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The detection of the least damped quasi-normal mode from the remnant of the gravitational
wave event GW150914 realised the long sought possibility to observationally study the properties of
quasi-stationary black hole spacetimes through gravitational waves. Past literature has extensively
explored this possibility and the emerging field has been named “black hole spectroscopy”. In this
study, we present results regarding the ringdown spectrum of GW150914, obtained by application of
Bayesian inference to identify and characterise the ringdown modes. We employ a pure time-domain
analysis method which infers from the data the time of transition between the non-linear and
quasi-linear regime of the post-merger emission in concert with all other parameters characterising
the source. We find that the data provides no evidence for the presence of more than one quasi-normal
mode. However, from the central frequency and damping time posteriors alone, no unambiguous
identification of a single mode is possible. More in-depth analysis adopting a ringdown model based
on results in perturbation theory over the Kerr metric, confirms that the data do not provide enough
evidence to discriminate among an l = 2 and the l = 3 subset of modes. Our work provides the first
comprehensive agnostic framework to observationally investigate astrophysical black holes’ ringdown
spectra.

INTRODUCTION

GW150914 [1], the loudest binary black hole (BBH)
detected so far, provided evidence for the presence of a
ringdown at the end of the coalescence. The ringdown
spectrum, a superposition of quasi-normal modes (QNMs)
and late-time power-law tails [2–5], directly ties to fun-
damental properties of the underlying spacetime. Due to
the final state conjecture (i.e. no-hair theorems plus the
conjecture that the Kerr solution is a dynamical attractor
for BH spacetimes in astrophysical scenarios) [6–15] the
physical spectrum of QNMs is exclusively determined by
the asymptotic black hole (BH) mass and spin, hence ring-
down observations of astrophysical BHs have the potential
of verifying the Kerr nature of these objects. Moreover,
an accurate determination of the BH ringdown spectrum
represents one of the most promising avenues to unveil
BH horizon quantum effects, discovering exotic compact
objects, hairy BHs or even wormholes [16–18]. Several
authors proposed methods and offered predictions on the
feasibility of what has come to be known as “black hole
spectroscopy” [19–21]. The improvements gained by co-
herently combining information from multiple events have
also been investigated, see e.g. Ref. [22].

The first determination of a compact object QNM [23]
by the LIGO and Virgo Collaborations (LVC) [24–26]
revealed the intrinsic difficulties in determining the tran-
sition between the non-linear merger regime to the quasi-
linear one, where the results of BH perturbation theory
are applicable. Several studies based on numerical rel-
ativity simulations [27, 28], have proposed a start time
of ∼ 15 M – M being the remnant mass – after the peak
strain of the waveform (for an alternative approach see

Ref. [29]). However, to validate these claims and to per-
form theory-agnostic measurements of the BH spectrum,
we require the ability to measure the start time from the
data. With this, we can robustly test the remarkable
predictions of GR, such as the black hole area increase
law [29].

In this paper, we present the first comprehensive spec-
troscopic analysis of the GW150914 ringdown signal that,
by operating directly in time domain, successfully identi-
fies from the data the time of transition as well as the most
probable subset of QNMs in the data. This is achieved
employing a generic damped sinusoids ringdown model
which does not include GR predictions for its complex
frequencies, hence generic enough to incorporate the emis-
sion of alternative compact objects possibly mimicking
ringdown signals. We find no evidence in support of the
presence of a second mode in addition to the one already
identified in the LVC analysis. The central frequency and
damping time measured with the generic model indicate
that the most-probable modes can be identified with a
subset of the the ` = 2 and ` = 3 modes as predicted by
a Kerr solution [30]. We refine our results by adopting a
model based on the theoretical spectrum of a Kerr BH. We
demonstrate, in agreement with the generic approach, that
the (`,m, n) = (3,−3, 0), (3,−2, 0), (2, 1, 0) and (2, 2, 0)
modes are consistent with the remnant mass and spin
of GW150914. The inferred transition time is consistent
with the result obtained with the previous model. Unless
explicitly noted, all statistical bounds reported are 90%
credible regions.
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TIME DOMAIN ANALYSIS

We perform our analysis in the time domain and use
data from the Advanced LIGO detectors, provided by
the Gravitational-Wave Open Science Center[31, 32]. We
model the detector noise as a wide-sense stationary Gaus-
sian process. We verify the validity of this assumption,
confirming its validity, in agreement with the results pub-
lished by the LVC collaboration at the time of the discov-
ery, see e.g. Ref. [23]. The stochastic process describing
the detector noise is thus fully described by its two-point
autocovariance function C(τ):

