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In the first three years of Gravitational Wave (GW) Astronomy, more than ten compact binary
coalescences (CBCs) have been detected. As the sensitivities and bandwidths of the detectors
improve and new detectors join the network, many more sources are expected to be detected. The
goal will not only be to find as many sources as possible in the data but to understand the dynamics of
the sources much more precisely. Standard searches are currently restricted to a smaller parameter
space which assumes aligned spins. Construction of a larger and denser parameter space, and
optimising the resultant increase in false alarms, pose a serious computational challenge. We present
here a two-stage hierarchical strategy to search for CBCs in data from a network of detectors and
demonstrate the computational advantage in real life scenario by introducing it in the standard PyCBC

pipeline with the usual restricted parameter space. With this implementation, we gain an enormous
computational speed up, by a factor of ∼ 20, over the flat search on LIGO’s first observation
run (O1) data. The saving in the computational cost will, in turn, may allow us to search for
precessing binaries, will provide more options to search for sources of different kinds and help us to
support the never-ending urge for extracting more science out of the data with limited resources.

PACS numbers: 04.80.Nn, 95.55.Ym, 98.70.Vc

I. INTRODUCTION

During the first (O1) and the second (O2) ob-
servation runs, the twin LIGO (Laser Interferomet-
ric Gravitational-wave Observatory) detectors observed
gravitational wave (GW) signals from 11 events with con-
fidence - 10 mergers of binary black holes (BBHs) and
one double neutron star coalescence [1]. The neutron
star coalescence had electromagnetic counterparts in al-
most every band and is even now being followed by many
electromagnetic (radio) telescopes. For the last two of
the observations of compact binary coalescences (CBCs),
the data from the VIRGO detector also was used supple-
menting the LIGO [1–9] data. We soon expect to have
a larger network of such interferometric detectors with
KAGRA coming online soon, and LIGO-India following
in few years [10–12]. CBCs are perhaps going to be the
most abundant sources for the current and next genera-
tion terrestrial interferometric GW detectors [13].

However, GW signals are usually buried deep into
noisy interferometric strain data. To extract the sig-
nals from CBCs, where phase can be precisely modelled,
the method of matched filtering is generally used [14–16]
which is optimal in several ways. The signal waveform for
a particular set of signal parameters is obtained from the
general theory of relativity by using various techniques
involving analytical approximations, perturbation the-
ory, numerical relativity, etc.[17–22]. The modelled sig-
nal is then cross-correlated with the inverse noise power
weighted data from each of the detectors. This correla-
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tion is in fact the maximum likelihood estimator. If the
signal with a loud enough correlation is simultaneously
present in a pair of detectors with matching parameters,
we consider it as a possible astrophysical signal, where
the significance of detection needs to be estimated from
the statistical properties of the data. This is a simplistic
picture however of how coincident detection works. The
difficulty lies in the fact that we do not know the sig-
nal parameters a priori and therefore a search must be
carried out in the deemed parameter space.

For these searches, we assume quasi-circular orbits for
the CBCs. For circular orbits, the GW waveforms de-
pend upon 15 parameters which can be split into two
distinct classes: 8 intrinsic and 7 extrinsic. The intrinsic
parameters are the component masses (m1, m2), indi-
vidual spin angular momenta (s1, s2) and the extrinsic
parameters are sky location (θ, φ), luminosity distance
(dL), orbital inclination (ι), time and phase of coales-
cence (tc, φc) and polarisation angle (ψ). The dynamics
of the source depends only upon the intrinsic parameters.
We can model the generic GW signal in the source frame
using essentially the intrinsic parameters and then trans-
form it subsequently to the wave frame. For data analysis
also, the intrinsic and extrinsic parameters are dealt with
differently. One makes use of the symmetries in the sig-
nal model to efficiently search over the parameters tc and
φc (this will be described later in the text). Similarly, the
other extrinsic parameters can be dealt with in a quick
way [23, 24]. However, for the intrinsic parameters, we
need to discretise the deemed parameter space. This set
of GW signal waveforms at discrete points systematically
sampled over the intrinsic parameters is known as a tem-
plate bank [25–29]. We then search for the signal by
correlating all the templates in the bank with the de-
tector data. To search for CBCs in current data from
LIGO-Virgo detectors, typically few hundred thousand
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templates are needed to sample the parameter space with
sufficient density, which requires a formidable amount of
computation.

The computational cost for a matched filtering search
in the full parameter space is too large given the available
resources and hence not feasible. The current searches
make a simplifying assumption to reduce the dimension-
ality of the parameter space—the spins of the binary
components are assumed to be aligned with the orbital
angular momentum. These non-precessing templates can
detect a good part of the full parameter space when pre-
cessional effects are not dominant [30]. With this set up,
matched filter based LIGO pipelines use the template
bank with minimal match (MM), the minimum value of
scalar product between any two normalised templates, of
0.97. For a search up to a total mass of the 100 M�,
∼ 250, 000 templates are required [26, 31]. Further, as
the low frequency limit of the sensitive band of the de-
tectors is reduced, the number of cycles of the CBC sig-
nals in the detector bandwidth increases rapidly, which
demands an increase in the template density in the pa-
rameter space. Further, better sensitivity at lower fre-
quencies means that we can also observe the heavier bi-
naries, resulting in extension of the detectable parameter
space. Both these effects together tend to increase the
non-precessing template bank by at least a few times.

Computational cost is orders of magnitude larger when
searching for GW signals from precessing CBC systems.
It has been shown that, even for the restricted parameter
space of mass ratio less than 5, the precessing template
bank with MM = 0.9 is more than 10 times larger than
the corresponding non-precessing template bank with
MM = 0.97 [32]. Fortunately, precession of the binary
becomes important only when masses are unequal and
orbital inclination is not nearly face-on [30]. Since less
power in GW is emitted if the line of sight lies in the or-
bital plane, the chances of detection of such binaries have
been low, which is why one could justify restricting the
current matched filtering searches for CBC to dominant
mode(s) of non-precessing signal models only [33, 34].
However, with progressively increasing sensitivities of the
detectors and the addition of more detectors to the net-
work, one can no longer afford to miss precessing bina-
ries and the interesting science that they have to offer.
While there are claims that, through secular evolution,
the component spins of the compact binaries are more
likely to align or anti-align to the orbital angular mo-
mentum when they enter LIGO’s sensitive band, sensi-
tive searches for precessing binaries are needed to test
such claims through null detections. Such searches are
clearly not feasible using the standard matched filtering
scheme with available computing resources. This makes
a strong case to develop cost reducing algorithms.

In general, due to the constant demand to extract more
science out of a given amount of data, computational
costs could get very high and perhaps out of reach of the
current available computational resources. The present
matched filtering searches employ the coincident detec-

tion strategy, instead of the more detection efficient co-
herent strategy because the coherent strategy is signif-
icantly computationally more expensive than the coin-
cident one [35]. It is therefore very important to de-
velop cost effective algorithms for matched-filter based
searches, which will allow us to provide more comput-
ing resources to search for GWs from other astrophysical
sources, e.g., from millisecond pulsars, and will enable us
to perform more sophisticated searches, e.g., the precess-
ing coherent search online which is the holy-grail of the
CBC searches!

