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Abstract

The effective quantum dynamics of Bianchi I spacetime is addressed within the statistical regularization
scheme in Quantum Reduced Loop Gravity. The case of a minimally coupled massless scalar field is
studied and compared with the effective µ̄−Loop Quantum Cosmology. The dynamics provided by the
two approaches match in the semiclassical limit but differ significantly after the bounces. Analytical and
numerical inspections show that energy density, expansion scalar and shear are bounded also in Quantum
Reduced Loop Gravity and the classical singularity is resolved for generic initial conditions in all spatial
directions.

1 Introduction

Quantum Reduced Loop Gravity (QRLG) [1, 2] is aimed to address symmetric sectors of Loop Quantum
Gravity (LQG) [3, 4] and it has proved to be a versatile and powerful tool for both primordial cosmology
[5, 6] and black hole physics [7]. It is based on suitable gauge fixings of LQG (see e.g. [8]) and reduces the
computational task that plague the full theory whilst retaining its main features - graph and intertwiner
structure - allowing a deeper theoretical understanding [9, 10] and the actual computation of observational
consequences [11].

QRLG has been originally designed for dealing with cosmology, and here it has been successful in bridging
Loop Quantum Cosmology (LQC) (see [12] for a recent review) to full LQG [10, 13]. From the QRLG
perspective, LQC stands as a first order effective quantization that can be refined within QRLG including
key quantum terms coming from the full theory. Those corrections are crucial and they must be taken
into account when one is interested in questioning the deep quantum regime of the universe. For instance,
for the Friedmann Lemaitre Robertson Walker (FLRW) model they provide a quantum evolution which
significantly differs from the one given by LQC: the Big Bounce scenario provided by the former [14] is
replaced in QRLG by the dynamics of an emergent-bouncing universe [5]. The universe “emerges” from an
infinite past with a non-vanishing volume that it keeps until a transient phase of expansions and contractions
occurs and eventually matches the LQC evolution. This alternative cosmology has been recently considered
also in different contexts (see [15] and references there in) and its observational signatures have been studied
in [16], and by some of the authors in [11, 17].

Going beyond the isotropic context is a needed step both for testing the QRLG approach in a more
general setting and for addressing the issue of isotropization (e.g. see [18]), a mechanism that is believed
to have a quantum origin and to be responsible for the observed large scale symmetry of our universe. The
issue of anisotropy has already been faced by many works in LQC [19, 20, 21, 22, 23] where it has revealed
to be less trivial than what was initially expected. As for the isotropic context, the quantization deeply
depends on the chosen regularization scheme for the classical symmetry reduced Hamiltonian constraint.
The obvious generalization of the µ0-scheme [24] adopted for the FLRW quantization, leads to unwanted
features such as a singularity resolution that can be tuned to be at any value of the energy density, i.e. even
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way less than Planckian values. This issue was finally fixed choosing a different regularization scheme [25]
that is a generalization of the µ̄−scheme implemented in FLRW [14]. In this paper we study the homogeneous
anisotropic sector of QRLG associated to the Bianchi I geometry, within the statistical regularization scheme
[6]. This framework provides an effective graph-changing dynamics for both isotropic and non-isotropic
sectors and includes LQC regularizations as special cases. From the LQC perspective, the QRLG statistical
regularization places itself between the aforementioned µ0 and µ̄−scheme, as explained in [6]. In addition,
it provides a dynamics for states living on the kinematical arena defined by gauge fixing the full LQG to
diagonal triads and metrics1 . An effective Hamiltonian for the (quantum corrected) geometry of the Bianchi
I universe is considered by taking the expectation value of the (reduced) non-graph-changing Hamiltonian
operator over a gaussian ensemble of coherent states peaked on classical Bianchi I phase-space and based
on cuboidal graphs with different number of nodes Ai. For large Ai , one can expand the integral over the
ensemble that defines the QRLG-effective Hamiltonian, finding a zero order contribution which concides with
the standard LQC Bianchi I effective Hamiltonian plus (infinitely many) corrections that become relevant in
the deep quantum era [6]. Here we have addressed the dynamics of the QRLG model considering all those
contributions, i.e. without approximating the integral to a given order, and made a comparison with the
dynamics provided by the standard effective LQC in the presence of a massless scalar field φ. The usual
Hamilton equations are used to obtain the associated effective dynamics and the evolution is numerically
studied for some general initial conditions, i.e. isotropic, “Kasner-like” (one direction expands/contracts and
the other two contract/expand) and “un-Kasner like” (all directions expand/contract). Similarly to what
happens in the isotropic case2, the QRLG-quantum corrections to the classical Bianchi I model provide a
non singular dynamics that significantly differs from the one given by LQC before the bounces and matches
it afterwards. More specifically, the QRLG model turns out not to bridge two classical Bianchi I universes,
as instead it occurs in LQC [27]. Starting from a classical Bianchi I and going backward in the relational
time φ, the universe undergoes three bounces (one in each direction) and after that its scale factors start
growing faster than they do in LQC and GR. Moreover, our numerical simulations show that the singularity
is avoided in all directions for generic initial conditions. In particular, for Kasner-like initial conditions each
directional scale factor is non vanishing, contrary to what happens in the LQC-evolution where one of the
scale factor goes to zero in the far past [27].

