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The Landau theory of phase transitions has been productively applied to phase transitions that
involve rotational symmetry breaking, such as the transition from an isotropic fluid to a nematic
liquid crystal. It even can be applied to the orientational symmetry breaking of simple atomic
or molecular clusters that are not true phase transitions. In this paper we address fundamental
problems that arise with the Landau theory when it is applied to rotational symmetry breaking
transitions of more complex particle clusters that involve order parameters characterized by larger
values of the l index of the dominant spherical harmonic that describes the broken symmetry state.
The problems are twofold. First, one may encounter a thermodynamic instability of the expected
ground state with respect to states with lower symmetry. A second problem concerns the prolif-
eration of quartic invariants that may or may not be physical. We show that the combination of
a geometrical method based on the analysis of the space of invariants, developed by Kim to study
symmetry breaking of the Higgs potential, with modern visualization tools provides a resolution
to these problems. The approach is applied to the outcome of numerical simulations of particle
ordering on a spherical surface and to the ordering of protein shells.

PACS numbers: 64.70.dm, 87.15.nt, 02.30.Oz

I. INTRODUCTION

The freezing of fluids has fascinated generations of sci-
entists. When temperature is lowered, interacting atoms
and molecules can transform spontaneously from a shape-
less, entropy-dominated fluid into an ordered crystal that
has a well-defined, faceted shape. The ordering transition
involves a loss of symmetry: an extended fluid is symmet-
ric with respect to any translation or rotation but as a
crystal, this same system is symmetric only with respect
to a discrete set of translations and rotations. Sponta-
neous symmetry breaking of this type is not restricted to
the phase transitions of extended or bulk systems. When
a nanometer-sized cluster of atoms freezes, it also can
adopt an ordered state with reduced symmetry [1]. An
important difference between the freezing of bulk liquids
and that of particle clusters is that the freezing of a par-
ticle cluster can not be a true phase transition because
it only involves a small, finite system. Nevertheless, an
extended system of interacting atomic clusters—a possi-
ble model of a glass—still can exhibit a genuine phase
transition of this type [2].

Another important difference is that a cluster of atoms
in the liquid state has full rotational symmetry but no
translational symmetry. The symmetry group of a clus-
ter in the liquid state typically is O(3), the group of all
rotations and reflections, or the group of all rotations
SO(3) in the case of chiral molecules. Neither the or-
dered nor the disordered cluster has any form of trans-
lational symmetry. Rotational symmetry breaking with-
out translational symmetry breaking is encountered as
well in extended systems, such as the transition from
an isotropic fluid to a nematic liquid crystal with bro-
ken orientational symmetry [3]. In an important paper,
Steinhardt, Nelson and Ronchetti [2] (SNR) proposed in
1983 that a version of the Landau theory for orientational

phase transitions of liquid crystals could be applied to
the freezing of particle clusters. The order parameter
was the radially-averaged angle-dependent density ρ(Ω)
of the cluster, with Ω a solid angle measured from the
center of a cluster of atoms or molecules. This density is
then expanded in series of spherical harmonics:

ρ(Ω) =

∞∑
l=0

l∑
m=−l

cl,mY
m
l (Ω) (1.1)

Under the symmetry operations of O(3), each set of 2l+1
expansion coefficients cl,m in this series transforms as an
irreducible representation of O(3). One of the princi-
ples of the Landau theory of phase transitions states that
continuous or near-continuous symmetry breaking tran-
sitions should be associated with just one irreducible rep-
resentation of the symmetry group of the high-symmetry
phase, so just one particular value of l should character-
ize spontaneous orientational symmetry breaking. The
set of 2l + 1 expansion coefficients cl,m associated with
that l value is then the primary order-parameter of the
transition. For example, the onset of orientational order
in nematic and cholesteric liquid crystals are associated
by l = 2, with various combinations of the azimuthal
quantum number m. Irreducible representations with
different l values may well be “entrained” by the pri-
mary order parameter through non-linear terms in the
free energy but these play only a limited role, so the as-
sociated cl,m are known as secondary order-parameters.
SNR proposed that the ordering of small particle clus-
ters is dominated by an l = 6 state with icosahedral
symmetry. This was based on the construction of a vari-
ational free energy in the form of a functional F ([ρ(Ω)])
expressed in terms of the cl,m. Such a variational free
energy has to transform as a scalar under the symme-
try operations of O(3) of the disordered state. This is
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FIG. 1. Left: Icosahedral state of N=72 Lennard-Jones parti-
cles on a sphere (from Ref. [4]). Right: the l=16 Icosahedral
Spherical Harmonic with 72 maxima (from Ref. [5]).

achieved by constructing F ([ρ(Ω)]) from sums of combi-
nations of cl,m that transform individually as invariants
under O(3) or SO(3).

The focus of the present article is on orientational or-
dering transitions with l values larger than 6. Numer-
ical simulations of 72 particles on a spherical surface
interacting via a Lennard-Jones potential reported that
there were various competing forms of orientational or-
dering [4]. The example shown in Fig.1 (left), has icosa-
hedral symmetry. Icosahedral states can be constructed
from certain linear combinations of spherical harmonics
known as icosahedral spherical harmonics, though only
for certain values of l. The l = 16 icosahedral spheri-
cal harmonic has 72 maxima, as shown in Fig.1, right,
so it could serve as the primary order parameter for the
icosahedral ordering of 72 particles on a spherical sur-
face. A second case is provided in the work of Lor-
man and Rochal [6] who systematically compared the
surface densities of icosahedral viral capsids with the
icosahedral spherical harmonics. An example is shown in
Fig. 2 where the capsid of the Canine Parvovirus, which
is composed of 60 identical proteins, is compared with
the l = 15 icosahedral spherical harmonic, which also
has 60 maxima. The Parvovirus belongs to the smallest
class of icosahedral viruses. Larger viral capsids corre-
spond to icosahedral spherical harmonic values of l that
are larger than 15 [6, 8]. Since transitions from disordered
to ordered viral capsids have been observed experimen-
tally [9], one could ask whether such transitions can be
described by SNR-type Landau theories.

Fundamental problems are encountered if one attempts
to directly extend SNR to larger values of l. The first
problem concerns thermodynamic stability. The simula-
tions for 72 particles on a spherical surface and the ob-
servations on the Parvovirus seem to indicate that icosa-
hedral shells that have a primary order parameter that
transforms either as an l = 16 or as an l = 15 icosa-
hedral spherical harmonic should be thermodynamically
stable for some appropriate choice of thermodynamic sys-
tem parameters. However, when the l = 15 and l = 16
cases were investigated, states with icosahedral symme-
try turned out to be thermodynamically unstable [5, 10].
Separately, Matthews [11] found that rotational symme-

FIG. 2. Left: Capsid of the Canine Parvovirus, as recon-
structed by X-ray diffraction (from Ref. [7]). It is com-
posed of 60 identical proteins placed in an icosahedral pat-
tern. Right: The l=15 icosahedral spherical harmonic with
60 maxima (from Ref. [5]).

.

try breaking in the l = 16 sector produces states with
tetrahedral symmetry. Strangely, the thermodynamic
stability of the l = 15 icosahedral state could be re-
stored by mixing in small amounts of l = 16 [5, 10]. The
fact that icosahedral symmetry appears to be associated
with a mixed l = 15 + 16 state is unsatisfactory from the
viewpoint of Landau theory because it seems to associate
rotational symmetry breaking with two irreducible rep-
resentations of the symmetry group of the uniform state.
Note that the l = 16 contribution could not be viewed in
this case as a secondary order parameter since secondary
order parameters should not determine the stability of
the primary order parameter.

A second issue concerns the number of invariants that
are to be included in the Landau variational free energy.
SNR effectively included two invariants for l = 6 (one
cubic and one quartic) but Jaŕıc [12, 13] showed that
there are actually three independent quartic invariants
for l = 6. Depending on the coefficients of these three
invariants, the l = 6 icosahedral state may or may not
be the ground state. We will see that the number of
independent quartic invariants increases in a step-wise
linear fashion with l, and that these new invariants in
general are non-local. Do all these non-local invariants
really have to be included even if the underlying physical
system itself only involves short-range interactions? We
will show that these two issues are actually intimately
connected

To analyze this confusing state of affairs, we apply
in this article a geometrical method that was developed
by Kim [14] in the context of symmetry breaking of the
Higgs potential. This method starts from a vector space
spanned by a set of linearly independent invariants con-
structed from the order parameter. By letting the or-
der parameter range over all possible values, a volume is
generated in the invariant space. This “Kim volume” is
a purely mathematical construct that is independent of
the parameters of the physical system. For the present
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FIG. 3. Three-dimensional space of invariants. The surface
encloses the set of points generated when the order-parameter
setQL,M varies over its allowed values. The plane represents a
surface of constant free energy. Intersection of the plane with
the surface corresponds to a state with broken symmetry (
from [14]).

case, the invariants are polynomial expressions of the cl,m
parameters in Eq. (1.1). A schematic example of a Kim
plot is shown in Fig. 3 for the case of three invariants
λ1−3. Next, families of constant free energy hypersur-
faces are constructed by allowing the physical parameters
to vary. A broken symmetry state is associated with a
point where such a constant free energy surface touches
the Kim volume1.

In Section II we show how these invariants can be con-
structed systematically in terms of the cl,m parameters.
Next, we practice with the Kim method for the simpler
cases of l = 2, l = 6, and l = 7. In Section III we apply
this method to orientational ordering in the l = 15 sector,
the l = 16 sector and the combined l = 15 + 16 sector.
The fact that the icosahedral state is unstable in the pure
l = 15 sector and largely unstable in the pure l = 16 sec-
tor is confirmed in full generality for variational free en-
ergies with local invariants. We also confirm that stable
icosahedral states appear in the mixed l = 15+16 sector.
Finally, we show that the principles of Landau theory
can be “saved” if one includes the non-local invariants,
at least for the case of the l = 15 sector. Using diagram-
matic perturbation theory, we show that the non-local in-
variants are generated from a purely local variational free
energy when one integrates out the l 6= 15 sectors. At

1 To be precise, we will generalize the approach of Kim, which
applies in its standard form to a free energy, or effective Hamil-
tonian, with only quadratic and quartic, but no cubic, contribu-
tions.

least formally, an orientational symmetry-breaking tran-
sition from an isotropic to an l = 15 icosahedral state
can be constructed within the l = 15 sector—including
the thin sliver of intervening tetrahedral states that was
noted in the earlier numerical work—using a Kim con-
struction with non-local invariants. More generally, a
mixed l = 15 + 16 representation provides an economical
description of such transitions.

II. INVARIANTS AND THE KIM METHOD.

In this section we lay the mathematical groundwork.
We first demonstrate a systematic construction method
to obtain the independent invariants for given l based on
the Wigner 3-j symbols. The method generalizes that of
Ref. [12] for the l = 6 case. Next, we construct Lan-
dau free energies, in the form of sums of invariants, up
to quartic order for the l = 2, l = 6, and l = 7 cases.
The l = 6 case will be the prototype of a discontinuous
orientational ordering transition that is, from the view-
point of the Kim method [14], non-trivial while the l = 7
case will be the prototype of a non-trivial continuous ori-
entational ordering transition. Finally, we demonstrate
how the Kim geometrical method (“Kim construction”)
works for these prototypes.