In this paper, we propose a hierarchical strategy to
search for CBCs in data from a network of GW detec-
tors, the goal being to reduce the computational cost of
the analysis. We demonstrate the benefit of this method
using spin-aligned template banks. These banks have the
advantage that there are fewer parameters over which the
search needs to be carried out - there are only four in-
trinsic parameters to be reckoned with, the two masses
and two component spins parallel to the orbital angular
momentum. Also since the systems do not precess, the
orbital inclination parameter ι becomes redundant.

Current searches like gstLAL, use singular value de-
composition (SVD) like algorithms to numerically re-
duce the size of the non-precessing template banks. This
makes the matched filtering part of the search computa-
tionally significantly cheaper, however the reconstruction
from the SVD basis to the actual binary template filtered
output requires extra computation [36]. Therefore, there
is no overall significant saving in terms of computation as
compared to standard search. There are, still, some extra
benefits to be gained from PyCBC like standard searches
and speeding them up so that we can try to accommo-
date higher modes and precessing effects in the templates.
The standard search is also called the ‘flat’ search in the
literature [37–39], we use this terminology in this paper.

Here we introduce the hierarchical detection strategy
to speed up the matched filtering search using the PyCBC
pipeline [40–43]. We only consider a 2-stage hierarchi-
cal search and compare it with the matched filtering
search similar to the one used for the analysis of advanced
LIGO’s first observation run (O1) data. We also present
a scheme to estimate the false-detection background, that
is necessary to assign confidence levels to detected events.

The layout of the paper is as follows. In section II,
we briefly describe the standard flat search or the single
stage search for CBCs with matched filtering. In sec-
tion III, we review the previous use of hierarchical al-
gorithm and we discuss our current implementation of
the 2-stage hierarchical search. Then in the section IV,
we compare the results of our implementation of the hi-
erarchical search with the flat search using aLIGO like
simulated data. In section V, we show that the method
performs nearly as well without any special optimization.
Finally in section VI, we summarise and discuss future
directions and the procedure we would like to adopt in
these strategies. The method presented in this paper not
only shows a proof of concept, but its potential is also
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demonstrated by applying it to real data.

II. PRELIMINARIES

A. The matched filter

The matched filter (MF) is noise weighted correla-
tion of the modelled GW signal (the template) with
the data. It is an optimal detection statistic (in the
Neyman-Pearson sense), surrogate of the maximum like-
lihood statistic when the noise is stationary and Gaussian
[14, 16, 44]. The mathematical form of the MF statistic,
which is same as the SNR (usually denoted by ρ) for
normalised templates, is maximised over phase of coales-
cence analytically and also all other parameters of the
signal for non-precessing waveforms, and is given by,

ρ ≡ max
λ

(x, h (λ))

= max
λ

4 Abs

∫ ∞
0

x̃∗ (f)
(
h̃+ ih̃

)
(f ;λ)

Sn (f)
df

 ,

(2.1)

where x is the time series strain data, h(λ) is the normal-
ized expected GW signal for the source parameters of the
binary, given by λ and Sn(f) is the noise power spectral
density (PSD). The round brackets denote a scalar prod-
uct on the space of data trains, which has been defined in
Eq. (2.1) in the Fourier domain. Tilde (̃ ) above a quan-
tity denotes the Fourier space representation of the time
series representation of the function. Because of the max-
imisation over phase in the MF, in stationary Gaussian
noise, the detection statistic follows a Rayleigh proba-
bility distribution in absence of the signal and a Rician
distribution when a signal is present in the data [45]. In
general, we have no knowledge of the signal parameters
λ and therefore we must search over the full parameter
space to carry out the maximisation. The search over
the time of coalescence tc is performed in a quick way by
using Fast Fourier Transform (FFT) and for φc a basis
of waveforms with φc = 0, π/2 is used to search over
φc efficiently. For the rest of the parameters, namely,
the intrinsic parameters, as discussed in the introduc-
tion, we require a template bank. The template bank is
constructed with MM of 0.97. In the next subsection we
describe how we construct the template bank.

B. The template bank

The discrete sampling of the intrinsic parameters has
to be done with due care. Otherwise we may miss out
signals due to the loss of SNR because of the mismatch
in the template and signal parameters. There can be
many reasons for loss in SNR, mainly it is the phase
mismatch which matters the most, which may be due

to inaccurate modelling of the signal, etc. But one of
the reasons is the mismatch due to the discrete nature
of the template bank. As the templates are normalized,
(h (λ) , h (λ)) = 1, a match between any of the two wave-
forms with slightly different parameters can be written
as follows:

H (λ, λ+4λ) ≡ (h (λ) , h (λ+4λ))

= 1 − ds2 = 1 − gab (λ)4λa4λb ,
(2.2)

where we have kept lowest order terms in 4λ and defined
the metric gab as:

gab (λ) = − 1

2

(
h (λ) ,

∂2h

∂λa∂λb
(λ)

)
. (2.3)

The distance ds and template space metric gab can be
used to systematically place templates in the bank with
a given value of MM , provided 1 −MM is small. Usu-
ally the mismatch 1 − MM is chosen at the level of
3% [26], which means MM = 0.97. This corresponds to a
maximum loss of about 10% of the astrophysical events
within the detectable range. The metric can be analyti-
cally calculated for inspiral waveforms given by the post-
Newtonian expansion. But here, we use the full IMR
waveforms with non-precessing component spins in the
search. For such waveforms, there is no sufficiently accu-
rate analytic or semi-analytic form of the metric which
can be used to construct a geometric template bank.
Therefore, the current searches use a different approach
which employs stochastic methods in order to obtain a
template bank [27, 29], for which the match is directly
computed to obtain a stochastic placement of the tem-
plates. If the match is close to unity, then the metric is
being used implicitly. If the match is not close to unity
as in the case of the coarse bank as explained in Sec-
tion III B 2, then the metric approximation fails.

A template bank depends on the PSD of the noise
present in the detector. When we have more than one
detector, in general, we have to deal with more than one
PSD. However, it is convenient to have a common tem-
plate bank, which facilitates the coincident detection ap-
proach [26, 33]. For the two LIGO detectors, we combine
the two PSDs into a single effective PSD by taking the
harmonic mean of the two PSDs. This effective PSD
is used to construct a common template bank for the
search. As the strain noise from the LIGO detectors is
neither stationary nor Gaussian - there are glitches in
the data - the coincident detection approach is preferred
which naturally rules out glitches and facilitates signal
consistency checks for astrophysical trigger selection and
GW detection.

C. Coincidence and vetoes

Below we describe the criteria for coincident detec-
tion. A coincident trigger must satisfy the following:
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(i) there are corresponding triggers in each detector -
the SNRs must cross the preset thresholds for the same
data segment, (ii) the intrinsic parameters recovered in-
dependently for each detector are such that they match
(the same template clicks) and (iii) the difference in the
estimated times of coalescence is not be more than light
travel time between the two detectors. This difference
is allowed a small margin of error because the noise can
throw the triggers a little away from their true coales-
cence times. This is the procedure followed for the cur-
rent searches in the two aLIGO detectors.

To further reduce the false alarms, χ2 dependent ve-
toes are applied in the form of newSNR [23, 33] to trig-
gers from each of the detectors. These collected individ-
ual detector triggers along with the coincident newSNR
statistics are used to estimate the noise background and
to assign the statistical significance to the detected GW
triggers. We escalate a candidate trigger to a detection if
the trigger passes a sufficiently high threshold for which
the false alarm probability is very small. These ideas will
be made precise later.

