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In this paper, we consider the problem of parameter sensitivity in models of complex dynamical
systems through the lens of information geometry. We calculate the sensitivity of model behavior
to variations in parameters. In most cases, models are sloppy, that is, exhibit an exponential
hierarchy of parameter sensitivities. We propose a parameter classification scheme based on how
the sensitivities scale at long observation times. We show that for oscillatory models, either with
a limit cycle or a strange attractor, sensitivities can become arbitrarily large, which implies a high
effective-dimensionality on the model manifold. Sloppy models with a single fixed point have model
manifolds with low effective-dimensionality, previously described as a “hyper-ribbon”. In contrast,
models with high effective dimensionality translate into multimodal fitting problems. We define a
measure of curvature on the model manifold which we call the winding frequency that estimates the
density of local minima in the model’s parameter space. We then show how alternative choices of
fitting metrics can “unwind” the model manifold and give low winding frequencies. This prescription
translates the model manifold from one of high effective-dimensionality into the “hyper-ribbon”
structures observed elsewhere. This translation opens the door for applications of sloppy model
analysis and model reduction methods developed for models with low effective-dimensionality.

I. INTRODUCTION

An essential part of the modeling process is selecting
a similarity metric that quantifies the extent to which
a model mimics the system or phenomenon of interest
[1]. The choice of similarity metric informs nearly all
aspects of the modeling process: model selection, data
fitting, model reduction, experimental design, model val-
idation, etc.. Here, we consider the question of similarity
metrics for dynamical systems, particularly oscillatory
ones. Although a common choice, the least squares met-
ric comparing model outputs at selected times may lead
to models with a high effective dimensionality. In addi-
tion to posing technical challenges (e.g., ill-posed, mul-
timodal fitting problems), we argue that a high effective
dimensionality reflects a more fundamental issue: that
the choice of metric does not accurately capture the phe-
nomenon of interest. In this paper, we use sloppy model
analysis and information geometry to identify parameter
combinations in models of dynamical systems that lead
to high effective dimensionalities (Secs. II and III). We
then use methods of signal processing to construct new
similarity measures that “unwind” the model manifold
and lead to well-posed inference problems (Sec. IV).

Some have already observed that one’s choice of metric
is a critical aspect of parameter space exploration [2, 3].
The relationship between model behavior and parame-
ters is (locally) captured by sensitivity analysis. Previ-
ous studies have decomposed the sensitivities of periodic
signals into independent parts that control amplitude,
period, and other features [4–6]. In chaotic systems, it
has been found that the dynamics exhibit an exponen-
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tial sensitivity to parameters [7, 8]. In such cases, it is
common to use measures of the statistical distribution
in phase space, rather than time series [3, 7, 9–11]. The
present work combines these insights with tools of sloppy
model analysis and information geometry.

Sloppy models are a broad class of models whose be-
havior exhibits an exponential hierarchy of parameter
sensitivities [12–20]. Using an information geometric ap-
proach, it has been shown that the local sensitivity anal-
ysis reflects a global property, i.e., a low effective dimen-
sionality described as a hyper-ribbon [21–24]. It has been
suggested that this hyper-ribbon structure is why sim-
ple effective (i.e., low-dimensional) theories of collective
behaviors exist for systems that are microscopically com-
plicated [23, 24].

The effective dimensionality of sloppy models has im-
portant statistical implications. Information Criteria
(such as Akaike or Bayes) are used in model selection and
penalize those with too much fitting flexibility. A model’s
fitting power is most easily estimated in the asymptotic
limit, in which it is simply approximated by the number
of parameters, i.e., the dimension of the model manifold.
For hyper-ribbons, these formula greatly overestimate fit-
ting power of a model [25, 26]. However, it is also possible
for models to exhibit a high effective dimensionality, i.e.,
have model manifolds whose fitting power is much larger
than that suggested by the number of parameters. As
we show in Secs. II and III, these models will exhibit ex-
treme multimodality when fit to data, and have model
manifolds with large curvatures that tend to fill large
volumes of behavior space.

The challenge of multimodality in fitting problems has
been noted in many fields [9, 10, 27–29]. Proposals for ad-
dressing multimodality have included global search meth-
ods [9, 28, 30–32], increasing the size of the parame-
ter space in order to escape local minima [29, 33], and



2

changing the parameter landscape through an alterna-
tive choice of metric [3, 9].

In Sec. II, we introduce the least squares metric un-
der consideration and use model sensitivity analysis at
long times to classify parameter combinations. In turn,
we classify models based on which parameter types they
include and show that some classes of models exhibit an
anomalous statistical dimension, that is, the effective di-
mensionality of the model may be either much more or
less than the number of parameters. In Sec. III, we argue
for a deeper theoretical implication of this phenomenon.
Using an information geometric approach, we relate the
effective statistical dimension to the curvature on the
model manifold. In Sec. IV, we explicitly demonstrate
that alternative metrics can lead to different effective di-
mensions and present a prescription for how models of
high effective dimension can be regularized through an
appropriate choice of metric.

II. MODEL AND PARAMETER
CLASSIFICATIONS

A. Similarity measure

Consider a parametrized model of time y(t; θ) (which
could be generated, for example, as the solution to a
system of differential equations), where θ is a vector of
parameters (which could include initial conditions) and
y is either a scalar or vector of observables. We wish to
quantify the similarity of the model behavior for different
values of θ. The most common metric in the literature
is least squares regression, in which case the distance (or
cost) between two models, with parameters θ and θ0,
takes the form

C(θ) =
1

2T

∫ T

0

dt(δy(t; θ) · δy(t; θ)), (1)

δy(t; θ) ≡ y(t; θ0)− y(t; θ). (1a)

We are interested in the sensitivity of model predictions
at different time scales. By increasing the total time
T , this cost function C(θ) defines a coarse-graining in
the effective sampling rate followed by a renormalization
so that the total number of effective data points is con-
stant. When measuring the distance to observed data yi
at times ti (with uncertainties σi used as weights), the
integral becomes a sum,

C(θ) =
1

2T

∑
i

(
yi − y(ti; θ)

σi

)2

, (2)

where we have employed the convention, e.g., δy2 ≡ δy ·
δy.

Being a distance measure, C defines a metric on the
space of data and model predictions known as data space
[21, 22]. We interpret the model predictions y(ti; θ) and
observations yi as components of two vectors in data

space which we denote y(θ) and y, respectively. By vary-
ing θ, y(θ) sweeps out a surface in data space known as
the model manifold. With this notation, Eq. (2) may be
written as

C(θ) =
1

2T
δyᵀΣ−1δy, (3)

δy ≡ y − y(θ) (3a)

where Σ denotes the (diagonal) covariance matrix for the
observation vector y.