A. Construction of Invariants.

A square-integrable function defined on the surface
of a sphere, such as the mass density ρ(θ, φ), can be
expanded in a spherical harmonics series in the form

ρ(θ, φ) =
∑∞
l=0

∑l
m=−l cl,mY

m
l (θ, φ). If the scalar quan-

tity of interest is to be real (as will be the case throughout
this article) then cl,m = (−1)mc∗l,−m. Writing the expan-
sion as

ρ(θ, φ) =

∞∑
l=0

l∑
m=−l

ρl,m(θ, φ) =

∞∑
l=0

ρl(θ, φ) (2.1)

then ρl,−m is the complex conjugate of ρl,m and ρl is real.
Turning to the Landau variational free energy for the

density, if the expansion in powers of cl,m parameters is
limited to terms no higher than fourth order and confined
to a single value of l, then the most general form of the
free energy Fl is

Fl =

4∑
k=2

n
(k)
l∑
n=1

fk,nI
(k,l)
n (2.2)

Here, n
(k)
l is the number of independent kth order invari-

ant polynomials in the cl,m parameters for the l value in
question. Its value is determined by the Molien polyno-

mial [15]. Next, I
(k,l)
n is the nth invariant polynomial,

a system-independent mathematical construct. Finally,
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the expansion coefficients fk,n depend on the thermo-
dynamic parameters of the particular physical system in
question. As discussed further in the Supplementary Ma-
terial, the expansion coefficients tl/2 = f2,1 of the k = 2
quadratic invariant can be related to two-point correla-
tion functions of the system such as the linear susceptibil-
ity, the static structure factor, and the pair distribution
function. For convenience, we will refer to tl as the “re-
duced temperature” of the system.

We demonstrate in Appendix A that, for any value of
l, there is only one quadratic invariant namely the inte-
gral I(2,l) =

∫
ρl(θ, φ)2 sin θ dθdφ. There also is at most

one cubic invariant I(3,l) =
∫
ρl(θ, φ)3 sin θ dθdφ for even

values of l and none for odd l values. By contrast, us-
ing heuristic arguments we show in Appendix B that the

number n
(4)
l of independent quartic invariants rises in a

step-wise linear manner with l, as shown in Fig. 4 (note
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FIG. 4. The number of distinct quartic terms, n
(4)
l plotted

for l ranging from 0 to 40. See Appendix B, Eq. (B3).

the triplet grouping). Two of the quartic invariants are
straightforward. They are obtained, respectively, from
the integral of the fourth power of ρl(θ, φ) and the square
of the quadratic invariant (A8). We term the first invari-
ant the local quartic invariant and the second the trivial
quartic invariant, which is non-local. For l = 0, 1 and
2, those two quartic invariants are identical to within an
overall multiplicative constant while for l ≥ 3 the two
invariants differ in form (see Fig. 4 and Appendix B, Eq.
(B3) ).

One can systematically construct the fourth order in-
variants using the following quantity as a building block
[12]:

V(l1,m1, l2,m2, l3,m3)

=

∫
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)Y m3

l3
(θ, φ) sin θ dθdφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
×
(

l1 l2 l3
m1 m2 m3

)
(2.3)

The terms in brackets are Wigner 3j symbols [16]. For
example, the cubic expression

l∑
m1,m2,m3=−l

V(l,m1, l,m2, l,m3)cl,m1
cl,m2

cl,m3
δm1+m2+m3

(2.4)
is the invariant under rotation that is proportional to
the local cubic invariant

∫
ρl(θ, φ)3 sin θ dθdφ. Next, the

fourth order local invariant, arising from the integral of
the fourth power of the density ρl(θ, φ) over the surface
of the sphere, can be expressed in terms of the Wigner
3j symbols as

2l∑
j=0

l∑
m1,m2,m3,m4=−l

(−1)m1+m2V(l,m1, l,m2, j,−m1 −m2)

× V(l,m3, l,m4, j,−m3 −m4)cl,m1
cl,m2

cl,m3
cl,m4

× δm1+m2+m3+m4 (2.5)

Both (2.4) and (2.5) can be depicted graphi-
cally. Figure 5a shows the graphical element for
V(l1,m1, l2,m2, l3,m3), while Fig. 5b depicts the com-
bination of V’s in (2.5). Not all values of j contribute to
the summation over the internal line: for odd values of
j the expression evaluates to zero.

Figure 5b provides a clue how additional quartic in-
variants could be generated: the individual terms in the
summation of the internal line over different j each are
separately rotational invariants. The reason is that a ro-
tation of the sphere in 3-space in general scrambles the
2l + 1 coefficients cl,m when the z axis is rotated. How-
ever, such a rotation cannot mix cl,m coefficients with
cl′,m′ coefficients when l′ 6= l, since they belong to differ-
ent irreducible representations. Similarly, rotations will
not scramble the different j terms in the summation. The
new terms can be graphically represented as shown in
Fig. 5c. It is easy to check that the j = 0 term corre-
sponds to the trivial invariant.

It might seem that this method provides a scheme to
construct infinitely many quartic invariants for all even
j, though we know that these invariants can not be all
independent. First, j and the two l’s must satisfy the tri-
angle inequalities: 0 ≤ j ≤ 2l. For a given l, start from
j = 0 and recall that the trivial quartic invariant is sepa-
rate from the local quartic invariant for l ≥ 3. Next, go to
the j = 2 case and check if this generates an independent
invariant, which is the case for l ≥ 6 (see Appendix B).
This suggests a pattern and one can indeed repeat this
for any even j until j = 2l after which no more invariants
are generated. For all values of l that we checked, this
method produces the full number of independent invari-
ants that is imposed by the Molien polynomial.

The non-local invariants also can be viewed as being
generated from the expression∫

dθdφ

∫
dθ′dφ′

[
ρ(θ, φ)2Kj(θ, φ, θ′φ′)ρ(θ′, φ′)2

]
(2.6)
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FIG. 5. Diagrams useful in the evaluation of third order and
quartic vertices. a: Graphical representation of the quan-
tity V(l1,m1, l2,m2, l3,m3), as defined in (2.3). b: Graphi-
cal representation of the product

∑
j V(l,m1, l,m2, j,−m1 −

m2)V(l,m3, l,m4, j,−m3−m4)(−1)m1+m2 in (2.5). The dou-
ble dashed line expresses the fact that the overall index j
carried by that line is summed over. c: Graphical rep-
resentation of a quartic invariant generated from the third
order vertex in a, mediated by a single value of j. This di-
agram corresponds to the expression V(l,m1, l,m2, j,−m1 −
m2)V(l,m3, l,m4, j,−m3 −m4)(−1)m1+m2 , the intermediate
value of j having been fixed.

where

Kj(θ, φ, θ′φ′) =

j∑
m=−j

Y mj (θ, φ)Y mj (θ′, φ′)∗ (2.7)

which, by inspection, is a rotational invariant for any
j. The new invariants are produced by replacing the
squared scalar densities with ρ2l . The graphical repre-
sentation of this term is reminiscent of a Feynman dia-
gram for the interaction between two particles mediated
by the exchange of a mode with “propagator” Kj so we
will call these “mediated invariants”. In the Supplemen-
tary Material we discuss how non-local invariants can be
generated by coupling the density profile ρ to a harmonic
scalar field such as the shape profile associated with vari-
ation of the sphere radius. The mediated invariants ap-
pear after the shape variables are integrated over. The

coefficients of the mediated quartic invariants produced
in this manner are always negative.

To recapitulate: the Landau free energy with invari-
ants up to quartic order constructed from a single value
of l has only one quadratic invariant, obtained by inte-
grating the square of the relevant density, ρl(θ, φ), over
the surface of the sphere. Next, it has at most one cu-
bic invariant, obtained in the same way from the cube
of ρl(θ, φ), or alternatively from Wigner 3j symbols via
(2.4); when l is odd, the cubic invariant evaluates to zero.
Quartic invariants will vary in number, depending on the
value of l, but there is always the local invariant, obtained
by integrating ρl(θ, φ)4 over the surface of the sphere, and
the trivial invariant, obtained by squaring the quadratic
invariant. From l = 0 to l = 2 those two invariants are
identical to within a multiplicative constant. For l = 6
and above there are additional, mediated, quartic invari-
ants, which can be obtained via the approach illustrated
in Fig. 5c, up to the required number shown in Fig. 4.

B. Landau variational energies for l = 2, l = 6, and
l = 7.

Having in hand a systematic construction method for
the invariants, we are now in a position to construct Lan-
dau energies for specific cases.

1. Landau energy for l=2

We start with l = 2, which is realized by the famil-
iar case of nematic ordering in liquid crystals [3]. We
will reformulate the standard treatment in a manner that
brings out the connection with the Kim method. Config-
uration space is five dimensional for l = 2. Imposing the
condition that the density is real leads to the relations

c2,−2 = r1 + is1 (2.8)

c2,−1 = r2 + is2 (2.9)

c2,0 =
√

2r3 (2.10)

c2,1 = −(r2 − is2) (2.11)

c2,2 = r1 − is1 (2.12)

where the rl’s and the sl’s are real numbers. This pa-
rameterization is readily generalized to arbitrary values
of l. In terms of these variables, the quadratic invariant
has the form,

〈ρ22〉 =

∫
ρ2(θ, φ)2 sin θ dθ dφ

=

2∑
m=−2

c2,mc2,−m(−1)m

= 2(r21 + r22 + r23 + s21 + s22) (2.13)

Next, we construct a linear, five-dimensional vector space
(“configuration space”) from the five variables ri and sk,



6

with five-component vectors defined as
r2
r2
r3
s1
s2

 (2.14)

The quadratic form on the right hand side of (2.13), the
square of the modulus of the five-component vectors, cor-
responds to the unique quadratic invariant under rota-
tions in configuration space. As is well known, infinites-
imal rotations in three-dimensional space (“Euclidean
space”) are generated by three 3-by-3 anti-symmetric
matrices. There are three 5-by-5 matrices in configu-
ration space that correspond to the three generators in
Euclidean space:

x axis:


0 0 0 0 1
0 0 0 1 0

0 0 0 0
√

3
0 −1 0 0 0

−1 0 −
√

3 0 0

 (2.15)

y axis:


0 −1 0 0 0

1 0 −
√

3 0 0

0
√

3 0 0 0
0 0 0 0 −1
0 0 0 1 0

 (2.16)

z axis:


0 0 0 2 0
0 0 0 0 1
0 0 0 0 0
−2 0 0 0 0
0 −1 0 0 0

 (2.17)

Since these are anti-symmetric, it follows that an in-
finitesimal rotation in Euclidean space generates an in-
finitesimal rotation in configuration space. Similarly, fi-
nite rotations in Euclidean space generate finite rotations
in configuration space. Next, in terms of the real expan-

sion coefficients, the single cubic invariant is

〈ρ32〉

=

∫
ρ2(θ, φ)3 sin θ dθ dφ

= −6

7

√
10

π
r3s

2
1 +

3

7

√
10

π
r3s

2
2 −

3

7

√
30

π
r1s

2
2

+
6

7

√
30

π
r2s1s2 +

2

7

√
10

π
r33 −

6

7

√
10

π
r21r3

+
3

7

√
10

π
r22r3 +

3

7

√
30

π
r1r

2
2 (2.18)

This expression is not invariant under general rotations in
configuration space though—by construction—it still is
an invariant under rotations in Euclidean space. Finally,
the unique fourth-order term

〈ρ42〉 =
15
(
r21 + r22 + r23 + s21 + s22

)
2

7π
(2.19)

is invariant under rotations in both Euclidean and con-
figuration space.

Define spherical coordinates in configuration space
with A the modulus and with the four angular variables
ψk’s, with k = 1, 2, 3, 4, determining direction in configu-
ration space. In these coordinates, the l = 2 Landau free
energy has, up to fourth order, the general form

F2(A,ψk) =
t2
2
A2 +

u

3
A3Q3({ψk}) +

v

4
A4 (2.20)

The system parameters t2, u and v incorporate infor-
mation about the physics of the particular system in
question while Q3({ψk}) = 〈ρ32〉/A3 is a combination of
trigonometric functions of the four angles ψk that is uni-
versal in the sense that it does not depend on the system
parameters.