The paper is organized as follows. We start recalling useful definitions for the Bianchi I geometry and
its Hamiltonian formulation in terms of the Ashtekar variables. The relevant kinematical quantities, such
as the directional Hubble rates, the expansion scalar and the shear are then introduced. In Section 3 the
Hamiltonian constraints for the Bianchi I model are given for both GR and LQC. The QRLG-Bianchi I
model is defined in Section 4 and the expressions of the kinematical quantities, defined in general terms in
Section 2, are here given explicitely for our QRLG-model. Analytical bounds for those quantities and for the
energy density are computed and their evolutions numerically studied in Section 6. Section 5 presents the
numerical study of the QRLG-Bianchi I effective dynamics for the minimally coupled massless scalar field,
compared to the one provided by the LQC. Finally, the last section is devoted to conclusions and outlooks.

Throughout the paper we use γ = 0.24 and G = ~ = c = 1 , so that l2P := ~G/c3 = 1 . We don’t follow
Einstein notation, i.e. repeated indices are not summed over, except where explicitly stated otherwise.

2 Bianchi I geometry and related key quantities

We review here some useful definitions for the Bianchi I model in the Ashtekar variables. Everything in this
section holds for GR, effective LQC and effective QRLG.

Line element

We choose cartesian comoving coordinates (t, xb) and unitary lapse function. The Bianchi I geometry is then
associated to the following line element:

ds2 = −dt2 +
∑

bc

qbc(t)dx
bdxc = −dt2 +

∑

b

(ab(t)dx
b)2 , (1)

1For a similar approach see also [26]
2For both the “volume counting” [5] and “area counting” [6] statistical regularizations.
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where ab(t) are the scale factors for the spatial directions b = 1, 2, 3 .

Simplectic structure

The Hamiltonian formulation of the geometry (1) closely follows the one implemented for the FLRW case
[24]. Once a fiducial cuboidal cell V of coordinate sides L̃i is introduced, a parametrization of the phase-
space associated to the geometry is provided by the Ashtekar variables, i.e. by the connection Ai

a(t) and the
densitized triad Ea

i (t) [25]:

Ai
a(t) :=

ci(t)

L̃i
ẽia , Ea

i (t) :=
pi(t)

Ṽ
L̃i ẽai , (2)

where ẽia = δia and ẽai = δai are, respectively, the orthonormal flat fiducial co-triad and triad field adapted to
V ,

qbc =
∑

ik

abẽ
i
b acẽ

k
c δik ,

and L̃j are the set of coordinate lenghts defining the coordinate volume Ṽ = L̃1L̃2L̃3 of the fiducial cell,
which is related to the physical volume3 V as

V = a1a2a3Ṽ =
√
p1p2p3 . (3)

Connections and triads are diagonal matrices whose entries satisfy the following Poisson bracket:

{ci, pj} = 8πγδij , (4)

which defines the simplectic structure for the geometrical sector of the model. The pj are related to the scale
factors ak as follows (we choose a positive orientation)

pi = L̃jL̃k|ajak| i = 1, 2, 3 i 6= j 6= k . (5)

Finally, when the geometry is sourced by a scalar field, the phase-space gets enlarged and coordinatized by
the 8-tuples (ci, pi, φ, pφ), where

{φ, pφ} = 1 . (6)

Dynamics and energy density

Hereafter we will refer to the case of the Bianchi I geometry filled with a massless scalar field φ.
The dynamics is generated by the following Hamiltonian constraint:

C(ci, pi, pφ) := HBI(c
i, pi) +Hφ(pφ, pi) ≈ 0 , (7)

where HBI := Hgr, Hlqc, H generically refers to the geometrical sector in GR, LQC and QRLG, respectively
(for their actual definitions see the following sections), and

Hφ :=
p2φ
2V

, (8)

is the kinetic energy of the field φ, the only contribution coming from the matter sector. The Hamilton
equations follow:

ċi = 8πγ
∂C
∂pi

, ṗi = −8πγ
∂C
∂ci

, φ̇ =
∂Hφ

∂pφ
, ṗφ = −∂Hφ

∂φ
. (9)

Soon we will be interested in evaluating the field energy density ρ along the physical motions. It is given
by the ratio

ρ :=
Hφ

V
≈ − HBI√

p1p2p3
. (10)

3In QRLG this quantity is taken to be the volume of the biggest observable region of the universe, as explained in [6].
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Directional Hubble rates, expansion scalar and shear

The main kinematical quantities are the directional Hubble rates Hi := ȧi/ai . In terms of the triads (5)
they read

Hi =
1

2

(

− ṗi
pi

+
ṗj
pj

+
ṗk
pk

)

i = 1, 2, 3, i 6= j 6= k , (11)

and from them two more useful quantities are built: the expansion scalar θ ,

θ :=
1

V

dV

dt
=
∑

i

Hi , (12)

and the shear σ2 ,

σ2 :=
∑

i

H2
i − θ2

3
=

1

3
[(H1 −H2)

2 + (H2 −H3)
2 + (H3 −H1)

2] , (13)

which clearly vanishes in the isotropic limit.

3 Classical and effective-LQC constraints for Bianchi I

In the following sections we will compare the dynamics of the QRLG model to the one provided by LQC.
For this pourpose and in order to understand the choice of the initial conditions for the dynamical problem,
we recall here the Hamiltonian constraints for the Bianchi I geometry in GR and LQC.

The classical Bianchi I universe is associated to the constraint4 Cgr ,

Cgr := Hgr +Hφ := − 1

8πγ2

(c2p2c3p3 + c1p1c3p3 + c1p1c2p2)√
p1p2p3

+
p2φ

2
√
p1p2p3

≈ 0 , (14)

where the pi follow from the general definition (5) and the connections are proportional to the directional
Hubble rates:

ci = γLiHi , (15)

being Li := aiL̃i. Note that (15) strictly holds in GR and it is only approximately true in LQC and QRLG
in the classical limit pi >> 1, ci << 1, where we will choose the initial conditions for the dynamical problem
for both LQC and QRLG (see below).

