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Lorentz violations in gravitational waves are investigated. Plane-wave solutions for arbitrary
gauge-invariant violations in linearized gravity are constructed. Signatures of Lorentz violation
include dispersion, birefringence, and anisotropies. Modifications to waves from coalescing compact
binaries and to strain signals in gravitational-wave detectors are derived.

I. INTRODUCTION

The growing catalog of gravitational-wave observations
[1–6] offers new opportunities for tests of fundamental
physics. Lorentz invariance is a feature of both Ein-
stein’s general relativity and the standard model of par-
ticle physics, so any breaking of this symmetry would
signal new physics [7–10] potentially rooted in quantum
gravity [11]. Because of the large propagation distances,
gravitational waves produced in binary mergers are par-
ticularly sensitive to defects in relativity, enabling new
precision tests of Lorentz invariance in gravity [3, 12–21].
Lorentz invariance is the combination of both rotation

symmetry and boost symmetry, so Lorentz violations
generally produce unexpected directional and velocity de-
pendences. One consequence is modified kinematics for
particles and waves. However, to fully characterize the ef-
fects of Lorentz violation one needs a complete dynamical
model of the system. A theoretical framework known as
the Standard-Model Extension (SME) characterizes gen-
eral violations of Lorentz and CPT invariance in both
general relativity and the standard model at attainable
energies [9, 10]. A Lorentz-violating term in the SME
action is formed from the contraction of a conventional
tensor operator with a tensor coefficient for Lorentz vio-
lation. The terms are classified according to the mass di-
mension d of the operator in natural units with ~ = c = 1
[22, 23]. It is generally assumed that higher-d terms rep-
resent higher-order corrections to conventional physics.
While particle sectors of the SME have received in-

tense scrutiny over the last two decades [8], fewer searches
for Lorentz violation in gravity have been performed.
Tests of Lorentz violation in gravitational waves in-
clude searches for birefringence [12] and dispersion [16].
Other tests of Lorentz invariance in the SME gravity sec-
tor include those involving gravitational Čerenkov radi-
ation [21], atomic interferometers [24], superconducting
gravimeters [25], orbital dynamics [26–29], short-range-
gravity experiments [30, 31], comagnetometers [32], nu-
clear binding energy [33], and very-long-baseline interfer-
ometry [34]. The SME also serves as the foundation for
a number of theoretical studies of Lorentz violation in
gravity [35–40].
The development of the gravity sector of the SME has

progressed along several parallel lines, each correspond-
ing to a different limit of the theory. The most general
extension describes violations in gravity and particles, in-
cluding gravitational couplings to standard-model fields

[10]. It is based on Riemann-Cartan geometry, where the
vierbein eµ

a is the gravitational field. One can then focus
on matter-gravity couplings [35] or on the pure-gravity
sector [36]. The pure-gravity limit assumes Riemannian
geometry. The usual Einstein-Hilbert action is then aug-
mented by all possible coordinate-independent terms in-
volving the metric gµν .

The above construction produces an effective field the-
ory that encompasses all realistic violations of Lorentz
invariance in gravity, whether they are explicit or dynam-
ically generated [37]. However, the difficulties of working
in a nonlinear theory like general relativity are only exac-
erbated by the inclusion by Lorentz violation, encumber-
ing systematic studies. We can avoid many of the compli-
cations by working at the level of linearized gravity [41].
In this limit of the SME, one posits that gravity is suit-
ably weak and expands the metric gµν = ηµν+hµν about
the constant Minkowski metric ηµν . The action is con-
structed from all possible Lorentz-invariant and Lorentz-
violating terms quadratic in the metric perturbation hµν .

The full linearized-gravity extension is constructed in
Refs. [12, 39]. It takes the form of an effective field the-
ory in flat spacetime, making its development and ap-
plication comparatively simple. The action contains the
linearized limit of all Lorentz and diffeomorphism viola-
tions in general relativity, including those that violate the
usual gauge invariance, hµν → hµν+∂(µξν). Work involv-
ing the linear extension includes studies of gravitational-
wave dispersion relations for gauge-invariant [12] and
gauge-breaking violations [39] and studies of Lorentz vi-
olation in newtonian gravity [40].

Some of the tightest constraints on Lorentz violation
in any sector come from observations of radiation from
astrophysical sources, where tiny modifications to the
dynamics can accumulate over cosmological times. For
example, searches for photon dispersion [42–44], photon
birefringence [43–45], and unconventional Čerenkov ra-
diation [46, 47] have all placed tight limits on particle-
sector Lorentz violation.

In gravitational waves, dispersion causes a deformation
of the waveform, and birefringence causes changes in the
polarization. Both will distort the strain signal measured
by gravitational-wave observatories. This paper charac-
terizes dispersion and birefringence due to Lorentz viola-
tion and the effects of Lorentz violation on gravitational
waves produced in the coalescence of compact binaries.

We restrict attention to the gauge-invariant linearized-
gravity sector of the SME [12]. We find that this limit
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produces two independent modes for propagation with
differing phase velocities and conventional polarizations
at zeroth order in Lorentz violation. Note, however, that
the full SME includes gauge-breaking terms, which are
expected to produce effects beyond those discussed here.
For example, new exotic modes may propagate that could
be detected in observations of gravitational waves [5, 48].

Throughout this work, we adopt units with c = 1, but
explicitly include Newton’s constant GN . Setting GN =
1 yields geometrized units. Alternatively, setting ~ = 1
gives natural units and GN = 1/M2

Pl, where MPl is the
Planck mass. Spacetime indices are raised and lowered
using the Minkowski metric with (−,+,+,+) signature.

This paper is organized as follows. Section II examines
gravitational plane waves in gauge-invariant linearized
gravity with Lorentz violation. In Sec. III, we consider
waves created in binary mergers and derive the modified
detector strain including the effects of Lorentz violation
during propagation. Section IV provides a summary and
some concluding remarks. The effects of Lorentz viola-
tion on gravitational Stokes parameters are discussed in
the Appendix.

II. GRAVITATIONAL WAVES

In this section, we find plane-wave solutions for grav-
itational waves in the presence of Lorentz violation. We
begin by first reviewing the gauge-invariant linearized-
gravity sector of the SME. We then derive the leading-
order dispersion relation and the polarizations of the
propagating modes. The effects on waves that have trav-
eled astrophysical distances are explored, and several spe-
cial cases are discussed.

A. Basic theory

The lagrangian for the gauge-invariant linearized-
gravity sector of the SME consists of all possible terms
quadratic in hµν , including arbitrary numbers of deriva-
tives of hµν . It contains the usual linearized Einstein-
Hilbert lagrangian and an infinite series of Lorentz-
invariant and Lorentz-violating terms. It can be written
in the compact form [12]

L = 1
4ǫ
µρακǫνσβληκλhµν∂α∂βhρσ

+ 1
4hµν(ŝ

µρνσ + q̂µρνσ + k̂µνρσ)hρσ . (1)

Each term is invariant under the usual gauge trans-
formation hµν → hµν + ∂(µξν) up to a total deriva-
tive. The first line in Eq. (1) is the conventional la-
grangian and generates the usual linearized Einstein ten-
sor Gµν = − 1

2ηρσǫ
µρακǫνσβλ∂α∂βhκλ.