B. Sensitivity analysis and parameter classification

To quantify the sensitivity to parameters of model pre-
dictions at different time scales, we consider derivatives
of the cost with respect to θ. Dropping the t and θ de-
pendence for clarity, the gradient of Eq. (1) is

∂C

∂θµ
= − 1

T

∫ T

0

dt

(
δy · ∂y

∂θµ

)
, (4)

and the Hessian is

Hµν ≡
∂2C

∂θµ∂θν

=
1

T

∫ T

0

dt

(
∂y

∂θµ
· ∂y
∂θν
− δy · ∂2y

∂θµ∂θν

)
. (5)

Note that because δy(t; θ0) = 0, the gradient at θ0 is also
0 and the Hessian at θ0 simplifies to

Hµν(θ0) =
1

T

∫ T

0

dt

(
∂y

∂θµ
· ∂y
∂θν

)
. (6)

This is also approximately valid when θ ≈ θ0. For
Eq. (3), the Hessian at θ0 takes the form

H(θ0) =
1

T

∂y

∂θ

ᵀ

Σ−1
∂y

∂θ
. (7)

Although the gradient and Hessian may be evaluated at
other points, H(θ0) is particularly important because it
is the Fisher Information Metric (FIM) for this measure-
ment process and acts as a Riemannian metric on the
model manifold. We are interested in the eigenvalues of
H and their dependence on T .

Figure 1 plots a cross section of C (as a surface over θ),
the eigenvalues of H, and a three-dimensional projection
of the model manifold for three models (details of these
models are found in Appendix A).

The first model is characterized by a transient decay
to a steady state. As illustrated in Fig. 1(b), for large
T , the model becomes increasingly insensitive to parame-
ter combinations that control transient behavior, scaling
as O(T−1). The parameter that determines the steady
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FIG. 1. Model classes. 1st column: Cross sections of C(θ) [Eq. (1)] for three prototype models (see Appendix A, models
A, D, and G). Contrast the canyons in (a) with the ripples in (d) and the roughness in (g). 2nd column: Hessian eigenvalues
as a function of sampling time (same models). Colors differentiate scaling behaviors at long times. 3rd column: Projections
of the model manifold (same models). In (c), a 3-ball in parameter space was mapped to the nearly 1-dimensional region of
prediction space shown (low effective dimensionality). By contrast, for (f) and (i) a single parameter was varied producing a
1D (space-filling) curve in prediction space (high effective dimensionality). Note: In (i), the model goes through a bifurcation
where the manifold begins to oscillate rapidly. The sampling required to see continuity is prohibitive, so the points plotted
become scattered.

state scales as O(1). These scaling behaviors can be mo-
tivated as follows. We assume that parameter combina-
tions which control the transient dynamics have sensitiv-
ities that decay to zero at long times,

∂y

∂θµ
(t→∞; θ) ∼ 0, (8)

while those that control the steady state are asymptoti-
cally constant:

∂y

∂θµ
(t→∞; θ) ∼ const. (9)

In light of Eq. (6), this leads to the O(T−1) and O(1)
scaling behaviors observed. Note that as the total sam-
pling time T is increased past the transient dynamics,
the only new information obtained is information about

the final steady state. Our choice of normalization keeps
the effective number of data points constant, so increas-
ing T results in an effective loss of information about the
transient dynamics but no information loss for the steady
state.

The second model exhibits a periodic limit cycle. As
shown in Fig. 1(e), parameter combinations control-
ling features of the attractor scale as O(1), those that
control the transient approach to the attractor scale
as O(T−1), and the combination controlling frequency
scales as O(T 2). Motivation for the scaling behavior of
the parameter combinations controlling the the transient
approach to the attractor follow as in the previous case.
To motivate the other two scaling behaviors, we consider
the steady state of the model and expand in a Fourier
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series:

y(t→∞; θ) =

∞∑
k=−∞

ck(θ)eikω(θ)t

= y(t→∞; c(θ), ω(θ)). (10)

There is an intermediate dependence of the steady state
on the amplitude coefficients ck and the oscillatory fre-
quency ω. This allows us to decompose the parameter
sensitivities of the steady state into two parts:

∂y

∂θµ
(t→∞; θ) =

∞∑
k=−∞

∂y

∂ck

∂ck
∂θµ

+
∂y

∂ω

∂ω

∂θµ
. (11)

Because ck and ω are time-independent by construction,
the time dependence of these sensitivities is due entirely
to the coefficients

∂y

∂ck
(t→∞; θ) = eikω(θ)t, (12)

which is bounded by a constant, and

∂y

∂ω
(t→∞; θ) =

∞∑
k=−∞

iktck(θ)eikω(θ)t

∼ t, (13)

which grows linearly with time. The amplitude sensitivi-
ties (∂y/∂ck)(∂ck/∂θµ) control the shape and amplitude
of the steady state and give rise to O(1) scaling behavior
[referring again to Eq. (6)]. By contrast, the frequency
sensitivity (∂y/∂ω)(∂ω/∂θµ) results in O(T 2) scaling be-
havior. Other studies have focused on the sensitivity to
period, rather than frequency, but the temporal scaling
behavior is the same for both [4–6].

Finally, the third model is chaotic; parameters control-
ling its dynamics exhibit exponential sensitivities,

∂y

∂θµ
(t→∞; θ) ∼ eλµt, (14)

leading to the exponential scaling behavior in Fig. 1(h).
We classify parameter combinations in a model accord-

ing to their scaling behavior; this classification is summa-
rized in Table I. LaMont and Wiggins have also proposed
a classification of model parameters, based on the com-
plexity of a given parameter combination [25]. In the case
of dynamical models, our analysis illustrates the mech-
anisms that give rise to the complexities of each class.

C. Model classification

The different scaling behaviors for the Hessian eigen-
values are accompanied by different structures in both
the cost surface and the model manifold (1st and 3rd

columns of Fig. 1). The cost surface of the first model

TABLE I. Parameter classification.

Eigenvalue scaling behavior Dynamics controlled
O(T−1) transient
O(1) steady state
O(T 2) frequency
O(eT ) chaotic behavior

is characterized by a single, highly anisotropic basin. Its
model manifold is similarly anisotropic; the long, nar-
row hyper-ribbon structure is common for models with
low effective dimensionality [21, 22]. In contrast, the sec-
ond cost surface has many local minima and a model
manifold with high curvature. The third cost surface ex-
hibits a fractal-like roughness (although for finite T the
derivative with respect to parameters formally exists ev-
erywhere). Its model manifold is even more highly curved
and space-filling.

These three models are prototypes of three model
classes, distinguished by the scaling behavior of the
largest eigenvalue for large T . For the first class, λmax ∼
O(1) is bound by a constant. For the second class,
λmax ∼ O(Tn) is bound by a polynomial. For the third
class, λmax ∼ O(eT ) is exponential. We plot the eigenval-
ues of the Hessian (at large, fixed T ) for the three pro-
toype models and for two additional models from each
class in Fig. 2 (details of these models are found in Ap-
pendix A). All nine models are considered sloppy ; that is,
the eigenvalues of the Hessian are spread over many or-
ders of magnitude. Accordingly, we refer to these model
classes as sloppy models of the first, second, and third
kinds, respectively.