The effective µ̄-LQC of Bianchi I is obtained [27, 25] by replacing the classical connections in (14)
according to the “polymeric prescription”, i.e.:

ci →
sin(µ̄ici)

µ̄i
(16)

where

µ̄i :=
√

∆LQG

√

pi
pjpk

i 6= j 6= k (17)

and ∆LQG = 5.22 is the LQG area gap. The resulting effective constraint Clqc reads5:

Clqc := Hlqc +Hφ := − 1

8πγ2√p1p2p3

(

sin(µ̄2c2) sin(µ̄3c3)

µ̄2µ̄3
p2p3 + cyclic terms

)

+
p2φ

2
√
p1p2p3

≈ 0 . (18)

4Hereafter we will deliberately loose track of covariance/contravariance using only downstairs indices.
5We neglect holonomy corrections. Those are expected to be subleading for super-Planckian volumes, condition that is

always met in our numerical simulations, see Section 5.
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4 The QRLG-Bianchi I model

The effective Hamiltonian we introduce here is the one provided by QRLG within the “area counting”
statistical regularization scheme [6]. Its expression is given by the expectation value of the (reduced) scalar
constraint ĤR over a classical mixture of coherent states based on cuboidal graphs with different number of
nodes Ai. The mixture is described by the following density matrix:

ρ̂A :=
∏

i

Amax
i
∑

Ai=1

(

Amax
i

Ai

)

|Ai, ji, θi〉〈Ai, ji, θi| , (19)

where |Ai, ji, θi〉 are the Thiemann’s coherent states in the kinematical space of QRLG [9], peaked on both
the intrinsic and extrinsic geometry of the classical Bianchi I, i.e. on the QRLG fluxes Ei = 8πγl2P ji and
holonomies hl = eiθljl . The maximum number of nodes contained in the physical area pi is

Amax
i =

2pi
∆′ (20)

where ∆′ = 6.03 is the “area counting” area gap in QRLG6 and the expectation value

Hdisc :=
Tr(ρ̂A ĤR)

Trρ̂A
(21)

explicitely reads:

Hdisc({Amax
i (pi)}, {ci}) = − 1

8πγ2

[

∏

i

∑Amax
i

1

(

Amax
i

Ai

)]

H̃({Amax
i (pi)}, {ci}; {Ai})

∏

i

∑Amax
i

1

(

Amax
i

Ai

) , (22)

where

H̃ := A1

√

p2p3
p1

sin

(

c2

√

A2

A1A3

)

sin

(

c3

√

A3

A1A2

)

+ cyclic terms . (23)

For Ai >> 1 we will use the continuous approximation7 for the binomials considering the following expression

H({pi}, {ci}) := − 1

8πγ2

[

∏

i

∫ 2pi/∆
′

1
e
−∆

′

pi
(Ai− pi

∆′
)2
dAi

]

H̃({pi}, {ci}; {Ai})
∏

i

∫ 2pi/∆′

1
e
−∆′

pi
(Ai− pi

∆′
)2
dAi

. (24)

as our Hamiltonian for the geometrical sector. Including the contribution of the matter sector, we find the
total constraint

Cqrlg := H +Hφ ≈ 0 , (25)

which completes the definition of our model.

4.1 ρ, θ and σ2 explicit expressions for the model

In this section we provide the explicit expressions for the phase-space functions (10), (12),(13) for the con-
straint (25). The analytical bounds and the numerical evolutions along physical motions for those quantities,
are discussed in Section 6.

6Which is slightly greater then the usual LQG-value ∆LQG = 5.22, as explained in [6].
7Note that already for Ai > 12 we have good agreement with the exact expression (22) (see Figures 10 and 11), thus, in

Section 5 the dynamics has been studied within the continuous approximation.
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Energy density

After a sign change, the ratio between (24) and the physical volume V gives the energy density

ρ({pi}, {ci}) =
1

8πγ2√pxpypz

[

∏

i

∫ 2pi/∆
′

1 e
−∆

′

pi
(Ai− pi

∆′
)2
dAi

]

H̃({pi}, {ci}; {Ai})
∏

i

∫ 2pi/∆′

1 e
−∆′

pi
(Ai− pi

∆′
)2
dAi

. (26)

Expansion scalar

From the very definition (12) and the Hamilton’s equations (9), the expansion scalar reads

θ =
1√

p1p2p3

d
√
pip2p3

dt
= −8πγ

2

∑

j

1

pj

∂C
∂cj

= −8πγ

2

∑

j

1

pj

∂HBI

∂cj
, (27)

and for HBI = H we obtain the actual expression for the QRLG model:

θ =
1

2γ

[

∏

i

∫ 2pi/∆
′

1
e
−∆

′

pi
(Ai− pi

∆′
)2
dAi

]

∑

j
1
pj

∂H̃
∂cj

({pi}, {ci}; {Ai})
∏

i

∫ 2pi/∆′

1
e
−∆′

pi
(Ai− pi

∆′
)2
dAi

(28)

where

1

pj

∂H̃

∂cj
({pi}, {ci}; {Ai}) =

∑

i,k

√

pk
pipj

√

AjAi

Ak
cos

(

cj

√

Aj

AiAk

)

sin

(

ck

√

Ak

AiAj

)

i 6= j 6= k , (29)

e.g. the j = 1 component is

1

p1

∂H̃

∂c1
=

√

p3
p1p2

√

A1A2

A3
cos

(

c1

√

A1

A2A3

)

sin

(

c3

√

A3

A1A2

)

+

√

p2
p1p3

√

A1A3

A2
cos

(

c1

√

A1

A2A3

)

sin

(

c2

√

A2

A1A3

)

.