The last term in Eq. (1) contains the Lorentz-violating
modifications. It naturally splits into three different

classes of violations, corresponding to the operators

ŝµρνσ =
∑

s(d)µρα1νσα2...αd−2∂α1
. . . ∂αd−2

,

q̂µρνσ =
∑

q(d)µρα1να2σα3...αd−2∂α1
. . . ∂αd−2

,

k̂µνρσ =
∑

k(d)µα1να2ρα3σα4...αd−2∂α1
. . . ∂αd−2

. (2)

The tensor coefficients in these expansions control the
Lorentz violation. Each has different symmetries, which
are summarized in Table 1 of Ref. [12]. The s- and k-type
violations are CPT even, while q-type violations break
CPT invariance in addition to Lorentz invariance. For
particles, CPT breaking typically leads to different prop-
erties for particles and antiparticles. For gravitational
waves, CPT violation breaks the degeneracy between left-
and right-handed polarizations. The sums in Eq. (2) are
over even d ≥ 4 for s-type violations, odd d ≥ 5 for
q-type, and even d ≥ 6 for k-type.
The equations of motion for Eq. (1) can be written in

the form

0 = Gµν + δMµνρσhρσ , (3)

where the tensor operator

δMµνρσ = − 1
4

(
ŝµρνσ + ŝµσνρ

)
− 1

2 k̂
µνρσ

− 1
8

(
q̂µρνσ + q̂νρµσ + q̂µσνρ + q̂νσµρ

)
(4)

contains the unconventional parts. This operator is sym-
metric in the first pair of indices and the last pair of
indices. The CPT-even part of δMµνρσ is symmetric un-
der interchange of the first and last pair of indices and
involves an even number of derivatives. The CPT-odd
part is antisymmetric under interchange of the pairs of
indices and contains an odd number of derivatives. Con-
sequently, δMµνρσ is a hermitian operator acting on the
space of symmetric rank-2 tensors.

B. Eigenmodes

We next derive leading-order plane-wave solutions of
the equations of motion. A fourier transform converts
∂α → ipα and Eq. (3) to a p-dependent matrix equation.

The operators ŝµρνσ , q̂µρνσ, and k̂µνρσ are now inter-
preted as functions of pα. Solving the p-space equations
of motion gives plane-wave solutions with wave vector
pα = (ω; ~p ). To handle both positive and negative fre-
quencies, it is useful to write ~p = ωv̂/v. The unit vector
v̂ = sgn(ω)~p/|~p| points in the direction of propagation,
and v = |ω|/|~p| is the phase velocity. Note that v̂ points
in the direction of ~p for positive frequencies and opposite
to ~p for negative frequencies.
In the usual case, one normally starts in a Hilbert

gauge by imposing the Lorenz condition pν h̄
µν = 0,

where h̄µν = hµν − 1
2h

ρ
ρη
µν is the trace-reversed metric

perturbation. The Einstein equation then reads Gµν =
1
2p

2h̄µν = 0, giving the dispersion relation p2 = 0. On
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shell, you can choose a gauge that is temporal (h0µ = 0),
transverse (hjkpk = 0), and traceless (hjj = 0), leading
to the transverse traceless gauge. Two degrees of freedom
remain, giving two degenerate polarizations.
In the Lorentz-violating case, where the on-shell pα

is no longer light-like, we cannot necessarily impose all
of the above gauge conditions simultaneously. It is con-
venient, however, to work in the temporal gauge. The
other gauge conditions may or may not be satisfied on
shell. An advantage of the temporal gauge is that co-
ordinates for free nonrelativistic test masses are inertial,
since ∂2t x

j ≈ −Γj00 = 0.
It is also useful to work in a helicity basis with basis

vectors [22]

êr = êr = v̂ = (sin θ cosφ, sin θ sinφ, cos θ),

ê± = ê∓ = 1√
2
(êθ ± iêφ) . (5)

The propagation vector v̂ defines the “radial” direction,
and êθ and êφ are the usual unit vectors associated with
spherical-coordinate angles θ and φ. The complex helic-
ity vectors ê± span the transverse subspace.
In the temporal gauge, only the spatial parts of hµν

are nonzero, which we write as
↔
h= habêa ⊗ êb in terms

of helicity-basis components hab = êa·
↔
h · êb. Note that

raising and lowering spatial indices in the helicity basis is
done using the skew-diagonal helicity metric ηab = ηab =
êa · êb. The result is that raising or lowering helicity-basis
indices changes ± to ∓. For example, Gr+ = Gr−.
The ten helicity components of the p-space Einstein

tensor can be written in terms of the six components

of the temporal-gauge
↔
h . The unconventional 0-helicity

components are given by Grr = vG0r = v2G00 = ω2h+−

and G+− = ω2

2 h
rr − p2

2 h
+−. The ±1-helicity compo-

nents obey Gr± = vG0± = −ω2

2 h
r±. The transverse ±2-

helicity components give G±± = p2

2 h
±±. In the usual

case, where Gµν = 0 and p2 = 0, only the h±± compo-

nents can be nonzero, giving an
↔
h that is transverse and

traceless. In the Lorentz-violating case, we can use the
above relations to construct perturbative solutions.
Assuming the 0-helicity and ±1-helicity components

of
↔
h are small, the leading-order ±2-helicity components

h±± satisfy the matrix equation

(
p2 + 2δM++−− 2δM++++

2δM−−−− p2 + 2δM−−++

)(
h(+2)

h(−2)

)
= 0 , (6)

where we denote

h(±2) = h±± . (7)

After solving for the leading-order h(±2), we can use
them and the modified Einstein equation (3) to pertur-
batively solve for higher-order corrections to the polar-
ization. This procedure leads to a temporal-gauge hµν

that differs from a conventional hµν by corrections that
are suppressed by coefficients for Lorentz violation. Note

that the result is neither transverse nor traceless. How-
ever, the unconventional parts are likely to be too small
to be directly observable. Therefore, the dominant ef-
fect of Lorentz violation on the polarization is a possible
breaking of the usual degeneracy between the two polar-
izations, resulting in birefringence.
Each of the matrix elements in Eq. (6) has definite

helicity. The diagonal elements of the square matrix
have zero helicity, while the off-diagonal elements have
helicity ±4, coupling the right-handed h(+2) and left-
handed h(−2) polarizations. The trace element preserves
the usual degeneracy between the two polarizations, mo-
tivating the following definition

ς0 = − 1
2ω2

(
δM++−− + δM−−++

)

= 1
2ω2

(
ŝ+−+− + k̂++−−) . (8)

We expect the remaining parts to break the degeneracy,
giving birefringence. We define these as

ς(0) = 1
2ω2

(
δM++−− − δM−−++

)
= − 1

2ω2 q̂
+−+− ,

ς(±4) = 1
2ω2 δM

±±±± = − 1
2ω2 k̂

±±±± . (9)

The combinations ς0 and ς(0) are real and have zero he-
licity, while ς(±4) have helicity ±4 and obey ς∗(±4) = ς(∓4).

In this work the ς functions are found by fixing the
gauge and working in the helicity basis. Note, however,
that covariant versions of these functions and the disper-
sion relation are derived in Ref. [12] without gauge fixing
using the methods discussed in Ref. [39].
As discussed in the Appendix, the p-dependent coef-

ficient combinations ς0, ς(0), ς(+4), ς(−4) can be inter-
preted as conveniently normalized Stokes parameters for
the faster propagating mode. They are functions of the
frequency ω and the wave vector ~p. However, when eval-
uating the ς functions, we can assume the usual energy-
momentum relation and take ~p = ωv̂ at leading order.
We then get functions that depend on the frequency ω
and propagation direction v̂. They can be written as

ς0 =
∑

d

ωd−4ς(d)0(v̂) ,

ς(±4) =
∑

d

ωd−4ς
(d)
(±4)(v̂) ,

ς(0) =
∑

d

ωd−4ς
(d)
(0) (v̂) , (10)

separating the frequency and direction dependences.
The direction-dependent factors can be expanded in

spin-weighted spherical harmonics sYjm. Spin weight is
the opposite of helicity [22], so the expansions take the
form [12]

ς(d)0(v̂) =
∑

jm

(−1)j 0Yjm(v̂) k
(d)
(I)jm ,

ς
(d)
(±4)(v̂) =

∑

jm

(−1)j ∓4Yjm(v̂) (k
(d)
(E)jm ± ik

(d)
(B)jm) ,

ς
(d)
(0) (v̂) =

∑

jm

(−1)j 0Yjm(v̂) k
(d)
(V )jm . (11)
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Coefficient d j Number

k
(d)

(I)jm even,≥ 4 0, 1, . . . , d− 2 (d− 1)2

k
(d)

(V )jm odd,≥ 5 0, 1, . . . , d− 2 (d− 1)2

k
(d)
(E)jm even,≥ 6 4, 5, . . . , d− 2 (d− 1)2 − 16

k
(d)
(B)jm even,≥ 6 4, 5, . . . , d− 2 (d− 1)2 − 16

TABLE I: Summary of the spherical coefficients for Lorentz
violation [12]. The second and third columns give the ranges
for the dimension index d and angular-momentum index j.
The m index obeys the usual relation −j ≤ m ≤ j. The last
column gives the total number of independent coefficients for
each d. Each set of coefficients obeys the complex-conjugation

relation k
(d)∗
jm = (−1)mk

(d)
j(−m).