III. HIERARCHICAL SEARCH

The idea of a two stage hierarchical search is fairly
straightforward. First we search over the parameter
space by using a coarse grid with a lower threshold on
SNR or the detection statistic. The candidate triggers
from the first stage are then followed up by finely sampled
the parameter space around the neighbourhood (nhbd)
of each trigger. The goal is to effectively reduce the num-
ber of matched filter computations needed to find a GW
signal if it is present in the data. This may also help
in reducing the background arising due to false alarms
caused by noise artefacts. The speed-up one gets de-
pends on the coarseness of the first stage bank and the
false alarm rate which is related to the choice of first
stage signal-to-noise-ratio (SNR) threshold. This proce-
dure is optimised by adjusting the first stage threshold
to yield minimum computational cost for a fixed search
sensitivity usually defined in terms of sensitivity distance
or volume for CBC searches [41].

In principle, one could also increase the number of
stages of hierarchy, though so far we have restricted our-
selves only to two stages.

A. Review of the non-spinning hierarchical search

It has been shown previously that a two stage hierar-
chical search algorithm can be used to speed-up the non-
spinning CBC searches by more than an order of mag-
nitude in simulated initial LIGO (iLIGO) like data [38]
and by factor of 7 - 8 in real data from the second sci-
ence run (S2) of iLIGO. The first such study was carried
out by Mohanty and Dhurandhar [46]. They used Newto-
nian waveforms and the detector noise was assumed to be

stationary and Gaussian. The hierarchy was performed
over just one parameter, namely, the chirp mass. This
work was extended to hierarchy over both the masses
for 1.5 post-Newtonian (PN) inspiral waveforms by Mo-
hanty and Dhurandhar [46], Mohanty [47]. This was then
followed up by Sengupta et al. [37, 38] which further ex-
tended the hierarchy to three parameters, namely, the
masses and time of coalescence. To incorporate the hier-
archy in time of coalescence the data was down sampled
in the coarser first stage. 2PN inspiral-only waveforms
were used in their analysis. This most recent work used
a geometric template bank placement [37, 48]. The full
details of the previous hierarchical searches with non-
spinning GW signal waveforms over simulated and initial
LIGO second science run (S2) data are given in [49].

In the latest two stage hierarchical search proposed in
[37], chirp times τ0 and τ3 were used instead of individ-
ual component masses to create fine and coarse template
banks. The template space Fischer-Rao metric depends
very weakly on the chirp times in the parameter space
considered. The geometric fine bank with mismatch
less than 3% was created using 2PN inspiral-only met-
ric using hexagonal closed packing template placement
scheme with iLIGO noise PSD for masses in the range of
(1, 30)M�. In the first stage of the search the data were
sampled at a lower rate of 512 Hz and the coarse template
bank was created with mismatch less than 20%, that is,
MM of 0.8. For such large values of mismatch, the metric
approximation breaks down. Therefore, the coarse bank
is created numerically by a rectangular placement of the
templates along the τ0 axis. In the first stage, the lower
MM reduces the number of templates in the bank signifi-
cantly. Moreover, downsampling reduces the cost of each
FFT in each MF operation. However, this reduction in
computational cost comes at the cost of reduced SNR of
the recoverable signal. Hence, in order to ensure that
we do not lose an otherwise detectable GW signal, the
applied SNR threshold must be lower than the one used
in the single stage flat search which is the usual search
with the bank of MM > 0.97. With the individual de-
tector SNR thresholds of 6 and 8 for the first and second
stage respectively, the search showed computational cost
reduction by few orders of magnitude for simulated data
with Gaussian noise [37, 38] and almost by an order of
magnitude during search with iLIGO S2 data.

All the earlier works mentioned above considered only
a single detector and did not use any signal consistency
tests such as the χ2 discriminator. Apart from introduc-
ing those essential components in the search to make the
implementation applicable for real data, there are two
primary routes to further extend the hierarchical search
strategies, either by increasing the number of stages in
the hierarchy or by including more parameters in the two-
stage hierarchy or both. Since the current CBC wave-
forms include spins, we have opted for the latter. We
may explore the feasibility of the former option in future.
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B. Hierarchical search with aligned-spin waveforms

In this work we explore the possibility of a hierarchi-
cal algorithm for CBC searches with non-precessing tem-
plate waveforms in the modern set up. We use the PyCBC
pipeline [41] with LIGO’s O1 type of search setup [33].
We use the full inspiral-merger-ringdown (IMR) aligned
spin waveforms with dominant (2, 2) mode. Both coarse
and fine template banks are generated using stochastic
template placement algorithm [27].

1. Guidelines for tuning the search

Before moving on to the full-fledged pipeline, we
present our initial study with “zero-noise” BBH injec-
tion case. Studying this simpler case helps in choosing
of thresholds in the first and second stages of the hier-
archy, the size of the fine bank nhbds for each of the
coarse bank trigger template etc. This study of injec-
tions without noise is equivalent to the averaging over a
very large number of ensemble of detectors with additive
Gaussian noise. In simple terms, here we look at the
peak of the distribution of the matched filter statistic by
assuming zero-noise in the detector but with sensitivity
determined by the PSD. We use the AdvLIGO PSD for
computing the match using the inner product described
in Eq. (2.1).

We consider 2000 binary black hole (BBH) injections
in H1-L1 detectors with single detector optimal matched
filter SNR in the range of 5 to 15 for each of the de-
tectors. Both the BHs have masses uniformly sampled
in the range of (5, 10) M� and spin components along
the orbital angular momentum uniformly sampled in the
range (-0.98, 0.98). Further, the injections are uniformly
spread over the full sky. For this study, we use the ac-
tual matched filter SNRs and coincident SNRs without
χ2 (the χ2 weighted SNRs are not applicable here).

We construct coarse and fine templates bank with MM
of 0.9 and 0.97 respectively for the parameter space in
component masses and spins as used for the BBH injec-
tions. Both the banks are created using template space
metric as described in Section II B. This is possible be-
cause we have used TaylorF2RedSpin approximant in
this study for which the analytic metric is available. The
coarse bank has 1200+ templates while the fine bank con-
tains 10000+ templates, that is, the fine bank is about
eight times denser than the coarse bank. The banks and
the proof that there are no holes (i.e. the prescribed
MM condition is satisfied in both the cases) are shown
in figure 1. We choose a sampling rate of 512 Hz for the
construction of the coarse bank (stage - I search) and
a sampling rate of 1024 Hz for the fine bank (Stage - II
search). We choose these specific sampling rates, because
the ISCO frequencies for BHs having masses in the range
10-20 M� are in range 220-440 Hz. With the sampling
rates of 512 Hz and 1024 Hz, the Nyquist frequencies
are 256 Hz and 512 Hz respectively. The reduction in

FIG. 1: The figure at the top shows the non-spinning template
banks in τ0 − τ3 plane and the one at the bottom shows that
the bank does not have any holes since the fitting factor (FF)
values are greater than the MM values used to construct each
of the banks.

sampling frequency leads to a loss of SNR for some of
the injections in the coarse stage when compared with
the generic flat search. The template duration for all the
signals under consideration is less than 8 sec. Therefore,
data segments have been chosen to be 16 sec in duration
for computing matched filters.