C(τ) =

∫
dt n(t)n(t+ τ) , (1)

which we estimate from 4096 s of data surrounding the
event. The 4096 s of data sampled at a rate of 4096

Hz are band-passed with a 4th order Butterworth fil-
ter in the band [20,2028] Hz, then split into X second
long chunks. The autocovariance is computed as the
mean of the individual autocovariances estimated on each
chunk, excluding the one containing the time of the trig-
ger. To validate our noise estimation method, we exploit
the Wiener-Khinchin theorem and compare the Discrete
Fourier Transform (DFT) of the autocovariance with the
power spectral density (PSD) computed with the standard
Welch method. We find good agreement between the two
estimates by choosing X = 2. Any choice of X > 2 does
not affect our conclusions. The log-likelihood function
for the observed strain series d(t), given the presence of a
GW signal h(t) is:

log p(d|θ, I) = −1

2

∫ ∫
dt dτ (d(t)− h(t; θ))C−1(τ) (d(t+ τ)− h(t+ τ ; θ)),

where the domain of integration extends over the consid-
ered segment of data. The time-domain likelihood solves
several technical issues of the analysis, providing a conve-
nient framework to avoid Gibbs phenomena arising from
the DFT of a fast-rising template which can pollute the
analysis of the BH spectrum. The analysis was performed
using a nested sampling algorithm [33].

AGNOSTIC ANALYSIS

We first perform an agnostic analysis of the GW150914
ringdown signal, without assuming GR predictions on the
spectrum and intensity of the emission. Hence we relax
as many assumptions as possible and assume a model
defined by a superposition of damped sinusoids:

h+ − ih× =
∑
n

An eiω̃n(t−tn)+φn . (2)

where ω̃n ≡ ωn + i/τn is the complex ringdown frequency.
The parameters {ωn, τn, φn,An, tn}n∈N are estimated di-
rectly from the data. The index n labels the N modes
considered. Note that, in addition to the frequencies ωn
and damping times τn, we also infer the amplitudes An
and start times tn from the data.

The prior distribution on the intrinsic parameters was
chosen to be uniform within the ranges: fn ∈ [100, 500] Hz,
τn ∈ [0.5, 20] ms, log10An ∈ [−23,−19], ϕn ∈ [0, 2π] rad,
tn ∈ [3.3, 6.6] ms after the peak of the waveform. The
prior on the start time corresponds to the specific choice

of [10, 20]Mf after the peak time of the strain (during
the analysis t = 1126259462.423 s at LIGO Hanford site
was chosen, in agreement with Ref. [23]). This choice
is guided by numerical relativity studies that looked at
the beginning of the linearized ringdown regime validity
[34]. Different choices on the prior on the start time are
presented in the Discussion section. Mf = 68M� (in geo-
metric units) is the median value of the estimate presented
in [35]. In addition to the intrinsic model parameters, we
sample the sky position angles and polarisation, to obtain
the detector strain:

h(t) = F+(α, δ, ψ)h+ + F×(α, δ, ψ)h× (3)

where F+(α, δ, ψ), F×(α, δ, ψ) are the detector angular re-
sponse functions [36]. For all the models employed in this
paper, we chose our prior distribution to be isotropic for
the source’s sky location, and uniform in the polarisation
angle ψ ∈ [0, π].

We begin by assuming a single mode damped sinusoid
model to detect the most excited mode directly from the
data. Fig. 3 shows the joint posterior distribution for
the central frequency f and damping time τ from our
analysis. We find f = 234+11

−12 Hz and τ = 4.0+1.5
−1.0 ms,

which is consistent both with the predicted values from a
full Inspiral-Merger-Ringdown (IMR) analysis and with
the late time (tstart ≥ tmerger +3 ms) unmodelled analyses
in Refs. [21, 23]. To investigate which mode has the
highest probability of matching the recovered unmodelled
posterior a posteriori, according to GR predictions, we
use the samples for the progenitors masses and spins
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FIG. 1. Posterior distribution over tstart obtained assuming
a uniform prior distribution in [10, 20]Mf .

released by the LVC [37], combined with fitting formulae
obtained from numerical relativity simulations [20, 38, 39]
and employ them to predict the corresponding frequency
and damping time for a set of modes which overlap with
the unmodelled posterior. Figure 3 shows the 90% CI
on n = 0, l = 2, 3 modes obtained with the described
procedure. The largest overlap, quantified through Bayes’
theorem, is obtained for the {(2, 2, 0), (3,−3, 0)} modes.
We also find A = (3.22+1.4

−1.1)× 10−21, and, most notably,

we determine, directly from the data, tstart = 3.9+0.3
−0.3 ms,

Fig. 1.

