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The flow of red blood cells within cylindrical vessels is complex and irregular, so long as the vessel
diameter is somewhat larger than the nominal cell size. Long-time-series simulations, in which cells
flow 105 vessel diameters, are used to characterize the chaotic kinematics, particularly to inform
reduced-order models. The simulation model used includes full coupling between the elastic red blood
cell membranes and surrounding viscous fluid, providing a faithful representation of the cell-scale
dynamics. Results show that the flow has neither classifiable recurrent features nor a dominant
frequency. Instead, its kinematics are sensitive to the initial flow configuration in a way consistent
with chaos and Lagrangian turbulence. Phase-space reconstructions show that a low-dimensional
attractor does not exist, so the observed long-time dynamics are effectively stochastic. Based on this,
a simple Markov chain model for the dynamics is introduced and shown to reproduce the statistics
of the cell positions.

I. INTRODUCTION

Blood is a complex suspension whose primary compo-
nents are red blood cells suspended in plasma. Red cells
typically make up between 20% and 45% of whole blood
by volume, depending upon the vessel size [1, 2]. The
next most substantial contributions are from white blood
cells and platelets, though together they contribute less
than 2% to the volume of whole blood [3], and thus the
cell-scale dynamics are generally dominated by red blood
cells [4], which are flexible elastic membranes encasing a
hemoglobin solution called the cytosol. The motion of red
cells typically appears disordered, as shown in figure 1,
except when the confining vessel diameter is smaller than
the nominal cell diameter [5–8], for which the cells flow

(a)

(b)

FIG. 1. Cellular blood flow in a tube as (a) observed in vitro
[13] and (b) simulated using numerical techniques.
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in linearly stable trains [9, 10]. Though blood was one of
the first complex fluids to be studied [11, 12], its irregular
flow behaviors remain crudely described and challenging
to predict.

The kinematics of the cellular flow are important for
many biomedical applications: the design of microfluidic
devices that operate on flowing cells [14, 15], targeted
drug delivery [16–18] and screening [19, 20], and the de-
velopment of artificial blood [21, 22] and organs [23–25],
among others. Fully describing these flows is challenging.
The small spatio-temporal scales often hinder accurate
experimental observations [26], and while computer sim-
ulations are not limited in this regard, even basic flow
predictions require sophisticated numerical techniques and
significant computational resources [27]. Thus, reduced-
order models are potentially useful for guiding engineering
design. Continuum models based upon rheological fluids
are successful examples of this, but they are best suited
to reproduce the mean-flow properties of blood when the
confining geometry is significantly larger than the indi-
vidual cells [28–31]. We aim to characterize the irregular
single-cell-scale motion to facilitate the development of
reduced-order models that represent their behavior.

The dynamics of irregular flows can be classified as
chaotic or non-chaotic. Chaotic dynamics are well un-
derstood to have a fractal character and exhibit extreme
sensitivity to initial conditions. Even seemingly simple
and dissipative Stokes flows can exhibit this property:
perturbations to three rigid spheres suspended in a ro-
tating cylinder [32], sedimenting under gravity [33], or
in confined shear flow [34] diverge exponentially, a prop-
erty often called chaotic advection [35, 36] or Lagrangian
turbulence [37, 38]. However, not all irregular flows are
chaotic; a flow system need not be extremely sensitive
to the initial conditions to be mechanically unstable in a
way consistent with the kinematics observed of red blood
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cells in the microcirculation. Further, the highly dissi-
pative mechanics of the confined low Reynolds number
(< 0.01; see section III) flow might indicate a suppression
of chaotic kinematics.

We consider whether or not this flow has an associated
strange attractor that can characterize the dynamics with
fewer degrees of freedom than the full system. However,
this is not obvious from simple direct observations: low-
and high-dimensional chaotic behavior can appear qual-
itatively similar, as shown in figure 2. After we assess
its existence in section IV B, we consider its dimension
D. The extensively studied Lorenz system has a rela-
tively low-dimensional attractor, D = 2.06 [42], which
allows for a reduced description of the dynamics [43].
Turbulent fluid flow also has a strange attractor [44–46],
though for streamwise periodic channel flow its dimension
is large D � 1 (Keefe et al. [47] estimated D > 780,
though faithful estimation of such large dimensionality is
challenging [48]). This is important for model reduction,
since such high dimensionality means that the dynamics
cannot be reduced to a few degrees of freedom. This
precludes common methods for describing the dynamics,
such as Poincaré sections and return maps, and prohibits
attractor reconstruction [49].