Fix the set of angles {ψk} and decrease t2, starting
from a large, positive value. For large and positive t2, the

only solution of the equation ∂F(A,{ψk})
∂A = 0 is A = 0,

which is the symmetric state with F2(A = 0, {ψk}) = 0.
The transition temperature tc({ψk}) for the first-order
phase transition is obtained by demanding that the pair

of equations F2(A, {ψk}) = 0 and ∂F2(A,{ψk})
∂A = 0 has a

non-trivial solution. Eliminating A gives an expression
for the transition temperature in terms of the direction
in configuration space:

2tc({ψk}) =
u2

v
[Q3({ψk})]2 (2.21)

The equation marks the rotational symmetry breaking
transition, along a particular direction in configuration
space. Now, allow the set of angles {ψk} to vary. Sym-
metry breaking takes place at the highest possible value
of tc({ψk}). The determination of the prevailing sym-
metry for orientational ordering in the l = 2 sector is
reduced to the purely mathematical question of deter-
mining the maximum of the modulus of the universal
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expression Q3({ψk}) in configuration space. Numerical
minimization of |Q3| is straightforward. Only r3 is non-
zero at the maximum of |Q3|, which corresponds to the
expected l = 2,m = 0 nematic state for the case of liquid
crystals 2.

2. Landau energy for l=6

Next we turn to l = 6, the case explored by SNR. For
l = 6, configuration space expands to 12 + 1 = 13 dimen-
sions. There is, as always, only one quadratic and one
cubic invariant, but now there are three quartic invari-
ants: the trivial invariant, the local invariant, and the
j = 2 mediated invariant—or, equivalently, any three in-
dependent linear combinations of those three invariants.
It is instructive to start by first including only the local
quartic invariant Q4,1. Following the same steps as for
l = 2, the variational energy is

F6 = t6A
2 +

u

3
A3Q3({ψi}) +

v

4
A4Q4,1({ψi}) (2.22)

where the set {ψi} refers to the 12 angular variables that
collectively define a direction in the 13 dimensional con-
figuration space. Next, apply the method we used to
determine the transition temperature for l = 2, i.e., set
the derivative with respect to A to zero for a fixed set of
angles {ψi}

0 =
∂F6

∂A

= A
(
2t6 + uAQ3({ψi}) + vA2Q4,1({ψi})

)
(2.23)

and then demand that at the transition point the free
energy itself must be zero

0 = F6

= A2
(
t+

u

3
AQ3({ψi}) +

v

4
A2Q4,1({ψi})

)
(2.24)

Solving the the simultaneous equations (2.23) and (2.24),
for t6 and non-zero A, we find

t6 =
Q3({ψi})2u2

9Q4,1({ψi})v
(2.25)

A = − 2Q3({ψi})u
3Q4,1({ψi})v

(2.26)

Now, as t6 is lowered, ordering first occurs for those val-
ues of {ψi} at which t6 on the right hand side of (2.22)
takes on the largest value. This means that we must seek
the maximum value of the ratio Q3({ψi})2/Q4({ψi}) in-
stead of the l = 2 criterum of maximizing the modu-
lus of Q3. The numerical effort required to maximize

2 Historically, maximizing the cubic invariant was the criterium
proposed by Alexander and McTague [17] in their pioneering
study of melting viewed as an orientational phase transition.

Q3({ψi})2/Q4({ψi}) again is modest: the maximum cor-
responds to the l = 6 icosahedral spherical harmonic, in
agreement with SNR. The transition is again first order.

Now include the j = 2 mediated quartic invariant and
also the trivial non-local quartic invariant. The full l = 6
Landau free energy can be expressed as

F6 =
t6
2
A2 +

u

3
A3Q3 +

1

4
A4
[
aQ4,1 + bQ4,2 + c

]
(2.27)

where the subscript 4, 1 indicates the local quartic in-
variant and the subscript 4, 2 the j = 2 mediated quar-
tic invariant. Next, a(= v), b and c are three system-
dependent expansion coefficients. The coefficient c ac-
counts here for the trivial invariant. Thermodynamic
stability requires that only coefficients a, b, c are permit-
ted such that for any set of angular variables the complete
quartic term is positive. The transition temperature is

t6 =
u2

9

Q2
3

[aQ4,1 + bQ4,2 + c]

(2.28)

(we suppressed here the dependence on the angular
variables). The optimal direction in the 13 dimen-
sional configuration space corresponds to the maximum
of Q2

3/(aQ4,1 + bQ4,2 + c). Unlike the l = 2 case, nu-
merical maximization is more complicated because the
quantity to be maximized (t6) now depends on the phys-
ical parameters a, b, and c.

3. Landau energy for l=7

Unlike the l = 2 and l = 6 cases, l = 7 has no (as yet
known) physical realization. However, it represents an
important contrast when it is compared to the l = 6 case,
in that there is no cubic invariant because l is odd. This
means that an l = 7 orientational ordering transition will
be continuous in Landau mean-field theory. Just as for
l = 6, there are three independent quartic invariants:
the local invariant, the trivial invariant and the j = 2
mediated invariant. For l = 7, configuration space has
15 dimensions with 14 angular variables {ψk} plus the
modulus A. The Landau variational free energy has, up
to fourth order, the form:

F7 =
t7
2
A2 +

1

4
A4 [aQ4,1({ψk}) + bQ4,2({ψk}) + c]

(2.29)
The four coefficients a, b, c and t7 are again system-
dependent parameters while the expressions Q4,1({ψk})
and Q4,2({ψk}) are universal functions of the angular
variables.

For any set of angular variables, the critical point for
the continuous symmetry breaking transition is now t7 =
0, which provides no information about the selection of
the angular variables. However, for t7 < 0 minimization
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of the free energy with respect to A leads to

t7 +A [aQ4,1({ψk}) + bQ4,2({ψk}) + c] = 0 (2.30)

The corresponding angle-dependent free energy is

Fmin({ψk}) = − t27
4 [aQ4,1({ψk}) + bQ4,2({ψk}) + c]

(2.31)
Minimization of this expression with respect to the angle
variables determines the broken symmetry state. This
means that for l = 7 the broken symmetry must be de-
termined by minimizing the positive quantity

Λ = aQ4,1({ψk}) + bQ4,2({ψk}) + c (2.32)

which is again dependent on the system parameters.

C. Kim constructions for l = 6 and l = 7

The Kim construction [14] can be used as a graphi-
cal method for performing the minimization of system-
dependent quantities such as Λ and Q2

3/Λ in a man-
ner that reveals system-independent information about
competing broken symmetry states. Here, we apply the
method to the cases l = 6 and l = 7.

1. l=7

We will start with l = 7, in which case we need to mini-
mize Λ as defined in (2.32). Construct a two-dimensional
invariant vector space with linear combinations of the two
independent non-trivial quartic invariants Q4,1 and Q4,2

as coordinate axes. While any independent pair of combi-
nations of Q4,1 and Q4,2 can be used as coordinate pairs,
we found, by trial and error, that X = Q4,1 + Q4,2 and
Y = Q4,2 with Λ(X,Y ) = a(X−Y )+bY +c was a conve-
nient choice for revealing the structure of the Kim regions
in a more readily observable fashion. The set of points in
the X-Y plane for which Λ(X,Y ) = a(X − Y ) + bY + c
is constant is then a straight line. Let θ be the angle this
line mkes with the X axis. It is convenient to absorb an
overall factor v =

√
a2 + b2 in Λ and express the line as

Λ(X,Y ) = (X −X0) cos θ + (Y − Y0) sin θ (2.33)

Note that a change of the values of the parameters X0

and Y0 amounts to an affine translation of the lines that
leaves angles unchanged.

Next, randomly sample the 14 angles {ψk} in the 15
dimensional configuration space over the full range of
mathematically allowed values [18]. This generates the
colored area in the X−Y space shown in Fig. 6, which is
a first example of a Kim plot. Note that this volume still
is independent of the physical system parameters. Addi-
tional symmetries can be imposed that generate subsets
of the Kim plot. For example, the darker, pink colored

FIG. 6. Collection of allowed states for l = 7 in the X-Y
plane where X = Q4,1 +Q4,2 and Y = Q4,2. Solid red curve
in the upper left hand portion of the plot: sixfold axis; green
dashed curve adjacent to the red curve: fivefold axis; purple
dashed curve in the upper right hand portion: fourfold axis;
blue curve skirting the right hand boundary: sevenfold axis.
The long and short dashed curves denote the boundary of the
pink stippled two-fold symmetry region; see Appendix C. The
yellow region corresponds to three-fold symmetry. Both re-
gions are labeled with the corresponding symmetries. Finally,
the blue solid dot on the upper left hand corner is a point of
tetrahedral symmetry.

area has two-fold symmetry, and the lighter, yellow re-
gion corresponds to three-fold symmetry. The demar-
cation between the two regions is somewhat misleading;
The two-fold symmetry region actually extends into the
area covered by the three-fold region (see Fig. 8). This
is because there are instances of configurations with two-
fold symmetry that have precisely the invariants of a con-
figuration with and three-fold symmetry. Clearly, there
is not a one-to-one relationship between detailed order
parameter structure and invariant values.

As described in the caption, the curves in the Kim plot
correspond to the imposition of a four-fold, five-fold, six-
fold, and seven-fold symmetry axis. Those curves meet
at a point in the interior corresponding to C∞ symme-
try. Imposition of tetrahedral symmetry leads to a single
point in the plot (blue dot in the upper left-hand cor-
ner). This means that tetrahedral symmetry corresponds
to unique values of Q4,1 and Q4,2. Within our numeri-
cal precision, the blue dot lies on a sharp corner of the
perimeter of the plot. Note that the l = 7 Kim plot gives
the impression of being the projection of a surface from
a higher dimensional space (as indeed it is).

The next step is the Kim construction. This involves,
for l=7, drawing lines of constant Λ(X,Y ) in the Kim
plot with different lines corresponding to a different sets
of physical system parameters. These are the surfaces
of constant free energy referred to in the Introduction.
Examples are shown in Fig. 7 for the case that a is
positive while b and c are negative. Recall that negative b
and c can represent the physical case of coupling between
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density and an additional scalar field. The dashed lines

FIG. 7. Kim construction for l = 7. The dashed lines are
lines of constant Λ that graze the Kim plot. They are drawn
for increasing values of the system parameter θ, starting with
the positively sloped dashed line for which θ = −0.01. The
point where it grazes the Kim plot has tetrahedral symmetry,
indicated by the blue dot. The other lines, listed in increas-
ing value of intercept with the horizontal, Q4,1 + Q4,2, axis
are—the red dashed line, θ = 0.01, corresponding to a six-
fold axis; the green dashed line, θ = 0.05, corresponding to a
five-fold axis; another red dashed line, θ = 0.11, again corre-
sponding to a six-fold axis; and a blue dashed line, θ = 0.2,
corresponding to a seven-fold axis. Finally, the blue long and
short dashed line is parallel to the blue five-fold axis line and
is associated with the same thermodynamic parameters, but
with a larger value of Λ. This line intrudes into the interior
of the Kim plot and passes through two-fold symmetry states
and a seven-fold symmetric density with a higher free energy.

in Fig. 7 are lines of constant Λ for different values of
θ. The values of X0 and Y0 were—with the exception of
the blue dash-dotted line—chosen so the constant Λ line
is tangent to the Kim plot. Changing the values of X0

and Y0 for fixed θ amounts to a parallel shift of the line.
Suppose the shift is such that the line lies entirely in the
white region, for example by sliding the blue dashed line
to the left without changing its slope. The value of Λ is
reduced by this shift and this would lower the free energy
Eq. (2.31). However, symmetry breaking is not possible
in this case since there is no set of allowed invariants
corresponding to the set of angles ψi that are allowed
along the line. We thus can disregard constant Λ lines
that lie outside the Kim plot. Next, shift the blue dashed
line to the right without changing its slope (so towards
the blue dash-dotted line). The line enters the interior of
the Kim plot. While the states along the dash-dotted line
in the interior of the Kim plot are mathematically allowed
broken symmetry states, they are not the minimum free
energy states because the value of Λ was increased in
order to produce the rightward shift. This means that
the free energy Eq. (2.31) increased. We thus can also
disregard lines of constant Λ that enter the plot. In short:
broken symmetry states that minimize the free energy are
represented by straight lines in the Kim plot that graze the

border of the plot without entering it., which is precisely
the essence of the method developed by Kim [14].