FIG. 2. Eigenvalues of H(θ0) for the following mod-
els (see Appendix A for details): A) sum of exponen-
tials; B) rational polynomial; C) biological adaptation; D)
FitzHugh-Nagumo; E) Hodgkin-Huxley; F ) Wnt oscillator;
G) Lorenz; H) Hindmarsh-Rose; I) damped, driven pendu-
lum. {A,B,C} are nonoscillatory models, {D,E, F} are pe-
riodic, and {G,H, I} are chaotic.
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III. MANIFOLD CURVATURE

The large sensitivities of sloppy models of the second
and third kinds are necessarily associated with large cur-
vature and high effective dimensionality on the model
manifold. This can be understood by noting that the ab-
solute variation in the model behavior is bounded (the
models oscillate within a finite range and do not grow).
This restricts the model manifold to a finite region of
data space. Large parameter sensitivities indicate that
the model manifold is very long in the associated param-
eter directions. The only way to fit something very long
into a finite region is for it to curve, fold, or wind. The
combination of large parameter sensitivities and bounded
predicted behavior necessitates large manifold curvature.
For large T , there will be enough winding that the man-
ifold effectively fills a volume of higher dimension than
that of the manifold itself. This high effective dimen-
sionality is the opposite effect of the low effective dimen-
sionality argued for in previous studies of sloppy models
[23, 24].

To quantify this effect, we introduce a new quantity
that we call the winding frequency, as follows. The ex-
trinsic curvature associated with parameter direction v
is given by the geodesic curvature k(v) = 1/R (as in
Ref. [22]), where R is the radius of curvature of the cir-
cle tangent to the manifold along direction (∂y/∂θµ)vµ

(sum over µ implied; see Fig. 3). We define the winding
frequency as

ω(v) ≡
∣∣∣∣ ∂y∂θµ vµ

∣∣∣∣ k(v) (15)

which is the angular velocity at which the manifold lo-
cally winds around the tangent circle, such that f = ω/2π
is the number of windings of the manifold per unit change
in parameters. Because C is a distance measure for the
manifold embedding space, each winding of the manifold
results in a local minimum of C, so f is also the frequency
of local minima in C as we move along parameter direc-
tion v.

Figure 4 shows winding frequencies along Hessian
eigendirections for the models from Fig. 2. Notice that
sloppy models of the first kind (i.e., hyper-ribbons) have
low winding frequencies. Sloppy models of the second
kind have high winding frequency in the stiffest direc-
tion, which controls frequency. Sloppy models of the
third kind have high winding frequencies in more than
one direction.

The effective dimensionality, estimated by the winding
frequencies, depends on the metric of the model mani-
fold embedding space, i.e., Eq. (1). We now show that
alternative choices for embedding the model manifold can
lead to different effective dimensionalities.

FIG. 3. Illustration of winding frequency. The “s”-
shaped curve represents a possible 1D cross-section of a model
manifold (obtained, for example, by varying just one param-
eter combination) in a simple 2D data space. Also shown are
the tangent/velocity vector (∂y/∂θµ)vµ (sum over µ implied),
the tangent circle with radius R, and the winding frequency
ω defined in Eq. (15).

FIG. 4. Winding frequencies along Hessian eigendirec-
tions for the models from Fig. 2, ordered from left to right by
magnitude of the corresponding eigenvalue. “Stiff” refers to
eigendirections with large eigenvalues, while “sloppy” refers
to eigendirections with small eigenvalues. The black dashed
line at ω = 2π roughly distinguishes low from high winding
frequencies.

IV. ALTERNATIVE METRICS

A. Analytic signal (AS)

The high effective dimensionality of sloppy models of
the second kind is due entirely to the parameter com-
bination controlling frequency. Varying this parameter
combination causes model predictions to pass in and out
of phase with each other, resulting in local minima in the
cost (see Figs. 5 and 6). We avoid this aliasing by defin-
ing the phase of oscillation as a monotonically increasing
function of time and comparing model behaviors at the
same phase.
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FIG. 5. Cost C for the model y(t) = A cos(ωt), treating A
and ω as parameters. The cost has been rescaled to make the
local minima apparent.

FIG. 6. Decoupling amplitude from phase. (a) Signal
vs. time for two signals with mismatched amplitude and fre-
quency; their difference is indicated by the shading between
the curves. The mismatch in frequency causes a large dif-
ference δy when the two signals are out of phase (t ≈ 1.8)
but little or no difference when they are in phase (t ≈ 3.5).
(b) Signal vs. phase for the same signals. The difference-at-
constant-phase δỹ is consistent throughout (see Sec. IV A 2).
(c) Phase vs. time for the two signals. The difference in phase
δφ simply grows linearly (see Sec. IV A 2). (d) Analytic rep-
resentation in the complex plane of the black point marked in
the other 3 panels (see Sec. IV A 1).

Many definitions of instantaneous frequency and phase
have been considered in the literature [34–36]. We use
the analytic signal approach [37], which is discussed in
Sec. IV A 1. Some alternatives are discussed in Appendix
B. We propose a new metric for oscillatory systems
in Sec. IV A 2. We discuss the Hessian and FIM in
Sec. IV A 3. Results of applying the new metric to the
FitzHugh-Nagumo model are found in Sec. IV A 4. Com-
paring model predictions with observational data in the
new paradigm requires calculating the phases of the ob-
servations, which will have uncertainty. We propagate
uncertainty and derive appropriate covariance matrices
in Appendix C. Calculation of winding frequencies re-

quires second-order parameter sensitivities (specifically,
when calculating the geodesic curvature κ); we derive
the necessary formulas in Appendix D.

1. Phase definition

The analytic representation z(t) of an oscillatory signal
y(t) is a complex function defined as

z(t) ≡ y(t) + iH[y](t) = A(t)eiφ(t), (16)

where H[y](t) is the Hilbert transform of y(t),

H[y](t) ≡ 1

π
P.V.

∫ ∞
−∞

y(τ)

t− τ
dτ , (17)

and the magnitude A(t) and argument φ(t) of z(t) are

A(t) ≡
√
y2(t) +H2[y](t) (18)

φ(t) ≡ tan−1
(
H[y](t)

y(t)

)
. (19)

[See Fig. 6(d).]
In light of Eq. (16), we reinterpret y(t) in terms of

amplitude and phase as

y(t) = <{z(t)} = A(t) cos(φ(t)). (20)

We then define a new signal ỹ as a function of phase:

ỹ(φ(t)) ≡ y(t) = A(t) cos(φ(t)). (21)

As long as φ(t) is monotonically increasing, the relation-
ship between φ and t is invertible. Hence, we may also
write

ỹ(φ) = A(t(φ)) cos(φ). (22)

If y(t) is a vector (rather than scalar) function of time,
then φ(t) will also be a vector function of time. That
is, for each scalar component of y(t), the preceding pre-
scription for constructing the phase should be applied
separately. If this is not possible or does not produce a
set of monotonically increasing phases, it may be applied
to a single scalar component of y and the resulting phase
used for all of the components. For other alternatives
that avoid using the Hilbert transform, see Appendix B.