Shear

Finally, using (9) and (13), we find the following expression for the shear:

σ2 =
(8πγ)2

3

[

(

∂H

p1∂c1
− ∂H

p2∂c2

)2

+

(

∂H

p2∂c2
− ∂H

p3∂c3

)2

+

(

∂H

p3∂c3
− ∂H

p1∂c1

)2
]

. (30)

5 Effective dynamics: numerical study

Here we address the effective dynamics of our model (25). In order to understand the choice of possible
initial conditions, we first briefly review the Bianchi I dynamics in GR.

5.1 Initial conditions and Kasner indices

As it is well known (e.g. see [28]), when the classical Bianchi I geometry is sourced by a massless scalar field,
the possible initial conditions for its associate Cauchy problem divide into the sets (of the starting points)
of “Kasner-like” and “Kasner-unlike” solutions. Below we briefly review them following the notation of [27].

A straightforward computation reveals the vanishing of the following Poisson brackets:

{pφ, Cgr} , {pici, Cgr} ∀ i , (31)
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to which we associate the four constants of motion pφ, pici , which can be parametrized as

pφ :=
√
8πKφ , pici := 8πγKi (32)

where Kφ := kkφ ,Ki := kki and k a constant such that

k1 + k2 + k3 = ±1 . (33)

The four real numbers {kφ, ki} are called Kasner indices and in terms of them the vanishing of Cgr reads

k2φ + k21 + k22 + k23 = 1 . (34)

Without loss of generality, we can stick to the case
∑

i ki = +1 and kφ > 0. Kasner indices divide into
two sets: the one where one ki is negative and the other two are positive, which is called “Kasner-like”,
and the one where ki > 0 ∀ i , called “Kasner-unlike” (note that this set includes also the isotropic case
ki = 1/3 , i = 1, 2, 3). Classically, for both sets the singularity is not avoided as it is clear from the general
solution (35), which we give below for the scale factors (from which pi(φ) and ci(φ) can be immediately
obtained using (5) and (15)):

ai(φ) = ai(φ0) e
√
8π

ki
kφ

(φ−φ0)
. (35)

In order to compare the dynamics provided by QRLG with the LQC one, we choose the same set of initial
conditions for the Cauchy problem associated to the Hamiltons equations (9). This is a first order differential
problem which admits a unique solution once seven initial conditions8 {pi(0), ci(0), pφ} are chosen such that
C(pi(0), ci(0), pφ) = 0 . To be sure that this common set fulfills (approximately) both the LQC and QRLG
constraints (18),(25), we choose a set associated to a classical universe, i.e. pi >> 1, ci << 1 (µici << 1)
where we know that the two constraints match. In this regime also GR holds and the possible initial
conditions are those we were referring before, i.e. isotropic, Kasner-like and Kasner-unlike. For all these
sets we follow the same strategy: we choose the same values of {pi(0), ci(0)} for both models and obtain
pφ lqc, pφ qrlg by imposing Clqc(0) = 0 and Cqrlg(0) = 0, respectively.

5.2 The isotropic case (ISO)

The chosen initial conditions for the isotropic case are: pi(0) = 108/3 , ci(0) = 5·10−5/3 , pφ qrlg = 101.78960 ,
and pφ lqc = 101.78998 . In Figure 1 we show the dynamics of the scale factor a3, as it evolves in the relational
time φ and in the cosmological time t (the evolution along the other directions is exactly the same). After
the bounce (which occurs approximately at the same time tB = −16, φB,lqc ≈ 0.16, φB,qrlg ≈ 0.18 ) the
QRLG-Bianchi evolution shows a significant departure from the LQC one. In particular, looking at the left
panel of Figure 1, we see the two evolutions start differing from each other already a bit before the bounce.

Figure 1: Comparison between the QRLG dynamics (solid line) and the one provided by the LQC (dashed line) for
isotropic initial conditions. Left panel: a3 vs. the relational time φ . Right panel: a3 vs. the cosmological time t. In
contrast to the LQC case, the QRLG evolution after the bounce is not longer Kasner un-like.

8For which we use a shorthand notation, e.g. ci(0) := ci(φ0) = ci(t0).
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For the QRLG model, φ(t) approaches a constant value after the bounce time, i.e. for t < −16 (see
Figure 2). This explains why the pi(φ) (ai(φ)) have a faster evolution than the pi(t) (ai(t)), indeed, as the
field reaches the plateau the dynamics “accumulates” around φ ≈ −0.3 . In particular, the scale factor grows
linearly in time t (with slope −4.491) after the bounce, explaining the vanishing behaviour of the scalar
curvature R ,

R = 2

(

H1H2 +H2H3 +H3H1 +
∑

i

äi
ai

)

, (36)

in the far past (see the right panel of Figure 3). As already observed in [27], the LQC evolution bridges two
classical Bianchi I solutions, as it is clear from the dashed trajectories after and before the bounce in Figure
1. This is not the case for the QRLG model, which is very peculiar. Going backwards in time, the QRLG
Bianchi I universe starts as an initial classical Bianchi I and after the bounce undergoes an expansion that
it is neither KL nor KUL, i.e. it never approaches the classical solution (35) for any Kasner index set. As
we will see, this turns out to be a general feature of the QRLG dynamics, observed also in the evolutions
associated to KUL and KL initial conditions (see Figure 4 and Figure 6).

Figure 2: Evolution of the field φ vs. t for the ISO case.

Figure 3: Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for isotropic initial
conditions. Left panel: the volume V vs. the cosmological time t. Right panel: the scalar curvature R vs. t. Similar
behaviours are found for the KUL and KL cases.