In crafting a reduced statistical model, it is also im-
portant to consider the possibility of stochastic behav-
iors. Stochastic systems are probabilistic and random,
and thus have no underlying strange attractor. As a re-
sult, different methods are needed to model the statistics.
This is true even though such systems show qualitative
similarities to chaotic systems, such as the heart-rate
signal of figure 2 (c). Observables of high-dimensional
chaotic systems, such as isotropic turbulence [50], solar
winds [51], electrical discharge fluctuation [52], and gel
transitions [53], can be quantitatively indistinguishable
from those of a stochastic system. Thus, given the dif-
ficulty of reconstructing the high-dimensional attractor,
such systems have sometimes been modeled as stochastic
processes. To this end, Markov, Langevin, and Lévy pro-
cesses have been able to reproduce the statistics of the
true nonlinear chaotic dynamics [54, 55], whereas other-
wise attractive linear models (e.g., autoregressive moving
average models) have not [56].

Our physically faithful computational model for the
flowing red blood cells consists of a three-dimensional
Stokes flow of elastic capsules confined in a rigid tube
model of a microvessel, such as is typical in the microcir-
culation or microfluidic devices. The simulation model
and specific flow configuration are described in section II,
along with a discussion of its physical validity as a math-
ematical model for actual flowing blood cells. The nu-
merical methods used to solve for the flow, which include
full coupling between the viscous fluid and elastic cell
membranes, are summarized in section III.

Our statistical modeling goal is linked to the charac-
teristics of the basic kinematic behavior of flowing red
blood cells. Assessing this involves analyzing the chaotic
and stochastic characteristics of the flow observables. In

section IV A, we introduce the long-time flow used for
this analysis. Space–time correlations and Fourier power
spectra are used to probe for any recurrent behaviors
and frequencies. Chaotic dynamics are addressed in sec-
tion IV B, wherein we assess their existence, bound their
dimensionality, and make quantitative comparisons with
stochastic behaviors. In section IV C, we use these results
to guide the development of a reduced-order statistical
model for the flow. A summary and discussion of our
results are presented in section V.

II. MODEL FLOW AND KINEMATIC METRICS

A schematic of the model flow system is shown in
figure 3. The streamwise-periodic cylindrical model mi-
crovessel has diameter D = 17 µm and length L = 32 µm,
with er and ex unit vectors in the corresponding radial
and streamwise directions. Nc = 8 model red blood cells
of nominal radius ro = 2.82 µm (the radius of a sphere
of the same volume) are initiated in their at-rest bicon-
cave geometry (as described elsewhere [13]) and uniformly
spaced along the vessel with their symmetry axis aligned
with that of the vessel. We confirm that our principal con-
clusions are insensitive to doubling both L and Nc. The
flow in the vessel has mean velocity U = 2.9× 102 µm/s,
which is physiologically realistic [28]. The interior cellular
(cytosol) and exterior (plasma) fluids are Newtonian with
the same viscosity µ = 1.2× 10−3 Pa s. Actual red blood
cells are estimated to have an elevated cytosol viscosity
by about a factor of 5 [57–59], yet matched-viscosity mod-
els are simpler and have been shown to be sufficient to
reproduce microcirculatory phenomenology [7], and to
quantitatively reproduce the suspension effective viscos-
ity [27, 60].

The red blood cell elastic membrane is described with
the commonly used Skalak constitutive model, with inde-
pendent shear, dilatation, and bending moduli [60]. The
shear and bending moduli are Es = 4.2× 10−6 N/m and
Eb = 1.8× 10−19 N m respectively, which are based on
experimental measurements [13]. Red-blood-cell mem-
branes are known to be nearly incompressible, which is
approximately enforced by a large dilatation modulus
Ed = 67.7× 10−6 N/m.