As a final note, a necessary condition for φ(t) to be
monotonically increasing is that the signal y(t) oscil-
late around 0. If it is not, the time average 〈y(t)〉 =

(1/T )
∫ T
0
y(t)dt should be subtracted from y(t) prior to

calculating the phase. H[y](t) will be unaffected, as the
Hilbert transform of a constant is 0.

2. New cost using phase

We want to construct a cost that compares models at
the same phase rather than the same time. Actually,
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we can go one step further and construct a cost that
also retains the phase information while still eliminating
the aliasing of oscillations that results in local minima.
We use an approximation of Eq. (1a) that arises from
the propagation of uncertainty considered in Appendix C
[see Eq. (C16)]. In the discrete case [comparing a model
y(ti; θ) with observational data yi], Eq. (1a) is

δyi ≡ yi − y(ti; θ). (23)

We define the deviations of the phases φi of the obser-
vations from the phases φ(ti; θ) predicted by the model
as

δφi ≡ φi − φ(ti; θ) (24)

[see Fig. 6(c)], and the deviations of the observations from
the predictions at constant phase as

δỹi ≡ yi − ỹ(φi; θ) (25)

[see Fig. 6(b)]. The approximation we use for oscillatory
systems is

δyi ≈ δỹi +

(
∂ỹ

∂φ

)
i

δφi ≡ δŷi. (26)

The first term captures changes in amplitude while the
second term captures changes in phase/frequency, so
both pieces of information are retained (see Sec. IV A 3).
At the same time, because this approximation is first
order in δφi, it eliminates the nonlinear dependence on
frequency that results in ripples in the cost (refer back
to Fig. 6), which we will demonstrate in Figs. 7 and 8.

We define a new cost function by replacing δy in
Eq. (3) with the approximation δŷ defined according to
Eq. (26):

Cφ(θ) ≡ 1

2T
δŷᵀΣ−1δŷ (27)

Using Eq. (26), this may be decomposed into three pieces
representing the amplitude contribution, the phase con-
tribution, and a cross term:

Cφ(θ) = C ỹ(φ)(θ) + Cφ(t)(θ) + CX(θ) (27a)

C ỹ(φ)(θ) ≡ 1

2T
δỹᵀΣ−1δỹ (27b)

Cφ(t)(θ) ≡ 1

2T
∆φᵀΣ−1∆φ (27c)

CX(θ) ≡ 1

2T

(
δỹᵀΣ−1∆φ + ∆φᵀΣ−1δỹ

)
(27d)

∆φi ≡
(
∂ỹ

∂φ

)
i

δφi. (27e)

We compare C [Eq. (3)], C ỹ(φ), Cφ(t), and Cφ in Fig. 7.

When comparing two models with parameters θ0 and

FIG. 7. Cost decomposition of the model y(t) = A cos(ωt).
(a) Same as Fig. 5. (b) ỹ(φ) = A cos(φ) is insensitive
to changes in ω and varies linearly with A, resulting in a
quadratic dependence of C ỹ(φ) on A only. (c) φ(t) = ωt is
insensitive to changes in A and varies linearly with ω, result-
ing in a quadratic dependence of Cφ(t) on ω only. (d) Cost
using Eq. (27). The ripples in (a) have been replaced with a
quadratic basin.

θ, Eqs. (24), (25), (26), and (27) take the form

δφ(t; θ) ≡ φ(t; θ0)− φ(t; θ), (28)

δỹ(t; θ) ≡ ỹ(φ(t; θ0); θ0)− ỹ(φ(t; θ0); θ)

= y(t; θ0)− ỹ(φ(t; θ0); θ), (29)

δŷ(t; θ) ≡ δỹ(t; θ) +
∂ỹ(φ(t; θ0); θ0)

∂φ
δφ(t, θ), (30)

Cφ(θ) ≡ 1

2T

∫ T

0

dt(δŷ(t; θ) · δŷ(t; θ)). (31)

As we show in Sec. IV A 3, Eq. (31) is a quadratic approx-
imation of Eq. (1) (i.e., they have the same gradient and
Hessian). In other words, Eq. (31) is an isometric embed-
ding of the model manifold. However, because changes
in frequency only affect φ(t; θ), which is unbounded, the
large manifold volume is no longer constrained to a finite
region of the embedding space.

3. Fisher Information Metric

We stated in Sec. II B that the Hessian of the cost
evaluated at θ0 is the Fisher Information Metric (FIM).
Specifically, the FIM is related to the cost by

Iµν =

〈
∂2C(θ0)

∂θµ∂θν

〉
= 〈Hµν(θ0)〉 . (32)

We have already shown that

Iµν =
1

T

∫ T

0

dt
∂y

∂θµ
· ∂y
∂θν

(33)
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for Eq. (1) [see Eq. (6)]. We can rewrite this for oscilla-
tory systems in light of Eq. (21),

y(t; θ) = ỹ(φ(t; θ); θ). (34)

Differentiating Eq. (34) with respect to θµ, we obtain

∂y

∂θµ

∣∣∣∣
t

=
∂ỹ

∂θµ

∣∣∣∣
φ

+
∂ỹ

∂φ

∣∣∣∣
θ

∂φ

∂θµ

∣∣∣∣
t

, (35)

where the |x notation is used to indicate that the argu-
ment x is being held constant in the given derivative.
This relationship is exact and shows a decoupling of the
amplitude sensitivity from the phase sensitivity [similar
to Eq. (11)]. Substituting Eq. (35) into Eq. (33) yields

Iµν =
1

T

∫ T

0

dt

(
∂ỹ

∂θµ
+
∂ỹ

∂φ

∂φ

∂θµ

)
·
(
∂ỹ

∂θν
+
∂ỹ

∂φ

∂φ

∂θν

)
.

(36)
We now show that Eq. (36) is also the FIM for Eq. (31).

First we calculate the gradient of Cφ(θ):

∂Cφ

∂θµ
= − 1

T

∫ T

0

dt

{
δŷ ·

(
∂ỹ

∂θµ
+
∂ỹ

∂φ

∂φ

∂θµ

)}
. (37)

Next we calculate the Hessian and evaluate it at θ0 [note
that δŷ(θ0) = δφ(θ0) = 0]:

Hµν(θ0) =
1

T

∫ T

0

dt

(
∂ỹ

∂θµ
+
∂ỹ

∂φ

∂φ

∂θµ

)
·
(
∂ỹ

∂θν
+
∂ỹ

∂φ

∂φ

∂θν

)
.

(38)
Clearly this is the same as Eq. (36). Because the FIM is
preserved, the new cost [Eq. (31)] constitutes an isomet-
ric embedding of the model manifold and no information
is lost (in the sense of the Fisher Information).

4. Results

We implement the new metric for the FitzHugh-
Nagumo model as an example; results are shown in
Fig. 8(a-c). The local minima in the cost surface in
Fig. 1(d) have been eliminated, the winding frequency
of the stiffest direction is significantly reduced, and the
manifold is no longer highly curved (see also Appendix
E). Because the new cost function is an isometric embed-
ding [i.e., preserves the Hessian in Eq. (6)], the curvature
of the cost surface at the bottom of the bowl is the same
as that in Fig. 1(d).

