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The early inspiral of massive stellar-mass black-hole binaries merging in LIGO’s sensitivity band
will be detectable at low frequencies by the upcoming space mission LISA. LISA will predict, with
years of forewarning, the time and frequency with which binaries will be observed by LIGO. We
will, therefore, find ourselves in the position of knowing that a binary is about to merge, with
the unprecedented opportunity to optimize ground-based operations to increase their scientific
payoff. We apply this idea to detections of multiple ringdown modes, or black-hole spectroscopy.
Narrowband tunings can boost the detectors’ sensitivity at frequencies corresponding to the first
subdominant ringdown mode and largely improve our prospects to experimentally test the Kerr
nature of astrophysical black holes. We define a new consistency parameter between the different
modes, called δGR, and show that, in terms of this measure, optimized configurations have the
potential to double the effectiveness of black-hole spectroscopy when compared to standard broadband
setups.

I. INTRODUCTION

The first detections of merging black-hole (BH) binaries
by the LIGO ground-based detectors are one of the great-
est achievement in modern science. Some of the binary
component masses are as large as ∼30M�, and unexpect-
edly exceed those of all previously known stellar-mass
BHs [1]. These systems might also be visible by the fu-
ture spaced-based detector LISA, which will soon observe
the gravitational-wave (GW) sky in the mHz regime [2].
LISA will measure the early inspiral stages of BH binaries
predicting, with years to weeks of forewarning, the time
at which the binary will enter the LIGO band [3]. This
will allow electromagnetic observers to concentrate on
the source’s sky location, thus increasing the likelihood
of observing counterparts. Multi-band GW observations
have the potential to shed light on BH-formation channels
[4–10], constrain dipole emission [11], enhance searches
and parameter estimation [12, 13], and provide new mea-
surements of the cosmological parameters [14, 15].

Here we explore the possibility of improving the science
return of ground-based GW observations by combining
LISA forewarnings to active interferometric techniques.
LISA observations of stellar-mass BH binaries at low fre-
quencies can be exploited to prepare detectors on the
ground in their most favorable configurations for a tar-
geted measurement. Optimizations can range from the
most obvious ones (for instance just ensuring the detectors
are operational), to others that require more experimental
work, like changing the input optical power, modifying
mirror transmissivities and cavity tuning phases, and
changing the squeeze factor and angle of the injected
squeeze vacuum (see, e.g., [16]). Tuning the optical setup
of the interferometer can allow to boost the signal-to-noise
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ratio (SNR) of specific features of the signal “on-demand”
(only at the needed time, only at the needed frequency).

In particular, we apply this line of reasoning to the
so-called black-hole spectroscopy : testing the nature of
BHs through their ringdown modes. Narrowband tunings
were previously explored for studying the detectability of
neutron-star mergers [17–19] and stochastic backgrounds
[20], and are here proposed for BH science for the first
time.

The perturbed BH resulting from a merger vibrates at
very specific frequencies. These quasi-normal modes of
oscillation are damped by GW emission, resulting in the
so-called BH ringdown [21, 22]. If BHs are described by
the Kerr solution of General Relativity (GR) [23], all these
resonant modes are allowed to depend on two quantities
only: mass and spin of the perturbed BH [24–26]. This is
a consequence of the famous no-hair theorems : as two BHs
merge, all additional complexities (hair) of the spacetime
are dissipated away in GWs, and a Kerr BH is left behind.
The detection of frequency and decay time of one quasi-
normal mode can therefore be used to infer mass and spin
of the post-merger BH. Measurements of each additional
mode provide consistency tests of the theory. This is
the main idea behind BH spectroscopy: much like atoms’
spectral lines can be used to identify nuclear elements and
test quantum mechanics, quasi-normal modes can be used
to probe the nature of BHs and test GR [27–30]. Despite
its elegance, BH spectroscopy turns out to be challenging
in practice as it requires loud GW sources and improved
data analysis techniques [31–36].
The main idea behind our study is illustrated Fig. 1.