The spherical coefficients for Lorentz violation k
(d)
(I)jm,

k
(d)
(V )jm, k

(d)
(E)jm and k

(d)
(B)jm are linear combinations of the

underlying tensor coefficients in Eq. (2). The connection
places limits on the angular momentum indices j and m
for each dimension d. These limits, along with the coef-
ficient count, are given in Table I. The spherical coeffi-
cients for Lorentz violation have mass dimension 4−d in
units with ~ = 1. In geometrized units, they have length
dimension d− 4. Note that (−1)j sYjm(v̂) = −sYjm(−v̂),
which is convenient in astrophysical tests where −v̂ gives
the location of the source.
Different physical systems access different linear com-

binations of the fundamental coefficients [40]. The spher-
ical coefficients in Eq. (11) represent the subset affecting
gravitational waves at leading order. Note, however, that
a given point source with fixed observed v̂ can at most
measure the four linear combinations of spherical coeffi-
cients given in Eq. (11). Different sources with different
v̂ will access different linear combinations. One can in
principle disentangle the numerous spherical coefficients
for Lorentz violation at any dimension d by combining
data from multiple sources at different locations on the
sky.
Nontrivial solutions to Eq. (6) exist when the determi-

nant of the 2× 2 matrix vanishes. This gives the disper-
sion relation

p2 = 2ω2
(
ς0 ∓ |~ς|

)
, (12)

where we define

|~ς | =

√∣∣ς(+4)

∣∣2 +
∣∣ς(0)

∣∣2 . (13)

Solving for the frequency, the dispersion relation can be
written as |ω| =

(
1− ς0 ± |~ς |

)
|~p|, giving phase velocities

v± = 1− ς0 ± |~ς | . (14)

The usual degeneracy between the polarizations is broken
when |~ς | 6= 0, as expected, and the two modes propagate
at different speeds. The top sign in these expressions
corresponds to the fast mode, and the bottom sign gives
the slow mode.

To find the polarization of each mode, we solve Eq. (6)
on shell. The result can be written in terms of two angles
ϑ and ϕ that completely characterize the polarizations of
the modes. They are defined through

sinϑ =

∣∣ς(+4)

∣∣
|~ς |

, cosϑ =
ς(0)
|~ς |

, e∓iϕ =
ς(±4)∣∣ς(+4)

∣∣ . (15)

We then find that the fast mode has normalized polar-
ization

(
h(+2)

h(−2)

)

fast

=

(
cos ϑ2 e

−iϕ/2

sin ϑ
2 e
iϕ/2

)
, (16)

while the polarization of the slow mode can be written

(
h(+2)

h(−2)

)

slow

=

(
− sin ϑ

2 e
−iϕ/2

cos ϑ2 e
iϕ/2

)
. (17)

A general polarization is a linear combination of the two
eigenmodes. The unitary transformation

(
h(+2)

h(−2)

)
=

(
cos ϑ2 e

−iϕ/2 − sin ϑ
2 e

−iϕ/2

sin ϑ
2 e
iϕ/2 cos ϑ2 e

iϕ/2

)(
h(f)
h(s)

)
(18)

relates the helicity components h(±2) of an arbitrary po-
larization to its fast-mode component h(f) and its slow-
mode component h(s).
Combined with the dispersion relation (12), the above

polarizations describe the leading-order effects in gravi-
tational waves for any gauge-invariant extension to lin-
earized gravity, including all possible Lorentz-violating
and Lorentz-invariant modifications.

C. Dispersion and birefringence

The unconventional parts of the phase velocity lead to
a gradual shift in phase as the wave propagates. Con-
sider, for example, a simple plane wave in flat space-
time that has propagated a distance l. For a deformed
phase velocity v = 1 + δv, we get h(t) ∼ e−iω(t−l/v) ≈
e−iωδvle−iω(t−l), shifting the phase by ωδvl.
For cosmological sources in an expanding universe,

the redshift of the frequency can be accounted for by
considering an infinitesimal change in the phase, dψ =
dψ0+ωδvdl. Integrating from the source to the observer,
the first part gives the conventional phase. The sec-
ond part gives the Lorentz-violating contribution, δψ± =∫
dl ω(−ς0 ± |~ς |), for the fast and slow modes. At ze-

roth order, the wave propagates at v = 1, so we can re-
place the distance interval dl with the propagation time
dt = −dz/(1 + z)/H(z), where H(z) is the Hubble ex-
pansion rate at redshift z. The accumulated Lorentz-
violating phase is then given by

δψ± = ω

∫ z

0

dz
−ς0 ± |~ς |

H(z)
= −δ ± β , (19)
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where ω is the observed frequency. The common phase
δ is independent of polarization and leads to dispersion
but no birefringence. The birefringent phase β is the
polarization dependent, causing the net polarization to
evolve as the wave propagates. For fixed dimension d,
we can write the phases as

δ = ωd−3 τ ς(d)0 , β = ωd−3 τ
∣∣~ς (d)

∣∣ , (20)

where

τ =

∫ z

0

(1 + z)d−4

H(z)
dz (21)

is an effective d-dependent propagation time that ac-
counts for the redshift in ω during propagation.
As the wave propagates, the phase of the fast and slow

components shifts relative to the conventional case, lead-
ing to observed components h(f,s) = eiδ∓iβhLI(f,s), where

hLI(f,s) is the Lorentz invariant limit. Using Eq. (18), we

transform this result to the helicity basis, giving

h(±2) = eiδ(cosβ ∓ i cosϑ sinβ)hLI(±2)

−ieiδ sinϑe∓iϕ sinβhLI(∓2) . (22)

We can also write this in terms of standard “plus” and
“cross” linear polarizations, defined as h(+) = hθθ =

−hφφ and h(×) = hθφ = hφθ. These are related to the
helicity components through

h(±2) = h(+) ∓ ih(×) . (23)

The changes to the linear polarizations are given by

h(+) = eiδ(cosβ − i sinϑ cosϕ sinβ)hLI(+)

−eiδ(cosϑ+ i sinϑ sinϕ) sinβhLI(×) ,

h(×) = eiδ(cosβ + i sinϑ cosϕ sinβ)hLI(×)

+eiδ(cosϑ− i sinϑ sinϕ) sinβhLI(+) . (24)

Equations (22) and (24) give the predicted effects for
general modifications to linearized gravity. They provide
a map between the modified theory and the conventional
limit and incorporate dispersive changes in phase and
changes in polarization due to birefringence.
While the above applies to general cases, one simpli-

fying strategy is to consider various special limits. The
three main classes of Lorentz violation in gravitational
waves are nonbirefringent violations, CPT-odd birefrin-
gent violations, and CPT-even birefringent violations.
We briefly consider each of these in turn.