We then match filter the data, using stage I and stage
II banks for each of the injections in both H1 and L1 de-
tectors and compute coincident SNRs. We compare the
SNR in stage I with the SNR in stage II in Figure 2. The
loss of SNR is due to the coarse sampling of the parame-
ter space and reduced sampling frequency as mentioned
above. Then, in Figure 3, we plot the maximum possible
loss in SNR on the horizontal axis and on the vertical
axis we plot the match between the templates that cor-
respond to maximum SNR (trigger templates) in stage I
and II. The match between stage I and stage II trigger
templates corresponding to the same injection tells us
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FIG. 2: The coincident SNR for the fine search is plotted
against and coarse search coincident SNR with red circles.
The figure shows how much SNR is lost in stage I in which a
lower sampling rate and a coarse bank are used.

how large the nhbd of the particular template of coarse
bank should be. The figure tells us that even for zero-
noise case, we have to consider nhbd large enough with a
match as low as 85% in order to recover the full SNR in
stage II of the hierarchy. With noisy data, it is prudent
to choose a lower value of the match - we choose this
value to be 75%.

Now we come to the choice of thresholds. The maxi-
mum SNR loss is 85% in stage I. This guides our choice of
stage I SNR thresholds (with reference to the flat search):
(i) for individual detectors (ρsingle, I and (ii) for coinci-
dence ρcoinc, I). We keep these thresholds at about 90% of
the respective thresholds for the flat search as discussed
below. For example, we may choose ρsingle, flat = 5 and
ρcoinc, flat = 8 for the flat search and ρsingle, I = 4.5 for
stage I and ρcoinc, I = 7.2 for stage II of the hierarchical
search.

Figure 4 shows the recovered stage I SNRs for injec-
tions in each of the detectors H1 and L1. Variation in
SNR is observed because the two detectors have different
orientations (thus different antenna patterns) and there-
fore different responses to the same signal coming from a
given location in the sky. The SNR variation in a single
detector also shows that there could be signals that the
hierarchical search may miss but which the flat search
may detect. If the signal is barely above the single de-
tector SNR threshold (ρsingle, flat) in one of the detectors,
then, even with a reduced SNR threshold (ρsingle, I) we
may miss it as the noise may not trigger the correct tem-
plate in stage I in one of the detectors. Also, we may not
detect few borderline injections because of SNR loss of
more than 90% as is seen in Figure 3. Vetoes can further
aggravate the problem by pushing down the newSNR be-
cause the trigger templates in the coarse bank can have
a larger mismatch. Because of this, we would not have

FIG. 3: The match between the stage I (coarse) trigger tem-
plate and stage II (fine) trigger template is plotted versus
the maximum loss of the SNR (normalized) in stage I. Each
injection is represented by a red star.

a coincident trigger to go to stage II even if the signal
was otherwise loud enough. But to be fair this could also
happen in a coincident flat search depending upon the
choices of the threshold. For the current choices, the flat
search may miss fewer signals compared the hierarchical
search. So this means that there is a chance that the hi-
erarchical search may miss out some signals which have
a low SNR in one of the detectors as compared to the
flat search. This is demonstrated in Figure 5. If we how-
ever consider more than two detectors and a coincidence
analysis, we believe this is unlikely to happen.

FIG. 4: The figure shows the recovered SNR for each injection
as observed in detectors H1 and L1. The large variation in
recovered SNRs is due to the different orientations of the de-
tectors which have different antenna pattern functions. The
dashed line is the line of equal SNR.
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This simplified case guides our choice of thresholds and
nbhds for the full fledged hierarchical search strategy.

FIG. 5: Injections found and missed in the flat and hierar-
chical searches for the zero-noise case. The red dots show
injections missed by both searches while the green ones show
those that are found by the both. The blue inverted triangles
correspond to the injections which are likely to be missed by
hierarchical search but recovered by the flat search with the
current configuration.

2. Formalism

Here we describe the 2-stage hierarchical search
pipeline for coincident detection with two detectors. The
full search is illustrated by the flowchart in figure 6. We
start by creating stochastic coarse and fine banks for
the intrinsic parameters (these are masses and aligned
spins) which have MM of 0.9 and 0.97 respectively. For
template banks we use the harmonic PSD which is the
harmonic mean of PSDs of H1 and L1 detectors during
O1. We use the same PSD to generate simulated Gaus-
sian noise for both the H1 and L1 detectors. These data
are then divided into smaller chunks of 4096 sec each
for estimating the local PSD which is required for the
matched filtering computations. The matched filtering is
done with data segments of duration 256 sec and with
128 sec overlap with the previous segment. This overlap
is needed because we must discard data from both the
ends of a data segment due to the circularity property of
the FFT algorithm and also get rid of other numerical
artefacts [41, 50]. We therefore actually search only 128
sec of data in one matched filter computation.

The hierarchical search begins with the first stage,
where data are sampled at a lower rate and with a
coarse bank for each detector. Single detector events are
recorded if the statistic crosses a pre-determined thresh-
old for each detector. The statistic employed here is the
power χ2 re-weighted new-SNR [33, 41]. In the first stage

the threshold is lower than the second stage threshold.
We then compare parameters of the triggers from each
detector and select only those triggers whose parame-
ters match - these are the coincident triggers for the first
stage. We then follow up these candidate triggers with
a fine search using a fine sub-bank constructed around
each coincident trigger.

To create the fine sub-bank from the zero-lag coinci-
dent Ist stage triggers, we take the union of the fine bank
nhbds (which have been precomputed) around Ist stage
templates which have been triggered. Then we repeat
the search with a higher sampling rate and with time seg-
ment specific fine sub-bank and stage II threshold. We
then collect the individual detector triggers from each of
the detectors H1 and L1. From these we select the coin-
cident triggers for stage II. Coincident triggers crossing
the stage II threshold give us the foreground triggers.

The noise background is obtained as follows: We use
combined (coarse + fine sub-bank) individual detector
triggers in the time-slides to get the hierarchical search
noise background. This background is usually lower than
that for the flat search [41] background as it comes from
significantly reduced number of templates. The fine sub-
bank contributes negligibly to the noise background be-
cause it has much fewer templates. This procedure for
estimation of the noise background for the hierarchical
search differs from that of the flat search.

In principle, thenoise background for the hierarchical
search can be used to assign significance to the fore-
ground triggers using the scaling as will be described
later. But since we use only zero-lag sub-bank in the
second stage, it may show some bias. We have therefore
used the usual flat search background to assign signifi-
cance and estimate the sensitivity distance in this work.
With the hierarchical background, the sensitive distance
for the hierarchical search will slightly improve than what
has been shown section IV. Further analysis is required
to improve the estimate of the noise background and in-
vestigate whether there is a generic way to obtain in a
robust way an equivalent background. But our prelimi-
nary study with real data in section V shows that it is
possible.

We can of course reproduce a background for the hi-
erarchical search analogous to the flat search. We must
then consider Ist stage triggers arising from also non-zero
time lags and then construct fine sub-banks around these
triggers. But then the union of these sub-banks will be
almost as large as the fine bank, and thus we stand to
lose any computational advantage that we may have oth-
erwise obtained.