The uncertainty on tstart is mostly due to the 4096 Hz
sampling rate used. Interestingly, with a BH mass
of Mf = 68M� (the median value published by the
LVC [23]), one obtains a start time for the ringdown of
∼ 14+2

−2Mf . This result is in good agreement with what
obtained through gauge-invariant geometric and algebraic
conditions quantifying local isometry to the Kerr space-
time [27] and results obtained through earlier parameter
estimation methods [28]. We also infer a posterior dis-
tribution on the sky position of the signal, Fig 2, which
completely overlaps with published LVC analyses using
the full signal [37, 40]. The projection was obtained using
a Dirichlet Process Gaussian-mixture model, as described
in [41]. Due to the lower SNR contained in the ringdown-
only portion of the signal, our posterior distribution is
wider. Also, we observe no correlation between tstart and
sky position parameters. Fig. 4 shows the reconstructed
signal overlaid on interferometric data. A whitening pro-
cedure is applied in order to facilitate the visualization of
the result, but no whitening is applied during the analysis.

At this point it is natural to ask whether the data
provides evidence for a second ringdown mode. To verify
this hypothesis we repeat the previous analysis using the

FIG. 2. Orthographic projection of the 90% two-dimensional
contour for the sky position of GW150914 obtained by our
analysis (in black). As a comparison we also show the publicly
available posterior samples from a full IMR analysis by the
LVC [37] (in purple, completely overlapping with our result).
Regardless of the particular model chosen for the analysis, we
always observe the same posterior.

aforementioned settings, but now using two independent
damped sinusoids. The Bayes’ factor, see Table I, shows
no evidence for more than a single mode. We also at-
tempted a test of GR through the measurement of δω
following [42], but the posterior was uninformative, be-
cause the SNR is not enough to constrain more than a
single mode. Finally, a preliminary study on numerical
relativity solutions showed no challenges in testing the
no-hair conjecture in the high SNR limit, contrary to
the claim presented in [43] and confirming the results
presented in [21, 28, 44].

SINGLE KERR MODE

From the spectroscopic analysis the favoured modes are
the (3,-3,0), (3,-2,0), (2,1,0) and (2,2,0). A clear mode
identification would require the width of the agnostic
posterior to overlap with only a single mode, but the sta-
tistical uncertainty is too large. The GW150914 inspiral
result points to an almost face-off and nearly equal mass
BBH, thus the (2,2,0) mode should be the most excited
one. Hence, we wondered whether a stronger assumption
helps discriminate between the various modes. We run
the analysis with a Kerr model:

h+ − ih× =
Mf

DL

∑
lmn

Almn Slmn(ι, ϕ) ei(t−tlmn)ω̃lmn+φlmn ,

(4)
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FIG. 3. BH spectroscopy from the two- dimensional posterior
for central frequency and damping time obtained with a single
damped sinusoid ringdown model. The colored contours are
the 90% credible intervals for particular (`,m, n) Kerr modes,
derived from the LVC reported remnant mass Mf and spin af

(derived from inspiral). We show the ` = 2 and ` = 3 modes
as other `’s do not overlap with the posterior distribution.

where ω̃lmn = ωlmn + i/τlmn is the complex ringdown
frequency determined by the remnant BH mass Mf and
its spin af . The relations ωlmn = ωlmn(Mf , af ) , τlmn =
τlmn(Mf , af ) follow the formulae given in Ref. [20], avail-
able at [39]. Slmn are the spin-weighted spheroidal har-
monics [45]. On the other hand, while analytical pre-
dictions for the amplitudes Almn exist [34, 44, 46, 47]
based on the progenitors masses and spins, we do not use
them as we wish to estimate them from the data, allowing
observational comparisons to the aforementioned theo-
retical models. Finally, as in the previous analysis, the
start time of each mode is left as a free parameter. The
prior distribution was uniform for parameters: luminosity
distance DL ∈ [10, 1000] Mpc, inclination cos(ι) ∈ [−1, 1],
Mf ∈ [10, 100] M�, af ∈ [0, 0.99], log10Almn ∈ [−5, 3],
ϕi ∈ [0, 2π] rad, ti ∈ [3.3, 6.6] ms.