Nonbirefringent violations. The CPT-even k
(d)
(I)jm co-

efficients are responsible for nonbirefringent Lorentz vio-
lations and exist for even d ≥ 4. They generally produce
a frequency-dependent phase velocity producing disper-
sion. Note, however, that the d = 4 case gives a phase
velocity that depends on direction but is frequency in-
dependent. Consequently, only d ≥ 6 violations produce

dispersion. In this limit, the birefringent phase β van-
ishes, and Eqs. (22) and (24) reduce to h(·) = eiδhLI(·) for

all polarizations, giving a change in phase but no change
in polarization.

CPT-odd birefringence. The k
(d)
(V )jm coefficients give

both dispersion and birefringence and exist for odd d ≥ 5.
Setting all other coefficients to zero, we find that the
eigenmodes are circularly polarized. We get ϑ = 0 when
the right-handed polarization h(+2) is faster and ϑ = π
when the left-handed polarization h(−2) is faster. In both
cases, the circular polarizations acquire a simple phase

shift, h(±2) = hLI(±2)e
∓iδψ , where δψ = ωd−3τς

(d)
(0) . The

shift in relative phase between the two circular polariza-
tions causes a rotation of the linear polarizations:

(
h(+)

h(×)

)
=

(
cos δψ − sin δψ

sin δψ cos δψ

)(
hLI(+)

hLI(×)

)
. (25)

This corresponds to a simple rotation of
↔
h about v̂ by

angle δψ/2, leaving the degree of linear and circular po-
larization unchanged. Note that the polarization will re-
main fixed if the wave is produced in one of the circularly
polarized eigenmodes, but frequency dependence in the
phase velocity still produces dispersion.

CPT-even birefringence. The k
(d)
(E)jm and k

(d)
(B)jm coef-

ficients also give dispersion and birefringence, but exist
for even d ≥ 6. The changes in the wave can be found
by setting δ = 0 and ϑ = π/2 in Eqs. (22) and (24).
The result is more complicated in this case because the
eigenmodes are linearly polarized at polarization angles
ϕ/4 and ϕ/4+π/4. Only linearly polarized waves at one
of these angles will maintain constant polarization. All
waves will experience dispersion due to the frequency-
dependent phase velocities.

The effects of birefringence in the CPT-even case and
more general cases can be made more transparent by con-
sidering the gravitational Stokes parameters, as discussed
in the Appendix. In general, birefringence produces a
simple rotation of the Stokes vector for the wave about
the Stokes vector for the faster eigenmode, which can
have any elliptical polarization.

Dimension d = 4 violations do not affect chirp obser-
vations since they are nondispersive and nonbirefringent.
In this case, the phase and group velocities acquire the
same frequency- and polarization-independent shift

δv =
∑

(−1)j+1
0Yjm(v̂)k

(4)
(I)jm . (26)

While this doesn’t affect chirp signals, it can be tested
through time-of-flight comparisons with photons [18, 19].
For example, assuming a common origin for GW170817
and GRB 170817A, Ref. [19] places limits on the differ-
ence between the speed of gravity and the speed of light.
The result can be translated to a constraint on a combi-



6

nation of spherical SME coefficients:

−3× 10−15 ≤
∑

jm

0Yjk(n̂)
(
c
(4)
(I)jm − k

(4)
(I)jm

)
≤ 7× 10−16 ,

(27)

where c
(4)
(I)jm are photon-sector coefficients for Lorentz

violation. Here we assume negligible birefringence in
photons [45]. Using the location of the optical coun-
terpart [49], the source location n̂ = −v̂ has angles
{θn̂, φn̂} ≃ {113◦, 197◦} in the Sun-centered frame used
in tests involving the SME. Restricting attention to the
isotropic limit, the shift in the speed of gravity reduces

to δv = −
√
1/4πk

(4)
(I)00. Assuming isotropy in photons as

well, the constraint above gives

−11× 10−15 . c
(4)
(I)00 − k

(4)
(I)00 . 25× 10−16 . (28)

III. BINARY COALESCENCE

The goal of this section is to apply the above results
to coalescing binaries in order to characterize the sig-
natures of Lorentz violation in chirp signals. We begin
by reviewing conventional mergers in the quadrupole ap-
proximation, which describes the dominate expected fea-
tures of the emitted gravitational waves in the Lorentz-
invariant case. We then calculate the modifications due
to Lorentz violation. General expressions for Earth-
incident gravitational waves and detector strains are
found in terms of coefficients for Lorentz violation in
the standard Sun-centered celestial equatorial reference
frame used in Lorentz tests involving the SME. We then
discuss signatures in several special limits.

A. Conventional mergers

In order to search for Lorentz violation in chirp sig-
nals produced by binary systems, we first need a real-
istic description of the expected wave without Lorentz
violation. This section provides a brief discussion of con-
ventional binary mergers and establishes the basic struc-
ture needed to construct gravitational-wave signals with
Lorentz violation. For a review of the underlying con-
ventional physics see, for example, Refs. [50, 51].
Starting in the time domain, we imagine an asymp-

totically flat frame centered on the merger. We orient
the frame so that the binary revolves in the right-handed
sense about the z axis. Far from the merger, the wave
will be transverse to the propagation direction v̂ and the
position vector ~x ≈ rv̂. The conventional gravitational
radiation is then completely described by either of the
complex helicity components, since h(+2)(t) = h∗(−2)(t)

in the time domain, where hµν is real.
Conventional waves produced by binaries are domi-

nated by their merger-frame j = 2, m = ±2 multipoles
and are even under parity. This implies that the observed

wave takes the generic form

h(+2)(t) = U(t)−2Y22(v̂) + U∗(t)−2Y2(−2)(v̂) . (29)

The wave is then completely characterized by a single
complex scalar function U(t).
While the exact form of U(t) can only be found by

considering the detailed physics of the merger, some gen-
eral features can be ascertained. For example, splitting
U(t) into an amplitude and a phase, U(t) = A(t)e−iΨ(t),
we expect both the phase Ψ(t) and its rate of change to
increase monotonically with time. To see this, we write
h(+2) in terms of the spherical-coordinate angles θ and φ
for the direction vector v̂:

h(+2)(t) =
√

5
4π

(
Ue2iφ cos4 θ2 + U∗e−2iφ sin4 θ2

)
. (30)

We then note that U only contributes through the com-
bination Ue2iφ = Aei(2φ−Ψ), so wavefronts satisfy 2φ =
Ψ+ (constant). Since we assume right-handed rotations
about the z axis, we expect the azimuthal angle φ of a
wavefront at a fixed distance from the merger to increase
with time, so the phase function Ψ increases monoton-
ically with time. Also, since the rotation of the binary
accelerates as it inspirals, we expect a positive instanta-
neous oscillation frequency Ω(t) = ∂tΨ(t) that increases
with time. We also note that the wave frequency Ω is
twice the wavefront rotation rate, as expected in a bi-
nary system.
The frequency-domain version of Eq. (29) is more

amenable to studies of Lorentz violation. Taking the
fourier transform, we get

h(+2)(f) = u(f)−2Y22(v̂) + u∗(−f)−2Y2(−2)(v̂) , (31)

where u(f) =
∫
dtU(t)ei2πft, for 2πf = ω. The u(f)

function completely characterizes the wave in the fre-
quency domain. The negative-helicity component can
be found using h(−2)(f) = h∗(+2)(−f). We also split the

frequency-domain function

u(f) = A(f)eiψ(f) (32)

into an amplitude and a phase.
The connection between the time- and frequency-

domains can be studied through a stationary-phase ap-
proximation. For a fixed frequency f , the fourier trans-
form u(f) =