5.3 The Kasner-unlike (KUL) case

Here we show the dynamics associated to the following anisotropic set of initial conditions: p1(0) = 108/3 ,
p2(0) = 3.5 · 108/3 , p3(0) = 10 · 108/3 , c1(0) = 12.5 · 10−5/3 , c2(0) = 30 · 10−5/3 , c3(0) = 15 · 10−5/3 , pφ lqc =
1616.8821 , and pφ qrlg = 1616.7799 . In Figure 4 the physical areas9 pi and the scale factors ai are plotted
in the left and right panel, respectively. We see that the LQC model joins two classical Bianchi I universes

9For which unitary fiducial leghts L̃i have been chosen.
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associated to (initial) Kasner indices ki(0) and (final) Kasner indices ki , such that10 ki = ki(0) − 2/3.
Instead, the QRLG evolution starts as a classical Bianchi I with ki(0) like LQC but departs from the latter
after the bounce and accelerates (going backwards in the relational time φ). In Figure 5 the volume and the
scale factors are plotted as they evolve in the cosmological time t, where the evolutions are power laws.

Figure 4: Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for Kasner un-like initial
conditions. Left panel from top to bottom: p3, p2, p1 vs. the relational time φ. Right panel from bottom to top: the
scale factors a3, a2, a1 vs. the relational time φ. The Kasner indices for the LQC evolution are: k1(0) = 0.0467 ,
k2(0) = 0.3925 , k3(0) = 0.5608 and k1 = −0.6203 , k2 = −0.2741 , k3 = −0.1056 .

Figure 5: Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for Kasner un-like initial
conditions. Left panel: V vs. t. Right panel from top to bottom: scale factors a1, a2, a3 vs. the cosmological time t.
The inset depicts the evolution of a2 and a3 vs. t.

5.4 The Kasner-like (KL) case

Finally, we present the anisotropic case associated to an initially contracting direction, e.g. to a negative
c2(0). The chosen initial conditions for this case are p1(0) = 4 · 108/3 , p2(0) = 8 · 108/3 , p3(0) = 3 · 108/3 ,
c1(0) = 30 · 10−5/3 , c2(0) = −10−5/3 , c3(0) = 20 · 10−5/3 , and pφ qrlg = 891.9694 , pφ lqc = 891.98209 .
Even though the evolutions of the areas pi (showed in the left panel of Figure 6) are similar to those of the
KUL case, the scale factors (plotted in the right panel of the same figure) reveal a peculiar feature: each
directional scale factor is non-vanishing, contrary to what we observe for the LQC model where a1 goes to
zero after its bounce (see the bottom dashed line in the right panel).

10Confirming what already observed in [27].
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Figure 6: Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner-like initial
conditions. Left panel from top to bottom: p1, p3, p2 vs. the relational time φ. Right panel from top to bottom:
evolution of the scale factors a2, a3, a1 vs. the relational time φ. The Kasner indices for the LQC evolution are:
k1(0) = 0.6978 , k2(0) = −0.0465 , k3(0) = 0.3488 and k1 = 0.0311 , k2 = −0.7133 , k3 = −0.3178 . Note that the
scale factors in the QRLG model are non vanishing in all directions, contrarily to what happens in the LQC case
where a1 goes to zero.

Figure 7: Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner like initial
conditions. Left panel: V vs. t. Right panel from top to bottom: the evolution of the scale factors a2, a3, a1 vs. t.
The inset depicts the evolution of a3 and a1 vs. t.

In closing, a natural question arises: why after the bounces the QRLG model does not follow a semi-
classical Bianchi I evolution if its volume goes back to macroscopic values? A look at its Hamiltonian (24)
is enough for the answer. Indeed, the QRLG Hamiltonian is an integral function whose next-to-the leading
order contribution for large volumes provide a first order correction to the Bianchi I LQC Hamiltonian that
is proportional to the semiclassical parameter µ′

ici, where µ′
i :=

√

∆′pi/(pjpk) , i 6= j 6= k. A straighfor-
ward computation reveals [6] that the ratio of this correction over the magnitude of a sin2-term in the LQC
Hamiltonian (18) goes like V −2/3µ′

ici. Thus, for finite volumes V , both models match only when µ′
ici → 0 .

In the right panel of Figure 8 we clearly see that this is no longer true for φ << φB ≈ 0.3 . For macroscopic
times, the LQC evolution matches the GR one. The closer we are to φ ≈ π the better the LQC Hamiltonian
is approximated by the classical one (14), but the QRLG model does not because its infinite contributions
coming from the integral (24) are O(1) .
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Figure 8: Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner like initial
conditions. Left panel: evolution of the field φ vs. the cosmological time t. Right panel from top to bottom: evolution
of the semiclassical parameters µ1c1, µ3c3, µ2c2 vs. t, where µ := µ̄, µ′. Similar behaviours are obtained for the ISO
and KUL cases.

5.5 Technical details

Two strategies have been followed. On the one hand, we numerically solved the system of equations (9)
by means of a fourth order Runge-Kutta Merson method in order to obtain p2, p3, c1, c2 and c3, both
for the QRLG and LQC model. In the first case, Hqrlg of (7) is given by (24), while in the second case,
Hlqc is provided by (18). On the other hand, we have obtained p1 directly from (7), which is regarded
as an integral equation for p1, by means of the Trust-Region Dogleg method implemented in the func-
tion fsolve of MATLAB R© [29]. For the QRLG case, we evaluated the integrals by using the functions
integral1,integral2 and integral3 encoded in MATLAB R©, which make use of a global adaptive quadra-
ture rule based on a Gauss-Kronrod scheme. We retained the default values for the absolute the relative
tolerances, being 10−10 and 10−6 respectively. For the QRLG case, we have choosen ∆t = 0.0158 for all the
three cases analyzed, i.e. the ISO, KL, KUL case. As far as LQC concerns, we selected ∆t = 0.05 for both
the ISO and KUL case, and ∆t = 0.0016 for the KL one, where the complete system of equations (9) have
been solved to obtain p1 as well. The choice of the time step and the strategy of the solution are dictated by
the necessity of keeping the Cqrlg of the order of at least 10−8, trying to minimize the computational time.
The initial conditions of the simulations, together with the values of pφ used for QRLG and LQC are listed
in Table 1.