We are now in a position to construct a phase dia-
gram for l = 7 symmetry breaking. Restricting ourselves
to constant energy surfaces in the form of straight lines
that touch the Kim plot at one point, there is only one
physical parameter that can be varied namely the angle θ
of the lines. Start from the dashed black line that passes
through the blue point corresponding to tetrahedral sym-
metry (with θ = −.01). It is evident that tetrahedral
symmetry has a large stability range, since lines passing
through the blue point can be drawn over a range of an-
gles. Continue to increase θ. When the angle reaches
0.01, the constant Λ line (red dashed line) grazes the
Kim plot at a point where a line of six-fold symmetry
states just touches the border of the Kim plot (see Fig.
8). Continuing on in this fashion, one finds that the sys-
tem passes through states with five-fold symmetry, again
six-fold symmetry, and then seven-fold symmetry. The
stability range is small for six-fold and five-fold symme-
tries, while the seven-fold symmetry state has a larger
stability interval. We observe that prominent asperities
of the Kim plot correspond to states with large stability
intervals.3

FIG. 8. Kim construction for the upper left hand portion
of the Kim plot shown in Fig. 7. The straight lines and
correspond to those shown in that figure. Note the darker,
pink stippling in the lighter, three-fold region, indicating that
states with different order parameter structure can have the
same invariant values.

A phase diagram for l=7 can be obtained by the follow-
ing steps: (i) construct the Kim plot; (ii) draw a family

3 As an additional validation of the Kim method, we directly
verified the thermodynamic stability of all solutions identified
through that approach and listed above with the use of the Hes-
sian matrix [5, 10].
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of lines that graze the Kim plot; (iii) plot the symme-
try of the point on the boundary of the Kim plot as a
function of the angle of the straight lines. The final step
is to determine the relation between the angle θ and the
thermodynamic parameters that enter the Landau vari-
ational free energy. If we assume that a is positive and
that b and c are negative, then this last step excludes lines
that graze the Kim plot along the solid blue border of the
Kim plot and along the horizontal border that runs along
the top of the plot at Q4,2 = 0. A phase plot is shown
in Fig.9. While the reduced transition temperature for

FIG. 9. Phase plot for l=7 for the case that the system pa-
rameter a is positive while b and c are negative. For increasing
θ and t7 negative, the system passes from a tetrahedral state
to a state with a single 6-fold symmetry axis, a 5-fold axis,
again a six-fold axis, and finally a seven-fold axis. The loci of
the transition points are independent of t7.

states with different symmetry is the same, that does not
mean that there are can be no transitions between states
of different symmetry when the physical temperature is
varied because the system parameter θ could depend on
the physical temperature.

Next, assume that a is negative while b and c are posi-
tive, with a small enough so the overall sign of the quartic
term remains positive. While this is (probably) an un-
physical range, this case provides useful insights into the
Kim construction. Fig. 10 shows an example of the Kim
plot and construction for that case. The net effect is an
overall rigid-body translation and rotation of the Kim
plot. The Kim construction now is focused on the ver-

FIG. 10. Kim construction for the shifted Kim plot with
newly-defined quartic invariants. The symmetries are seven-
fold (blue dashed line grazing the left boundary of the region),
three-fold (green dashed line grazing the lower left hand cor-
ner) and multiple (horizontal red dashed line).

tex of the Kim volume that previously was inaccessible
in Fig. 7. As noted in the caption to Fig. 10, there
are now three regimes4. The ordering has a seven-fold
axis in the regime associated with the dashed blue line
along the left hand side of the volume and a three-fold
axis in the regime indicated by the dashed green line at
its lower left hand cornder. The fourth regime, indicated
by the horizontal red line, allows for a variety of symme-
tries as a result of the degeneracy of state with respect
to the local invariant Q4,1. This is because of the struc-
ture of the mediated invariant Q4,2, which is now the
sole quartic invariant in the free energy. In this case, the
ordered state allows for a continuous, degenerate set of
{ψk} angles. The ordering possibilities include a two-fold
symmetry axis, a three-fold axis, a five-fold axis, a six-
fold axis, seven-fold symmetry and tetrahedral ordering.
Additionally, the ordering may have no discernible sym-
metry at all ; an example is shown in Fig. 11. As shown in

FIG. 11. Example of the outcome of an “ordering” transition
for the Kim plot shown in Fig. 10 in which the only quartic
invariant is proportional to Q4,2 and there is a continuous de-
generacy. The degeneracy is signaled by the extended contact
between to the red dashed line and boundary of the Kim plot.
Other possible symmetries in this case are two-fold, three-fold
and five-fold.

the Supplementary Materials, the degeneracy arises from
the structure of the quadratic invariant Q4,2. One might
expect a physical realization of such a system to have
the character of an orientational glass. A phase-plot for
negative a as a function of θ is shown in Fig. 12. Figure
13 shows realizations of the density associated with some
of the other l = 7 symmetric structures.

4 Actually, there is a fourth regime; see Fig. 12
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7 3 Multiple2

0
0.117

π/2

θ →

FIG. 12. Schematic phase diagram for l=7 for the case that
the system parameter a is negative while b and c are positive.
For increasing θ and t7 negative, the system passes from a
state with a seven-fold axis (blue) to a state with a three-fold
axis (green). As indicated in the figure, there is also a very
narrow window between the three-fold and seven fold states in
which the minimum free energy possesses two-fold symmetry.
If θ = π/2 then a continuous degeneracy arises, which allows
for a multiplicity of minimum free energy states.

a b

ed

c

FIG. 13. Symmetric states encountered for the Kim plot l =
7; a: tetrahedral, b: fivefold, c: three-fold, d: seven-fold,
e: six-fold.

The numerical effort involved in the Kim construction
appears to be minimal as compared to a brute-force
minimization of the Landau functional in a fifteen
dimensional space. This is indeed the case if one
accurately knows the Kim plot. However, the boundary
of the Kim plot of Fig. 7 was obtained by random
sampling and along part of the dash-dotted line of Fig.
7 the boundary is quite sparse. This is due to the fact
that the Kim plot is in this case actually the projection
of a five dimensional volume onto a two dimensional
plane. Consequently, random sampling can be expected
to generate a far higher fraction of points in the interior
of the volume than near its surface. This problem will
only become worse for larger values of l. Because the
precise location of the boundary of the Kim plot is

crucial for predicting the possible symmetries of free
energy minima, we developed a convenient method to
precisely trace out the boundary of the Kim plot for any
symmetry of interest, which is described in Appendix C.

2. l = 6

Our next example is the Kim construction for l =
6. First consider the case that only the local quar-
tic invariant is kept. To find the transition temper-
ature tc, we then only need to maximize the ratio
Q3({ψi})2/Q4({ψi}). It is instructive to do this by
adapting the Kim method. Construct a two-dimensional
invariant space with Q3({ψi})2 and Q4({ψi} as the co-
ordinate axes and construct a Kim plot by random sam-
pling of the two invariants over the allowed set of orien-
tations {ψi}. As shown in Fig. 14, the resulting Kim
plot has three sharp corners.

FIG. 14. Kim plot for l=6 with only the local invariant.
The curves in the Kim volume correspond to symmetries as
follows: solid black curve: a single four-fold symmetry axis;
thick, dashed orange curve: single five-fold axis; dashed black
curve: a single six-fold axis; green curve along the left hand
border of the Kim volume: tetrahedral symmetry. The apex
of the plot has icosahedral symmetry, as indicated by the
blue point. The red point on the right hand boundary corre-
sponds to D∞ symmetry, and the black point on the lower left
hand corner corresponds to octahedral symmetry. The slope
of the dashed red curve indicates the highest possible ratio
of Q3({ψi})2/Q4({ψi}) and hence the highest value for t6 at
the transition. The black line, which misses the Kim volume,
represents a higher value of the ratio that is not physically
realized.

The Kim construction that finds tc involves draw-
ing straight lines starting at the origin in the Q4-Q2

3

plane with various slopes, corresponding to fixed values
of t6 = Q3({ψi})2/Q4({ψi}) for that orientation in the
13 dimensional configuration space. The highest transi-
tion temperature corresponds to the line with the high-
est slope that just grazes the Kim plot at its tip, which
has icosahedral symmetry, so the Kim construction re-
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produces the results of SRN. For lower values of t6, we
need to draw lines of constant free energy Fmin in the
Kim plot. Such contours are constructed in Appendix D,
with an example shown in Fig. 38.

Next, include the trivial and j = 2 mediated invariants.
Using the notation of the previous section, the full l = 6
Landau free energy can be written as

F6 =
t6
2
A2 +

u

3
A3Q3 +

v

4
A4
[
(Q4,1 + 0.95Q4,2)−X0) cos θ + (Q4,2 − Y0) sin θ

]
(2.34)

and the transition temperature that needs to be maximized is

t6 = (u2/9u)
Q2

3

[((Q4,1 + 0.95Q4,2)−X0) cos θ + (Q4,2 − Y0) sin θ]

(2.35)

(where we did not explicitly display the dependence on
the angle variables ψi).

The Kim plot is now a three dimensional volume
with a tent-like, concave surface spanned between four
sharp corners. Redefine the coordinate axes as X =
Q4,1 + 0.95Q4,2, Y = Q4,2, and Z = Q2

3 (the small nu-
merical shift in the definition of the X coordinate is for
visual convenience.) Figures 15 and 16 show different
perspectives of the three dimensional Kim plot in the
space spanned by these three axes. The thick orange

FIG. 15. The Kim plot for l = 6 including all quartic invari-
ants. The labeling I, O and D∞ identify points corresponding
to icosahedral, octahedral and D∞ symmetry. For a descrip-
tion of the curves see accompanying text.

curve is a ridge with five-fold symmetry; the green curve
on the right hand side of the plot corresponds to tetrahe-
dral symmetry; the blue dot, on the upper boundary of
the plot, corresponds to icosahedral symmetry; the black
dot at the lower left hand corner of the plot corresponds
to octahedral symmetry, and the embedded purple dot at
the lower end of the orange curve corresponds to D∞ (full
rotational symmetry and mirror reflection about an axis).
The solid black curve corresponds to a four-fold symme-
try axis and the dashed black curve to six-fold symmetry.

A second perspective of the Kim plot is shown in Fig. 15.
The invariant Q4,2 is zero in the facing surface. The green

FIG. 16. Second perspective of the l = 6 Kim plot.

tetrahedral symmetry curve has two branches that meet
each other and the five-fold symmetry curve at the icosa-
hedral symmetry point. The upper branch ends at the
lower left hand corner of the plot, also a sharp point, at
the black dot corresponding to the octahedral symmetry
point noted earlier.