B. Kernel density estimation (KDE)

The high effective dimensionality of sloppy models of
the third kind cannot be eliminated using the new metric
discussed in Sec. IV A. Adjusting the phase of a chaotic
time series is insufficient to account for the variation in
predictions as one moves from point to point in parame-
ter space [resulting in the apparent roughness of the cost

surface illustrated in Fig. 1(g)]. This is reflected in the
exponential sensitivities of chaotic systems at long times
and is connected with a fundamental difference in mani-
fold structure between sloppy models of the second and
third kinds. Note from Eq. (15) that winding frequency
is directly proportional to geodesic/extrinsic curvature.
Figure 4 shows that the manifolds of sloppy models of
the second kind only have high (extrinsic) curvature in
one direction (like a scroll of paper). This high curva-
ture can be eliminated through an isometric embedding
(analogous to unwinding the scroll). By contrast, sloppy
models of the third kind have high extrinsic curvature
in more than one dimension. High extrinsic curvature in
multiple dimensions is necessarily associated with some
intrinsic curvature, and this intrinsic curvature cannot
be eliminated through an isometric embedding (think of
a globe, which can’t be “unwound” and laid flat).

The sensitivities of chaotic time series to parameters
(including initial conditions) make time series prediction
in sloppy models of the third kind impractical at long
times. However, model predictions yi(θ) in phase space
do give rise to a predictable distribution f(y, θ) [11]. We
evolve an ensemble of initial conditions and use the result
to approximate this distribution with a kernel density
estimate [38, 39],

f(y, θ) ≈ 1

nh

n∑
i=1

K

(
y − yi(θ)

h

)
, (39)

where n is the number of predictions/observations, K(·)
is a kernel function, and h is the kernel bandwidth. A
natural metric to use for distributions is the Hellinger
distance,

C̃(θ) ≡ 1

2

∫
dy
(√

f(y, θ0)−
√
f(y, θ)

)2
, (40)

because it is a quadratic form, which can be interpreted
as a Euclidean embedding space. It also induces a met-
ric on the model manifold that is given by the Fisher
Information Metric.

We implement this cost for the Lorenz system; results
are shown in Fig. 8(d-f). The “rough” cost surface of
Fig. 1(g) has been replaced with a basin, the high wind-
ing frequencies have all disappeared, and the manifold is
regular (see also Appendix E).

V. CONCLUSION

Multimodality in comparing and training multi-
parameter models is a common problem [9, 10, 27–29].
Many common search algorithms find only a local min-
imum (a point in parameter space which locally mini-
mizes the chosen distance measure) and not the global
one. Even with global search methods the possibility of
local minima reduces confidence that the global minimum
will be found. Here, we have shown how the choice of dis-
tance measure affects the number of local minima. We
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FIG. 8. Effects of alternative metrics on cost surfaces (1st column), winding frequencies (2nd column), and manifolds (3rd

column), (a-c) using analytic signal (AS) and (d-f) using kernel density estimation (KDE). Compare (a), (c), (d), and (f) with
Fig. 1(d), (f), (g), and (i), respectively. (b) and (e) show both the winding frequencies shown previously in Fig. 4 (“w/o ”)
and the winding frequencies that result when using the new metrics (“using ”) for comparison. Note that long time series
are needed to achieve these results; see Appendix E for details.

have quantified this effect using curvature on the model
manifold and introduced the winding frequency to esti-
mate the density of local minima in parameter space. Fi-
nally, we have shown that through an appropriate choice
of metric, the model manifold can be systematically “un-
wound” to remove local minima while preserving relevant
physical interpretations of distance.

In this paper we have studied systems for which the
relevant structures were known a priori (e.g., limit cycles
and strange attractors). However, the metrics we propose
may also be useful for identifying previously unknown
structures in other complex systems.

One of the ongoing challenges for many complex sys-
tems is the development of appropriate reduced-order
representations [23, 40–42]. More broadly, it has been
suggested that the existence of useful simplified models
is often due to a systematic compression of parameter
space [23]. Compressing the parameter space leads to
a type of “universality class” in which models with dif-
ferent parameter values make statistically indistinguish-
able predictions. This line of work has also lead to new
methods for constructing simplified models from more
complex and complete mechanistic representations [43].
Ultimately, this compression is a consequence of the sim-
ilarity metric used to compare model behaviors.

For sloppy models of the first kind (which have
previously dominated the literature), the compression
“squashes” some dimensions to be very thin (as in
Fig. 1(a) and Refs. [21, 22]), leading to a universality class
of continuously-connected parameters for which reduced-

order models can be systematically derived [43]. In con-
trast, for sloppy models of the second and third kind, the
manifold is wound tightly, so that a compression leads to
a manifold folding in which non-contiguous regions of the
manifold are identified as part of the same universality
class. It is unlikely that predictive reduced-order models
can be found for sloppy models with high winding fre-
quencies as this would imply the existence, for example,
of accurate long-term weather forecasts. High winding
frequency is the information-geometric equivalent of sen-
sitivity to microscopic details (such as frequency, initial
conditions, or other parameters), well-studied in chaotic
systems. In contrast, by unwinding the model manifold
using an alternative metric, the manifold is transformed
into a hyper-ribbon and this extreme-sensitivity to mi-
croscopic details is removed.

Understanding how effective theories emerge at long
time scales is a challenging problem that has drawn on
sophisticated expertise from a variety of fields, including
dynamical systems [44, 45], signal processing [4, 6], statis-
tics [26, 46], and optimization [10, 29]. In this work we
have combined insights from these other domains with
tools of information geometry. Our hope is that this
explicit connection will bring new tools, such as sloppy
model analysis and the manifold boundary approxima-
tion method, to bear on a wide range of important, on-
going scientific problems.
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Appendix A: Models

Following are the models examined in Figs. 1, 2, 4,
and 8. In some cases (models D, G, and I), additional
polynomial terms (with parameters as coefficients) were
added to the model equations of motion. This allows
calculation of the structural susceptibility of the model,
that is, susceptibility to perturbations of the underlying
dynamics [47]. These terms can be thought of as repre-
senting details of the real system that have been left out
of the model.

A) A sum of decaying exponentials leading to a steady
state:

y(t; θ) = θ1 +

N∑
n=2

e−γnt (A1a)

γn ≡
n∑
i=2

θi, (A1b)

where θi > 0. Eigenvalues of the Hessian and
winding frequencies (Figs. 1(b), 2, and 4) were cal-
culated at θi = 1; likewise for the cost surface
in Fig. 1(a) except for the two parameters indi-
cated on the axes. For the manifold projection in
Fig. 1(c), ln θ2, ln θ3, and ln θ4 were varied over a
spherical volume of radius 20 centered on the origi-
nal parameter values. Note that using θi as the pa-
rameters of the model, rather than using the decay
rates γn directly, guarantees that the decay rates
are ordered (i.e., γn+1 > γn), breaking the symme-
try between them.