3. Parameters used in the hierarchical search

In this subsection we provide the detailed description
of the parameters used in our hierarchical search. We
consider the same ranges of masses and spin parameters
as were employed in the search during the first aLIGO
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science run (O1). We also use the same waveforms as
those employed in O1. For aligned-spin GW signals, our
set of intrinsic parameters are component masses and
spins along orbital angular momentum. For the individ-
ual masses, the heavier mass is in the range (1, 100)M�
and secondary mass is in the range (1, 50)M�. In case of
neutron stars we have taken the masses to be in the range
(1, 3)M� and spin components (dimensionless) along the
orbital angular momentum from −0.4 to 0.4. Black holes
have spin components ranging from −0.9895 to 0.9895.
The fine and coarse banks are generated using stochas-
tic template placement algorithms (überbanks) with mis-
match of 3% and 10% respectively. The choice of 10%
mismatch for the coarse bank is somewhat arbitrary.
With these numbers and with O1 harmonic power spec-
tral density (PSD), we obtained ∼ 60000 templates for
the coarse bank and ∼ 250, 000 templates for the fine
bank. One observes that the fine bank is little over 4
times larger than the coarse bank. For search templates,
we have used TaylorF2 approximant for total mass less
than 4M� and SEOBNRv2 ROM DoubleSpin for the rest of
the parameter space.

Even though the choice of the MM = 0.9 may look
somewhat arbitrary, we have tried other values of MM,
for example, 0.8 (as employed in the previous hierarchical
searches) and 0.85. We found that the overall loss in
the SNR is unacceptable because of loss in sensitivity.
Therefore, we fix MM at 0.9 which gives a coarse bank
with about quarter the number templates as compared
to the usual fine bank with MM = 0.97.

We use the harmonic PSD of O1 to generate template
banks and for simulating data with the lower cut-off fre-
quency set at 30 Hz. For the first stage in the search, we
sample the data at a reduced rate of 512 Hz while for the
second stage, we sample the data at 4096 Hz. Because
of the reduced sampling rate of 512 Hz in the first stage,
we must cut off the signal at 256 Hz. However, even
after applying this upper cut-off, we recover more than
90% of the signal SNR, for all the 10855 non-precessing
injections. We also ensure that the banks do not have
“holes”.

As mentioned earlier, 5 days of simulated coincident
data for the two LIGO detectors H1 and L1 are used
assuming both of them have the harmonic PSD of O1
run. We inject more than 10855 non-precessing CBC
signals in the data with the parameter ranges as men-
tioned earlier. The injections were uniform in volume,
orbital inclination and coalescence phases. The injec-
tions were distributed as follows: ∼ 2171 double neutron
star (DNS), 4342 neutron star- black hole (NSBH) and
4342 binary black hole (BBH). Neutron star masses were
in the range (1, 3)M�. Further, the injections were uni-
formly distributed in the total mass. All the injections
were with aligned-spin. The optimal SNRs for the injec-
tions were in the range (8, 30). For DNS injections, we
have used SpinTaylorT4 approximant for injection and
IMRPhenomD and SEOBNRv2 for NSBH and BBH injections
respectively.

Apart from the above, we injected 8684 precessing sig-
nals with total mass in the range of 5 to 150 M� with
the dominant mass ranging from 4 to 100 M�. For the
precessing injections, we have used IMRPhenomPv2 ap-
proximant.

We now go on to stage I search and describe the cor-
responding triggers with their associated fine sub-banks
which will be used in stage II.

4. Stage I triggers

The goal of the first stage is to obtain candidate trig-
gers which will then be followed up in the second stage of
the search. To obtain these, we need to decide a thresh-
old on the detection statistics, which is the chi-square
weighted newSNR [33] for the single detector statistic
and coincident newSNR i.e. newSNR of single detectors
added in quadrature for the pair of LIGO detectors. This
statistic is used for coincident triggers for both the stages
and also for the flat search. We decide on the individ-
ual detector thresholds ρsingle,flat = 5.0 = ρsingle,II where
ρsingle,flat is the threshold for the flat search and ρsingle,II

is the threshold for the second stage search. We decide to
keep single detector newSNR (ρsingle,I) to be 4.5 which is
90% of ρsingle,flat. We have chosen these values because
we expect SNR loss to be less than 10%. The amplitude
of the GW signal in frequency domain scales as f−7/6

and the SNR in the first stage is reduced both because
we are employing a coarse template bank and an upper
frequency cut-off (lowered sampling rate), which we de-
note by ρreduced. The results are as follows:

ρreduced = MMI
ρ (fl, fu,I)

ρ (fl, fu,II)
(3.1)

where we have defined ρ as:

ρ (fl, fu) =

∫ fu

fl

f−7/3

Sn (f)
df (3.2)

The recovered SNR relative to the full injected SNR
due to upper frequency cut-off (stage I of the hierarchi-
cal search) is shown in figure 7 as a function of the mass
parameters. It can be seen that the least recovered SNR
is ∼ 94% which corresponds to a loss of 6% in the worst
case scenario. For the values we have chosen, we get
ρreduced > 88 % for MMI of 0.9 for the Ist stage bank
(coarse bank). But if we use the factor MMI/MMII in-
stead of MMI in equation 3.1, we get ρreduced > 91 %.

The procedure as described in subsection III B 2 has
been followed.

5. Stage II search

After obtaining the coincident triggers obtained in
stage I, we proceed to stage II. Here we construct a
fine bank in a small neighbourhood around each stage I



10

FIG. 7: The figure shows the reduced SNR because of the
lowered sampling rate, over the parameter space under con-
sideration. The maximum SNR loss is ∼ 6%.

trigger. The neighbourhood for the sub-bank is so cho-
sen that the templates in the fine bank have a match
more than 0.75 with the trigger template from the coarse
bank. A smaller value than 0.85 is chosen for the match
in order to compensate for the noise effects and other
factors. These fine sub-banks are pre-calculated for each
coarse template. Figure 8 shows a typical stage I trig-
ger template (red star) with its associated fine sub-bank
of templates (blue dots) with MM > 0.75. The tem-
plate masses are given in terms of two equivalent mass
parametrisations. Also, plots in the figure 9 show the
number of templates in the fine bank in the nhbd of each
of the coarse bank templates. The left plot shows the
templates with masses parameterised in terms of chirp
times and the histogram on the right shows that the
nhbd with MM > 0.75 few tens to 100 templates per
nhbd considered independently.

We first obtain coincident Ist stage triggers for each
data segment and then create a fine sub-bank correspond-
ing to that segment. Then we take the union over all
the data segments of all the fine sub-banks. This uni-
fied sub-bank depends upon the single detector statistic
used, threshold for that statistics and both the coarse
and fine banks used. Then for each data segment and
the corresponding fine sub-bank, we perform a search
with full sampling rate of 4096 Hz as used in single stage
flat search. Then we follow the same procedure as in the
first stage of again collecting single detector triggers from
the fine sub-bank and obtaining the second stage coinci-
dent triggers by matching parameters. We then cluster
these coarse and fine sub-bank triggers together and ob-
tain the final triggers. Now these final triggers need to be
compared with the noise background for estimating their
statistical significance. For this second stage, we use the
ρsingle,II which is the same as that for the flat search. To
estimate the noise background, we have used the single

FIG. 8: A typical fine-bank neighbourhood around a coarse
template in terms of various mass parametrisations. The red
star shows one such coarse bank template, while the blue dots
depict the templates in the fine bank neighbourhood with MM
> 0.75. There are 65 templates in this fine-bank neighbour-
hood.

detector trigger time slides but with some caveats which
we will discuss in the next section. We now present our
results.