In Table I we report, for the most probable modes, the
Bayes factors comparing the hypotheses that GW150914
can be described as the ringdown generated by a single
given (`,m, n) Kerr mode. Without imposing any re-
striction on the excitations of the different modes, the
given SNR does not allow us to conclusively discriminate
between a subset of the ` = 2, 3 modes. The obtained
posterior on the sky position parameters and the start
time show no appreciable difference with respect to the
results already presented in the single damped sinusoid
case. The posterior distribution of the orientation param-
eters (DL, cos(ι)) does not show any significant departure
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FIG. 4. Reconstructed whitened waveform superimposed
on LIGO-Hanford (top panel) and LIGO-Livingston (bottom
panel) data. The solid line shows the median recovered wave-
form, while shaded regions represent 90% credible intervals.

from the prior distribution. This is an indication that,
with our model, the event is not loud enough to infer
these parameters from the final stage of the coalescence
only.

KERR MULTIPLE MODES

Although the unmodelled analysis found no evidence
for more than one mode, we repeat the analysis with the
Kerr model allowing for the presence of two modes to see
whether a more constraining model is able to detect them.
Table I reports results for the few combinations that gave
the highest Bayes factors. The results on the two Kerr
parameters (mass and spin) from this analysis using the
{(2, 2, 0), (3,−3, 0)} modes is presented in Figure 5. We
wish to stress that the posteriors therein do not imply the
presence of multiple modes, but rather explain why the
Bayes factors indicate that we cannot distinguish between
a pure (2, 2, 0), a pure (3,−3, 0) or even a mixture of the
two, see Table I. Both modes, in fact, provide similar
predictions for central frequency and damping time for
GW150914 – see also Fig. 3 – for the typical remnant
parameters expected from near-equal mass merging BHs,
where af ∼ 0.6 is dominated by the contribution of the
orbital angular momentum [48, 49]. From the spectral
content only, the inability to discriminate among subsets
of modes is thus likely to persist in future ground-based
observations. We expect this degeneracy to be lifted either
in very loud events or in systems for which the remnant
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TABLE I. Summary of the Bayes factors, Mf , af median
(when measured) and 90% CI obtained with different waveform
models (DS stands for Damped Sinusoid) and a transition
time prior in [3.3, 6.6] ms. The statistical errors on the log
Bayes’ factors are ± 0.1. They are estimated computing their
variance over 10 different realisations of the pseudo-random
number chain initialisation. Within the statistical errors, when
differences of logB are compared against heuristic evidence
scales, such as the Jeffreys scale, no significant evidence in
favor of any specific mode (or combination of modes) is present.

Model logBs,n Mf/M� af

IMR (LVC) - 68.0+3.2
− 3.0 0.69 0.05

0.04

DS - 1 mode 56.3 - -

DS - 2 modes 55.4 - -

Kerr - (2,2,0) mode 56.5 64.6+14.3
− 11.4 0.50+0.28

− 0.40

Kerr - (2,1,0) mode 56.6 61.2+8.9
− 8.5 0.60+0.28

− 0.49

Kerr - (2,0,0) mode 56.0 55.0+4.1
− 4.1 0.69+0.27

− 0.58

Kerr - (3,-3,0) mode 57.2 72.3+9.7
− 8.1 0.46+0.47

− 0.42

Kerr - (3,-2,0) mode 57.0 75.7+7.1
− 5.5 0.49+0.44

− 0.43

Kerr - (3,-1,0) mode 57.0 79.9+4.5
− 3.8 0.47+0.46

− 0.43

Kerr - (2,2,0),(3,-3,0) modes 56.7 69.2+12.1
− 14.2 0.50+0.40

− 0.44

Kerr - (2,2,0),(2,1,0) modes 56.2 62.7+15.6
− 9.9 0.54+0.31

− 0.44

Kerr - ` = 2 modes 55.0 55.1+15.5
− 7.9 0.53+0.54

− 0.46

Kerr - ` = 3 modes 54.3 81.9+13.2
− 10.5 0.31+0.54

− 0.28

Kerr - ` = 2, 3 modes 52.0 56.6+27.9
− 10.1 0.39+0.47

− 0.36

spin is not dominated by the orbital angular momentum.
We also note that, regardless of the final state details, the
best systems for spectroscopic studies will be the ones for
which the orbital configuration is such that the dominant
ringdown mode will be the (2,−2, 0).