B) A rational polynomial model:

y(t; θ) =
θ1 + θ2t+ θ3t

2 + θ4t
3

1 + θ5t+ θ6t2 + θ7t3
. (A2)

Parameter values used were randomly chosen in the
range e−5 ≤ θi ≤ e5.

C ) We used the IFFLP model of biological adaptation
described in [48].

D) The FitzHugh-Nagumo model [29, 49, 50] can be
written as:

V̇ = c

(
V − V 3

3
+R+ I (A3a)

+
∑
n,m

θnmV
nRm

)

Ṙ = −1

c
(V − a+ bR), (A3b)

We used a constant input current I, taken as
a model parameter (in addition to the param-
eters a, b, c, and θnm). Initial conditions
used were (V0, R0) = (−1, 1). Eigenvalues of
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the Hessian and winding frequencies (Figs. 1(e),
2, and 4) were calculated at (a, b, c, I, θnm) =
(−0.0225, 0.135, 3.0, 0, 0); likewise for the cost sur-
face in Fig. 1(d) except for the two parameters
indicated on the axes. For the manifold projec-
tion in Fig. 1(f), a slice of parameter space along
−2 ≤ a ≤ 2, b = 0.2 was used (all other parameters
as above).

E ) We implemented the Hodgkin-Huxley model de-
scribed in [51].

F ) We used the Wnt oscillator model described in [52].

G) The Lorenz system [53] is given by:

ẋ = σ(y − x) +
∑
n,m,p

θnmpx
nymzp (A4a)

ẏ = x(ρ− z)− y (A4b)

ż = xy − βz. (A4c)

Initial conditions used were (x0, y0, z0) = (1, 1, 10).
Model parameters include σ, ρ, β, and θnmp.
Additional parameters for rescaling x, y, and z
after solving the ODE [e.g. x̃ ≡ (x − xref )/xscale]
were also included to illustrate that all parameters
in a chaotic system need not exhibit an exponential
sensitivity [see Fig. 1(h)]. (In general, parameters
like these could account for differences in units
between the model and the observations, if there
were any.) Eigenvalues of the Hessian and winding
frequencies (Figs. 1(h), 2, and 4) were calculated at
(σ, ρ, β, θnmp, xref , yref , zref , xscale, yscale, zscale) =
(10, 28, 8/3, 0, 0, 0, 0, 1, 1, 1); likewise for the cost
surface in Fig. 1(g) except for the two parameters
indicated on the axes. For the manifold projection
in Fig. 1(i), a slice of parameter space along
σ = 10.05, 10 ≤ ρ ≤ 30 was used (all other
parameters as above).

H ) The Hindmarsh-Rose model [54, 55] can be written
as:

ẋ = y − ax3 + bx2 − z + I (A5a)

ẏ = c− dx2 − y (A5b)

ż = ε

(
x− 1

s
(z − zR)

)
. (A5c)

Initial conditions used were (x0, y0, z0) =
(−0.216272..., 0.183969..., 0.066920...). Model
parameters include I (taken as a constant
input current), a, b, c, d, ε, s, and zR.
Eigenvalues of the Hessian and winding fre-
quencies (Figs. 2 and 4) were calculated at
(a, b, c, d, I, ε, s, zR) = (1, 3, 1, 5, 0, 0.004, 4, 3.1586).

I ) The equations of motion for a damped, driven pen-

dulum (derivable using Newton’s 2nd law) are:

ϕ̇ = ω +
∑
n,m,p

θnmpϕ
nωmφp (A6a)

ω̇ = −ω
Q
− sin(ϕ) +A cos(φ) (A6b)

φ̇ = ωD. (A6c)

Initial conditions used were (ϕ0, ω0, φ0) =
(−2, 0, 0). Model parameters include Q, A, ωD,
and θnmp. Eigenvalues of the Hessian and wind-
ing frequencies (Figs. 2 and 4) were calculated at
(Q,A, ωD, θnmp) = (2, 1.16, 2/3, 0).

Appendix B: Alternatives for obtaining a phase

In some cases, Eq. (19) cannot be used to obtain a
monotonically increasing phase. For example, some os-
cillatory behavior does not have a unique center of oscilla-
tion. If that is the case, one approach is to decompose the
signal using empirical mode decomposition into a number
of intrinsic mode functions, for each of which a separate
phase may then be defined [56]. However, because this
method is empirical, the decomposition may not vary
smoothly with the parameters of the model, leading to
discontinuities in the cost function.

Even when the oscillatory behavior does have a single
center of oscillation, in practice the Hilbert transform
must be implemented numerically (especially for obser-
vational data). This usually involves a fast Fourier trans-
form, which can introduce unwanted effects in the phase
due to the Gibbs phenomenon (see Fig. 9). The impact
of end effects can be reduced by leaving the ends out of
the cost function, or through windowing.

FIG. 9. Phases obtained when implementing the Hilbert
transform numerically on the model y(t, θ) = A cos(ωt), for ω
ranging from 2π to 4π. The effects of the Gibbs phenomenon
can be seen near the ends for some values of ω.

More generally, any monotonically increasing function
of time may be used for a phase, provided it has the
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appropriate frequency. One proposal is to use

φ(t) = ωt+ φ0, (B1)

and to estimate a value of ω from the oscillatory signal.
This may be done by fitting a line to the phase obtained
from Eq. (19) or by using a Fourier transform to decom-
pose the signal into frequency components and selecting
one.

We also suggest the following method of obtaining a
phase (found in [35]) that does not require the use of the
Hilbert transform. It is sometimes the case that two sig-
nals, y1(t) and y2(t), can be selected from the dynamical
variables y(t) of a system and used to calculate a phase
as follows:

φ(t) = arctan

(
y2(t)

y1(t)

)
. (B2)

The only requirement is that the combined signal cor-
respond to a proper rotation, which has both a definite
direction and unique center of rotation, so that the phase
will be monotonically increasing [36, 57]. For example,
in some cases, a signal y(t) and its time derivative ẏ(t)
may be used:

φ(t) = arctan

(
y(t)

ẏ(t)

)
. (B3)

Appendix C: Covariance matrices

We consider how uncertainty in experimental obser-
vations propagates to phases calculated using Eq. (19).
First, we define more precisely the covariance matrix
Σy(t) for the observations with time as the independent
variable. Let ξi denote random variables drawn from the
normal distribution N (0, 1). We assume the observations
yi are random variables that are normally distributed
about the predictions y(ti; θ0) of the model at the best
fit, with standard deviation given by the uncertainties σi,
and write

yi = y(ti; θ0) + σiξi. (C1)

The deviations

δyi ≡ yi − y(ti; θ) (C2)

vary with the predictions of the model, but at the best
fit they are random variables with mean 0 and standard
deviation σi:

δyi(θ0) = y(ti; θ0) + σiξi − y(ti; θ0) = σiξi. (C3)

The elements of the covariance matrix are defined as the
expectation of the product of deviations at the best fit:

Σ
y(t)
ij ≡ 〈δyiδyj〉

= 〈σiξiσjξj〉
= σiσj 〈ξiξj〉 . (C4)

The matrix is diagonal if the deviations are independent
(i. e., if 〈ξiξj〉 = δij).