Initial conditions
ISO case KUL case KL case

p1(0) α2/3 p1(0) α2/3 p1(0) 4α2/3

p2(0) α2/3 p2(0) 3.5α2/3 p2(0) 8α2/3

p3(0) α2/3 p3(0) 10α2/3 p3(0) 3α2/3

c1(0) βα1/3 c1(0) 2.5 βα1/3 c1(0) 6 βα1/3

c2(0) βα1/3 c2(0) 6 βα1/3 c2(0) −0.2 βα1/3

c3(0) βα1/3 c3(0) 3 βα1/3 c3(0) 4 βα1/3

pφ qrlg 101.78960 pφ qrlg 1616.7799 pφ qrlg 891.96940
pφ lqc 101.78998 pφ lqc 1616.8821 pφ lqc 891.98209

Table 1: Initial conditions for the three cases discussed in the main text. α := 104 , β := 5 · 10−3.
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Figure 9: Left panel: evolution of the Cqrlg vs. t where p1 has been obtained from (25). Right panel: percentage
of the relative difference of the volume obtained with the two methods vs. t. In one case p1 is computed from (25)
while in the other case p1 is computed from (9) together with p2, p3, c1, c2 and c3 by means of the fourth order
Runge-Kutta-Merson method.

In Figure 9 (left panel) we show the evolution of the Cqrlg vs. t for the KL case. It can be seen that the
values of Cqrlg are very low, precisely of the order of 10−9 or less. However, we want to remark that the
way we solved the dynamical problem always delivered small values of Cqrlg . This happens because p1 is
computed directly from (25). In order to strengthen the reliability of our results, we compared the numerical
solution obtained with this strategy with the one given by the solution of the complete system of equations
(9), which does not depend on (25). We like to stress the fact that independently on the approach chosen to
solve the problem, the dynamics must always be confined to the surface constraint within strict tolerances,
i.e. Cqrlg ≈ 0. In case that the dynamics departs from the constraint surface, Cqrlg would strongly deviate
from 0 with the second procedure. Therefore, a comparison between the numerical solutions of the governing
equations obtained with the two strategies immediately indicates whether the solution computed with the
first method is correct, since both solutions must match. Figure 9 (right panel) depicts the percentage of the
relative difference of the volume computed with both strategies. It can be seen that the numerical results
match well during the whole period of the evolution, with a maximum relative difference of approximately
2.7%. In addition, the numerical solution obtained by calculating p1 directly from (25) gives Cqrlg of the
order of 10−9 or less. Instead, the solution obtained by solving the complete system of equations (9) delivered
Cqrlg of the order of 10−4 with the chosen time step and tolerances of the integrals. By utilizing this strategy
for the QRLG case, the order of Cqrlg does not decrease significantly when the time step ∆t is reduced. Thus,
we have choosen to solve p1 from (25) in all the simulations for all the QRLG cases, even if the computational
time required was higher, since the Trust-Region Dogleg method is an iterative technique. This fact is more
severe for the QRLG case, since numerical simulations required several days on a common workstation, while
in the LQC case the computational time was just of the order of seconds.

6 Analytical upper bounds for the QRLG-Bianchi I model

Here we proove that energy density, expansion scalar and shear are bounded phase space functions along
the effective dynamics provided by the QRLG constraint (22). To begin with, let us introduce the following
quantity (where b := c/

√
p):

HFLRW
disc,A (Amax(V ), b) := − 3

8πγ2

(

∆′Amax

2

)1/2

∑Amax

1

(

Amax

A

)

A sin2[b
(

∆′Amax

2A

)1/2

]

∑Amax

1

(

Amax

A

) , (37)

which is the effective QRLG-Hamiltonian for the FLRW model, as provided by the (area counting) statistical
regularization scheme [6]. In order to show the boundness of the energy density ρdisc for the QRLG-Bianchi
I model, i.e. of (26) with gaussians replaced by binomials as in (22), we will use as a preliminary lemma the
boundness of the energy density associated to (37), which we proove below.
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Energy density upper bound for the QRLG-FLRW model

The energy density for the FLRW model is given by the ratio of (37) over the volume V =
(

∆′Amax

2

)3/2
[6],

followed by a sign change, i.e.

ρFLRW
disc,A =

3

8πγ2

(

∆′Amax

2

)−1
1

2Amax − 1

Amax

∑

1

(

Amax

A

)

A sin2[b

(

∆′Amax

2A

)1/2

] (38)

where we have used
Amax

∑

1

(

Amax

A

)

= 2A
max − 1 . (39)

Clearly, the following holds:

ρFLRW
disc,A ≤ 3

8πγ2

(

∆′Amax

2

)−1
1

2Amax − 1

Amax

∑

1

(

Amax

A

)

A (40)

and using
Amax

∑

1

(

Amax

A

)

A = Amax 2A
max−1 , (41)

we find

ρFLRW
disc,A ≤ 3

4∆′πγ2
max

Amax≥1
S(Amax) , (42)

having called

S(Amax) :=
2A

max−1

2Amax − 1
, (43)

which is a decreasing monotonic sequence whose maximum value is 1, reached at Amax = 1. Thus, we end
up with the following upper bound:

ρFLRW
disc,A ≤ 3

4∆′πγ2
. (44)

6.1 Energy density upper bound for the QRLG-Bianchi I model

For Bianchi I we use expression (22), change its sign and divide it by the volume

V =
√
p1p2p3 =

(

∆′

2

)3/2
√

Amax
1 Amax

2 Amax
3 .

Proceeding analougously to the QRLG-FLRW case, we arrive at the following inequality for the QRLG-
Bianchi I energy density:

ρ ≤ 1

4∆′πγ2
3 max

Amax
1

≥1
S(Amax

1 ) , (45)

where S is the sequence (43). Thus, we find the same bound we had for the isotropic case, i.e.