A GW source like GW150914 emits GWs at ∼ 0.1 Hz
and is visible by LISA with SNR∼ 5. After ∼ 10 years,
the emission frequency reaches ∼ 10 Hz and the source
appears in the sensitivity band of LIGO or a future ground-
based detector. The excitation amplitude of the dominant
quasi-normal mode is ∼10 times higher than the first sub-
dominant mode. The latter is likely going to be too weak
to perform BH spectroscopy. Optimized narrowband tun-
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source similar to GW150914 compared to the noise curves√
Sn of LISA [37], LIGO [38], and a planned 3rd-generation

detector [39] (both in their broadband configurations and with
narrowband tunings). Optimized narrowbanding enhances
(decreases) the detector sensitivity around the frequency f33
(f22) of the first subdominant (dominant) mode of the BH
ringdown. The BH binary waveform is generated using the
approximant of [40] with m1 +m2 = 65M�, q = 0.8, D = 410
Mpc, ι = 150◦ assuming optimal orientation (θ = φ = ψ = 0).

ings can boost the detectability of the weaker mode at the
expense of the rest of the signal, making BH spectroscopy
possible.

This paper is organized as follows. In Sec. II and III we
introduce BH spectroscopy and narrowband tunings, re-
spectively. Our results are illustrated in Sec. IV. We draw
our conclusions in Sec. V. Hereafter, we use geometric
units c = G = 1.

II. BLACK-HOLE SPECTROSCOPY

A. Black-hole ringdown

Let us consider a perturbed BH with detector-frame
mass M and dimensionless spin j. GW emission during
ringdown can be described by a superposition of damped
sinusoids, labeled by l ≥ 2, 0 ≤ |m| ≤ l and n ≥ 0 [41].
For simplicity, we only consider the fundamental overtone
n = 0.

Each mode is described by its frequency ωlm and decay
time τlm. The GW strain can be written as [42, 43],

h(t) =
∑
l,m>0

Blme
−t/τlm cos (ωlmt+ γlm) , (1)

Blm =
αlmM

D

√(
F+Y lm+

)2
+
(
F×Y lm×

)2
, (2)

γlm = φlm +mβ + arctan

(
F×Y

lm
×

F+Y lm+

)
, (3)

Y lm+,×(ι) = −2Ylm(ι, β=0)± (−1)l−2Yl−m(ι, β=0) , (4)

where αlm and φlm are the mode amplitudes and phases,
D is the luminosity distance to the source, −2Ylm(ι, β)
are the spin-weighted spherical harmonics, F+,×(θ, φ, ψ)
are the single-detector antenna patterns [44]. The angles
ι and β describe the orientation of the BH, with ι (β)
being the polar (azimuthal) angle of the wave propagation
direction measured with respect to the BH spin axis. In
the conventions of [45, 46], the frequency-domain strain
reads,

h̃(f) =
∑
l,m>0

Blm
−ωlm sin γlm + (1/τlm − iω) cos γlm

ω2
lm − ω2 + 1/τ2lm − 2iω/τlm

,

(5)
where f = ω/2π is the GW frequency.

The dominant mode corresponds to l=2, m=2 (here-
after “22”), while the first subdominant is usually l=3,
m=3 (hereafter “33”). Other modes might sometimes be
stronger than the 33 mode for specific sources. For in-
stance, the 33-mode is suppressed for q ' 1 or sin ι ' 0
(e.g [33, 47, 48]). Here we perform a simple two-mode
analysis considering the 22 and 33 modes only. Strictly
speaking, the ringdown modes have angular distributions
described by spheriodal, instead of spherical harmonics.
However, for the final black-hole spins we consider, the
22 and 33 spin-weighted spherical harmonics have more
than 99% overlap with the corresponding spin-weighted
spheroidal harmonics [49, 50], which is accurate enough
for this study.1 For simplicity, we restrict ourselves to
non-spinning binary BHs with source-frame masses m1