Up to now we kept a semi-phenomenological approach,
but a more motivated choice of mode combination would
be (for example) the use of all m modes for a given `, e.g.
for ` = 2 {(2, 2, 0), (2, 1, 0), (2, 0, 0), (2,−1, 0), (2,−2, 0)}.
This more generic model implies a much larger number
of parameters to be sampled and, consequently looser
bounds. Results for runs using all the ` = 2, 3 modes are
summarized in Table I and show no conclusive preference
towards one specific `. In all cases, the sky position poste-
rior distribution was found to be completely overlapping
with the published LVC result, while DL and ι cannot
be well-estimated due to the complete degeneracy with
mode amplitudes. The posterior on start time shows
minimal changes with respect to the one obtained by the
damped-sinusoid analysis, for all the employed models.
Its stability is a strong indication of the robustness of
our method, since no variation between different modes
start times are expected to be detectable with the SNR
contained in the post-merger portion of GW150914.
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FIG. 5. Posterior distribution for Mf and af assuming
the presence of individual modes: (`,m, n) = (2, 2, 0) (dotted
orange line) or (`,m, n) = (3,−3, 0) (blue dotted line), and
from a two-modes analysis {(2, 2, 0), (3,−3, 0)} whose poste-
rior density is represented in shades of gray. In green, the
posterior for Mf and af from the LVC IMR analysis. The
inferred mass and spin are consistent among the three cases
considered, as well as with the LVC posteriors, in line with the
Bayes factors, Table I, which indicate no preference towards
any of them. See the text for a more in depth explanation.

DISCUSSION

We now focus on a discussion of some of the key as-
sumptions in our analysis. We begin by discussing the
effect of varying the lower bound of the prior distribution
for the transition time, which earlier we have taken to
be uniform in the range [10, 20] Mf after the peaktime
of h2+ + h2×. This choice was guided by numerical relativ-
ity studies which looked at the validity of the linearized
regime [27, 28, 34], but it is interesting to explore how
our inference is affected by relaxing this assumption. We
do so by varying the lower bounds of the prior from 0Mf

– corresponding to the peak of the waveform – to 30Mf

in steps of 5Mf , with prior widths fixed to 10Mf .

We find that the posterior distribution over tstart is
dependent on the choice of the prior. For the earliest
time prior considered (tstart ∈ [0.0, 3.3] ms, corresponding
to [0, 10]Mf ), we obtain a measurement of tstart ' 1 ms.
For the latest time prior (tstart ∈ [30, 40]Mf ), we obtain
a flat posterior distribution as the SNR is too small to
obtain a measurement. In all other cases, except the
more theoretically guided choice (tstart ∈ [10, 20]Mf ), we
find that the posterior rails against the lower bound of
the prior; as noted in [28] the template attempts to be
as faithful as possible to the data, while maximising the
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FIG. 6. Mode identification probability as a function of the lower prior bound on the transition time. Each histogram represents
the probability that the identified frequency and damping time correspond to the k-th mode as predicted assuming the LVC
final mass and spin measurements. The color scheme is the same as in Fig. 3 to ease comparison. As expected, starting the
analysis at early times returns frequencies that are lower than that expected for the (2,2,0) mode, and lead to other modes being
preferred. In particular, the (2,1,0) mode is the most probable until the start time is smaller than 10Mf (green histogram). For
times between 10Mf and 25Mf the most probable modes are the (2, 2, 0), the (3,−3, 0) and the (3,−2, 0), aquamarine, khaki
and yellow histograms, respectively. Finally, for times greater than 25Mf the GW150914 signal is too quiet to reliably identify
any specific mode. The left most bars summarise the mode probabilities.

recovered signal-to-noise ratio. The sky position recovery
is consistent with the result obtained by the LVC [37, 40]
when the lower bound of the prior is strictly smaller than
15Mf . Starting from 15Mf onwards, the obtained sky
position is biased, reflecting the fact that, at this low
SNR, the template tries to latch as early as possible to
the data (within the given time prior bounds). The results
discussed above are independent of the specific waveform
model employed.