Following the same steps as before, we first use the Kim
method to locate the transition temperature tc. This
requires maximizing

t6 =
Q2

3

[((Q4,1 + 0.95Q4,2)−X0) cos θ + (Q4,2 − Y0) sin θ]

(2.36)

Surfaces of constant t6 are planes in the three-
dimensional invariant space. The surface with largest
t6 value that just grazes the “Kim volume” determines
the symmetry of the first broken symmetry state when t6
is reduced. For temperatures below tc, we need to con-
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struct surface of constant free energy. As can be expected
from the case of only local invariants, these surfaces are
not flat planes. Figure 17 shows an example of a constant
free energy surface passing through the point of icosahe-
dral symmetry. The minimum free energy state always

FIG. 17. The intersection of a constant free energy surface
with the icosahedral symmetry point in the l = 6 Kim plot.

has icosahedral symmetry for the physical case that the
coefficient a of the local quartic invariant is positive while
the coefficients b and c of the non-local invariants are neg-
ative. We show in the Supplementary Materials that if
the local quartic invariant has a negative coefficient and
the non-local quartic invariants positive coefficients, then
octahedral, six-fold and D∞ symmetries can be realized,
together with icosahedral symmetry, in agreement with
the findings of Jarić [12]. A phase-plot is shown in Fig.18

ID∞6O

t0-4.28-9.44-12.5

t6→

FIG. 18. Schematic phase diagram for l=6 for the case that
the system parameter a is negative while b and c are pos-
itive. The octahedral portion continues to arbitrarily large
and negative t6. The value of t0 is 0.0017.

III. ORIENTATIONAL ORDERING AND THE
KIM CONSTRUCTION FOR l = 15 + 16.

With the experience gained for l = 6 and l = 7, we
now apply the Kim construction to the l = 15 and l = 16
sectors that are the focus of our physical interest. We will
restrict ourselves to a variational free energy with only
local invariants; even with this simplification, there still
are six local cubic and quartic invariants in the combined

l = 15 + 16 sector. While we know of no simple method
that would allow us to carry out complete Kim construc-
tions in a six dimensional space, it is possible—as we will
demonstrate—to combine Kim plots for restricted ver-
sions of the variational free energy with numerical mini-
mization to arrive at a reasonably complete analysis. We
start by examining the l = 15 and l = 16 sectors sepa-
rately .

A. The l = 15 sector.

As for l = 7, the l = 15 ordering transition is con-
tinuous because of the absence of a cubic invariant. If
only the single local quartic invariant is incuded, then
the state with minimum free energy corresponds to the
minimum of the ratio of quartic invariant Q4 and the
square of the quadratic invariant Q2:

R ≡ 〈ρ
4
15〉

〈ρ215〉2
= Q4 (3.1)

Numerical values of R are displayed in Table III A. In
the table, T refers to tetrahedral symmetry, O to octa-
hedral symmetry, and I to icosahedral symmetry. The
fact that odd l spherical harmonics are odd under re-
flection precludes Dn symmetry. The top entry, labeled
“All”, records the result of an unconstrained search for
the minimum quartic invariant. The entry, labeled “C5”
gives the value of R for a state with a five-fold symme-
try axis. The two values are identical. Comparison with
the results of numerical minimization using the method
of refs.[5, 10] confirms that the global minimum in the
l = 15 sector has C5 symmetry.

The Hessian matrix—constructed by taking the second
derivative of the quartic magnitude with respect to the
2l + 1 = 31 degrees of freedom of the density [5, 10]—
allows us to assess the stability of the various symme-
try states. This matrix has three zero eigenvalues cor-
responding to the generators of global rotations in three
dimensions. If all other eigenvalues are positive, then
the symmetry state is locally stable with respect to in-
finitesimal distortions of the density. If any of the other
eigenvalues is negative, then the quartic term can be re-
duced by introducing an additional density that distorts
the symmetry. In this way, we find that the C5 state
is stable. The C3 state also is stable and corresponds
to a metastable free energy minimum. None of the other
symmetries were found to be stable. The table highlights
an important point. The difference between the values
of R for the C5 and C3 states appears only in the fifth
decimal: the two states are practically degenerate. The
other symmetry states listed in the table are all unstable
and have comparable values of R. The free energy land-
scape of the l = 15 sector is apparently quite flat with
only a few shallow minima.
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Symmetry Magnitude of the invariant R
All 0.208797

C5 0.208797

C3 0.208809

C2 0.208857

C7 0.208904

C4 0.209495

T 0.210448

C6 0.21052

I 0.210534

C11 0.21121

C12 0.211582

C10 0.212131

C13 0.213575

C9 0.214088

C8 0.217175

C14 0.21796

O 0.220681

C15 0.227049

C∞ 0.261008

TABLE I. Ordered list of minimum values of the invariant
combination, R as defined in (3.1), by imposed symmetry.
Note that the magnitude for C5 is the same as the magnitude
for no imposed symmetry.

B. The l = 16 sector.

For l = 16, we follow the same steps as for l = 6
with local invariants. There is a single cubic invariant,
Q3—so the ordering transition must be first-order—and
a single quartic invariant, Q4. The state that appears
at the point where the symmetry of the uniform state
is broken corresponds to a maximum the ratio Q2

3/Q4.
Figure 19 shows the corresponding Kim volume.

FIG. 19. The Kim plot for l = 16 with only local invari-
ants. The symmetries corresponding to the prominent col-
ored regions are seven-fold (green region on the far right, also
protruding on the upper left hand side), tetrahedral (orange
region on the left) and eight-fold (blue region just to the right
of the tetrahedral region). The various dark purple curves cor-
respond to symmetries ranging from nine-fold to sixteen-fold.
Those curves meet at a point in the interior of the Kim re-
gion corresponding to D∞ symmetry. The orange curve in the
lower left hand portion of the Kim region corresponds to oc-
tahedral symmetry. The blue dot on the left-most boundary
is the point of icosahedral symmetry.

Just as for l = 6, the Kim plot has a roughly triangular
outline with a protruding tip, but here there is a crucial
difference. For l = 6 a unique state with icosahedral sym-
metry was located at the tip, with the result that only
states with icosahedral symmetry emerged from the Kim
construction. For l = 16 this icosahedral state is missing
from the tip. By contrast, the tip has tetrahedral sym-
metry everywhere for l = 16 [19]. An enlarged version of
the tip region is shown in Fig. 20. The tetrahedral point
on the border of the Kim plot that maximizes Q2

3/Q4 is
indicated by a red dot.
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FIG. 20. The Kim plot in the vicinity of the tip at the top
of the plot. The open red dot corresponds to the point on
the border of the Kim plot that maximizes Q2

3/Q4, as indi-
cated by the line passing through it. The stippled region has
tetrahedral symmetry.

While icosahedral symmetry has been demoted from
the prominent position it had for l = 6, it has not com-
pletely disappeared. There is a point with icosahedral
symmetry on the boundary line of the Kim plot located
at the tip of a small asperity in the lower left-hand side
of the plot (see Fig.21).

FIG. 21. The Kim plot in the vicinity of the icosahedral as-
perity. The orange parabolic curve corresponds to octahedral
symmetry, which does not quite extend to the icosahedral
point.

We can now carry out the Kim construction for l = 16.
The result is shown in Fig.22.

FIG. 22. Kim plot and construction for l = 16 with local in-
variants. Curves outlining the boundary of the Kim plot are
colored according to symmetry: five-fold (dashed light yel-
low curve), three-fold (solid red curve), and two-fold (dashed
black curve). The dashed constant free energy curves of the
Kim construction that graze the surface at a certain point on
the boundary of the Kim plot are colored in correspondence
to the symmetry of the point: In decreasing order of slope
value, the labeled constant free energy curves grazing the sur-
face of the Kim volume at various symmetry points are a:
icosahedral symmetry (nearly vertical dashed blue curve); b:
three-fold symmetry (dashed red curve); c: seven-fold sym-
metry (dashed green curve); d: three-fold symmetry again,
(dashed red curve); and e: tetrahedral symmetry (dashed
light blue curve).

If the coefficient t16 of the quadratic invariant is re-
duced starting in the isotropic state, then the first non-
uniform state that appears has tetrahedral symmetry. It
corresponds to the red dot in Fig. 20. The value of the
cubic invariant at the transition point (see Fig. 20) is
significant so it is a robust first-order transition. As the
temperature is lowered, the tetrahedral state transits to
a state with three-fold symmetry, then to a state with
seven-fold symmetry, then again to a state with three-
fold symmetry and then finally to a state with icosahe-
dral symmetry. The phase plot is shown in Fig. 23.

I 3
(2)

7 3
(1)
T d

t16
-185

-45

-25

-2.5

2/9

FIG. 23. Sequence of states produced by the Kim construction
for l = 16 as a function of the coefficient t16 of the quadratic
invariant. T: tetrahedral; 3(1,2): three-fold axis; 7: seven-fold
axis; I: icosahedral, d: disordered. The phase diagram was
calculated for coefficients u = v = 1; see Eq. (3.8).
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It is useful to complement the Kim construction for
l = 16 with direct free energy minimization to obtain
explicit density profiles. Figure 24 shows examples that
exhibit some of the symmetries obtained by numerical
minimization of the local free energy for appropriate val-
ues of the coefficients of the quadratic, cubic and quartic
invariants. We set here u = v = 1, where u is the cubic
coefficient and v the quartic coefficient; see for example
Eq. (3.8). In the earlier studies based on numerical free

FIG. 24. The various symmetries that are possible for a purely
local l = 16 free energy as obtained from a numerical mini-
mization of a variational free energy with one quadratic in-
variant, one cubic invariant and one quartic invariant. The
symmetries are a: icosahedral, b: tetrahedral, viewed along
a two-fold axis, c: seven-fold, d: three-fold. The last two
symmetries are those of an antiprism.

energy minimization [5, 10], we missed the l = 16 icosa-
hedral state in the phase plot, which will play a key role
in the discussion immediately below. The utility of the
Kim plot for the numerical minimization is evident: the
symmetries will be realized by the Kim construction are
obvious by inspection.

C. The l = 15 + 16 sector for fixed mixing ratio.

Now we turn to the Kim construction in the enlarged
l = 15 + 16 space. As noted, the number of local in-
variants is significant. There are separate quadratic and
quartic invariants for l = 15 and for l = 16, next there is
the cubic invariant for l = 16 as well as the mixed cubic
invariant 〈ρ16ρ215〉 and finally the mixed quartic invari-
ant 〈ρ215ρ216〉. To obtain insight, we used two different
strategies. The first, discussed here, is to fix the relative

contribution of l = 15 and l = 16. Define

ρ15 = cos η A q15(ψ
(15)
i ) (3.2)

ρ16 = sin η A q16(ψ
(16)
i ) (3.3)

where 0 ≤ η ≤ π/2 is a “mixing angle” and where and

ψ
(15)
i and ψ

(16)
i refer to the set of 2l internal angular vari-

ables that determine the precise forms of the two densi-
ties. The two quadratic invariants are

〈ρ215〉 = A2(cos η)2 (3.4)

〈ρ216〉 = A2(sin η)2 (3.5)

where for any function f(θ, φ),

〈f〉 =

∫
f(θ, φ) dΩ (3.6)

Since (tan η)2 = ρ216/ρ
2
15, the mixing angle is an invari-

ant in its own right. We will include it in the form of
the relative participation (sin η)2 = f16 of the l = 16
density to the total density. If one fixes f16 then one is
effectively down to three invariants, a situation that can
be managed by the methods described earlier. Figure 25
shows the Kim region for the case that f16 is fixed at 0.05.
This Kim plot now has two vertical protrusions: the left

FIG. 25. The l = 15 and 16 Kim plot when f16 = 0.05.
The blue dot on the upper left boundary of the plot is the
point of icosahedral symmetry. The red portion on the left of
the Kim volume on whose boundary the dot sits corresponds
to tetrahedral symmetry. The purple protrusion to its right
is a region of thirteen-fold symmetry. The prominent green
region in the lower left hand portion of the plot corresponds
to ten-fold symmetry.

protrusion has tetrahedral symmetry and the right pro-
trusion thirteen-fold symmetry. Suprisingly, the icosahe-
dral point has “slid upwards” to a location close to the
tip of the protrusion. Now, the tetrahedral state has to
compete with the icosahedral state. Figure 26 shows the
portion of the plot in Fig. 25 that contains the promoted
icosahedral point (shown solid and in blue) and also the
point corresponding to the largest transition temperature
in the Kim construction (the open green point). In an
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ensemble in which relative contributions from l = 15 and
l = 16 are set at 0.95 and 0.05 respectively, the initial
transition is to tetrahedral symmetry. As the quadratic
coefficients are reduced, icosahedral symmetry takes over.
The salient point is that the Kim plot of a dominant
l = 15 state with a small admixture of l = 16 is quali-
tatively different from that of the pure l = 15 Kim plot.
Icosahedral symmetry appears to be here intrinsically as-
sociated with a mixed l = 15+ 16 state while it is largely
unstable for pure l = 15 and l = 16 order parameter
states.