∫
dtA(t)ei(2πft−Ψ) is dominated by times tf

that are extrema of the phase. These times are solutions
to the equation 2πf = Ω(tf ). Since the instantaneous
frequency Ω(t) is positive, extrema only exist for positive
frequencies, and we can assume that negative frequen-
cies play an insignificant role in u(f). The negative fre-
quencies do affect the signal through u∗(−f) in Eq. (31),
however. Since Ω increases with time, we can in princi-
ple invert the relationship between f and tf , so tf is a
single-valued function of f . Then the usual stationary-
phase approximation gives A(f) ≈

√
2π/∂2tΨ(tf )A(tf )

and ψ(f) ≈ 2πftf −Ψ(tf )−
π
4 .
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Applying the stationary-phase approximation to the
inverse fourier transform yields similar relations. It im-
plies that the dominant frequency ft at time t is a solu-
tion of 2πt = ∂fψ(ft). Again, since ft and t are expected
to rise together, we can assume ∂2fψ(ft) is positive. We
then arrive at two key characteristics of the frequency-
domain function u(f) = A(f)eiψ(f). To a good approxi-
mation, we can assume that u(f) is nonzero for positive
frequencies only and that the phase function ψ(f) is con-
vex.
As a chirp progresses, it transitions from an inspiral to

a merger, followed by the ringdown. Each stage is subject
to different physics and gives different contributions to
A(f) and ψ(f). For example, early in the inspiral the
“newtonian” approximation is valid [52], which results in

ψ(f) ≈ 2πft0 + ψ0 +
3

27π5/3 η
−1(Tf)−5/3 ,

A(f) ≈ Cr−1T 2η1/2(Tf)−7/6 , (33)

where C is a constant, r is the distance from the source,
t0 determines the time origin, and ψ0 is a phase constant.
The important features of the chirp depend on the total
massM =M1+M2 and mass ratio η =M1M2/M

2. Here
we define the chirp time constant T = GN (1+z)M , which
gives the characteristic time scale. We incorporate the
source redshift z to account for cosmological expansion.
The expressions in Eq. (33) provide a simple approx-

imation that should hold at low frequencies. At higher
frequencies, corresponding to later times, the approxi-
mation is expected to fail. More accurate descriptions
at all frequencies can be achieved through a combina-
tion of higher-order post-newtonian corrections [51] and
numerical relativity [53]. Analytic templates can be con-
structed to approximate the late-stage physics. These
generally have a phase function of the form

ψ(f) = 2πft0 + ψ0 +
∑

n

(Tf)n/3ψn , (34)

where the ψn are constants. The amplitude A(f) may
also be modified. For example, Ref. [54] assumes an A(f)
that is proportional to f−7/6 over inspiral frequencies,
is proportional f−2/3 for the merger, and decays as a
lorentzian at higher ringdown frequencies. Their phase
includes terms with n = −5,−3,−2,−1, 1, 2. All param-
eters are treated as functions of the mass ratio η and fit
to results from post-newtonian and numerical relativity.
The spins of the two bodies can also be incorporated in
the templates [55].

B. Signatures of Lorentz violation

The choice of reference frame is important when test-
ing Lorentz invariance since the coefficients for Lorentz
violation are different in different frames. By convention,
Lorentz tests report results using a Sun-centered celestial
equatorial frame [22, 56]. The direction of propagation v̂

has Sun-frame polar angle θ = dec. + 90◦ and Sun-frame
azimuthal angle φ = r.a. ± 180◦, in terms of the decli-
nation and right ascension of the source. The standard
Sun-frame linear polarizations h(+) and h(×) are related
to the helicity components through Eq. (23). The axes
of the h(+) polarization align with the celestial cardinal
directions, while the axes for h(×) polarization are along
the intercardinal directions.
Equation (31) gives the predicted form for the Lorentz-

invariant helicity components in the merger frame. Be-
fore we determine the effects of Lorentz violation, we
first transform this result to the Sun frame. This is
done by passively rotating Eq. (31) using the rotation

operator R = eiαzJzeiαyJyeiα
′

zJz , where αy, αz, and α′
z

are Euler angles relating the two frames. The rota-
tion acting on the spherical harmonics gives R sYjm =∑
m′ D

(j)
m′m(−αz,−αy,−α

′
z)sYjm′ , where D

(j)
m′m are the

Wigner rotation matrices. The Sun-frame Lorentz-
invariant wave can then be written as

hLI(±2)(f) = u(f)Y(±2) + u∗(−f)Y∗
(∓2) , (35)

where it is convenient to define the direction-dependent
factors

Y(±2) =
∑

m

D
(2)
m2(−αz,−αy, 0)∓2Y2m(θ, φ)

=
∑

m

d
(2)
m2(−αy)e

iαzm∓2Y2m(θ, φ) . (36)

The d
(j)
mm′ in the last line are little Wigner matrices.

The Y(±2) factors have helicity ±2 and account for the
location (θ, φ) and orientation (αy,αz) of the source in
the Sun-centered frame. While the general rotation de-
pends on the three Euler angles, the α′

z angle corresponds
to a rotation about the merger-frame z axis. This is
equivalent to a change in phase and can be absorbed into
the phase constant ψ0. We may therefore take α′

z = 0,
leaving four angles to characterize the location and ori-
entation of the binary in the Sun frame. Note that the
Y(±2) also completely determine the polarization content
in the conventional limit.
Restricting attention to positive f and using Eq. (22),

the helicity components with Lorentz violation are

h(±2) = u eiδ
(
(cosβ ∓ i cosϑ sinβ)Y(±2)

−ie∓iϕ sinϑ sinβY(∓2)

)
. (37)

The negative-frequency parts can be found using the
identity h(±2)(f) = h∗(∓2)(−f). In the linear basis, the

positive-frequency parts become

h(+) = u eiδ
(
(cos β − i cosϕ sinϑ sinβ)Y(+)

−(cosϑ+ i sinϕ sinϑ) sinβY(×)

)
,

h(×) = u eiδ
(
(cos β + i cosϕ sinϑ sinβ)Y(×)

+(cosϑ− i sinϕ sinϑ) sinβY(+)

)
, (38)

where Y(+) and Y(×) are direction factors for linear polar-
izations and are related to helicity-basis factors through
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Y(±2) = Y(+) ∓ iY(×). The linear components both obey
the conjugation rule h(+,×)(f) = h∗(+,×)(−f), which im-

plies the time-domain h(+,×)(t) are real, as expected.
The signal generated in a given detector depends on

its orientation relative to the Sun-centered frame at the
time of the observation. The gravitational strain for a
detector can be written as

h(D) = F(+)h(+) + F(×)h(×)

= 1
2F

∗
(+2)h(+2) +

1
2F

∗
(−2)h(−2) . (39)

Assuming arms of equal length, the linear-basis antenna
pattern functions are

F(+) = 1
2

(
C2
θ1 − C2

φ1 − C2
θ2 + C2

φ2

)
,

F(×) = Cθ1Cφ1 − Cθ2Cφ2 (40)

where Cak = êa · l̂k are the direction cosines between the
Sun-frame êθ and êφ vectors and the arms of the detector,

which point along unit vectors l̂1 and l̂2. Assuming the

l̂k vectors are horizontal, the cosines are

Cθk = cos(φ− α) cos θ cosχ cos ξk + sin θ sinχ cos ξk

+sin(φ − α) cos θ sin ξk ,

Cφk = cos(φ− α) sin ξk − sin(φ− α) cosχ cos ξk , (41)

where θ and φ are the Sun-frame propagation angles, χ
is the colatitude of the detector, α is the right ascension
of the laboratory zenith at the time of the detection, and