We focus on the radial centroids of the red cells within
the vessel, R = {R1, . . . , RNc

}, as measured from the ves-
sel streamwise-centerline. This is an important quantity
when analyzing cellular blood flow, particularly when con-
sidering so-called shear-induced migration [61–64], and
for designing microfluidic devices for plasma–cell separa-
tion [65, 66], cell sorting [67, 68], and cell-focusing [15].
For the configurations we consider, the initial radial cen-
troid positions R(t = 0) are perturbed by uniformly sam-
pled distances up to 0.1ro in a randomly selected radial
and streamwise direction. This is done to accelerate break-
down into the disordered flow we study in detail. However,
since the flow is unstable it will eventually become disor-
dered regardless of the specific perturbation [10].
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Time(a) Time(b) Time(c) Time(d)

Chaotic; D = 2.06 Chaotic; D � 1 Stochastic Unknown

Lorenz system: Isotropic turbulence: Heart-rate signal: Cellular blood flow:

FIG. 2. Examples of different dynamic behaviors: (a) First component of the Lorenz system following Bryant et al. [39], (b)
streamwise velocity of a fixed location in a turbulent Poiseuille flow [40], (c) tachogram of a supraventricular ectopy [41], and (d)
radial centroid position of a flowing model red blood cell, used in this work. (a) and (b) include approximations of the strange
attractor dimension D.
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FIG. 3. The model flow system.

III. NUMERICAL METHOD

Reynolds numbers of microcirculatory flow are typically
small, Re ≡ ρUD/µ . 0.01 (where ρ is the fluid density),
so inertia is neglected and the flow velocity u is governed
by the Stokes equations

−∇p+ µ∇2u = 0, (1)

with the usual incompressibility constraint ∇ ·u = 0 en-
forced by the pressure p. We utilize a standard boundary
integral formulation [69–71], for which the velocity is

ui(xo) = u∞i (xo)−
1

8πµ

∫
Ω

Gij(x− xo)∆σj(x) dS(x)

(2)

for coordinate direction i = {1, 2, 3}. In (2), xo is a point
on a cell surface, Ω is the union of all surfaces as shown
in figure 3, ∆σ is the surface traction on the fluid, and
G is the triply-periodic Stokes Green’s function. Here,
u∞ = {0, 0, Û} is the total mean velocity in the periodic

rectangular computational domain, where Û is useful for
setting the flow strength. However, Û does not exactly
match U , since there is also flow outside the cylindrical
vessel; we compute U = 1.25Û [60].

The cell membranes x are represented with spherical

harmonics, which are advantageous as a relatively small
number of spherical harmonic modes are required to ac-
curately describe the cell shape, as well as for facilitating
a nondissipative approximate dealiasing method for sta-
bilization [60]. There are M2 spherical harmonic modes
per cell membrane. We use M = 12, though three times
this amount are carried during each time step for dealias-
ing [72]. The surface traction is evaluated from the Skalak
model using the spherical harmonic expansion.

In our formulation, boundary integrals are evaluated
using a quadrature scheme for the collocation points ~x [60].
For close interactions, we switch to a nearly singular
formulation of the integrands [60]. The resulting system is
approximately evaluated by a particle-mesh-Ewald (PME)
algorithm generalized for Stokes flow [60, 73].

The vessel wall is represented by 6588 triangular mesh
elements. A single-layer potential is used to enforce the no-
slip condition by solving for the required surface traction
on the wall with a GMRES algorithm [60, 74].

Since both the cytosol and plasma are incompressible,
there should be no change in cell volume, though er-
rors can accumulate over long times. We correct the
cell volume through adjustment of the cell membrane in
its normal direction [60]. Reported simulations require
adjustments of less than 10−5ro per time step.

Once the velocity u is computed by evaluating (2), the
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cell surfaces are advanced according to

dx

dt
= u(x), (3)

which is integrated using a first-order explicit method with
time step ∆t = 0.0014 ro/U . These numerical parameters
have been sufficient to successfully reproduce the effective
viscosity of blood flowing in confined tubes such as we
consider here [72].

IV. RESULTS

A. Flow kinematics and patterns

1. Long-time flow simulations

First, we simulate the flow of section II until t = T ≡
2800ro/U , which corresponds to about 8000 flow-throughs
for a typical cell through the streamwise-periodic tube.
Figure 4 shows the cell centroid positions Rj(t) for two
example cells of the eight total. After the transient period
t . to ≡ 300U/ro no obvious pattern can be discerned.
Thus, we analyze kinematics for t > to. The time series
data for the j-th cell is compactly represented as a column
vector ~r whose i-th elements are

ri = Rj(to + i∆t) for i = 1, . . . , Nt, j = 1, . . . , Nc,
(4)

where Nt = 2× 106 is the number of time steps. Indeed,
for most analysis, we only require data from one cell, as
our principal conclusions are independent of the specific
cell observed.