FIG. 26. Detailed portion of Fig. 25 containing the icosa-
hedral point (blue dot on the upper left hand corner) and
the point corresponding to the highest transition temperature
(open green dot at the top and to the right of the icosahe-
dral point), along with the tetrahedral region (red stippled
portion).

It again is useful to combine the Kim construction with
the outcome of direct numerical minimization producing
a representative phase diagram.. We allowed η and f16 to
vary freely while for the variational free energy we used

F =
t15
2
〈ρ215〉+

t16
2
〈ρ216〉+

u

2
〈(ρ15 + ρ16)3〉

+
v

4
〈(ρ15 + ρ16)4〉

=
t15
2
〈ρ215〉+

t16
2
〈ρ216〉+

u

3

(
〈ρ316〉+ 3〈ρ16ρ215〉

)
+
v

4

(
〈ρ415〉+ 4〈ρ215ρ216〉+ 〈ρ416〉

)
(3.7)

In arriving at the last line, we used the symmetry proper-
ties of ρ15(θ, φ) and ρ16(θ, φ) under reflection. Because of
the orthogonality of the l = 15 and l = 16 densities, the
square of the total density, 〈ρ2〉, is 〈ρ215〉 + 〈ρ216〉. Next,
because of the second cubic term, a non-zero l = 15 den-
sity necessarily entrains an l = 16 density but the the
reverse is not true. This means that pure l = 16 states
are possible but pure l = 15 states are not. Note that
this is not the most general local variational energy: the
cubic and quartic contributions were expressed in terms
of the total density (ρ15 + ρ16) but the l = 15 and l = 16

quadratic invariants have separate prefactors t15 and t16
for the corresponding density.

The result of numerical free energy minimization for
u = v = 10 is shown in Fig. 27 [20]. The t and ∆ axes
are defined by the relations t15 = t+ ∆ and t16 = t−∆.
The phase diagram has four principal regions. The top
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Icosahedral
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1

-80 -60 -40 -20 20 40
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t

FIG. 27. Phase diagram obtained by numerically minimizing
the free energy (3.8) for u = v = 10. The green dashed curve
separates the region in which icosahedral order is a global
free energy minimum (below the curve) from the region in
which it is a local, but not global, free energy minimum. The
curve corresponds to a line of first order phase transitions.
The thin vertical dashed line at ∆ = −10 indicates the pa-
rameter range plotted in Fig. 28. The brown dashed lines
indicate stability limits of icosahedral symmetry, correspond-
ing to spinodal lines. Finally, the blue dashed line between
the green curve and the line of transitions from uniform to
ordered phases separates the two regions of non-icosahedral
order: tetrahedral (region 1) and non-tetrahedral (region 2).

region is the uniform state. It is bordered by a wedge of
solid black lines that separates it from the phases with
orientational order. In the region below the wedge to the
right, the order is pure l = 16 with tetrahedral symme-
try. In the third region, labeled “Icosahedral,” a mixed
state with icosahedral symmetry is at least locally stable
but it is only the global free energy minimum below the
green dashed curve. Between the green dashed curve and
the two nearly vertical solid black lines, other symme-
tries have lower free energy. The two dashed brown lines
play the role of spinodals for the icosahedral state. The
red line along the top of the icosahedral region marks ei-
ther continuous or weakly first-order transitions from the
isotropic state to a tetrahedral state that quickly trans-
forms to an icosahedral state as the temperature is low-
ered further. Even when the parameter ∆ = (t15−t16)/2
is as low as −50, the tiny amount of residual l = 16 den-
sity suffices to destabilize the C5 minimum free energy
state of pure l = 15. This is consistent with our earlier
observations concerning the fragility of the free energy
minimum of the pure l = 15 sector. Finally, the fourth
region to the left of the icosahedral region has complex
symmetries that are neither icosahedral nor does it have
the C5 symmetry of pure l = 15, again a consequence of
the near degeneracy of the l = 15 sector.
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The numerical results can be compared with the Kim
construction for fixed mixing ratio. The Kim construc-
tion predicted that the icosahedral state should be stable
over a large range of parameters but that the symmetry
breaking transition of the uniform state should produce
a tetrahedral state with a narrow stability interval. The
utility of the Kim construction is obvious: it would be
easy to miss the tetrahedral sliver in a numerical min-
imization while the tetrahedral state is obvious by in-
spection of the Kim plot. In summary, numerical min-
imization of the variational free energy in the enlarged
l = 15 + 16 space of invariants confirms that the icosa-
hedral state is globally stable over a significant parmeter
range. The region of icosahedral stability is separated
from the uniform region by a narrow interval of tetrahe-
dral dominance.

Finally, how good is the assumption that f16 is con-
stant? Figure 28 shows a plot of dependence of f16 on t
for fixed ∆ = −10. For large and negative t, f16 varies

-100 -60 -20
t

0.1

0.2

f16

FIG. 28. The fractional participation of l = 16 in the total
density, labeled by f16, is plotted as a function of t for fixed
∆ = −10, along the vertical dashed line in Fig. 27 (and its
extension to negative values of t). For the very rightmost
values of t the density is tetrahedral. The arrow identifies the
point at which the minimum free energy symmetry changes
from tetrahedral to icosahedral. The curve hits the horizontal
axis at the onset of ordering.

only modestly so the assumption of fixed f16 is reason-
able. However, the assumption of fixed f16 definitely
fails near the onset of orientational ordering with f16 go-
ing linearly to zero at the transition point. This can be
understood from the form of the coupling term u〈ρ16ρ215〉
between the l = 15 and l = 16 states. Combined with the
term that is quadratic in ρ16, it follows that, just below
the ordering temperature, the average 〈ρ16〉 is propor-
tional to u

t16
〈ρ15〉2. Since there is no cubic invariant in

the l = 15 sector it follows that 〈ρ215〉 goes to zero lin-
early at the transition point so the participation ratio
〈ρ16〉2/(〈ρ15〉2 + 〈ρ16〉2) also goes linearly to zero. Close
to the ordering transition, we need a different approach
that will be discussed in the next section.

From the viewpoint of Landau theory, these results are
disconcerting. While it is reasonable that l = 15 order-
ing will entrain a certain amount of l = 16 density as a
secondary order parameter—because of the mixed cubic
invariant 〈ρ16ρ215〉—it is anomalous that the mixing be-

tween primary and secondary order parameters (l = 15,
respectively, l = 16) destabilizes the primary l = 15 or-
der parameter (with C5 five-fold symmetry) and that it
stabilizes an icosahedral state that is either unstable or
only accessible well below the ordering temperature in
the single l subspaces. It would seem that canonical Lan-
dau theory, based on a dominant order parameter that
transforms according to a single irreducible representa-
tion of the high temperature symmetry group, does not
produce the actual minimum free energy state. In the
next section, we will see why this conclusion has to be
modified.

D. Diagrammatic perturbation theory and the
Kim construction.

In this final sub-section we use the Kim construction
to investigate the competition between icosahedral and
tetrahedral symmetry close to the ordering transition
where f16 is very small. This second method is based
on perturbation theory. It starts from the assumption
that the contribution from l = 16 contribution is suffi-
ciently small that the l = 16 density can be described by
a quadratic Hamiltonian. Expanding the variational free
energy to second order in ρ16(Ω) gives

∆H16 '
∫
dΩ

(
t16
2
ρ16(Ω)2 + uρ16(Ω)ρ15(Ω)2

)
(3.8)

with t16 positive. The next step is to integrate out ρ16(Ω)
to arrive at a renormalized variational free energy for
ρ15(Ω). The mathematical steps of integrating-out the
l = 16 component are very similar to the steps that are
taken if one integrates out shape fluctuations (see Supple-
mentary Material). Just as in that case, the integration
generates a negative, non-local quartic contribution to
the l = 15 variational free energy:

− u2

2t16

16∑
m=−16

∫
dΩ

∫
dΩ′ρ15(Ω)2Y m16 (Ω)Y m16 (Ω′)∗ρ15(Ω′)2

(3.9)

Using the notation introduced in Section II, this term can
be represented by the graph shown in Fig. 32. Two three-
point vertices are connected by an l = 16 “propagator”.
By connecting two of the external lines in the graph, a
fluctuation correction to the quadratic term of the l = 15
variational energy could be generated but, in the spirit
of confining ourselves to a mean field model, we only
will include tree diagram contributions in this section.
So, even though we started from a local variational free
energy, the step of integrating out the l = 16 component
generates non-local invariants [21].

Next, construct a two-dimensional Kim plot with the
normalized local invariant and the new non-local quartic
invariant as axes (see Figs. 30 and 31). Only states with
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FIG. 29. Diagrammatic representation of the non-local quar-
tic term generated in the l = 15 free energy by integrating
out the l = 16 density. The dashed line represents the l = 16
propagator with a weight 1/t16 and the two red dots represent
the three point vertex with a weight u.

FIG. 30. The Kim plot for l = 15 with the l = 16 contri-
bution integrated out to lowest non-trivial order. The term
Q4,1 is the local quartic term for l = 15 and the term Q4,2

is the new non-local quartic term. Only states with tetrahe-
dral symmetry are included, along with the state with icosa-
hedral symmetry represented by the green dot. The black
curve denotes the edge of the region with tetrahedral symme-
try, which is a self-intersecting two-dimensional surface. The
dashed blue line depicts a constant free energy surface that
grazes the boundary of the tetrahedral symmetry region and
also the boundary of the full Kim plot. It passes close to the
green icosahedral symmetry point, but it does not impinge on
it, as shown in Fig. 31.

tetrahedral symmetry are shown plus a single point with
icosahedral symmetry. The tetrahedral area is folded on
itself 5. As the 31 expansion coefficients of the l = 15

5 A Mathematica .cdf document allowing for rotation of this

spherical harmonics are varied over the range of allowed
values, the same pair of values for the invariants Q4,1

and Q4,2 can be associated with different sets of expan-
sion coefficients, which leads to fold lines. The external
edges of the tetrahedral surface are indicated by a black
curve. The position of the icosahedral point close to the
outer edge suggests that a Kim construction could be
performed that would reproduce the transition from a
tetrahedral to an icosahedral state, but that is not the
case. Figure 31, an enlarged version of the plot near the
icosahedral point, shows why: The icosahedral point is

FIG. 31. The portion of the Kim plot shown in Fig. 30
containing the icosahedral point. The icosahedral point is
located in the interior of the Kim plot and lies at the tip
of a small conical protuberance in a third dimension. As
shown in Fig. 30, the constant free energy surface indicated
by the dashed blue line grazes the surface of the tetrahedral
symmetry region.

definitely located in the interior of the Kim plot, which
means that in actuality the icosahedral state should not
show up.