and m2; we address the impact of this assumption in
Sec. V. Redshifted masses mi(1 + z) are computed from
the luminosity distance D using the Planck cosmology
[51]. Mass M and spin j of the post-merger BH are
estimated using fits to numerical relativity simulations
[52, 53] as implemented in [54]. Quasi-normal frequencies
ωlm and decay times τlm are estimated from [29]. We
estimate the excitation amplitudes αlm given the mass
ratio q = m2/m1 ≤ 1 of the merging binary using the
expressions reported by [43]. BH ringdown parameter
estimation has been shown to depend very weakly on
the phase offsets φlm [29], which we thus we set to 0 for
simplicity (c.f. also [55]).

B. Waveform model and GR test

In BH spectroscopy, one assumes that quasi-normal
modes frequencies ωlm and decay times τlm for different
modes depend separately on M and j, and then look for

1 We do note that, for the final black-hole spins we are consider-
ing, −2S22 and −2Y32 have overlap between 0.05 and 0.1, which
does cause the 22 ringdown mode to show up significantly in
the spherical-harmonic mode h32. This is nevertheless consis-
tent with the 99% overlap between −2Y22 and −2S22, because∑

l′ |〈−2Yl′m|−2Slm〉|2 = 1.
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consistencies between the different estimates.2 Consider-
ing the 22 and 33 modes only, one can write the waveform
as,

h = h22(M22, j22) + h33(M33, j33) (6)

and use data to estimate the parameters,

λ ≡ {M22, j22,M33, j33} . (7)

Deviations from GR may cause non-zero values of,

εM ≡
M22 −M33

(M22 +M33)/2
, εj ≡

j22 − j33
(j22 + j33)/2

. (8)

We, therefore, seek to maximize our ability to estimate
εM and εj from the observed data.

Given true values λ̄i, each independent noise realization
will result in estimates λ̃i given by,

λ̃i = λ̄i + δλi , (9)

where δλi are random variables driven by noise fluctua-
tions in a way that depends on both the signal and the
estimation scheme. Measured values of deviation from
GR can be obtained by inserting measured values M̃22,33

and j̃22,33 into Eq. (8), resulting in,

ε̃M =
M̃22 − M̃33

(M̃22 + M̃33)/2
, ε̃j =

j̃22 − j̃33
(j̃22 + j̃33)/2

. (10)

At linear order one gets ε̃M = ε̄M +δεM and ε̃j = ε̄j +δεj ,
with,

δεM =
M̄33δM22 − M̄22δM33

(M̄22 + M̄33)2/4
, δεj=

j̄33δj22 − j̄22δj33
(j̄22 + j̄33)2/4

.

(11)

In the absence of any deviations from GR, one has M̄22 =
M̄33 = M̄ and j̄22 = j̄33 = j̄, but εM and εj will have
statistical fluctuations given by,

δεM =
δM22 − δM33

M̄
, δεj =

δj22 − δj33
j̄

. (12)

The levels of these fluctuations will quantify our ability
to test GR. In fact, Eqs. (12) are good approximations
to (11), as long as fractional deviation from GR is small,
i.e., when ε̄M � 1, and ε̄j � 1.

C. Estimation errors

The covariance matrix σij , namely the expectation
values,

σij ≡ 〈δλiδλj〉 (13)

2 For simplicity we only vary ωlm and τlm while keeping αlm fixed
to their GR values.

can be bounded by the Fisher information formalism [56]
(but see [57]). The conservative bound for the error is
given by the inverse of the Fisher Information matrix:

σij = Γ−1ij , Γij =

(
∂h̃

∂λi

∣∣∣∣ ∂h̃∂λj
)
, (14)

where parenthesis indicate the standard noise-weighted
inner product.
In our case, the covariance matrix can be broken into

blocks,

Γ−1 =

[
(Γ−1)2222 (Γ−1)2233
(Γ−1)3322 (Γ−1)3333

]
(15)

corresponding to the couples (M22, j22) and (M33, j33).
The diagonal block (Γ−1)2222 correspond to errors when
estimating (M22, j22) alone (marginalizing over other un-
certainties), the diagonal block (Γ−1)3333 correspond to
errors when estimating (M33, j33) alone (marginalizing
over other uncertainties), while the non-diagonal blocks
contains error correlations.