2. Space–time separation

We first construct a space–time separation map to show
dynamic correlations, patterns, and coherent structures
in the data [75], which are useful tools when considering
a reduced-order model for the cell motion. To do this, the
data are recast using spatial and temporal separations

δr = |rj − ri| and δt = |j − i|∆t, (5)

respectively, for which δt ∈ (∆t, 20ro/U) is sampled uni-
formly and randomly and δr(δt) is computed 106 indepen-
dent times.

Figure 5 shows the space–time separations of ~r and the
cumulative probability P (δr < X|δt) for varying X. As
expected, small δt (. 5ro/U in this case) always corre-
sponds to small δr. Importantly, P (δt) is approximately
constant for δt & 5ro/U . Thus, any recurrent features in
~r (e.g., small δr for large δt, which has been observed for
several low-dimensional chaotic systems [75]) are unclas-
sifiable by this method. While this behavior is similar to
that of some stochastic systems (e.g., 1/f noise [75] and

eye movement dynamics [76]), it is insufficient to distin-
guish between chaotic and stochastic features. As such,
we further analyze the cell kinematics for a lower-order
description of the flow.

3. Fourier power spectrum

Next, we consider the frequency-domain representation
of our data. A dominant frequency, or a compact set
of frequencies, indicates recurrent flow dynamics that
can provide a basis for reduced-order modeling [77, 78].
While the flow is of course fundamentally recurrent since
it is spatially confined, a recurrence associated with a
unique frequency can indicate nontrivial low-dimensional
dynamics. We compute the discrete Fourier transform F
using a Hann windowing function [79] and the time series
~r as

Fn(~r) =
1√
Nt

Nt−1∑
k=0

rj exp

(
2πikn

Nt

)
for n = 0, . . . , Nt/2− 1,

(6)

where i ≡
√
−1 is the imaginary unit, kn = 2πn/T is

the wave number index, and ωn ≡ knro/U follows as the
dimensionless frequency.

Figure 6 shows the power spectrum for the radial cell
positions. We observe a power-law behavior for ω & U/L,
with F (~r) ∝ ω−8/3 being a modestly better fit to the data
than F (~r) ∝ ω−3. This slope is distinct from the “flicker”
or pink 1/ω and Brownian 1/ω2 signatures observed for
some physical systems, such as metal films [80], condensed
matter electronics [81] and semiconductors [82], and phase
transitions [83], and thus cannot be directly connected to
these noise processes.

For ω . U/L there is no distinct frequency, and so
we conclude that the dynamics are sufficiently coupled
that their time scales are unidentifiable by this analysis
(this does not prohibit recurrent behaviors generally, but
rather suggests that they are sufficiently high-dimensional
to be inseparable). This property is generally observed
for high-dimensional chaotic systems, which presents an
additional modeling opportunity that we focus on next.

B. Chaotic properties

1. Sensitivity to initial conditions

We next assess if the flow has chaotic characteristics.
Chaotic flows exist in a so-called phase space which, if it
can be reconstructed, provides a reduced-order description
of the flow. Of course, the dimensionality of the associated
phase space limits the reducibility of the dynamics. Here,
we determine if the flow can be considered chaotic, and if
so, the dimensionality of its associated strange attractor.
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FIG. 4. Radial cell centroid position Rj(t) for example cells j = 1 and 2. The symbols indicate numerical time steps. The
dashed vertical line marks the start of our sampling, t = to (see text).
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The assess the existence of chaotic behaviors by comput-
ing the sensitivity of the cell kinematics to perturbations
in their initial condition. Here, R(t) are the radial lo-
cations of the cell centroids and Rε(t) are the radial
locations with an additional small displacement at t = 0.
These are added in a uniformly distributed random di-
rection with uniformly randomized magnitude ε̂ ∈ [0, ε].
The sensitivity is measured as a nominal distance between

0 100 200 300 400 500

10−4

10−2

100

tU/ro

∆
/
r o

ε ∈ (10−4, 0.5)ro

∼ exp(0.06tU/ro)