Because the icosahedral point is very close to the
boundary, it makes sense to include higher-order terms
in perturbation theory. We restart from a Hamiltonian
for the l = 16 degrees of freedom that now includes
both “three-point” and “four-point” interaction terms
between l = 16 and l = 15:

∆H16 '
∫
dΩ

(
t16
2
ρ16(Ω)2 + uρ16(Ω)ρ15(Ω)2

+ 4vρ15(Ω)2ρ16(Ω)2
) (3.10)

Integrating out the l = 16 density using perturbation
theory generates a sixth-order, positive non-local invari-
ant contribution to the l = 15 variational free energy

surface can be accessed at https://drive.google.com/file/d/

1DdSuODm3L1DVLH7OW3oQ6iG-7CZNZNZw/view?usp=sharing.

https://drive.google.com/file/d/1DdSuODm3L1DVLH7OW3oQ6iG-7CZNZNZw/view?usp=sharing
https://drive.google.com/file/d/1DdSuODm3L1DVLH7OW3oQ6iG-7CZNZNZw/view?usp=sharing
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with prefactor u2v/2t216. It is represented by the dia-
gram shown in Fig. 32. We will denote this new invariant

FIG. 32. Diagrammatic representation of a sixth-order non-
local contribution to the l = 15 variational energy generated
by integrating out the l = 16 contributions perturbatively to
second order in 1/t16. The red dots on the two sides represent
the three-point vertex with weight u and the green dot at the
center a four-point vertex with weight v.

by Q6. We now can construct a three dimensional Kim
plot with the two earlier quartic invariants plus the new
sixth order invariant as coordinate axes. The icosahe-

FIG. 33. The Kim plot in the three dimensional space
spanned by the two quartic terms and the sixth order term,
along with constant free energy surfaces that grazes the Kim
region at the point corresponding to icosahedral symmetry
(steepest blue and less steep black surfaces) and a constant
free energy surface that grazes the plot along the tetrahedral
surface (least steep red surface).

dral point now does lie on the boundary of the Kim plot
and, as shown, it is accessible as a free energy minimum
[22]. In Fig. 33 the coefficients of the two quartic terms
were arbitrarily set equal to each other, so the results
shown in that figure must be viewed as qualitative. At
very low values of |t15|, the constant free energy surface,
which is nearly perpendicular to the Q6 plane, grazes the
boundary of the Kim plot along the edge of the tetrahe-
dral symmetry surface. For sufficiently large negative
coefficient t15 the constant free energy surface grazes the

subspace of allowed invariants through the point of icosa-
hedral symmetry. However, as that coefficient grows in
absolute value the constant free energy surface once again
grazes the Kim plot along a point of tetrahedral symme-
try. Figure 34 illustrates the sequence of states when the
free energy is of the form

F t15
2
Q2 +

v

4
(Q4,1 +Q4,2) +

w

6
Q6 (3.11)

with v = w = 1.

TIT

0
-0.047-0.641

t15 →

FIG. 34. Sequence of states produced by the Kim construction
for l = 15 as a function of the coefficient t15 of the quadratic
invariant including non-local invariants that are mediated by
l = 16. T: tetrahedral; I: icosahedral. The phase plot was
calculated for coefficients v = w = 1 in the free energy (3.11).
The tetrahedral symmetry regime continues to |t15| well in
excess of 100.

This phase plot can be compared with that of Fig. 27
for the case that the mixing ratio between the l = 16
to l = 15 states is held fixed. In both cases, the initial
symmetry-breaking transition of the uniform state leads
to a state with tetrahedral symmetry. A stable icosahe-
dral state appears as the reduced temperature is lowered
further. In both cases, an l = 16 component is essential
for the stability of the icosahedral state. The key differ-
ence is that now the phase plot formally is obtained inside
the l = 15 sector with the l = 16 components absorbed
by the introduction of non-local invariants mediated by
an l = 16 excitation.

IV. CONCLUSIONS

The Introduction posed the question whether an order-
parameter theory can be constructed for the direct tran-
sition from an isotropic state to an icosahedral state if
the primary order parameter is an l = 15 or an l = 16
icosahedral spherical harmonic. We have addressed this
question using the Kim construction method that allows
one to obtain the general structure of a phase diagrams
without having to take recourse to numerical minimiza-
tion of a variational free energy for certain specific values
of the physical system parameters. We found that the an-
swer to the question is no if the variational free energy is
constructed from the local invariants of the l = 15 or of
the l = 16 sectors. In the l = 15 sector, the icosahedral
state with local invariants was found to be completely
unstable. In the l = 16 sector, a stable icosahedral state
did appear, but only well below the orientational ordering
transition. On the other hand, in the enlarged l = 15+16
space stable icosahedral states are present over a large
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range of system parameters—not directly abutting the
icosahedral state, but quite close to it—at least for fixed
mixing ratio, confirming earlier numerical results [5, 10].
A slice of states with tetrahedral symmetry interposes
between the isotropic and icosahedral states. In the Kim
construction method, the competition between the icosa-
hedral and tetrahedral states is very clear: the Kim plot
of mixed l = 15 + 16 states has an asperity with icosahe-
dral symmetry that competes with a rounded peak with
tetrahedral symmetry, itself a characterstic of the l = 16
Kim plot.

These results appear to be in glaring contradiction
with the basic tenet of Landau theory that continuous
phase transitions can be described by an order parameter
that transforms according to a single irreducible repre-
sentation of the symmetry group of the high-temperature
isotropic phase. This contradiction disappeared when
non-local invariants were included in the variational free
energy: there is a stable icosahedral state in the l = 15
sector. By combining the Kim method with a diagram-
matic perturbation expansion, we showed that the re-
quired non-local invariants of the l = 15 sector appear
when a purely local free energy functional is confined to
the l = 15 sector by integrating out the adjacent l = 16
components. Because the local variational free energy in
the l = 15 sector is quasi-degenerate, the minimum free
energy state is very sensitive to the presence of even weak
non-local l = 15 invariants. The non-local invariants nec-
essary for the stabilization of the icosahedral state are
mediated by l = 16.

More generally, if one starts from a variational free
energy expression with only local invariants of the den-
sity, and if the coefficient tl∗ of the quadratic invariant
of one of the irreducible representations is significantly
lower than that of the other irreducible representations
then, at the point where tl∗ is close to zero, the other
irreducible reprentations can be integrated out diagram-
matically, keeping such terms only to quadratic order.
This procedure generates non-local invariants up to the
maximum number permitted by the Molien polynomial.

The great advantage of the Kim geometrical method
over brute-force numerical minimization is that it re-
places a hit-and-miss choice of specific parameters by
global geometrical analysis. The Kim construction
method has already been known for decades but it is the
availability of modern visualization methods that makes
it such a useful tool for the study of ordering transi-
tions in the present case. The Kim method does become
cumbersome—and less revealing—if one is forced to carry
out the geometrical constructions in an invariant space
with more than three dimensions. Because of the prolifer-
ation of invariants for larger l, this would seem to be a se-
rious objection because, as we have just shown, there are
instances in which the non-local invariants really must
be included. However, if the original free energy func-
tional is local—with at most two invariants—and if the
coefficient tl∗ of the quadratic invariant of the dominant
irreducible representation is significantly lower than that

FIG. 35. The five Lennard-Jones packings for N = 72 with the
lowest potential energy. (a) D5h packing with energy per par-
ticle 3.0564 in units of the LJ binding energy, (b) D3 packing
with 3.0559, (c) icosahedral packing with 3.0548, (d) tetra-
hedral packing with 3.04636 and (e) Baseball symmetry (D2)
with 3.04630. The color indicates the coordination numbers
five (blue) or six (red); from Ref. [4].

of the other l then only a limited number of non-local
invariants, say with l = l∗ ± 1 may need to be included.
A Kim geometrical analysis may remain practical for l
larger than 15 and/or16 but this will need to be verified
in future work. It is interesting to note in this context
that icosahedral spherical harmonics come in the form of
neighboring odd-even pairs of the form of l:l + 1, which
suggests that this strategy may work for icosahedral or-
dering for general l as it did for the l=15/16 pair.

We have found that the basic tenets of Landau the-
ory formally can be “saved” at the cost of introducing
the non-local invariants permitted by the Molien poly-
nomial. In actuality, the description of the broken sym-
metry states as involving multiple irreducible represen-
tations is the more economical. The difficulties with
“single-l” canonical Landau theory are expected to mul-
tiply for shell structures that would require even larger l
values. An icosahedral state in the form of, say, a large
icosahedral ”buckyball” is composed of twenty rounded
equilateral triangular facets where particles have six-fold
coordination. The same is true for large viral capsids that
are constructed by the Caspar-Klug method [23]. These
structures are only very poorly represented by any sin-
gle icosahedral spherical harmonic. It would appear that
spherical harmonics are not the best basis set for such
cases but it is not clear what would be a better choice.

Other interesting questions await resolution. In the
Introduction we discussed that an l = 16-like icosahedral
state is generated by numerical simulations of 72 point
particles that were interacting via the LJ pair interaction
[4]. The stability range of the icosahedral state is quite
small when system parameters such as temperature and
interaction range are varied. A variety of other sym-
metries appear as well (see Fig. 35). The icosahedral
state competes with states that have different symme-
tries: D5h, D3, tetrahedral, and D2. The method that
we explored has to account for these other states. We
found that in the pure l = 16 sector, states with five-
fold, three-fold, two-fold, and eightfold symmetry com-
pete with icosahedral symmetry. This is very encourag-
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ing but the mirror planes that characterize the D5, D3,
and D2 symmetry groups are missing for reasons that
are not clear. Higher-order invariants may have to be
included to explain this.

Chirality is believed to play an important role [6] for
the case of viral capsids. The high-temperature symme-
try group is SO(3) in this case. Chiral invariants have to
be included as part of the expansion. The lowest-order
chiral invariant is fourth order in the density [5], and it
would be interesting to see how this invariant will affect
the l = 15 + 16 phase diagrams.

We conclude by noting that symmetry arguments play
an important role for the design of synthetic molecular
shells as exemplified by the work in the Yeates group [24].
It would be interesting to apply the Kim construction
method to analyse the symmetry-based strategies devel-
oped for shell design.
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Appendix A: The quadratic invariant

Given the form of ρl(θ, φ) in (2.1), the most general
form of a quadratic invariant must be

l∑
m=0

Bmcl,mcl,−m (A1)

in order to be unaffected with respect to rotations about
the z axis. The next question is what restriction rota-
tional invariance places on the coefficients Bm. We can
arrive at that restriction by noting that the generators
of rotations about the x or y axis are combinations of
angular momentum raising and lowering operators. The
raising operator a† has the following action on the coef-
ficients cl,m.

a†cl,m ∝
√
l(l + 1)−m(m+ 1)cl,m+1 (A2)

Consider the two consecutive terms in (A2)

Bmcl,mcl,−m +Bm+1cl,m+1cl,−m−1 (A3)

If we act on these two terms with the operator 1 + δa†,
then two of the O(δ) terms generated are proportional to

δ
√
l(l + 1)−m(m+ 1)cm+1cm(Bm +Bm+1) (A4)

In order for this to vanish, we must have

Bm = −Bm+1 (A5)

The equality above holds for all m > 0. In the case
m = 0, the same procedure yields

B1 = −2B0 (A6)

Thus, the quadratic invariant must have the form

K

(
2

l∑
m=1

(−1)lcl,mcl,−m + c2l,0

)

= K

l∑
m=−l

(−1)mcl,mcl,−m (A7)

From the orthonormality of the spherical harmonics and
their symmetry properties, this expression is equivalent
to

K

∫
Φl(θ, φ)2 sin θ dθdφ (A8)

It is possible to carry out the same analysis by requir-
ing that the invariant is unchanged under the action of
the lowering operator, a. However, given that this is just
the Hermitian conjugate of the raising operator, the anal-
ysis is fundamentally identical to the one above, leading
to exactly the same conclusion.