From the covariance matrix for (M22, j22,M33, j33), one
obtains the following expectation values,

〈δε2M 〉 =
σM22M22

−2σM22M33
+ σM33M33

M̄2
, (16)

〈δε2j 〉 =
σj22j22−2σj22j33 + σj33j33

j̄2
, (17)

〈δεMδεj〉 =
σM22j22 − σM33j22 − σj22M33 + σM33j33

M̄ j̄
.

(18)

which are elements of the covariance matrix of (δεM , δεj).
For concreteness, we define a scalar figure of merit,

δGR =

∣∣∣∣ 〈δε2M 〉 〈δεMδεj〉
〈δεMδεj〉 〈δε2j 〉

∣∣∣∣1/4 (19)

to quantify our ability to test GR. More specifically, δGR
measures our statistical error in revealing deviations from
GR. One has the strongest possible test of GR when
δGR → 0, corresponding to Γ−1 → 0, in which case
any deviation from GR will be revealed with vanishing
statistical error. Large values of δGR would require larger
deviations from GR [i.e., larger true values of (εM , εj)] in
order to be detectable.
Given values of δGR from both a design and an op-

timized detector configuration, it is useful to define the
narrowband gain,

ζ =
δGR(Design) − δGR(Optimized)

δGR(Design)
, (20)

where ζ=1 (ζ=0) means that the narrowbanding proce-
dure is maximally effective (irrelevant).
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D. Error correlations between modes

We note that 22-33 correlation components of the Fisher
information matrix, as well as its inverse, are expected
to be small because the two modes are well separated in
the frequency domain. In particular, ∂h(ω)/∂M22 and
∂h(ω)/∂j22 peak near ω22 with widths ∼ 1/τ22, while
∂h(ω)/∂M33 and ∂h(ω)/∂j33 peak near ω33 with widths
∼ 1/τ33. For this reason, the pairs (δM22, δj22) and
(δM33, δj33) are nearly statistically independent from each
other. Estimation error for εM and εj can be viewed as
(almost) independently contributed from the 22 and 33
modes and summed by quadrature. One has, approxi-
mately,

〈δε2M 〉 ≈
σM22M22

+ σM33M33

M̄2
, (21)

〈δε2j 〉 ≈
σj22j22 + σj33j33

j̄2
, (22)

〈δεMδεj〉 ≈
σM22j22 + σM33j33

M̄ j̄
. (23)

In other words, the covariance matrix of (δεM , δεj) is
approximated by the sum of those of (δM22/M̄, δj22/j̄)
and (δM33/M̄, δj33/j̄).

We quantify this claim by calculating values δGR where
the off-diagonal sub-matrices (Γ−1)3322 and (Γ−1)2233
are artificially set to zero. For the population of sources
studied in Sec. IVB, and observed by LIGO, the median
difference between the two estimates is as small as 1.6%
(4.0%) for broadband (narrowband) configurations.

For this reason, some insight can be gained by visualiz-
ing the error region in the (M22, j22) and (M33, j33) planes
separately (c.f Sec. IVA): errors in (δεM , δεj) are well
approximated by the quadrature sum of errors indicated
by those regions. We stress however, that correlations are
fully included in all values of δGR reported in the rest of
this paper.