IV. COMPARISON WITH THE FLAT SEARCH

In this section, we compare the results of the hierar-
chical search with the flat search. For this analysis we
assume stationary Gaussian noise. We begin by compar-
ing the noise background and noise foreground without
injections. For each individual detector, on an average,
we found ∼ 53 triggers per second from the flat search
with ρsingle,flat = 5.5 and ∼ 7 − 8 triggers per second
from the coarse search with ρsingle,I = 5.5. But for
ρsingle,I = 5.0, we obtained ∼ 111 triggers per second.
For both the flat and stage I (of the hierarchical) searches
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FIG. 9: The figure shows the number of templates in different fine-bank neighbourhoods as one scans the parameter space with
the coarse bank. The left plot denotes number of templates in the fine neighbourhood in terms of chirp times. On the right,
we plot a histogram showing the number of coarse templates having different sizes of fine sub-banks. The figure gives an idea
of the differing sizes of the fine sub-banks.

we use their respective full banks and obtain the corre-
sponding triggers. We observe less number of triggers for
stage I of hierarchical search although we maintain the
same threshold. This is because of the reduced number of
the templates in the coarse bank and also because of the
reduced sampling rate. We expect that with only quar-
ter of the templates and 1/8th of the sample points, we
can at best get a factor of ∼ 32 reduction in the com-
putational cost as compared to that of the flat search.
This is because the main cost of the search comes from
matched filter computations which in turn is due to FFT
used in the data analysis. The cost of a FFT scales as
N logN where N is the number of data points in the data
segment. Firstly, we have about quarter the number of
matched filter computations because of the reduced num-
ber of the templates in the coarse bank and secondly, the
cost of each FFT goes down by the factor of about 8
because N is reduced by this factor due to lower sam-
pling rate. However, the computational gain or speed-up
is much less than this number ∼ 32, because the can-
didate triggers from the stage I need to be followed up
with the stage II fine search. The computational cost
incurred in the second stage depends on the number of
stage I candidate triggers which in turn depends on stage
I threshold ρsingle,I, and also on the size of the stage II
fine sub-bank. The size of the fine sub-bank depends
upon the choice of the relevant neighbourhood for each
Ist stage template that is triggered. For example, choos-
ing a very low ρsingle,I ∼ 3.5 will fetch a huge number
of coincident triggers in the first stage from the entire
coarse bank, which will lead to searching over almost all
of the fine bank in the stage II taking away most of the
computational benefits of the hierarchical search. While
increasing the ρsingle,I will reduce the candidate triggers
in the I stage, but will lead to the increase in the size of
the coarse bank and hence the matched filtering cost at

stage I. Therefore a compromise must be sought if the
hierarchical strategy has to succeed.

FIG. 10: Full search background and foreground event rates
(per year). The foreground data is of ∼ 5 days and back-
ground amounts to more than 140 years after time slides.

With the help of time slides, we compute the noise
background for more than 260 years of coincident data.
This is done for the flat search in the usual way and also
for both the stages of the hierarchical search which uses
the coarse bank and the zero-lag fine sub-banks. Fore-
ground is computed for 5 days of the coincident data
for the flat and the 2-stage hierarchical search. Note
that the thresholds and other parameters (clustering etc.)
used for the background, foreground and injection recov-
ery in stage II of the hierarchical search are the same as
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FIG. 11: Full search background and foreground event rates
(per year). The first coarse stage rates are scaled by the
factor of ∼ 20 to match all the events. The scale factor to get
back the same event rates is same as the speed-up factor for
simulated data.

FIG. 12: Figure shows the flat search background (red), stage
I background scaled by the speed-up factor (green) and hier-
archical search (flat search equivalent) background calculated
using 100 time-slides (blue) and scaled with the constant fac-
tor to get a background equivalent to a duration ∼ 141 years.
It can be seen that both the scaled backgrounds match well
with the flat search background. With 100 time-slides one
needs to match filter > 30000 fine bank templates per data
segment.

that of the flat search. Figure 10 shows backgrounds and
foregrounds for the flat (red), stage I (green) and stage
II (blue) in terms of cumulative number of coincident
events per year with newSNR plotted on the horizontal
axis. From the figure, we make the following observations
about the noise background:

• Stage I (green) backgrounds and foregrounds are

FIG. 13: The figure shows coincident recovered newSNRs for
all the injections. It shows how much SNR is lost in stage
I with the lower sampling rate and the coarse bank. Stage
II may recover the SNR with the fine sub-bank and a full
sampling rate.

lower by more than an order of magnitude than
that of the flat (red) search.

• Stage I background generated from the fine sub-
banks is negligible as compared to the Stage I back-
ground generated by the coarse bank - something
like two orders of difference in magnitude.

• Since the hierarchical search background is the
union of stage I and stage II background, the hi-
erarchical search back ground is essentially deter-
mined by the stage I background generated by the
coarse bank.

• When the background for stage II (blue) is calcu-
lated using time slides, the single detector triggers
from two different data segments are likely to have
very few or no common templates in the stage II
fine sub-bank. Hence stage II background doesn’t
match the foreground. This may lead to some bias
in the total hierarchical background but it should
be negligible compared to stage I

In practise, we may use the stage I background to as-
sign statistical significance to the triggers and it may be
simply scaled up to obtain the flat search background for
the simulated data. This scaling argument follows later.

In principle for the hierarchical search we can estimate
the background using time slides as in the flat search
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FIG. 14: The plot shows the recovered coincident newSNR
of signals missed (red dots) and found (green dots) by the
hierarchical search. The blue triangles show the injections
missed by the hierarchical search but found by the flat search.
These are ∼ 2% of the total injections.

but then we lose out on the computational benefits - we
find that even with 2000 time slides, the full fine bank is
covered.

However, stage II foreground contributes compara-
tively much more to the overall foreground. This is be-
cause we use fine sub-banks in stage II constructed using
only ‘0’-lag (foreground) coincident triggers from stage
I. All templates in the sub-bank can contribute to the
foreground evaluation which give better chances for noise
coincidences.

This utilisation of the full fine bank in stage II implies
that when we do time slides with the non-zero lag trig-
gers from stage I, we recover the same background as the
flat search. Hence, at least with the simulated coloured
detector noise, we came up with the idea of scaling the
background obtained from the coarse bank to recover the
flat search background. Interestingly, if we scale the stage
I background by the speed-up factor, we recover the flat
search background over the coincident new-SNR thresh-
old of 8. This can be seen in figure 11. Moreover, the
same scaling factor does match the noise-only foreground
of stage I of the hierarchy with that of the flat search.
A little excess in the low new-SNR region between 7.5
to 8 is because of the reduced single detector and co-
incident thresholds for the stage I. The scaling of the
stage I to the flat background is the same as the speed-
up factor because it is exactly the ratio of the number of

independent random variables that the matched filtering
operation produces in each case. This speed-up factor is
explained in detail later.

Thus, for simulated data, we are able to use the scaling
argument to obtain the equivalent flat search background
from the stage I background. From this equivalent back-
ground we are then able to assign the correct statistical
significance to the foreground triggers.

We now demonstrate the above argument by using 100
time-slides with non-zero time lags corresponding to 2.6
years of background. This is shown in Figure 12 by the
magenta line. If we scale this hierarchical background we
get a background equivalent to ∼ 260 years. We observe
that the scaled hierarchical search background matches
well with the flat search and the scaled stage I back-
ground (except for the low SNR region). However, even
for just 100 non-zero lag time slides, we need to perform
the matched filtering operation for more than 30,000 fine
bank templates in stage II for each data segment. With
real data, this exercise needs to be carried out with even
more care and caution as will be described later in se-
cion V.