FIG. 7. Radial displacement ∆ of cell perturbations to initial
configuration R(t) (see text). Magnitudes range from ε =
10−4ro to 0.5ro

these two configurations:

∆(t) = ‖Rε(t)−R(t)‖2, (7)

where ‖ · ‖2 is the usual L2 norm.
Figure 7 shows the sensitivity of the radial centroid po-

sitions. The differences ∆ initially decay a small amount
in some cases, which appears to be due to an initial rapid,
though transient, decay in cell-scale perturbations [9].
Afterward, ∆(t) grows exponentially with ∆ ∼ exp(λt)
where λ is between 0.032U/ro and 0.061U/ro for the case
we consider here. This measure provides an estimate of
the first local Lyapunov exponent [84], for which λ > 0
indeed indicates chaotic dynamics. We note that the
variance associated with the estimation of Lyapunov ex-
ponents and their relatively small values means that a
certain classification of chaotic behavior is challenging to
provide. Thus, we can only state that our approximation
of the largest Lyapunov exponent serves as one indication
that the flow is chaotic. However, later we will show
that this classification is only of tertiary importance when
formulating a reduced-order flow model.

After t ≈ 200U/ro the growth saturates at ∆ ≈ ro,
as expected due to the radial confinement of the flow.
This gives a Lyapunov time horizon of tc = 614U/ro for
an IEEE 64-bit finite-precision error (≈ 10−14) to reach
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unity. Thus, the flow is indeed chaotic. However, in order
to utilize this property for a reduced-order representation,
the associated strange attractor must have a relatively
small dimension [49].

2. Attractor dimension

We use the correlation dimension to estimate D, which
is related to the correlations between ~r and the recon-
structed attractor. Due to the exponential divergence of
trajectories, most pairs (ri, rj), with i 6= j, will be uncor-
related pairs of seemingly random radial cell locations.
The correlation between the ~r and the reconstructed at-
tractor is measured by the correlation integral (though its
usual form is presented as a discrete sum [75]), which is
the mean probability that discrete states at two different
times are within a threshold distance `,

C(`) =
1

N2
t

Nt∑
i,j=1
i6=j

H(`− ‖r̃i − r̃j‖2), (8)

where H is the Heaviside step function and

r̃i =
{
ri, ri+τ , . . . , ri+τ(m−1)

}
, (9)

is the time-delay embedding of ~r, as parameterized by
its embedding dimension m and time delay τ [85]. If for
small `, C(`) has a power law behavior,

C(`) ∼ `v, (10)

then v is called the correlation dimension, which serves
as a measure of the local structure of an attractor. If
v = m, then the embedding dimension is not sufficiently
large to determine the attractor dimension. We compute
the correlation dimension v of (10) as

v(`) =
d logC(`)

d log `
. (11)

The correlation integral of ~r is shown in figure 8 (a).
For ` . 4 × 10−3ro the correlation dimension matches
the embedding dimension with C(`) ∼ `m, and so m is
not large enough to discern an attractor dimension. A
“knee” in C(`) is seen for 4× 10−3 . ` . 0.03 and m > 3,
where v(`) ≈ 1. In the knee region the data are too close
in the reconstructed phase space to serve as an estimate
the correlation integral, a result also seen for stationary
stochastic processes with a power-law spectrum [75, 86]
and some low-dimensional chaotic systems (e.g., pulsar
spin-down rates [87]). Thus, we label 0.03 < ` < 1 as a
realizable scaling region, where we estimate a power-law
behavior in `. We note that while v(`) < m in this region,
this is not the usual observed behavior and it is possible
that no robust scaling region exists [75]. If this is the case,
then the correlation dimension is too large to be estimated
from ~r and thus traditional attractor reconstruction is

m

∼ `m
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FIG. 8. (a) Correlation integral C(`) from (8), (b) correlation
dimension v(`) from (11).
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FIG. 9. Maximum correlation dimension in the tentative
scaling region (see text) and Kaplan–Yorke dimension DKY

for a range of m.

prohibitive regardless.
The correlation dimension v(`) and its maximum value

in the realized scaling region are shown in figure 8 (b)
and figure 9, respectively. In this region we have v < m,
though v still increases with m. Specifically, we have
max` v(`) ∼ m0.3. Also shown is the Kaplan–Yorke di-
mension:

