact that it reduces to the num-
ber of states participating in the rectangular ensemble, as it is
shown below. We now approximate the sums in Eq. (A4) by
integrals, ∑

k

• →
∫
dE ν(E)•, (A6)

to obtain

〈IPR〉 ≈
〈r2
k〉

〈rq〉2

∫
dE ρ2(E)/ν(E)(∫

dE ρ(E)
)2 =

〈r2
k〉

〈rq〉2

∫
dE

ρ2(E)

ν(E)
,

where we have used f(E) = ρ(E)/ν(E), and, in the last
equality, the normalization of ρ(E). Finally, since ν(E) varies
linearly in the energy interval where ρ(E) is significant, we
substitute the function ν(E) by its value in the center of the
profile distribution νc ≡ ν(Ec) and obtain

〈IPR〉 ≈
〈r2
k〉

〈rq〉2
1

νc

∫
dE ρ2(E),

and

η =
νc∫

dE ρ2(E)
.

From the expression for η, it is clear that, in the case of the
rectangular profile η = 2νcσR, which gives the number of
states participating in the ensemble.

For the first term in Eq (A1), we have to evaluate the en-
semble average

〈
|cl|2|ck|2

〉
= flfk

〈
rlrk(∑
q rqfq

)2

〉

where (l 6= k) and, for simplicity, we introduced the short-
hand notation fk ≡ f(Ek). To obtain an approximation to the
average, we consider the identity,

1 =

∑
k fkrk

∑
l flrl(∑

q rqfq

)2 =

∑
k f

2
kr

2
k(∑

q rqfq

)2 +

∑
l 6=k rlrkflfk(∑

q rqfq

)2 .

From this, we obtain∑
l 6=k rlrkflfk(∑

q rqfq

)2 = 1− IPR.

By taking the ensemble average of this expression and assum-
ing that 〈

rlrk(∑
q rqfq

)2

〉
≈ A,

where A is a constant independent of indexes l and k, we get

A
∑
l 6=k

flfk = 1− 〈IPR〉,

which implies that

A =
1− 〈IPR〉∑
l 6=k flfk

.

The sum in the denominator of the equation above can be ex-
pressed in terms of the effective dimension η [see Eq. (A5)],
as follows

∑
l 6=k

flfk =
η − 1

η

(∑
q

fq

)2

=
η − 1

η
,

where in the last step, the normalization
∑
q fq →∫

dEρ(E) = 1 was used. With the the above result, the aver-
age can be written as

〈
|cl|2|ck|2

〉
≈ 1− 〈IPR〉

η − 1
ηflfk,

which, when substituted in Eq. (A1), leads to

〈SP (t)〉 = 〈IPR〉+
1− 〈IPR〉
η − 1

η
∑
k 6=l

fkfle
−i(Ek−El)t. (A7)

We now turn our attention to the double sum
∑
k 6=l in

Eq. (A7). To solve it, we use∑
k 6=l

• →
∫
dEdE′R(E,E′)•,

where the Dyson two-point correlation function, R(E,E′) =
ν(E)ν(E′) − T (E − E′), includes the DoS, ν(E), and the
two-level cluster function, T (E−E′), which has information
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about the correlations between the eigenvalues [83]. We then
obtain ∑

k 6=l

fkfle
−i(Ek−El)t →

∣∣∣∣∫ ρ(E)e−iEtdE

∣∣∣∣2
−
∫
dEdE′ρ(E)ρ(E′)

T (E − E′)
ν(E)ν(E′)

e−i(E−E
′)t. (A8)

Using unfolded energy variables, which leads to universal
functions in the limit of an infinite number of levels, we
have [83]

Y ([E − E′]νc) = T (E − E′)/ν2
c .

With this function, the second integral in Eq. (A8) is∫
dEdE′ρ(E)ρ(E′)

T (E − E′)
ν(E)ν(E′)

e−i(E−E
′)t ≈∫

dEdE′ρ(E)ρ(E′)Y ([E − E′]νc) e−i(E−E
′)t, (A9)

which, in terms of variables z = E′ and x = (E − E′)νc
becomes

1

νc

∫
dxdzρ(z)ρ(z + x/νc)Y (x)e−i2πxt̃ (A10)

with t̃ = t/(2πνc). By expanding ρ(z+ x/νc) in powers of x
and considering only the lowest order, the double integral can
be approximated by a product of two independent integrals

1

νc

∫
dzρ(z)2

∫
dxY (x)e−i2πxt̃ =

1

η
b2

(
t

2πνc

)
,

where we have used the effective dimension introduced be-
fore, and b2(t̃) is the known Fourier transform of the GOE-
two level cluster function [83], the so called two-level form
factor shown in Eq. (21). We use the same b2(t̃) as in GOE
matrices, because the unfolded spectrum of the Dicke model
has correlations comparable to those of the GOE levels.

Gathering the previous results together, we obtain for the
ensemble average of the survival probability

〈SP (t)〉 = 〈IPR〉+ (A11)

1− 〈IPR〉
η − 1

[
η

∣∣∣∣∫ ρ(E)e−iEtdE

∣∣∣∣2 − b2( t

2πνc

)]
.

Since the squared absolute value inside the parenthesis is the
short time decay Sbcp given by Eqs. (9) and (10), we finally
arrive at our analytical expression in Eq. (19).
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