ξk is the angle between l̂k and local south measured to
the east. The helicity-basis pattern functions are given
by F(±2) = F(+) ∓ iF(×).
Using either the helicity components (37) or linear

components (38), we find that the theoretical positive-
frequency strain with Lorentz violation takes the simple
form

h(D) = Aei(ψ+δ)(F0 cosβ − i ~F · ς̂ sinβ) , (42)

where

ς̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) (43)

is the Stokes rotation axis discussed in the Appendix.
It is the normalized Stokes vector for the faster eigen-
mode and depends on the birefringence angles ϑ and ϕ
defined in Eq. (15). The negative-frequency strain can
be found using h(D)(f) = h∗(D)(−f), ensuring that the

time-domain strain is real.
We emphasize that Eq. (42) gives the leading-order

theoretical strain signal for any realistic extension of lin-
earized gravity, including all possible Lorentz-breaking
and Lorentz-invariant modifications.
The unconventional effects in a given event are com-

pletely determined by the common phase δ, the birefrin-
gent phase β, and the ϑ and ϕ angles. The conventional
degrees of freedom are those in the chirp amplitude A(f)

and phase ψ(f) functions and in the Stokes-like parame-
ters

F0 = 1
2

(
F ∗
(+2)Y(+2) + F ∗

(−2)Y(−2)

)
,

F1 = 1
2

(
F ∗
(−2)Y(+2) + F ∗

(+2)Y(−2)

)
,

F2 = i
2

(
F ∗
(−2)Y(+2) − F ∗

(+2)Y(−2)

)
,

F3 = 1
2 (F

∗
(+2)Y(+2) − F ∗

(−2)Y(−2)

)
. (44)

These complex factors represent a distillation of all the
usual directional degrees of freedom.
The strain in the Lorentz-invariant case is hLI(D) =

F0Aeiψ . In this limit, the incident polarization depends
on the location and orientation of the source relative to
the Earth but is the same for all frequencies. The conven-
tional direction factor F0 accounts for the polarization of
the incident wave and its alignment relative to the arms
of the detector.
In Lorentz-violating cases with birefringence, different

frequencies can have different polarizations, which gives
additional f dependence characterized by the terms in
brackets in Eq. (42). While nonbirefringent Lorentz vi-
olation affects the phase of the signal, birefringence can
alter both the phase and the amplitude. The changes
in amplitude can by isolated by considering the spectral
density

|h(D)|
2 = A2

(
|F0|2 cos2 β + | ~F · ς̂ |2 sin2 β

+ Im(F0∗ ~F · ς̂) sin 2β)
)
. (45)

Deviations from the expected spectral density |F0|2A2

provide a generic signature of birefringence due to
Lorentz violation.

C. Special cases

Equation (42) provides a general framework for
searches Lorentz violation in chirp signals. While the
SME describes an endless variety of possible Lorentz vio-
lations, experimental limitations likely preclude a broad
search. It is therefore useful to focus on the three main
classes of violations controlled by the three different coef-
ficient combinations in Eq. (11). We again consider each
case in turn.
Nonbirefringent violations. Setting all but the k

(d)
(I)jm

coefficients to zero yields the nonbirefringent limit. In
this limit, the strain becomes

h(D) = F0Aei(ψ+δ) . (46)

This simply adds the Lorentz-violating phase δ =
(2πf)d−3 τ ς(d)0 to the conventional phase function ψ.
The modifications exist for even d ≥ 4, but dispersion
results only when d ≥ 6. Figure 1 shows an example of
dispersion in the strain signal for d = 6 Lorentz viola-
tions. A single point source can constrain one direction-
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FIG. 1: Time-domain strain for nonbirefringent dispersion
with τς(6)0 = 20T 3 (black) and the Lorentz-invariant limit
(gray). The Lorentz-invariant strain is generated using the
amplitude and phase functions in Ref. [54] with mass ratio
η = 1

4
.

dependent coefficient combination ς(d)0, for fixed d. Mea-
surements from multiple sources at different locations on

the sky could be combined to limit the entire k
(d)
(I)jm co-

efficient space.
A single source can, however, constrain the isotropic

limit. At each d, there is one isotropic coefficient k
(d)
(I)00.

Setting all other coefficients to zero yields a simple one-
parameter special case with Lorentz-violating phase

δiso = 1√
4π

(2πf)d−3 τ k
(d)
(I)00 . (47)

This produces polarization- and direction-independent
dispersion. Isotropic dispersion of the form ω2 = |~p|2 +
A|~p|α has been considered [14]. This formalism maps
to SME parameters through α = d − 2 and A =

−
√
1/π k

(d)
(I)00. Note that this implies that α is an even

positive integer. Other values of α may occur in gauge-
breaking theories or in non-field-theoretic descriptions of
gravity, but both of these possibilities likely produce ad-
ditional effects beyond simple dispersion. Odd α values
do appear in the CPT-odd birefringent case discussed be-
low. However, dispersion in that case is accompanied by
changes in polarization.

CPT-odd birefringence. Taking nonzero k
(d)
(V )jm coeffi-

cients gives the CPT-odd birefringent case. The result

can be written in term of the phase δψ = (2πf)d−3τς
(d)
(0) ,

for odd d ≥ 5. The positive-frequency strain reduces to

h(D) = Aeiψ(F0 cos δψ − iF3 sin δψ) , (48)

and the spectral density becomes

|h(D)|
2 = A2

(
|F0|2 cos2 δψ + |F3|2 sin2 δψ

+ Im(F0∗F3) sin 2δψ
)
. (49)

Figure 2 shows an example of the theoretical strain from
d = 5 CPT-odd birefringence. As in the nonbirefringent
case, multiple sources at different locations on the sky are

required to fully constrain the k
(d)
(V )jm coefficient space for

fixed d. This case also contains an isotropic limit, where

δψiso = 1√
4π

(2πf)d−3τk
(d)
(V )00 . (50)

A single source can fully constrain this simple special
case.

-200 -150 -100 -50 0 50
-1

0

1

0 0.05 0.1 0.15
-2
0
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FIG. 2: (a) Time-domain strain and (b) base-10 logarithm of

the spectral density for CPT-odd birefringence with τς
(5)

(0)
=

10T 2 (black). The Lorentz-invariant limit (gray) is generated
using the phase and amplitudes from Ref. [54] with mass ra-
tio η = 1

4
. The merger is positioned so that the incident

wave is linearly polarized in the Lorentz-invariant limit, and
the detector arms are aligned to maximize the conventional
sensitivity.

CPT-even birefringence. For the CPT-even birefrin-

gent case, we take k
(d)
(E)jm and k

(d)
(B)jm coefficients to be

nonzero. For fixed d, the strain is then given by Eq. (42),
with δ = 0, birefringent phase

β = (2πf)d−3τ
∣∣ς(d)(+4)

∣∣ , (51)

and

~F · ς̂ = F1 cosϕ+ F2 sinϕ . (52)

Using this direction factor in Eq. (45) gives the spectral
density. The effects are therefore governed by the magni-

tude and phase of the coefficient combination ς
(d)
(+4). No

isotropic limit exists in this case. This is because the ±4-

helicity ς
(d)
(±4) combinations couple the circular polariza-

tions h(±2), giving a change of ±4 in helicity. Only scalar
helicity-zero functions contain isotropic components, so
violations of this type are necessarily anisotopic.
In both birefringent cases, the unlikely possibility ex-

ists that the observed gravitational wave is produced in
one of the propagating eigenmodes. For the CPT-odd
case, the eigenmodes are circularly polarized, implying
that the Earth would need to lie on the z axis of the
merger frame. The wave then maintains a fixed polar-
ization, and the direction factors obey F3 = ±F0. For
the CPT-even case, the eigenmodes are linearly polar-
ized, which means the Earth lies in the x-y plane of the
merger frame, and the plane is aligned with a polariza-
tion axis of one of the eigenmodes. In this scenario, the

direction factor satisfies ~F · ς̂ = F0 for the fast mode
and ~F · ς̂ = −F0 for the slow mode. In both the CPT-
odd and CPT-even cases, the polarization would be un-
affected and there would be no sign of Lorentz violation
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in the spectral density. However, the birefringent phase
β produces dispersion and therefore still results in a de-
formed strain.