DKY = j +
1

|λj+1|

j∑
i=1

λi, (12)

where λi are the Lyapunov characteristic exponents as
computed using the methods of Sano and Sawada [88] and
j is the number of non-negative exponents. The expected
inequality DKY > v holds for all computed m [75], and
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we generally see DKY ∼ m0.3.
The monotonically increasing max` v(`) and DKY with

m for at least up to m = 100, with D = 6.1 for this m,
suggest it will not terminate at a fixed value for still larger
embedding dimensions. Further, reliable estimation of
D > log10(Nt) ≈ 6 is prohibitive without larger Nt [48].
However, these dimensions are already sufficiently large
to preclude a reduced-order model based upon attractor
reconstruction. Given the stochastic-like features of the
data, we next explore this property as a potential model
for representing the flow statistics.

3. Distinguishing chaos from stochasticity

High-dimensional chaotic flows can often be accurately
represented by a stochastic system [45, 55], including some
turbulent fluid flows [89]. Stochastic process flow states
are decided probabilistically, with the associated probabil-
ities computed via simulation data. Given the stochastic
features of the correlation integral of section IV B 2, we
attempt to more reliably determine if the cellular flow
observables can be classified as stochastic. For this, we
utilize the structure function as an indicator of chaotic
and stochastic behaviors; it is defined as

Sk,m(n) =

Nt−n∑
i=1

‖dmt (ri+n − ri)‖k, n = 1, . . . , Nt,

(13)

where

‖ · ‖k ≡

(
Nt∑
i=1

| · |k
)1/k

(14)

is the Lk norm, n is the time delay, and dmt is m successive
applications of the first-order explicit time derivative oper-
ator. However, we confirm that the results presented are
independent of this choice of derivative operator. Chaotic
systems have power-law behavior

Sk,m(n) ∼ nk, (15)

as n→ 1 [90–92], while any correlation with n disappears
for stochastic systems with increasing m [75].

Figure 10 shows Sk,m for both k = 1 and 2, following
usual practice [75, 91, 92]. For both k, Sk,m(n) ∼ nk for
n . 50 and m = 0 and 1, indicative of chaos. For n & 200
S(n) is constant, as expected, due to the finite extent of
the phase space. The transition between these two regimes
appears nonlinear, indicating a multifractal behavior [93],
and thus coupled fractal states [94, 95]. Indeed, this is
typical of other high-dimensional flow systems, such as
turbulence [96–98]. For the flowing red blood cells we
consider, we anticipate that the high-dimensional chaotic
trajectories identified in the previous subsections lead
to this behavior. For increasing time derivatives m, the
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FIG. 10. The structure function for time derivatives m =
0, 1, . . . , 4 and norms (a) k = 1 and (b) k = 2.

n . 50 correlation disappears. This is an indicator of
stochastic-like features, which thus entails stochastic ele-
ments for reduced-order modeling [99].

C. Stochastic modeling

The stochastic features we identify, along with the previ-
ous success of stochastic models for high-dimensional flow
physics [55, 89], suggest that such a model is appropriate
for the flow kinematics. Thus, we adopt a stochastic mod-
eling approach to reproduce the features of the flow of
section IV A. Here, we classify the relevant stochastic fea-
tures of the flow such that a faithful stochastic model can
be developed, then train a model and validate it against
untrained data.

1. Stationary processes

Stochastic models are generally developed for either
stationary processes, whose mean and variance are time
independent, or non-stationary processes that do not
have this property. Thus, we first determine if the flow
is statistically stationary before proceeding with model
development. Figure 11 shows the windowed mean and
variance of ~r; they are both irregular but do not appear to
drift. To determine this feature explicitly, the probability
that the data are stationary is computed via an augmented
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FIG. 11. (a) Windowed (i) mean and (ii) variance computations for ~r, with window length ∆twin. = 1000U/ro. (b) The results
of a Phillips–Perron (PP), or augmented Dickey–Fuller, test for the cell data indicated based upon F and t metrics (see Elder
and Kennedy [100]).

Dickey–Fuller test, which determines if the characteristic
polynomial of the data has a unity root [101]; stable
systems without unit roots are deemed stationary. The
table of figure 11 (b) shows the results of the Phillips–
Perron test, where p is the probability of non-stationary
behavior (thus, p = 0 indicates certainty of stationarity).
We observe small p values for all unit root tests, and so we
are confident that the process can be modeled accurately
as stationary.