III. NARROWBAND TUNINGS

As an example of a possible narrowband setup, we
consider the detuning of the signal-recycling cavity
(c.f. [18, 20] where a similar setup was also explored).
Second-generation GW detectors make use of signal re-
cycling optical configurations (or resonant side-band ex-
traction) [58–60]. A signal recycling mirror is placed at
the dark port of a Fabry-Perot Michelson interferome-
ter, which is the configuration used in first-generation
detectors. The transmittance TSRM of this mirror deter-
mines the fraction of signal light which is sent back into
the arms, possibly with a detuning phase φSRM. Both
these parameters affect the optical resonance properties of
the interferometer [58, 59], as well as its optomechanical
dynamics [61, 62]. Together with the homodyne read-
out phase φhd, TSRM and φSRM are responsible for the
quantum noise spectrum of the interferometer, allowing

for noise suppression near optical and optomechanical
resonances [63].

In this paper, we consider narrowbanding of both LIGO
in its design configuration and future 3rd-generation de-
tectors. The LIGO design noise-curve is a finalized ex-
perimental setup which allows us to perform a focussed
assessment of the impact of narrowbanding onto BH spec-
troscopy over a large number of sources. However, more
sensitive ground-based interferometers are currently being
planned and are expected to be operational by the 2030s
[39, 64]. Multi-band observations and LISA forewarnings
might happen with a network of ground-based detectors
perhaps 10 times more sensitive than LIGO.
In order to select the best detuned configuration to

perform BH spectroscopy, one needs to choose values
of (TSRM, φSRM, φhd) that boost sensitivity around the
33 frequency. For LIGO, we generate 603 noise curves
with equal spacing in φSRM ∈ [−0.12π, 0.12π], TSRM ∈
[0.001, 0.2], and φhd ∈ [0, π]. This parameter space is
capable of capturing the central frequencies of both the
22 and 33 mode for binaries with q ∈ [0.2−0.9] and
total masses m1 +m2 ∈ [20M�−100M�]. Noise curves
are generated using pyGWINC [65]. The LIGO design
configuration corresponds to TSRM = 0.2, φSRM = 0, and
φhd = π/2. The broadband noise curves reported by
[38, 66] are reproduced within ∆ logSn/ logSn . 0.2%
throughout the entire frequency band. For each given
source, we select the optimal noise curve that minimizes
δGR among those we precomputed. Figure 1 illustrates
this procedure for an optimally oriented source similar
to GW150914 [67]. This narrowband setting corresponds
to a noise curve with φSRM ' 0.21, TSRM ' 0.02 and
φhd ' 2.24.

While the design of 3rd-generation detectors still being
discussed, it is anticipated that squeezed-vacuum injection
will be used. Squeezer and cavity properties need to be
optimized together to determine the optimal configuration.
Fully tackling this interplay is outside the scope of this
paper. We have nonetheless attempted one of such studies,
where both the filter cavity for the squeezed vacuum [68,
69] and signal-recycling cavity of the Cosmic Explorer
[39] design have been optimized to target the ringdown
emission of GW150914 (c.f. Fig. 1).

IV. RESULTS

A. Boosting subdominant modes

Confidence ellipses [70] constructed from (Γ−1)2222
and (Γ−1)3333 are shown in Fig. 2 for sources similar
to GW150914. In the left panel, we consider narrowband-
ing of a LIGO detector for a source similar to GW150914
at the optimistic distance of D = 40 Mpc. This value
is consistent with the closest GW source detected so
far [71] and correspond to ∼1/10 of the actual distance
of GW150914. In the right panel, we consider detuning
of a 3rd-generation detector (Cosmic Explorer) for the
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FIG. 2. 1-σ confidence ellipses for the 22 (dashed) and 33 (solid) modes observed by GW detectors in their designed (blue) and
optimized narrowband configuration (orange). In both panels, the source is a perturbed Kerr BH of mass M = 62.5M� and
spin j = 0.68 (dotted lines), resulting from the merger of a GW150914-like system (m1 +m2 = 65M�, q = 0.8, ι = 150◦, β = 0)
assuming optimal orientation (θ = φ = ψ = 0). The left panel assumes an optimistic luminosity distance D = 40 Mpc and the
LIGO detector in its design sensitivity. The right panel is generated assuming a 3rd-generation detector optimized for the same
system and a realistic luminosity distance D = 400 Mpc.

case of the same source at D = 400 Mpc.