FIG. 15: Comparison of flat and hierarchical searches for dis-
tance sensitivities. Top: Aligned-spin BNS injections; bot-
tom: aligned-spin NSBH injections.
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FIG. 16: Comparison of flat and hierarchical searches for dis-
tance sensitivities: Top:aligned-spin BBH injections; bottom:
precessing injections.

We now investigate the recovery of injected CBC sig-
nals by both types of searches, flat and hierarchical. As
discussed in section III B, we inject 10000 aligned spin
CBC (DNS, NSBH and BBH) signals. In addition, we in-
ject more than 8000 precessing CBC (NSBH and BBH)
ones. Figure 13 shows the newSNR as found in stage I
of the hierarchical search and as found in the flat search.
The flat search newSNRs are the the best values that
stage II of the hierarchical search can recover to perform
as well as the flat search. Figure 14 shows all the above
mentioned injections which are missed or found by both
searches. For each of the subplots, we have plotted in-
jection with flat coincident SNR against the coincident
newSNR for the stage I of the hierarchy. The red dots
show the injections missed by the both flat and hierar-
chical search while green dots show the injections found
by both the searches. The blue triangles denote the in-
jections missed only by the hierarchical search but found
by the flat search. For all the 3 aligned spin cases, the
injections missed by the hierarchical search are ∼ 2% of
those found by the flat search. For the precessing case,
the hierarchical search loses ∼ 6% of the injections com-

FIG. 17: The plot shows the relative sensitivities of volume
and distance (in %) of the hierarchical search compared with
the flat search. Solid lines show relative volume sensitivity
and the dash-dotted lines show relative distance sensitivity.

pared to those recovered by the flat search. This some-
what larger loss in the hierarchical case may be because
of the higher dimensionality of the parameter space re-
quired to describe precessing systems - the injections have
more ‘room’ to distribute themselves. More specifically,
this penalises the coarser search more because the ra-
tio of volumes of the fine to the coarse neighbourhoods is
smaller for the precessing case because of the higher num-
ber of dimensions. Figures 15 and 16 show the sensitiv-
ity distance for both searches, hierarchical and flat, with
a varying coincident newSNR threshold. The newSNR
threshold corresponds to a false alarm rate as can be seen
from the figure 10. We see that both, hierarchical and
flat searches have almost similar sensitivity distances as
a function newSNR as shown in figure 17. This implies
that both the searches perform almost equally well. For
the calculation of the sensitivity distance, we have used
all the CBC injections. It can be seen that only the BNS
search has slightly lower sensitivity for the hierarchical
search than for the flat search. This is expected as we
are using truncated waveforms with much lower MM and
BNS signals are of long duration and contribute signif-
icantly to the SNR at higher frequencies which means
that the fractional loss in SNR is more. The lower recov-
ery of signals is due to reduced stage II SNR compared
to flat search for a few BNS sources. This is because
the SNR of these sources in the one of the detectors is
slightly lower so that some false trigger templates are
contributed from the stage I. Thus we see that, the hier-
archical search recovers almost all the injections as those
recovered by the flat search. There is a slight advantage
to the hierarchical search over the flat search, because we
can choose a slightly lower detection threshold with hi-
erarchical search for the same false alarm rate. We have
not addressed this question here. Thus for the hierarchi-
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cal procedure we have proposed, we conclude that both
the searches have almost similar distance sensitivity for
the injected set of signals. Next we consider the compu-
tational cost of each kind of search.

We now look more closely at the computational costs
and the computational gain from the hierarchical search.
We also explain how the same is related to the back-
ground estimation. For a data segment of length 256
sec, we have few hundreds of coincident first stage trig-
gers (no additional coincident threshold is applied). On
an average, we have 40-90 templates of the fine bank in
the neighbourhood of the each coarse trigger template
as can be seen from figure 8. We then obtain a second
stage fine subbank which is the union of these neigh-
bourhoods. This subbank has 1000 - 4000 templates on
an average per data segment. We now compute the av-
erage number of Floating Point Operations (FLO) per
data segment. We do 60000 MF calculations at 512 Hz
sampling rate in the first stage and at most 4000 MF cal-
culations at 4096 Hz sampling rate in the second stage.
Each MF computation involves a complex FFT corre-
sponding to the two phases of the waveform. On the
other hand, in the flat search, we do 250,000 MF calcu-
lations at the sampling rate of 4096 Hz. Each MF cal-
culation uses Discrete Fourier Transform (DFT). Each
DFT with N data points requires αN logN FLO, where
α ∼ 3 for a real DFT and double this number for a
complex FFT and depends on the algorithm used. Thus,
roughly, discarding the α factor which is common to both
the searches, the flat search requires 250 × 4.096 mega-
FLO while the hierarchical search strategy adopted here,
requires 60×0.512 + 4×4.096 mega-FLO. Thus one ob-
tains a computational gain of ∼ 20 in the matched filter
computations. Other data conditioning require the same
computation.

We look back at the estimation of the noise background
for the hierarchical search. We argue that the hierarchi-
cal background is just scaled down from the flat search
background roughly by the speed up factor, which in this
case is ∼ 20. The noise background arises from the num-
ber of triggers which essentially stem from the number of
independent Gaussian random variables in the matched
filter output. The Gaussian variables in the matched fil-
ter output are however correlated. For the flat search we
get roughly 256 × 250000 × 4096 data points (Gaussian
variables not necessarily independent) per segment. But
for the hierarchical search we must consider both stage
I and stage II data points. For the hierarchical search
we have 256 × 60000 × 512 + 256 × 4000 × 4096 data
points per segment. We may expect the effect of corre-
lation between Gaussian variables to be about the same
in both flat case and the hierarchical case. Ignoring the
effect correlations and except for the slowly varying fac-
tor of logN , the ratio of independent Gaussian variables
in the two situations is roughly the same as the ratio
of matched filtering operations required for each of the
searches. This is in fact the speed up factor. This is
evident from figures 10 and 11. However real data con-

tains non-Gaussian artefacts and we basically sample the
tail of the noise distribution (rare events) to estimate the
background. Therefore, this scaling exercise needs to be
carried out carefully in order to obtain the correct scal-
ing. The scaling may depend upon template duration as
very short duration templates are more susceptible to the
glitches and artefacts in the real data.

We now make a few remarks. First of all, the non-
precessing injections we used are in the H1-L1 coincident
SNR range 8 to 30 and our precessing injections are lin-
early distributed in distance. Secondly, we get our noise
background for the hierarchical search by scaling up es-
sentially the background from the first stage of the hier-
archy. As explained before, obtaining the full background
equivalent to the flat background will compromise com-
putational advantage that is expected to be gained from
the hierarchical search.

Our analysis of simulationed data shows that we may
be able to employ the same procedure on real data. We
may use the stage I background to infer the significance
of detection, after further investigations with real data.
This may not be exactly equivalent to the flat search
background, but it can be considered as a separate hi-
erarchical background. A few hundred time-slides can
be performed to get the noise background on a shorter
duration of data and then it could be scaled up to ob-
tain an estimate of the full flat search background. The
background so obtained could be used to decide on the
statistical significance of triggers. We propose to address
this issue of the background and secondly, also tune the
pipeline for injection recovery per mass bin with the real
data in a future work.

V. SEARCHES WITH REAL DATA

In this section we demonstrate how our two stage hier-
archical search works on real data. For this purpose we
have used four segments of data, each of 4096 sec dura-
tion, from the first observing run O1 of the twin LIGO
detectors [51]. The four segments are chosen such that
each one contains one detected event, including the trig-
ger “GW151012” [1] whose status was escalated to a true
GW event.