2. Markov chain reduced-order model

We will use a Markov chain model to represent the flow
~r. Markov chains are a stochastic model that utilizes the
probability of transitions between identified flow states.
The modeled flow process is every τ -th component of the
evolving radial cell locations ~r; we choose τ = 50, which
is guided by the space-time separations of section IV A 2,
though we confirm that our conclusions are insensitive to
doubling of this value. Each iteration of the flow j is in
one of Np = 20 unique states i, rjτ ∈ Si, as defined by a
uniform discretization of the radial coordinate:

Si ≡ (si, si−1) , where si =
iD

2Npro
for i = 1, . . . , Np.

(16)

While this formulation is simple, identifying states via a
more sophisticated K-means algorithm did not provide
better agreement [102]. The model flow ~rM is defined
by the transition matrix Pij , which is the the probability
that ~r switches from Si to Sj after one process iteration;
it also has the property

Np∑
j=1

Pij = 1 for i = 1, . . . , Np. (17)

A temporal training window Ωt ∈ (tU/ro = to, 1575) of ~r
is used to compute P , and untrained data t /∈ Ωt is used
for validation. We compute P using the training window
portion of ~r iteratively over each state i as

Pik ← Pik + δj,k∆P − (1− δj,k)
∆P

Np − 1
for k = 1, . . . , Np,

(18)

where ∆P = 1/i and δj,k is the Kronecker symbol.
Figure 12 (a) shows that P is only non-zero near the

diagonal. Thus, a state is most likely to transfer to itself
or its nearest neighbors. Matrix–matrix products of P are
shown in figure 12 (b) and (c); for P 10 we see the diagonal
components are smeared non-uniformly across nearly the
full range of states, with the largest components being in
the bottom-right portion of the matrix, suggesting more
complex dynamics in this limit. An apparent steady state
is reached by P 100, which is vertically banded.

The connections indicated by the iterated transition
matrix P 5 are illustrated in figure 13. We see that dynam-
ics are complex, as was implied by figure 12. There are
self-reinforcing feedback loops for clusters 1–5 and 7–10,
indicating a circular transition between the states. Since
these clusters are for neighboring state numbers, cells
near the tube centerline are generally more likely to stay
there than to flow towards the wall, though their exact
motion while near the tube center is relatively compli-
cated, as indicated by the network of connections joining
clusters 1–5. Similar behavior is observed for cells flowing
nearer the vessel wall; the cells are more likely to stay far
from the tube center than to flow near it, though their
specific motion is complex, as indicated by the neighbor-
ing connections between clusters 7–10. More important,
however, is the ability of the associated transition matrix
to reproduce the statistics of the model flow, which we
consider next.
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FIG. 12. (a) Transition matrix P and its products (b) P 10

and (c) P 100 as labeled. Axis values r̂ are scaled with the si of
(16) and ro to give the radial coordinate of the corresponding
state.

3. Stochastic model flow

The model flow ~rM is generated from P using

rMτ(i+1) = P rMτi for i = 1, . . . , Nt/τ. (19)

The full and model flows within a temporal verifica-
tion window are shown in figure 14; the time series have
qualitatively similar irregularities, though since the flow
is chaotic, we cannot hope to predict ~r exactly. Instead,
we analyze the statistics of the model and full flows. For
this, we first compute the eigenvalue decomposition of P
as

P> = SΛS−1, (20)

where P> is the transpose of P , S is the column matrix
of left eigenvectors, and Λ is the real-ordered diagonal
matrix of eigenvalues. For the Markov process (19), the
left eigenvectors S are statistically invariant distributions
that can indicate recurring flow processes not identified
via Fourier analysis [103, 104].