1. Covariance matrix for phase

Next, we derive the covariance matrix for the phases.
The observations yi are assumed to have occurred at the
phases φ(ti; θ0) predicted by the model. These phases
will differ from the phases φi calculated using Eq. (19)
due to the presence of noise in the observations. We
define the deviations of the phases as

δφi ≡ φi − φ(ti; θ). (C5)

Note that, due to the presence of the Hilbert transform in
Eq. (19), the phase φ(t) has a functional dependence on
the signal y(t), i.e., φ(t) = φ[y](t). We use this functional
dependence and Eq. (C2) to relate δφi to δyi:

φi = φi[y]

= φi[y(t; θ) + δy]

≈ φi[y(t; θ)] +
∑
j

∂φi[y(t; θ)]

∂yj
δyj

= φ(ti; θ) +
∑
j

∂φi
∂yj

δyj , (C6)

δφi ≈
∑
j

∂φi
∂yj

δyj . (C7)

In the fourth line we have simplified the notation for clar-
ity, and we have kept only the first order terms. This ap-
proximation is valid near the best fit where δyi is small.
At the best fit, we have

δφi(θ0) =
∑
j

∂φi
∂yj

σjξj , (C8)

which shows that δφi(θ0) are random variables with mean
0.

Before proceeding, the derivative ∂φi/∂yj merits some
attention. First, we note that it may be evaluated using
either y(ti; θ) or yi to first order in δyi:

∂φi[y(tj ; θ)]

∂yj
δyj =

∂φi[yj − δyj ]
∂yj

δyj

=
∂φi[yj ]

∂yj
δyj +O(δy2) (C9)

Second, using Eq. (19), we can derive an explicit ex-
pression for ∂φi/∂yj :

∂φi
∂yj

=
∂

∂yj

[
tan−1

(
Hi[y]

yi

)]
=

1

1 + (Hi[y]/yi)
2

(
1

yi

∂Hi[y]

∂yj
− Hi[y]

y2i

∂yi
∂yj

)
.

(C10)

(Hi[y] is understood to mean the ith component of the
Hilbert transform of y.) To evaluate the derivative
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∂Hi[y]/∂yj , we use the definition of the derivative and
the linearity of the Hilbert transform:

∂Hi[y]

∂yj
= lim
h→0

Hi[y + hδj ]−Hi[y]

h

= lim
h→0

Hi[y] + hHi[δj ]−Hi[y]

h

= Hi[δj ]. (C11)

(We are using δj to denote the vector formed by taking
the jth column of the Kronecker delta δij when consid-
ered as a matrix.) Plugging this into Eq. (C10) gives

∂φi
∂yj

=
yiHi[δj ]−Hi[y]δij

y2i +Hi[y]2
. (C12)

Third, the matrix ∂φ/∂y defined by Eq. (C12) is sin-
gular (i. e., it has at least one zero eigenvalue). As we
now show, this is because changes in the amplitude of an
oscillation do not affect the phase.

Theorem. The matrix ∂φ/∂y, whose ijth element is

∂φi
∂yj

=
yiHi[δj ]−Hi[y]δij

y2i +Hi[y]2

has at least one zero eigenvalue, corresponding to the
eigenvector δy∗ = y.

Proof.∑
j

∂φi
∂yj

δy∗j =
∑
j

yiHi[δj ]−Hi[y]δij
y2i +Hi[y]2

yj

=
yiHi

[∑
jδjyj

]
−Hi[y]

∑
jδijyj

y2i +Hi[y]2

=
yiHi[y]−Hi[y]yi
y2i +Hi[y]2

= 0.

Any change in amplitude at constant phase is a multi-
ple of y and thus also lies in the null space of ∂φ/∂y.

Returning to Eq. (C7), we derive an expression for the
covariance matrix Σφ(t) for the phases:

Σ
φ(t)
ij ≡ 〈δφiδφj〉

=

〈∑
k

∂φi
∂yk

δyk
∑
l

∂φj
∂yl

δyl

〉

=
∑
k,l

∂φi
∂yk
〈δykδyl〉

∂φj
∂yl

=
∑
k,l

∂φi
∂yk

Σ
y(t)
kl

∂φj
∂yl

(C13)

Σφ(t) =
∂φ

∂y
Σy(t)

∂φ

∂y

T

. (C14)

This shows how uncertainties σ2
yi = Σ

y(t)
ii in the observa-

tions are propagated to uncertainties σ2
φi

= Σ
φ(t)
ii in the

phases of the observations (see Fig. 10).

FIG. 10. Propagation of uncertainty. (a) Data (blue)
simulated from the model y(t) = A cos(ωt) (red) by adding
uniform Gaussian noise. Error bars indicate uncertainty. (b)
Data (blue) plotted as a function of phase compared with
y(φ) = A cos(φ) (red). Error bars indicate the uncertain-
ties obtained using Eqs. (C14) and (C20). (c) Phase (blue),
obtained for each data point using Eq. (19), compared with
φ(t) = ωt (red). Error bars indicate the uncertainties ob-
tained using Eq. (C14).

2. Covariance matrix for observations as a function
of phase

Finally, we derive the covariance matrix Σy(φ) for the
observations with phase as the independent variable. We
define the deviations of the observations from the predic-
tions at constant phase as

δỹi ≡ yi − ỹ(φi; θ). (C15)

We can relate these to δyi and δφi using Eqs. (C5) and
(21):

δỹi = yi − ỹ(φi; θ)

= yi − ỹ(φ(ti; θ) + δφi; θ)

≈ yi − ỹ(φ(ti; θ), θ)−
∂ỹ(φ(ti; θ); θ)

∂φ
δφi

= yi − y(ti; θ)−
(
∂ỹ

∂φ

)
i

δφi

= δyi −
(
∂ỹ

∂φ

)
i

δφi. (C16)

In light of Eqs. (C3) and (C8), δỹi also has mean 0 at
the best fit. Note that, similar to ∂φi/∂yj , ∂ỹ/∂φ may
be evaluated using either φi or φ(ti; θ) to first order in
δφi:

∂ỹ(φ(ti; θ); θ)

∂φ
δφi =

∂ỹ(φi − δφi; θ)
∂φ

δφi

=
∂ỹ(φi; θ)

∂φ
δφi +O(δφ2) (C17)
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We can take Eq. (C16) a step further using Eq. (C7):

δỹi = δyi −
(
∂ỹ

∂φ

)
i

δφi

= δyi −
∑
j

(
∂ỹ

∂φ

)
i

∂φi
∂yj

δyj

=
∑
j

[
δij −

(
∂ỹ

∂φ

)
i

∂φi
∂yj

]
δyj

≡
∑
j

Dijδyj . (C18)

Taking the expectation of pairs of deviations δỹi, we ob-
tain

Σ
y(φ)
ij ≡ 〈δỹiδỹj〉

=

〈∑
k

Dikδyk
∑
l

Djlδyl

〉
=
∑
k,l

Dik 〈δykδyl〉Djl

=
∑
k,l

DikΣ
y(t)
kl Djl (C19)

Σy(φ) = DΣy(t)DT . (C20)

This gives us a way to compute the uncertainties σ2
ỹi

=

Σ
y(φ)
ii of the observations when taking phase as the inde-

pendent variable instead of time (see Fig. 10).