The behavior of the ellipses of Fig. 2 illustrates the
main point of our analysis. In the standard broadband
configuration, the 22 mode is observed very well, thus
resulting in a small confidence region. At the same time,
the 33 mode is observed poorly resulting in a large ellipse.
As in the case of current events [72], this is roughly equiv-
alent to a single measurement of M and j based on the 22
mode only, rather than a test of the theory. Narrowband
tunings boost the detectability of the 33 mode, while
marginally reducing that of the dominant 22 excitation.
Consequently, the two confidence ellipses are more similar
to each other, resulting in a more powerful constraint of
the Kerr metric.

For a source like GW150914 at 40 Mpc, narrowband
tunings in LIGO boost prospects to perform BH spec-
troscopy from δGR = 0.056 to δGR = 0.032, thus offering
the opportunity to improve constraints on the BH no-hair
theorems by ζ = 43%. The same source at D = 400
Mpc observed by a 3rd generation detector will present
a higher gain of ζ = 59%. Rescaling D between the left
and right panel of Fig. 2 allows us to asses the potential
of optimization in future interferometers. In particular,
ellipses in the right panel are smaller than those in the
left panel because, while the distance was changed from
40 to 400 Mpc, the expected improvement in sensitivity
of Cosmic Explorer is more than a factor of 10 compared
to LIGO. We obtain a larger gain ζ for 3rd-generation
detectors because quantum noise is expected to dominate

more over classical sources of noise compared to current
interferometers [39]. There is, therefore, more room to
take advantage of modifications in optical configurations.

B. Population study

We now assess the impact of this procedure as a function
of the source properties. We generate a population of
sources drawing cos θ and cos ι uniformly in [−1, 1] and
β, φ, and ψ uniformly in [−π, π] with fixed3 distance
D = 100 Mpc. Fig. 3 shows the median values of δGR
as a function of the masses of the merging BHs. The
top panel assumes LIGO in its design configuration, the
middle panel presents results optimizing the narrowband
setup individually for each source, while the gain ζ is
shown in the bottom panel.
A few interesting trends are present. First, the best

systems to perform BH spectroscopy (i.e. low values
of δGR) have intermediate mass ratio 0.3 . q . 0.7.
Both ringdown amplitudes α22 and α33 are suppressed
for q → 0, while α22 � α33 for q → 1. Second, tests
of GR are weaker (higher δGR) for lower mass systems.

3 Since δGR is directly proportional to D, results in Fig. 3 can be
rescaled to different distances. Cosmological effects might push
the ringdown frequencies of some high-mass events out of band,
thus somewhat decreasing the gain.
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FIG. 3. Top and middle panels show median values of δGR
for LIGO at design sensitivity and with narrowband tuning,
respectively; bottom panel shows the median gain ζ. Data are
shown as a function of total mass m1 +m2 and mass ratio q
of the merging binaries; medians are computed over θ, ι, β, φ,
and ψ. The distance is fixed to D = 100 Mpc. Binaries to
the right of the dashed lines have sky-averaged LISA SNRs
greater than 8 (these are computed following [3] using the
updated noise curve of [37] and the nominal mission duration
Tobs = 4 yr; the initial frequency is estimated such that the
binary merges in Tobs). Triangles indicate measured LIGO
events (we show the medians of the posterior distributions
from [1]).

These binaries have f33 close to the edge of the sensitivity
window of the interferometer, thus making mode distin-
guishability harder. The LISA SNR also increases with
the total mass and the mass ratio. In particular, binaries
with m1 + m2 . 40M� are not likely to be associated
with confirmed forewarnings (c.f. [10]).