IV. SUMMARY AND DISCUSSION

In this paper, we derive and study signals for Lorentz
violation in gravitational waves. We work in the
linearized-gravity limit of the SME and consider all pos-
sible violations that preserve the usual gauge invariance.
The violations involve d− 2 spacetime derivatives of the
metric perturbation hµν , where d is the mass dimension
of the corresponding operator in the action, in natural
units.
Leading-order plane-wave solutions are found in Sec.

II. Lorentz violation results in two propagating modes
with conventional leading-order polarizations. The
modes can propagate at different frequency-dependent
phase velocities, resulting in both dispersion and bire-
fringence. While the effects depend on the propagation
direction in general, one isotropic coefficient for Lorentz
violation exists at each dimension d that gives direction-
independent modifications. Equation (22) gives the ef-
fects of Lorentz violation on the circular-polarization
components of a wave after propagating an astrophysical
distance in terms of its Lorentz-invariant limit. Equation
(24) gives the effects for the linear polarizations.
Signals of Lorentz violation in waves from coalescing

binaries are derived in Section III. The key result is
the detector-specific theoretical strain given in Eq. (42).
While the emphasis of this paper is Lorentz violation,
Eq. (42) describes in general the leading-order effects of
any extension of linearized gravity, including all possible
Lorentz-violating and Lorentz-invariant terms.
The theoretical chirp signal involves a number of un-

known parameters that can only be determined through
observation. The wave depends on the total binary mass
M , the mass ratio η, and the redshift z. The spins of
the objects may also play a role. There are two angles θ
and φ that specify the location of the binary relative to
the Earth. Two more angles αy and αz characterize its
orientation.
Lorentz violation introduces a frequency-dependent

common phase δ, which produces dispersion but no bire-
fringence. It also results in a frequency-dependent bire-
fringent phase β that gives both dispersion and birefrin-
gence. Birefringence produces changes in the polariza-
tion of the wave, which also depends on two angles ϑ
and ϕ that determine the polarizations of the propagat-
ing eigenmodes. For a given source with propagation
direction v̂, all the Lorentz-violating parameters can be
written in terms v̂-dependent combinations of spherical
coefficients for Lorentz violation using Eq. (11).
While the formalism developed here can be used to

search for general Lorentz violations, forming a complete
picture of a merger is challenging even in the usual case,
due in part to the large number of degrees of freedom.

The task can be simplified by focusing on one of three
limiting cases: nonbirefringent violations, CPT-odd bire-
fringent violations, and CPT-even birefringent violations.

Nonbirefringent dispersion results from the k
(d)
(I)jm co-

efficients for Lorentz violation. Dispersion deforms chirp
waveforms by adding unconventional frequency depen-
dence ∼ fd−3 to the phase. A single source can be used
to limit the direction-dependent coefficient combination
ς(d)0 in Eq. (11) for d = 6, 8, . . .. Results from multiple
sources at different locations on the sky could be com-

bined to constrain the k
(d)
(I)jm spherical coefficients for

Lorentz violation for fixed dimension d.
While birefringent Lorentz violation comes with dis-

persion, a key signature differentiating it from the non-
birefringent case is a change a polarization that evolves as
the wave propagates. The conventional case is expected
to give a frequency-independent polarization, so a polar-
ization that changes with frequency is an indicator for
birefringent Lorentz violation.
While a single detector measures a single polarization

component, a wave’s polarization can in principle be re-
constructed by combining the strain data from multiple
detectors. Alternatively, signs of birefringence can be
found in the spectral density. The spectral density of the
strain is insensitive to the phase of incident wave and is
therefore insensitive to dispersion. Changes in polariza-
tion due to birefringence distort a detectors response to
a wave, affecting the strain amplitude. As a result, the
spectral density is highly sensitive to frequency depen-
dence in the polarization. The general predicted spectral
density with Lorentz violation is given in Eq. (45). A
deviation for the expected power law during the inspiral
could be a signal of birefringence, for example.
CPT-odd and CPT-even birefringence each produce

distinctive changes in the polarization. The k
(d)
(V )jm co-

efficients give CPT-odd birefringence, which leads to a
simple frequency-dependent rotation of the polarization
about the propagation direction. The result is a change
in the polarization angle but no change in the degree of
linear or circular polarization. CPT-even birefringence

stems from the k
(d)
(E)jm and k

(d)
(B)jm coefficients for Lorentz

violation. The effects in the CPT-even case are more
complicated, giving a change in the polarization angle
and the degrees of linear and circular polarization.
Because the effects of Lorentz violation depend on the

direction of propagation and the polarization, some waves
may experience minimal defects even if Lorentz violation
is significant in general. This leads to a potential se-
lection bias that is common in other astrophysical tests.
Dispersion and birefringence may distort a gravitational
wave to the point where it is no longer recognizable as
a potential chirp event. The detected waves may be
those that happen to propagate in particular directions
and have particular polarizations that produce very little
change. This possibility can be ruled out experimentally
by constraining the underlying coefficients for Lorentz
violation through observations of multiple sources at dif-
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ferent points on the sky and with different polarizations.

The precision at which Lorentz violation can be tested
in a gravitational wave is largely determined by the ef-
fective propagation time τ and the chirp time constant
T . The effects of Lorentz violation may be significant
when the phase in Eq. (19) is of order one. Frequen-
cies up to ∼ 1/T contribute to the chirp, so gravitational
waves are expected to test combinations of coefficients
for Lorentz violation at levels approaching ∼ T d−3/τ .
Assuming propagation distances on the order of a Gpc
and a total mass of around fifty solar masses, this gives
an approximate sensitivity at the level of ∼ 10−16 m to
d = 5 coefficients and ∼ 10−11 m2 to d = 6 coefficients.

At present, few gravitational-wave bounds exist on the
spherical coefficients for Lorentz violation. Estimated
limits on birefringence in GW150914 have been used to

bound one combination of d = 5 CPT-odd k
(5)
(V )jm coef-

ficients at the level of 10−14 m and one combination of
d = 6 CPT-even k

(6)
(E)jm and k

(6)
(B)jm coefficients at the

level of 10−8 m2 [12]. More sophisticated analyses will
likely achieve sensitivities orders of magnitude beyond
these bounds.

The best constraints on k
(6)
(I)jm coefficients come from

the absence of gravitational Čerenkov radiation in high-
energy cosmic rays [21]. Lorentz violation in gravity can
lead to subluminal wave speeds. High-energy particles
traveling faster than gravity will radiate gravitational
waves, losing energy. Observations of high-energy cosmic
rays place stringent limits on the coefficients for Lorentz
violation responsible for the changes in velocity. The
high energies involved mean Lorentz invariance is tested
at much higher frequencies, giving sensitivities that are
many orders of magnitude beyond what can be achieved
through observations of low-frequency mergers. However,
Čerenkov studies generally make a number of simplifying
assumptions concerning Lorentz violation in the cosmic-
ray particles and their interactions with gravity, assump-
tions that may not hold in nature. By contrast, disper-
sion and birefringence provide clean signatures of Lorentz
violation in pure gravity, completely independent of vio-
lations in other sectors.