We employ identical template banks to those for sim-
ulated data described in Section IV. Also, we have used
sampling rate of 512 Hz and 4096 Hz for stage I and
stage II respectively. We decided to keep roughly the
same number of stage I triggers as for the simulated
data case in order to have ready comparison in speed
up factors. Further, we take the clustering window to
be of 1 sec over a template as is used in the real data
search [41]. Also we increase the single detector thresh-
old slightly; ρsingle,I = 5.0 and ρsingle,flat = 5.5. We
use the newSNR statistic (SNR weighted with power and
sine-Gaussian based χ2 vetoes) [23, 52, 53] which makes
the data behave as close to Gaussian as possible. We
decided not to use the phase-time statistic [42] here, as
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it requires specific tuning which is outside the scope of
this paper. We further test our method by injecting 2000
CBC signals. For the above mentioned thresholds, we ob-
tain 100− 105 triggers per second for stage I hierarchical
search and 80−90 triggers per second for the flat search.
With these choices, we use 4000 to 6000 templates in the
stage II of the hierarchical search per segment for the
follow-up of the candidate triggers. These numbers are
about 150 % of those corresponding to simulated data.
This is due to the higher trigger rate in the real data.
However, this does not significantly reduce the speed up
factor. We believe further tuning can be performed for
real data, with optimized statistics and thresholds, to
obtain even better results.

We present the results of this test application on real
data. Figure 18 shows background from flat search and
stage I of hierarchical search. For simulated data it was
observed that we get the background pertaining to the
flat search, if we scale up the stage I background by the
speed up factor of ≈ 20. The same scaling seems to
work in the case of real data. Thus, we can, in princi-
ple, use the scaled stage I background (solid red line) to
assign the correct significance to the foreground triggers
which would be equivalent to the flat search. This can be
achieved by fixing this scale factor by doing a flat search
run with a small fraction of real data, like some pipelines
do, to fix the background scale [1]. In Table I we men-
tion the SNRs obtained for the four events in stage I and
stage II of the hierarchical search and the flat search.

We now turn to the sensitivity of the searches with
the 2000 injections which are uniformly distributed with
distances in the range 30 - 750 Mpc and other param-
eters uniformly distributed (identical to what was used
for simulated data). The plots in figures 19 and 20 show
the sensitivities with error bars for the flat and the 2-
stage hierarchical search with small chunks of the real
data. We can see that the hierarchical search sensitivity
(blue line) is always slightly less as compared to that of
the flat search (red line) which is optimized for all the 3
types of the CBC sources: BNS, NSBH and BBH. The
top plot in figure 19 shows the senstivity distance for
BNS which is just over 40 Mpc while the bottom plot
in the figure shows the same for NSBH which is over 80
Mpc. These numbers are for a coincident SNR of 8 in
both plots. In figure 20 the distance sensitivity is shown
in the top plot for BBH, while the bottom plot shows
the same when all the injections BNS, NSBH and BBH
are taken into account. The distance sensitivities are just
over 400 Mpc for both cases. This analysis shows that hi-
erarchical search performs almost as well as on real data
as the flat search - we just about lose less than 3 % of
the total injections in this trial search. This is expected
due to more triggers, inefficient clustering and choices of
the thresholds and statistics made for each stage in an
adhoc manner. We emphasize that this is only a demon-
stration and the hierarchical search needs to be tuned
further to obtain almost full sensitivity with a sizable
speed-up. One of the caveats here is that a small full run

Event Stage I SNR Flat/Stage II SNR

LVT151012 8.1 8.9
GW150914 16.23 19.47
GW151226 7.9 9.1
GW170104 8.1 9.2

TABLE I: The table shows the recovered values of the detec-
tion statistic in our searches using the data chunk containing
each of the GW event. IFAR for all the events in more than
10 yrs which is maximum for the data we used.

may be needed to determine the exact scaling factor to
get the correct background with optimal choices of the
parameters as clustering at various levels may be slightly
different as compared to the optimized flat search.

FIG. 18: The plot shows the noise only backgrounds: the solid
red curve is corresponds to the flat search, while the green
dashed curve corresponds to the stage I of the hierarchical
search. The solid green curve is the scaled background by the
speed-up factor of ≈ 20.

VI. DISCUSSIONS AND FUTURE PROSPECTS

In this work, we have demonstrated that the two stage
hierarchical search is ∼ 20 times faster than the flat
search which has been used in LIGO O1 analysis. This
factor of reduction in computational cost has been ob-
tained without any optimisation. With a judicial choice
of parameters we have shown that it can be almost as
good as the single stage flat search in sensitivity - that
is given a set of injections, this search detects as many
signals as the flat search. In future, we propose to run
and optimise our 2-stage hierarchical search on O1 and
O2 data so as to improve the performance. We have al-
ready demonstrated the same in a limited way on real
data, albeit with a slightly lower sensitivity.
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FIG. 19: Distance sensitivities for hierarchical and flat
searches. The top figure shows that the distance sensitivity
is just above 40 MPc for BNS while the bottom figure shows
that it is more than 80 Mpc for NSBH for a coincident SNR
of 8.

As pointed out before, the computational effort saved
by doing a hierarchical search can be used elsewhere. It
can be used to do more detailed analysis of the detected
CBCs such as test of general theory of relativity by com-
paring waveforms predicted by other theories of gravity
etc. The saved CPU time could be used to search for
other astrophysical sources. This issue will become all
the more important when detectors become more sen-
sitive in the future. The demand for computation will
increase because the event rate will go up with the cor-
responding requirement of a much denser template bank
covering the parameter space.

The two stage hierarchical method can be readily em-
ployed for online searches where we do not care about
assigning the exact significance to the triggers (the exact
significance would only be obtained from the estimation
of the full background). We may roughly scale the stage
I background to arrive at a crude estimate of the signif-
icance of online triggers. Using a rough estimate of the
background is a prevalent practise for obtaining promis-

FIG. 20: Distance sensitivities shown for hierarchical and flat
searches. The upper plot is for BBH and the bottom plot
shows when all BNS, NSBH and BBH are taken together.
The search sensitivities are just above 400 MPc for coincident
SNR of 8 for both cases. The hierarchical search performs
systematically a little worse than the flat search - we lose
about 3 % more injections than in the flat search.

ing triggers quickly [54]. In the first stage, we can ad-
just the false alarm rate to a desired level by varying the
threshold and get online triggers much faster. This is the
consequence of the speed up we get from the hierarchical
algorithm.

Another important direction to follow is the implemen-
tation of a hierarchical search with precessing waveforms.
We believe that the order of magnitude reduction in the
computational cost will allow us to make at least partial
inroads into searches for precessing binaries. But cre-
ating a template bank with precessing templates is also
very difficult as it has to be done stochastically [32]. We
plan to explore the possibility of performing multi-stage
hierarchical searches using hybrid (non-precessing + par-
tial precessing) template banks.
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N. Dorband, D. Müller, F. Ohme, D. Pollney, C. Reiss-
wig, et al., Phys. Rev. Lett. 106, 241101 (2011), URL
http://link.aps.org/doi/10.1103/PhysRevLett.106.

241101.
[19] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse,

M. Boyle, T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A.
Scheel, Phys. Rev. D 86, 024011 (2012), URL http:

//link.aps.org/doi/10.1103/PhysRevD.86.024011.
[20] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer,

M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace,
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