A key point of our findings is illustrated in the gain
values ζ reported in the bottom panel of Fig. 3. From
Eq. (20), ζ quantifies the potential improvement in BH
spectroscopy achievable with narrowband tunings. Me-
dian gains are larger than 25% over the entire parameter
space, and individual sources can reach values up to 50%.
In particular, higher gains are achieved for large-q systems.
This agrees with the expectation that both modes are
suppressed at q → 0, while only the 33 mode is suppressed
at q → 1. Narrowband tunings shift the detector sensitiv-
ity closer to f33 at the expense of the 22 mode, and are
thus more effective if its excitation is large such that the

resulting sensitivity loss can be more easily absorbed.

V. DISCUSSION

The possibility of optimizing ground-based operation
assumes that LISA observations of the early inspiral ac-
curately predict the ringdown frequencies (in particular
f33), thus providing information on how ground-based
interferometers should be optimized. We estimate LISA
errors on f33 as follows. For a given source with chirp
mass Mc and symmetric mass ratio η, we first estimate
f33 assuming zero spins (this is our working assumption
used above). Inspired by the results reported in Fig. 3
of [3] (computed as in [73]), we model LISA errors as
lognormal distributions centered at ∆Mc/Mc = 10−6,
∆η/η = 6 × 10−3 with widths σ = 0.5. We then calcu-
late f33 for a new binary with masses Mc + ∆Mc and
η + ∆η and spins with magnitudes uniform in [0, 1] and
isotropic directions. In practice, we are assuming that
LISA will not provide any information on the spins. This
is a conservative, but realistic, assumption because spins
enter at high post-Newtonian order and are going to be
very challenging to detect at low frequencies [74]. This
procedure is iterated over a population of sources with
masses uniformly distributed in [10, 100]M�. The median
of the errors ∆f33 is 11 Hz, while the 90th percentile is
46 Hz. For the case of cavity detuning explored here,
typical bandwidths are & 200 Hz (c.f. Fig. 1), sensibly
larger than the predicted errors. Therefore, we estimate
that the risk of missing the source because the detector
was detuned in the wrong configuration is very limited.
The precision with which LISA will estimate the time of
coalescence is at most of O(100 s) [3], and should not pose
significant challenges in the planning strategy. Moreover,
only some of the ground-based instruments of the network
could be optimized, while the rest are maintained in their
broadband configuration.

Cavity detuning presents significant experimental chal-
lenges, regarding both detector characterization and lock
acquisition, and might ultimately turn out to be impracti-
cal (see [75] for an exploration of these issues on the LIGO
40-m prototype). We note that narrowbanding can also
be achieved without detuning by using e.g. twin-recycling
[76] or speed-meter [77] configurations; such a possibility
is currently being studied to optimize for post-merger sig-
nals from neutron-star mergers for future detectors [19].
Beyond targeted narrowbanding around the 33 frequency,
optimization can also be achieved by re-configuring future
ground-based interferometers in different ways. For the
planned 3rd-generation detector Cosmic Explorer [39],
the quantum noise is expected to dominate all other noise
sources by more than a factor of 2 for frequencies & 40Hz
with a chosen bandwidth of 800Hz. With forewarnings,
a less broadband configuration (even without detuning)
could be chosen to significantly improve BH spectroscopy.
In the case of Einstein Telescope [64], a broad bandwidth
is achieved by a xylophone that contains two different
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interferometers optimized for different frequency ranges.
It is conceivable that a strong LISA forewarning might
prompt a reconfiguration of the two interferometers to
optimize for BH spectroscopy.
Space-based GW observatories like LISA will surely

provide exquisite tests of GR with supermassive BH obser-
vations [29]. As shown here, they can further be exploited
to improve BH spectroscopy in the different regime of
lower-mass, higher-curvature BHs observed by LIGO and
future ground-based facilities. More generally, forewarn-
ings from space-based detectors will provide the opportu-
nity to configure ground-based instruments to their most
favorable configuration to perform targeted measurements
and improve their science return.
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