ρ ≤ 3

4∆′πγ2
= 0.6874 . (46)

6.2 Expansion scalar and shear upper bounds

For the sake of clarity, here we start working within the continuous approximation. In order to show the
boundness of θ and σ2, it is enough to find an upper bound for the term ∂H

pj∂cj
, as it is clear from expressions

(27) and (30). From the definitions (24) and (29), it follows that

∣

∣

∣

∣

∂H

pj∂cj

∣

∣

∣

∣

≤ 1

8πγ2

∑

i,k

√

pk
pjpi

[

∏

i

∫ 2pi/∆
′

1 e
−∆

′

pi
(Ai− pi

∆′
)2
dAi

]

√

AjAi

Ak

∏

i

∫ 2pi/∆′

1 e
−∆′

pi
(Ai− pi

∆′
)2
dAi

i 6= j 6= k . (47)
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Figure 10: The sequence Idisc1 (Amax
1 ) and its continuous approximation I1(A

max
1 ) defined in the text, together with

their common asymptote I1 = 1/
√

∆′. The maximum value of Idisc1 is 0.576, reached at Amax
1 = 1. Note the sequence

starts matching its continuous approximation already for Amax
1 > 10.

For any given j, the r.h.s. is a sum of two terms which is symmetric under k ↔ i, e.g. for j = 1 we have

∣

∣

∣

∣

∂H

p1∂c1

∣

∣

∣

∣

≤ 1

8πγ2
[I1(p1)I2(p2)I1(p3) + I1(p1)I2(p3)I1(p2)]

where

I1(p1) :=
1√
p1

∫ 2p1/∆
′

1 e
−∆

′

p1
(A1− p1

∆′
)2 √

A1 dA1

∫ 2p1/∆′

1
e−

∆′

p1
(A1− p1

∆′
)2 dA1

, (48)

I2(p2) :=
√
p2

∫ 2p2/∆
′

1 e
−∆

′

p2
(A2− p2

∆′
)2 1√

A2

dA2

∫ 2p2/∆′

1
e−

∆′

p2
(A2− p2

∆′
)2 dA2

. (49)

I1 and I2 are integral functions whose inspection at their boundaries is enough to understand whether they
are bounded or not. Their asymptotic behaviour as pi → ∞ may be obtained with the Laplace method:

lim
p1→∞

I1(p1) =
1√
∆′

, lim
p2→∞

I2(p2) =
√
∆′ . (50)

Still, the limits at pi =
∆′

2 remain. At those points the continuous approximation (24) is no longer reliable (a
priori) and the exact definition (22) must be taken into account, which implies the inspection of the discrete
versions of functions I1 and I2, i.e.

Idisc1 (Amax
1 ) :=

√
2

√

Amax
1 ∆′(2A

max
1 − 1)

Amax
1
∑

1

(

Amax
1

A1

)

√

A1 , (51)

Idisc2 (Amax
2 ) :=

√

Amax
2 ∆′

√
2(2A

max
2 − 1)

Amax
2
∑

1

(

Amax
2

A2

)

1√
A2

, (52)

where we have used (20) and (39). The sequences Idisc1 (Amax
1 ) and Idisc2 (Amax

2 ) are plotted in Figures 10
and 11 together with their continuous approximations (48),(49), from which we easily read their maximum
values: max(Idisc1 ) = 0.576 = 1.414/

√
∆′ and max(Idisc2 ) = 2.616 = 1.065

√
∆′ .
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Figure 11: The sequence Idisc2 (Amax
2 ) and its continuous approximation I2(A

max
2 ) defined in the text, together with

their common asymptote I2 =
√

∆′. The maximum value of Idisc2 is 2.616 reached at Amax
2 = 6 (the relative difference

with the maximum of I2 is only around 2%). Note the sequence starts matching its continuous approximation already
for Amax

2 > 12.

Thus,
∣

∣

∣

∣

∂H

pj∂cj

∣

∣

∣

∣

≤ 1

8πγ2
2

[

max
Amax

1
≥1

Idisc1 (Amax
1 )

]2

max
Amax

2
≥1

Idisc2 (Amax
2 ) =

2.129√
∆′4πγ2

. (53)

From definition (27) we find the following upper bound for the absolute value of the expansion scalar:

|θ| ≤ 3
8πγ

2

2.129√
∆′4πγ2

=
6.387√
∆′γ

= 10.8375 , (54)

from (30), the upper bound for the shear is found to be

σ2 ≤ 3
(8πγ)2

3

(

2 max
Amax≥1

∣

∣

∣

∣

∂H

pj∂cj

∣

∣

∣

∣

)2

=
72.522

∆′γ2
= 208.7998 . (55)