Appendix D: Parameter sensitivities

Here we derive the first- and second-order parame-
ter sensitivities of ỹ and φ that are used in calculating
the FIM and winding frequencies for the analytic signal-
based metric of Sec. IV A. We begin with Eq. (20),

y(t; θ) = A(t; θ) cos(φ(t; θ)), (D1)

and differentiate it with respect to θµ:

∂y

∂θµ
=

∂A

∂θµ
cos(φ)−A sin(φ)

∂φ

∂θµ
. (D2)

Comparing with Eq. (35), we now see that we have ex-
plicit expressions for ∂ỹ/∂θµ and ∂ỹ/∂φ in terms of A,
φ, and ∂A/∂θµ:

∂ỹ

∂θµ

∣∣∣∣
φ

=
∂A

∂θµ
cos(φ)

∂ỹ

∂φ

∣∣∣∣
θ

= −A sin(φ)

=
y

A

∂A

∂θµ
= −H[y]. (D3)

In the second line we have used the trigonometric re-
lationships cos(φ) = y/A and sin(φ) = H[y]/A which

are easily derived from Eqs. (18) and (19). The second
derivative of Eq. (D1) is

∂2y

∂θµ∂θν
=
y

A

∂2A

∂θµ∂θν
− H[y]

A

(
∂A

∂θµ

∂φ

∂θν
+

∂φ

∂θµ

∂A

∂θν

)
− y ∂φ

∂θµ

∂φ

∂θν
−H[y]

∂2φ

∂θµ∂θν
. (D4)

Because the new analytic signal-based metric involves ỹ
and φ, we use only the first term (which is ∂2ỹ/∂θµ∂θν)
and the last term in this expression when calculating the
geodesic curvature.

Expressions for the sensitivities of A and φ are ob-
tained by differentiating Eqs. (18) and (19):

A =
√
y2 +H2[y] φ = tan−1

(
H[y]

y

)
(D5)

∂A

∂θµ
=

1

A

(
y
∂y

∂θµ
+H[y]H

[
∂y

∂θµ

])
(D6)

∂φ

∂θµ
=

1

A2

(
yH

[
∂y

∂θµ

]
−H[y]

∂y

∂θµ

)
(D7)

∂2A

∂θµ∂θν
= A

∂φ

∂θµ

∂φ

∂θν
+

1

A

(
y

∂2y

∂θµ∂θν

+H[y]H

[
∂2y

∂θµ∂θν

])
(D8)

∂2φ

∂θµ∂θν
= − 1

A

∂A

∂θµ

∂φ

∂θν
− 1

A

∂φ

∂θµ

∂A

∂θν

+
1

A2

(
yH

[
∂2y

∂θµ∂θν

]
−H[y]

∂2y

∂θµ∂θν

)
(D9)

Appendix E: Regularity of cost surfaces and
manifolds

In Fig. 8, a sufficiently large number of time points
was included in the cost and manifold calculations to
demonstrate the results of using the new metrics in the
limit of infinite time. In practice, only a finite number
of time points can be included. Here we demonstrate
the convergence of the FitzHugh-Nagumo manifold and
the Lorenz cost as a function of the number of sampled
time points. In addition, we discuss the gradient of the
FitzHugh-Nagumo cost, shown in Fig. 8(a), as it relates
to the regularity of the new surface.

Figure 11 shows a plot of the magnitude of the gra-
dient of the cost cross section shown in Fig. 8(a). The
significance of the gradient of the cost is that every local
minimum of the cost will be a zero of the gradient. If
there are multiple local minima still present in the new
cost, then the gradient will have multiple zeros. We plot
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FIG. 11. Magnitude of the gradient of the FitzHugh-
Nagumo cost |∇Cφ(θ)|. The magnitude of the gradient
has only one minimum, indicating that the cost cross section
shown in Fig. 8(a) has a single minimum. The minimum of
|∇Cφ(θ)| shown is not quite zero because the actual minimum
of Fig. 8(a) is between the grid points where |∇Cφ(θ)| has
been calculated. Note that in the upper corners of the plot,
there is a phase transition to nonoscillatory behavior, where
the methods of Sec. IV A cannot be applied effectively. The
sharp apparent dropoff is due to such choices as having our
algorithms return zeros rather than throw errors for these
regions.

the magnitude of the gradient so that zeros can be found

easily. It is clear from Fig. 11 that there is only one zero,
so the new cost does, in fact, have a single minimum.

Figure 12 shows two projections of the FitzHugh-
Nagumo manifold (signal predictions at constant phase):
one calculated using about 24 time points per cycle in
the original time series and the other using twice the
time sampling of the first. The manifold itself exhibits
oscillations in both cases. These oscillations are an arti-
fact of the finite time sampling of the oscillatory signal
predicted by the model. As parameters that control fre-
quency are varied, the peak of each cycle shifts between
adjacent time points and the local amplitude appears to
oscillate (see Fig. 13). Hence the predicted signal values
at a given (constant) phase also oscillate, resulting in the
manifold oscillations observed.

As demonstrated in Fig. 12, doubling the sampling of
time points doubles the frequency of these manifold oscil-
lations, but their amplitude decreases by a factor of ∼ 10.
Hence, in the limit of infinite sampling they disappear.
In practice they will be negligible as long as enough time
points per cycle are sampled for the amplitude of the os-
cillations to be small compared to the amplitude of the
signal itself (and to changes effected by the parameters).

The attractors of chaotic systems have fractal structure
that is realized only in the limit of infinite sampling time
T . Accordingly, as more time points are included, the
kernel density estimate Eq. (39) will approach the true
distribution f(y, θ) asymptotically. Figure 14 illustrates
the convergence of a cross section of the cost Eq. (40) for
the Lorenz system as the total sampling time T is varied.
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FIG. 12. FitzHugh-Nagumo manifold projection. A
was calculated using about 24 time points per cycle in the
original time series; B was calculated using twice the time
sampling of A.

FIG. 13. FitzHugh-Nagumo amplitude oscillations.
Colors are the same as in Fig. 12, with dark/light indicat-
ing the value of the parameter a. As the peak moves between
sampled time points, the amplitude appears to oscillate.

FIG. 14. Lorenz cost. As the number of sampled time
points grows, the noise in the cost dies away. When fit to a
parabola, the MAE between the parabola and the cost cross
section shown is 0.0088 for T = 80 and 0.0013 for T = 800
(about a sevenfold reduction in noise).