In figure 15 (a) we see that the model flow is able to
reproduce the PDF of the full flow. Further, the PDF

1

Mi(⇤) i = 1 2 3 4 5
P(~r) 0.817 0.788 0.831 0.929 1.081
P(~rM ) 0.795 0.753 0.782 0.858 0.981

%error 2.76 4.52 5.97 7.60 9.21

TABLE I. The first five moments of P(~r) and P(~rM ), and the
relative error between them. The percent error is computed
as %error ≡ 100(Mi(P(~rM ))−Mi(P(~r)))/Mi(P(~r)).

of S1 also matches that of the model flow, so the first
eigenmode of P dominates the mean statistics. The PDFs
of the first three eigenvectors are shown in figure 15 (b).
We see that the PDFs of S2 and S3 exhibit two and three
sub-domains, respectively, indicating the propensity of
flow states to transition to only nearby states, a behavior
also observed in the graph of figure 13 for clusters 1–5
and 7–10; as discussed above, this is associated with the
higher likelihood that cells near the tube centerline will
stay there (and vice-versa for cells flowing near the vessel
wall). To quantitatively assess the statistical validity of
our model, we compare the moments of the PDFs of
the full and model flows. The i-th moment of a discrete
distribution ~v of length N is computed as

Mi(~v) =
1

N

N∑
j=1

(vj − v̄)i, where v̄ =
1

N

N∑
j=1

vj (21)

is the mean.
Table I shows the first five moments of the PDFs of the

flows. We see that the relative error between correspond-
ing moments is less than 10% for all moments shown,
with the error increasing with increasing moment number.
This relatively small error serves as a demonstration of
the ability of a relatively simple Markov chain model
with few degrees of freedom to statistically reproduce the
features of flowing red blood cells.

V. DISCUSSION AND CONCLUSIONS

Our goal was to analyze and classify the kinematics of
cellular blood flow to facilitate the design of reduced-order
models. We first attempted to uncover any basic flow
recurrences. Long-time flow separations were analyzed
via a space-time separation map, which showed that only
trajectories that were nearby in time were likely to be
nearby in space; thus, no spatial recurrences were iden-
tified. The flow was analyzed in the frequency domain
using a Fourier decomposition of the time-series data.
The Fourier spectrum appeared relatively flat for small
frequencies, and so there was no dominant flow frequency
but rather a complex set of coupled flow frequencies.

Given the irregular character of the flow, a lower-
dimensional strange attractor was sought to describe it.
For this, we prescribed small perturbations to the initial
flow configuration and tracked their divergence. A strange
attractor was found to exist, though by our analysis its
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FIG. 13. The three most probable transitions of P 5. The numbers indicate the state index Si, where neighboring states have
been coalesced for visualization purposes, and thus the transitions between them are not shown.
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FIG. 14. The full (~r) and model (~rM ) flows within the verifi-
cation window Ωv ∈ (tU/ro = 1800, 2000)

dimension was relatively large, with D > 6 for embedding
dimension m = 100. As a result, the flow could not be de-
scribed with just a few degrees of freedom, and the usual
techniques, such as Poincaré maps, could not be utilized
to further analyze the chaotic behavior or reconstruct the
attractor. However, we did see that the chaotic dimension
of the flow was sufficiently large to exhibit stochastic-like
features. Given this, we utilized a structure function to
show that the cell kinematics were indistinguishable from
those generated by a stochastic process.

Based upon this stochasticity, a reduced-order statis-
tical model was formulated for the radial cell positions
based upon Markov chains. The Markov chain transition
matrix was computed with only Np = 20 Markov states.
A graph of the most probable cluster transitions revealed
two main groups of clusters that had self-reinforcing feed-
back loops, which indicated regular transitions between
these nearby states. Physically, this was associated with
the propensity for cells near the tube center to stay there,
with relatively small probability of moving towards the
vessel wall. The model flow was generated from the tran-

sition matrix over a temporal verification window. Ulti-
mately, the reduced-order model flow was shown to closely

0

0.05

0.1
(a)

P
(∗

=
r
/
r o

) ~r ~rM S1

0 0.5 1 1.5
0

0.05

0.1
(b)

r/ro

P
(∗

=
r
/
r o

)

S1 S2 S3

FIG. 15. PDF P( · ) of (a) model flow ~rM , full flow ~r, and the
first left eigenvector S1, and (b) the first three left eigenvectors
of P>.

predict the statistics of the full flow via comparisons be-
tween their associated PDFs and higher-order moments.
Of course increasing the number of Markov states will
improve model accuracy and require less interpolation
between adjacent states. Further, other modeling options
are available, such as the interpolative models associated
with machine learning techniques. However, we did not
explore those here in the interest of keeping the model
simple and the associated flow physics easy to interpret.
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