6.3 ρ, θ and σ2 along physical motions

Here we show the numerical evolutions of the quantities ρ , θ , and σ2 along the physical motion associated to
the KL set of initial conditions discussed before (see Table 1). Their maxima are reported in the captions and
they all respect the analytical bounds (46),(54) and (55). ISO and KUL cases provide similar plots, therefore
we do not show them here. In particular, in the QRLG model all the quantities turn out to reach a maximum
value that is significantly smaller than the one reached in LQC. Their maximum relative difference between
the two models ∆ρ := |ρLQC−ρQRLG|/ρLQC , ∆θ := |θLQC−θQRLG|/θLQC , ∆σ2 := |σ2

LQC−σ2
QRLG|/σ2

LQC

are 16.76%, 11.09% and 28.61%, respectively.
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Figure 12: Comparison between the QRLG (solid line) and the LQC (dashed line) model for Kasner-like initial
conditions. Left panel: evolution of the energy density ρ vs. φ. Right panel: evolution of the shear σ2 vs. φ. The
maximum and the minimum values are: ρmax

QRLG = 0.1529, ρmax
LQC = 0.1837, σ2max

QRLG = 7.9670, and σ2max
LQC = 11.1605.

Finally, note the evolution of θ in the relational time φ (left panel of Figure 13) is consistent with the
dynamics of φ , plotted in the left panel of Figure 8. Indeed, as we approach φ = −0.0365 , dφ/dt ≈ 0 and
thus dθ/dφ ≡ (dθ/dt) (dφ/dt)−1 speeds up as observed. Moreover, the “accumulation point” φ = −0.0365 is
reached for t → −∞ and there is no chance for θ to grow more than what observed in Figure 13.

Figure 13: Comparison between the QRLG (solid line) and the LQC (dashed line) model for Kasner-like initial
conditions. Left panel: evolution of the expansion scalar θ vs. φ. Right panel: evolution of the expansion scalar
θ vs. t. The maximum and the minimum values are: θmax

QRLG = 2.0712, θmax
LQC = 2.2909, θmin

QRLG = −2.0368, and
θmin
LQC = −2.2909 .

7 Conclusions

Since a complete theory of quantum gravity is still lacking, insights about the Planck-scale physics relie
on several different approaches, such as the one pursued by String theory [30, 31], LQG [4, 3], and Non-
commutative geometry [32], only to cite a few. Even within a given approach, mathematical ambiguities can
arise when the machinery of a given theory is applied to a symmetry reduced system to perform computations.
This is the case of LQG, where several possible models for the description of our primordial universe come
from its covariant [33, 34, 35], canonical [12, 36, 6] and group field theory [37] formulation.

In this paper we have studied an anisotropic, homogeneous model for the quantum cosmology of Bianchi
I geometry in LQG within the QRLG framework and compared it with effective LQC. The numerical
simulations of the evolution of the LQC-Bianchi I and the QRLG-Bianchi I model have all been ran starting
from (approximately) common inital conditions that correspond to a classical Bianchi I universe. The LQC
evolution is observed to bridge two classical Bianchi I universes before and after the bounces, in agreement
with [27], whereas this does not happen for the QRLG-model. Going backwards in the relational time φ,
the QRLG evolution starts departing from the LQC one already a bit before the bounces. Those occur
only once in each direction, and then an accelerated evolution of each scale factor is observed. The main
result is that the QRLG dynamics resolves the classical singularity for all kind of initial conditions. In
particular, the scale factors turn out to vanish in all directions, contrary to what happens in LQC. In the
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latter case, one of the scale factor turns out to be vanishing in the far past for Kasner-like initial conditions,
confirming what already observed in [27]. The simulations have been done for three different kinds of classical
initial conditions, namely the isotropic, Kasner-like and Kasner-unlike ones. The reliability on the observed
singularity resolution in QRLG is strenghtened by the analytical upper bounds we have found for the energy
density, expansion scalar and shear.

Another difference between the QRLG-model and the LQC one is that for isotropic initial conditions, the
former does not reduce to the QRLG-FLRW model, i.e. to the emergent bouncing universe [5, 6]. Instead, a
LQC-Bianchi I reduces to a LQC-FLRW. This is clear from the matematical point of view, since a dynamics
that starts with isotropic conditions keep evolving isotropically and since the QRLG-Bianchi I Hamiltonian
does not reduce to the QRLG-FLRW one in the isotropic limit pi → p , ci → c. Therefore, the isotropic
dynamics of the QRLG-Bianchi I must differ from the ones of the QRLG-FLRW, as observed. Thus, contrary
to what happens for LQC, the pre-bounce phenomenological traces of a QRLG primordial universe could be
used in principle to understand whether the late (isotropic) universe comes from the isotropic QRLG-Bianchi
I model or the QRLG-FLRW one.

A comparison between the isotropic QRLG-Bianchi I and the recently introduced Dapor-Liegener model
[36] comes natural, since both show a departure from standard LQC before the bounce. Backwards in the
cosmological time t, the latter describes an isotropic universe that starts as a contracting classical FLRW,
undergoes a bounce and expands forever according to a non Friedmanian evolution whose limit in the far
past is exponential, i.e. driven by a Planckian valued cosmological constant. Thus, both the QRLG-Bianchi
I and the Dapor-Liegener model do not exit the quantum regime after the bounce but while the latter here
expands exponentially, the former does it only linearly.

In closing, our study has shown that QRLG offers a viable alternative to the standard picture drawn by
LQC, providing a singularity-free model for anisotropic cosmology. Investigations both in the phenomeno-
logical and theoretical side remain to be done in the near future, such as computing the power spectrum
of tensor and scalar perturbations propagating on the QRLG-Bianchi I effective background, and address-
ing the quantum dynamics by using a graph-changing Hamiltonian operator. The former will (hopefully)
provide crucial observable predictions for testing the effective scenario and the latter deeper insights on
QRLG-quantum dynamics beyond its effective scheme.
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