Appendix B: Higher order invariants

The way in which one determines the number of in-
variants of a particular order is to compare the number
of terms that can contribute to an invariant with the
number of restrictions on those terms arising from appli-
cation of the raising operator. At a given order n and
angular quantum number l, the invariant is the sum of
terms going as

Bm1,...,mncl,m1cl,m2 · · · cl,mnδm1+···+mn (B1)

The number of such terms is the number of distinct ways
of finding n integers between −l and l that sum to zero.
This can be expressed in terms of the number distinct
of ways representing the integer n(l + 1) as a sum of n
positive and non-zero integers less than or equal to 2l+1.
The restrictions are a set of requirements on terms of the
form

B′m1,...,mn
cl,m1

cl,m2
· · · cl,mn

δm1+···+mn−1 (B2)

The number of such terms is the number of distinct ways
of finding n integers between −l and l that sum to one.
This can be expressed in terms of the number of a way of
expressing the integer n(l+ 1) + 1 as a sum of n positive
and non-zero integers less than or equal to 2l + 1. The
total number of distinct nth order invariants is just the
difference between the two numbers above.

Figure 4 shows that difference in the instance of fourth
order invariants, for values of l ranging from 0 to 40.
In the case of third order invariants, the difference is
always zero or one: zero for odd values of l and one for
even values of l. This is because the only third order
invariant is the integral of the density cubed, and given
the symmetry properties of spherical harmonics, such an
integral is guaranteed to vanish for odd l. Based on Fig.
4, which also follows from the Molien series [15], it is

reasonable to conjecture that that n
(4)
l is given by

n
(4)
l = b l

3
c+ 1 (B3)

where the first term on the right hand side of (B3) is the
largest integer less than or equal to l/3.

Appendix C: Tracing out boundaries in the Kim plot

Figure 36 shows the portion of the Kim plot in Fig. 6
corresponding to two-fold symmetry. Although the up-
per boundary of this region at Q4,2 = 0 is well-defined,
the other boundaries are somewhat diffuse, especially to-
wards the bottom of the plot, as the points generated by
random sampling of the parameters defining the density
are sparse in the immediate vicinity of some of the plot’s
edges. This can be understood heuristically as the con-
sequence of projecting a high dimensional region—seven
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FIG. 36. The portion of the Kim plot in Fig. 6 that corre-
sponds to two-fold symmetry, colored black rather than or-
ange, as in Fig. 6. This region is bounded from above by
Q4,2 = 0. The points in the region become sparse in the
vicinity of the other boundaries.

dimensional in this case—onto two dimensions. Con-
sider, for example projecting a collection of uniformly
distributed points in a seven dimensional sphere onto a
two dimensional flat plane. The number of points directly
above the plane in the vicinity of the circular surface of
the projected sphere will be considerably smaller than the
number directly above the center of the circular region
into which the points fall.

As an alternative to generating more points, which for
large l becomes computationally demanding as well as
memory intensive, we adapt the Kim method to trace
out the boundary. Recall that minimizing the free energy
entails finding the point at which a curve of constant
free energy—in the instance of l = 7 a straight line—
impinges tangentially on the Kim plot. If we were to take
all possible orientations for this constant energy surface
we would trace out the convex hull of the Kim plot. Given
a different constant free energy surface, one can perform
a more detailed probe of the boundary. To this end, we
devise a new surface which, for lack of a better term, we
call a “stylus.”. It is of the general form

x cosφ+ y sinφ+K(−x sinφ+ y cosφ−D)2 = C (C1)

where K, C and D are constants. For K sufficiently
large this is a very steep parabola. Figure 37 shows
the two-fold symmetry region and two of the stylus sur-
faces, for φ = 0 and K = ±5, 000. In practice, we used
K = 10, 000. We locate the two bounding surfaces by
varying D, thus scanning vertically, and determining the
minimum value, effectively the quantity C, of the left
hand stylus function and the maximum value of the right
hand one. This process yields the two boundary curves
shown in Figs. 6 and 7, as well as the translated versions
of those Kim plots.

FIG. 37. The two-fold symmetry region and two stylus curves.

Appendix D: Kim plot with a cubic invariant: details

The Kim method can also be applied to cases in which
third order invariants arise, as when l is even. Take the
instance of a single l system with only one relevant quar-
tic term, say the local one. The free energy is, then,

F [ρl] =
t

2
A2 +

u

3
A3Q3{ψk}+

v

4
A4Q4{ψk} (D1)

The outcome of minimizing (D1) with respect to A and
discarding the possibility of A = 0 is

Fmin = −u
4Q4

3

v3Q3
4

1 + 6(tvQ4/u
2Q2

3)2 − 6tvQ4/u
2Q2

3 +
(
1− 4tvQ4/u

2Q2
3

)3/2
24

≡ −u
4Q4

3

v3Q3
4

1 + 6W 2 − 6W + (1− 4W )
3/2

24
(D2)

From the equations above, we find

Q2
3 = − t

3

u2
1

W 3

1 + 6W 2 − 6W + (1− 4W )
3/2

24Fmin
(D3)

Q4 = − t
2

v

1

W 2

1 + 6W 2 − 6W + (1− 4W )
3/2

24Fmin

=
u2

vt
WQ2

3 (D4)

Both Q2
3 and Q4 are positive, the latter to ensure ther-

modynamic stability. Furthermore, Fmin will be nega-
tive. Given this, we see from (D3) and (D4) that the
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parameter W will have the same sign as t.
The above equations allow us to plot curves of constant

free energy in the space spanned by Q4 and Q2
3. One im-

portant point is that the approach can be generalized to
more than one Q4. If, for instance, there are two quar-
tic invariants, then we replace Q4 with aQ4,1 + bQ4,2.
The curve defined by (D2) and (D3) becomes a surface
in which the Q4 axis is replaced by lines of constant
aQ4,1 + bQ4,2. This is readily extended to the case of
more quartic invariants.

In light of the last line of (D2) and the fact that Q4,
Q2

3, v and u2 are positive, it is clear that the signs of
the quantity W and the parameter t must be the same.
Given this and the fact that the contribution of the W -
dependent expressions to the right hand sides of (D2)
and the first line of (D3) is zero when W = 2/9, we can
distinguish between two regimes in those equations. The
first is −∞ < W < 0, which applies when t < 0. The
second is is 0 < W < 2/9, appropriate to t > 0. Outside
of those regimes, the right hand sides of (D2) and (D3)
either apply to the case Fmin > 0, which is not of interest,
or possess imaginary parts.

The relationships between Q3
3 and Q4 are illustrated

in Figs. 38 and 39, in which all terms aside from W have
been set equal to convenient values.

1 2 3 4 5 6 7
Q4

2

4

6

8

10

Q3
2

FIG. 38. Plots of Q2
3 versus Q4 for values of t that are positive

(dashed black curve) and negative (solid red curve). The free
energy Fmin has been set equal to −1/4, and the parameters
u, v and |t| have been set equal to 1.

From these plots—and a bit of analysis—we see that

for large amplitudes of the two invariants Q2
3 ∝ Q

3/2
4 .

Furthermore as is evident from the plot, the dependence
is monotonic with increasing positive slope. Additionally,
inspection reveals that there are three independently ad-
justable quantities in the two relationships, which can be
chosen to be W , Fminv/t

2 and Fminu
2/t3. This means

1 2 3 4 5 6 7
Q4

0.5

1.0

1.5

2.0

2.5

d�3
2/d�4

FIG. 39. The slopes of the curves in Fig. 38, plotted against
Q4. The parameters have been set to the same values as in
that figure.

that we can in principle choose two of those quantities to
ensure that a Q2

3 versus Q4 curve passes through a given
point in the Kim plot. The third quantity can then be
chosen so as to adjust the slope of that curve. Given the
values of those three quantities

Q4 = x (D5)

Q2
3 = y (D6)

dQ2
3

dQ4
= s (D7)

with the additional conditions

x > 0 (D8)

y > 0 (D9)

s > 0 (D10)

we find

W =
2sx(3y − 2sx)

9y2
(D11)

This result is of interest in the range s > y/x. The
relationships yield

|Fmin|u2/t3 =
9y(y − sx)

2(2sx− 3y)3
(D12)

|Fmin|v/t2 =
s(sx− y)

(2sx− 3y)2
(D13)

Given these equations, it is relatively straightforward to
construct the desired constant free energy curve.

One final point: the regime y/x < s < 3y/2x corre-
sponds to positive values of t, and the regime s > 3y/2x
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corresponds to negative values of t. Figure 40 displays
the results of such a fit, in which two constant free en-
ergy curves have been produced, both going through the
point Q4 = 1, Q2

3 = 1, one with a slope of 1.2 and the
other with a slope of 4.

0.5 1.0 1.5
Q4

1

2

3

4

Q3
2

FIG. 40. Two constant free energy curves passing through
the point Q4 = 1, Q2

3 = 1, one with a slope of 1.2, corre-
sponding to a positive value of t, the other with a slope of
4, corresponding to a negative value of t. The dashed lines
indicate the slopes.

Finally, there is the question of the utility of the Kim
method with the new free energy curves, as shown in Figs.
40 and 41, for determining free energy minima. In order
to do this we need to establish a couple of features of the
constant free energy curves. First, it is clear that two
curves for different values of the free energy Fmin will be
non-intersecting, as the free energy for fixed values of the
coefficients t, v and u is a single-valued function of the
invariants Q4 and Q2

3. Next, we note that the slope of a
constant free energy curve is always positive, as indicated
in Figs. 38 and 39.

Now, we construct a curve in the parameter space in
which the coefficients t, u and v and the parameter W
are kept constant while the free energy Fmin varies. From
Eqs. (D3) and (D4), we see that this curve is a straight
line with positive slope tv/u2W . As to the parametric
dependence of the invariants on Fmin, we calculate the
derivative of the right hand sides of Eqs. (D3) and (D4)
with respect to Fmin. Given that the coefficient t and
the variable W have the same sign, and that the numer-
ator 1 + 6W 2 − 6W + (1− 4W )3/2 is positive over range
−∞ < W ≤ 2/9, which is readily established by inspec-
tion, we see that both Q4 and Q2

3 increase with increas-
ing Fmin. To determine whether displacements along the
curve as Fmin increases result in a new constant free en-

ergy curve that is closer to or further way from the origin,
we compare the slope of the line element connecting the
original and displaced points to the slope of the constant
free energy curve in which the original points lie with the
slope of the original free energy curve. If the slope of the
displacement is less than the slope of the constant free
energy curve at the original point, then the displacement
connects to a constant free energy curve that is further
away from the origin. If the slope of the displacement
is greater than the slope of the free energy curve at the
original point, then it connects to a constant free energy
curve that is closer to the origin. If we call the slope of
the original free energy curve s and the slope of the line
element s′, we find

s

s′
− 1

= −
3
(
2W 2 − 2

(√
1− 4W + 2

)
W +

√
1− 4W + 1

)
2
((√

1− 4W + 3
)
W −

√
1− 4W − 1

)
(D14)

One can verify by direct evaluation of the right hand
side of (D14) that the difference between the ratio s/s′

and 1 is always positive, which means that increasing
the free energy Fmin takes the free energy curve further
away from the origin. Given the structure of the Kim
plots we consider, this establishes that the Kim method
with the new constant free energy curves does indeed
serve to locate global free energy minima; see Fig. 41 for
an illustration of the above argument.

1 2

0.4 0.6 0.8 1.0 1.2
Q40.0

0.1

0.2

0.3

0.4

0.5

Q3
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FIG. 41. Two free constant free energy curves, corresponding
to t = −1, u = v = 1. For curve 1, Fmin = −1, while for
curve 2, Fmin = −0.5, The dashed line joins the points on
those two curves for which t, u and v have the above values,
with the parameter W equal to -10 and Fmin varies. The
arrow indicates the direction of increasing Fmin.
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