The sensitivity to the time prior choice is reflected also
in the recovery of the intrinsic parameters of the binary.
When using a superposition of damped sinusoids, it will
affect mode identification: Fig. 6 shows how the mode
identification varies as a function of the time prior. As the
lower bound of the time prior approaches the waveform
peak, the recovered frequency becomes smaller and smaller
due to the waveform latching onto the merger. As conse-
quence, initially, the most probable mode is the (2, 1, 0)
(green histogram). For intermediate times, the situation
is the one presented in Fig. 3 where the most probable
modes are the (2, 2, 0), the (3,−3, 0) and the (3,−2, 0),
aquamarine, khaki and yellow histograms, respectively.
For start times greater than 25Mf no inference is possible
anymore and all modes become essentially equally proba-
ble. In Fig. 7 we show the dependence of the posterior

distribution on the frequency and damping time on the
time prior.

When considering a Kerr template1, Fig. 8 shows how
the reconstruction of mass and spin varies as a function of
the time prior lower bound. As already discussed, earlier
times correspond to smaller recovered frequencies and
consequently to larger masses. In all the considered cases
the orientation parameter (DL, ι) posterior distribution
shows no departure from its prior distribution, due to the
degeneracy with the mode excitation amplitude An.

In conclusion, if GR indications on where a ringdown
model with a dominant (2,2,0) mode is valid are taken
into account to set up a prior on the start time, the
recovered parameters of the binary are consistent with
the predictions of GR. Moreover a measurement of the
effective start time of the ringdown regime can be achieved,
excluding both early and late times within the given prior
bounds. If later times are allowed by the prior, then
the corresponding time posterior rails against its lower
bound, signaling a preference towards including the earlier

1 Here we choose the (2, 2, 0) mode as a representative case, but
the considerations presented are common to all the used modes
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FIG. 7. Effect of the start time prior on the posterior onfthe
reconstructed frequency and damping time, when assuming
a single damped sinusoid. The solid black band marks the
prediction obtained by using the LVC posteriors and assuming
the excited mode was the (`,m, n) = (2, 2, 0). Using a lower
bound on the start time of 30Mf the obtained reconstruction
is flat, thus it is not shown in the plot.

portion of the signal in the analysis. If instead the analysis
is performed starting from the peak of the waveform, the
recovered parameters are biased with respect to the GR
prediction, which we interpret as signaling that the system
was in a regime where the considered ringdown models do
not provide a good description of the emitted radiation.
Recent work with NR simulations has suggested that the
inclusion of overtones in the model (i.e. n 6= 0 modes)
allow the ringdown to be extended back toward tstart
without biasing other parameters [50]. This will be the
subject of a subsequent investigation.

SUMMARY

We presented the first comprehensive spectroscopic
study of GW150914 ringdown. For the first time, we
measured the ringdown onset time from the data, and we
found it to be consistent with predictions from numer-
ical relativity. Bayesian model selection indicates that
the data do not provide evidence in support of the pres-
ence of multiple QNM. We attempted to identify which
QNM is dominant, obtaining the (3,-3,0), (3,-2,0), (2,1,0)
and (2,2,0) modes as the most probable ones. At the
GW150914 SNR, we cannot determine univocally the
QNM label, in agreement with preliminary results on
numerical relativity waveforms not presented here for
brevity. More targeted investigations based on the Kerr
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FIG. 8. Effect of the start time prior on the posterior
onfthe reconstructed final mass and spin, when assuming a
(`,m, n) = (2, 2, 0) Kerr mode. The solid black band marks the
prediction obtained by using the LVC posteriors. Using a lower
bound on the start time of 30Mf the obtained reconstruction
is flat, thus it is not shown in the plot.

BH solution, confirm our model-independent findings as
well as our current lack of mode-resolving power. We
note that, due to the similar mode frequencies for the
aforementioned subset of modes excited in a near-equal-
mass BH coalescences with small spins, BH spectroscopy
with a moderate SNR will require the use of information
from the inspiral phase to determine the most probable
modes. A systematic investigation of the details of our
method applied to numerical waveforms, together with
the inclusion of refined waveform models incorporating
GR numerical predictions, will be presented in a future
study. The analysis presented in this paper can and will
be applied to louder and/or multiple GW events. Joint
coherent analyses will help to test the predictions of lin-
earized GR. Such an extension of the present work will
be presented in a future publication. We also defer to a
further publication a detailed analysis measuring relative
deviations from GR ringdown frequencies [42, 51].
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