Tests of short-range gravity have also placed con-
straints on d = 6 Lorentz violations [30]. Binary-merger
observations are expected to give sensitivities to d = 6
violations that are several orders of magnitude better
than short-range tests. Due to the long wavelengths of
the gravitational waves and the sub-millimeter reach of
the laboratory tests, short-range gravity experiments will
likely achieve better sensitivities to higher-d violations.
Note, however, that these tests should be viewed as com-
plementary since gravitational waves provide access to
the “vacuum” coefficients in Table I, while short-range
experiments are sensitive to a different set of “Newton”

coefficients k
N(d)
jm . Each of these sets of coefficients are

different combinations of the underlying coefficients for
Lorentz violation in Eq. (2), so the two classes of ex-
periment test fundamentally different forms of Lorentz

violation.
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APPENDIX: STOKES PARAMETERS

As with electromagnetic radiation, one can define grav-
itational Stokes parameters that characterize the power
associated with different polarizations. They also provide
a simple picture for the effects of birefringence. While
birefringence generally produces complicated changes in
the polarization of a wave, the effects can be understood
as a simple rotation of the Stokes parameters [22].
While gauge-invariant extensions of general relativity

can in principle give up to 6 polarizations, resulting in
36 gravitational Stokes parameters [57], the limit con-
sidered in this work produces two propagating modes
with conventional leading-order polarizations. For posi-
tive frequencies, we define four real gravitational Stokes
parameters

S0 = |h(+)|
2 + |h(×)|

2 = 1
2

(
|h(+2)|

2 + |h(−2)|
2
)
,

S1 = |h(+)|
2 − |h(×)|

2 = Re
(
h∗(+2)h(−2)

)
,

S2 = 2Re
(
h∗(+)h(×)

)
= Im

(
h∗(+2)h(−2)

)
,

S3 = 2 Im
(
h∗(+)h(×)

)
= 1

2

(
|h(+2)|

2 − |h(−2)|
2
)
. (53)

The Stokes parameters obey (S0)2 = ~S 2, where ~S =
(S1, S2, S3) is the Stokes vector. The Stokes vector
can also be written in terms of ±4-helicity components
S(±4) = S1 ∓ iS2 and a 0-helicity component S(0) = S3.
Some understanding of the Stokes parameters can be

gained by parameterizing an arbitrary polarization using
the form

h(±2) = a
(
cos χ2 ± sin χ

2

)
e∓iζ/2 , (54)

where −π
2 ≤ χ ≤ π

2 and 0 ≤ ζ < 2π. In the linear basis,
we can write this as

(
h(+)

h(×)

)
= a

(
cos ζ2 − sin ζ

2

sin ζ
2 cos ζ2

)(
cos χ2
i sin χ

2

)
. (55)

This gives general elliptical polarization along rotated
axes ê1 = cos ζ4 êθ + sin ζ

4 êφ and ê2 = cos ζ4 êφ − sin ζ
4 êθ,

implying that ζ
4 is the linear polarization angle. The

angle χ determines the degree of circular polarization,
with χ = 0 for linear, χ = π

2 for right-handed circular,
and χ = −π

2 for left-handed circular polarizations.
In terms of ζ and χ, the Stokes parameters are

S0 = |a|2 , ~S = S0
(
cosχ cos ζ, cosχ sin ζ, sinχ

)
. (56)
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Each Stokes vector ~S defines a unique point on a sphere
of radius S0 analogous to the Poincaré sphere from op-
tics. Every point on the sphere represents a unique po-
larization. Points in the S1-S2 plane are the linear po-
larizations, with h(+) on the positive S1 axis and h(×)

on the negative S1 axis. The upper hemisphere, with
S3 > 0, contains all right-handed elliptical polarizations,
and the lower hemisphere gives left-handed elliptical po-
larizations. The poles correspond to the two circular po-
larizations. In general, orthogonal polarizations point to
opposite points on the sphere. The degree of linear po-
larization is cosχ, and sinχ gives the degree of circular
polarization.
Assuming Eq. (31), the Lorentz-invariant Stokes pa-

rameters for a merger are

S0
LI = 1

2 |u|
2(cos8 θ2 + sin8 θ2 ) ,

S1
LI = |u|2 sin4 θ2 cos

4 θ
2 ,

S2
LI = 0 ,

S3
LI = 1

2 |u|
2(cos8 θ2 − sin8 θ2 ) , (57)

in the merger frame. Note that this only depends on the
merger-frame polar angle θ. This shows that we get right-
handed circular polarization along the +z merger axis
and left-handed circular polarization along the -z axis.
Waves traveling in the x-y plane are linearly polarized.
All linear and elliptical polarizations have a polarization
angle of ζ4 = 0. In the Sun frame, the Stokes parameters

are SµLI = |u|2SµY , where S
µ
Y are the Stokes parameters

constructed from the direction factors in Eq. (36).
The Lorentz-violating parameters in Eq. (10) can be

thought of as conveniently normalized Stokes parameters
for the birefringent eigenmodes. The vector

~ς =
(
1
2 (ς(+4) + ς(−4)),

i
2 (ς(+4) − ς(−4)), ς(0)

)
(58)

points in the direction of the Stokes vector for the faster
eigenmode and opposite the vector for the slower mode.
Note, however, that (ς0)2 6= ~ς 2.
Changes in polarization due to birefringence will cause

the Stokes vector ~S of a wave to evolve as it propagates.

Only waves with ~S along ~ς , corresponding to one of the
eigenmodes, will remain unaltered. To find the effects
for other polarizations, we define the orthonormal Stokes
basis

ς̂ = ~ς/|~ς | = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ,

ϑ̂ = (cosϑ cosϕ, cosϑ sinϕ,− sinϑ) ,

ϕ̂ = (− sinϕ, cosϕ, 0) , (59)

in terms of the birefringence angles ϑ and ϕ. Expanding

an arbitrary Stokes vectors in this basis, ~S = Sς ς̂+Sϑϑ̂+
Sϕϕ̂, we arrive at a set of Stokes parameters associated
with the eigenmodes,

Sς = 1
2

(
|h(f)|

2 − |h(s)|
2
)
,

Sϑ = Re
(
h∗(f)h(s)

)
, Sϕ = Im

(
h∗(f)h(s)

)
. (60)

An eigenmode differs from its Lorentz-invariant limit by
a phase, h(f,s) = eiδ∓iβhLI(f,s), giving

Sς = SςLI ,

Sϑ = cos(2β)SϑLI − sin(2β)SϕLI ,

Sϕ = cos(2β)SϕLI + sin(2β)SϑLI . (61)

This shows that the Stokes vector with Lorentz violation
~S can be obtained from the Stokes vector without Lorentz
violation ~SLI by rotating ~SLI about the axis ς̂ by angle 2β,
which is the change in relative phase due to birefringence.

In the CPT-odd case, where ϑ = 0 or ϑ = π, the
rotation axis ς̂ points to one of the poles of the Poincaré
sphere. Birefringence causes a rotation about the S3 axis
by δζ = ±2β, changing the linear polarization angle by
±β/2.

For the CPT-even birefringence, where ϑ = π/2, the
rotation axis ς̂ lies in the S1-S2 plane at an angle ϕ from

the S1 axis. Unless ~SLI happens to align with ς̂ , the
Stokes vector rotates on a cone centered around ς̂ . This
causes changes in both the ζ and χ polarization angles.
The linear polarization angle changes, as do the degree
of linear polarization and degree of circular polarization.

The Stokes parameters can also be used to track the
evolution of the polarization as it propagates from the
source to the observer. The infinitesimal change in phase
dψ± = dψ0 + ω(−ς0 ± |~ς |)dl changes the eigenmodes by
dh(f,s) = −idψ±h(f,s). The result is an infinitesimal ro-
tation of the Stokes parameters about ς̂. The rotation
can be written

d~S

dl
= 2ω~ς × ~S , (62)

giving right-handed rotations of ~S about ς̂ at a rate of
2ω|~ς|.
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[10] V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
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