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An excess of ∼10-20 GeV cosmic-ray antiprotons has been identified in the spectrum reported by
the AMS-02 Collaboration. The systematic uncertainties associated with this signal, however, have
made it difficult to interpret these results. In this paper, we revisit the uncertainties associated
with the time, charge and energy-dependent effects of solar modulation, the antiproton production
cross section, and interstellar cosmic-ray propagation. After accounting for these uncertainties, we
confirm the presence of a 4.7σ antiproton excess, consistent with that arising from a mχ ≈ 64− 88
GeV dark matter particle annihilating to bb̄ with a cross section of σv ' (0.8− 5.2)× 10−26 cm3/s.
If we allow for the stochastic acceleration of secondary antiprotons in supernova remnants, the data
continues to favor a similar range of dark matter models (mχ ≈ 46−94 GeV, σv ≈ (0.7−3.8)×10−26

cm3/s) with a significance of 3.3σ. The same range of dark matter models that are favored to explain
the antiproton excess can also accommodate the excess of GeV-scale gamma rays observed from the
Galactic Center.

I. INTRODUCTION

Measurements of antimatter in the cosmic-ray spec-
trum have long been used to advance our understand-
ing of high-energy phenomena in the Galaxy [1–5] . To
this end, AMS-02 has measured the cosmic-ray antipro-
ton spectrum and antiproton-to-proton ratio [6], and are
searching for cosmic-ray antimatter nuclei [7]. Measure-
ments such as these provide a powerful way to search for
new physics, including the annihilation or decay of dark
mater particles in the halo of the Milky Way.

Over the past several years, a number of groups have
reported the presence of an excess of ∼10-20 GeV an-
tiprotons, consistent with the annihilation products of
dark matter [8–12]. Moreover, an excess of GeV-scale
gamma-rays from the Inner Galaxy has now been firmly
confirmed [13–19]. Although these two signals are sensi-
tive to very different systematic uncertainties and back-
grounds, it is intriguing that they could both be ex-
plained by a ∼60 GeV dark matter particle with an an-
nihilation cross section near that predicted for a generic
thermal relic [17, 20–23]. The concordance between these
two signals is suggestive and provides considerable mo-
tivation for additional indirect searches for dark matter
(see e.g. Refs. [24, 25]).

Taken at face value, the statistical significance of the
AMS-02 antiproton excess is quite high. The authors of
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Ref. [11], for example, assess the significance of this sig-
nal to be ∼ 4.5σ. It is somewhat challenging, however, to
quantify the systematic uncertainties associated with this
excess, including, i) uncertainties associated with the in-
jected spectra of cosmic-ray protons, helium, and heavier
nuclei, ii) uncertainties associated with the propagation
of cosmic rays through the interstellar medium (ISM),
iii) uncertainties associated with the antiproton produc-
tion cross sections for proton-proton, proton-nucleon and
nucleon-nucleon inelastic collisions, and iv) uncertain-
ties associated with the impact of the solar wind on the
cosmic-ray spectra observed at Earth [26].

The remainder of this article is structured as follows.
In Sec. II we describe our treatment of the systematic
uncertainties listed in the previous paragraph. We then
present our main results in Sec. III, finding that the
antiproton-to-proton ratio measured by AMS-02 favors
the presence of a contribution from annihilating dark
matter at the level of 4.7σ. In Sec. IV, we discuss how the
stochastic acceleration of antiprotons in supernova rem-
nants can impact our results, favoring a similar range of
dark matter models but with a somewhat lower statisti-
cal significance of 3.3σ. The inclusion of this contribution
also leads to a better fit to the antiproton spectrum at
energies above ∼100 GeV. In Sec. V we summarize our
results and discuss them within the larger context of in-
direct searches for annihilating dark matter.
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ISM Model δ zL(kpc) D0 × 1028 (cm2/s) vA (km/s) dvc/d|z| (km/s/kpc) α1 α2 Rbr (GV)
I 0.40 5.6 4.85 24.0 1.0 1.88 2.38 11.7
II 0.50 6.0 3.10 23.0 9.0 1.88 2.45 11.7
III 0.40 3.0 2.67 22.0 3.0 1.87 2.41 11.7

TABLE I. The parameters for the cosmic-ray injection and propagation models used in this study. Each of these models
provides a good overall fit to the observed cosmic-ray proton, helium, carbon, and boron-to-carbon ratio spectra up to 200
GV [26, 27]. These ISM parameters are not picked in advance to fit the p̄/p ratio.

II. METHODOLOGY AND ASSUMPTIONS

In this section, we describe our efforts to quantify the
systematic uncertainties associated with the cosmic-ray
antiproton spectrum. Readers interested only in the re-
sults of our analysis may feel free to skip to Sec. III.

A. Cosmic-Ray Injection and Propagation in the
Interstellar Medium

Antiprotons can be produced as secondary cosmic rays
when energetic cosmic-ray primaries (i.e. cosmic rays ac-
celerated by supernova remnants) collide with interstellar
gas. Cosmic rays that acquire their energy through first
order Fermi acceleration are generally expected to ex-
hibit a power-law spectrum, dN/dE ∝ E−α, with a typ-
ical spectral index of α ∼ 2.0 (see e.g. Ref. [28]). A large
number of supernova remnants contribute to the cosmic-
ray spectrum, with a variety of ages and at a range of
distances from the Solar System. In our calculations, we
adopt the following parameterization for the average in-
jected spectra of cosmic-ray protons and nuclei:

dN/dR ∝

{
R−α1 , for R < Rbr

R−α2 , for R > Rbr,
(1)

where R is the cosmic-ray rigidity (the momentum-to-
charge ratio). For simplicity, we adopt the same values
of α1, α2 and Ebr for protons, helium and other nuclear
species, and do not account for the spectral hardening
that has been observed at rigidities above ' 200 GV in
proton, He, Li, Be, B, C, and O cosmic rays [29–32].
While ignoring the possibility of a spectral break above
200 GV could impact the antiproton flux by ' 1% at 1
GV (2%, 20% at 10 and 100 GV, respectively), such a
feature cannot produce any spectral features in the ∼10-
20 GeV range and has a negligible impact on our results.
Furthermore, given that the B/C ratio shows no evidence
of such hardening [33], we conclude that this high-energy
spectral feature is likely to be the result of variations in
the local source distribution, not unlike that observed in
the spectrum of cosmic-ray positrons produced by pulsars
(see e.g. Refs. [34, 35]).

Once injected into the ISM, cosmic rays undergo diffu-
sion, convection, and diffusive reacceleration (more mas-
sive nuclei may also experience fragmentation). Energy
losses for cosmic-ray nuclei by ionization and Coulomb

collisions are also included but have a subdominant im-
pact on our results. We take each of these processes into
account by solving the cosmic-ray transport equation nu-
merically, using the publicly available code Galprop v54
1.984 [36–39].

To model the effects of isotropic and homogenous
transport throughout a zone extending up to a half-
height of zL from the Galactic Disk, we adopt the fol-
lowing diffusion coefficient:

Dxx(R) = βD0(R/4 GV)δ, (2)

where β ≡ v/c and δ is the diffusion index associated to
the spectral index of magnetohydrodynamic turbulence
in the ISM. Typical values for δ are 0.33 for Kolmogorov
turbulence [40] and 0.5 for the Kraichnan case [41]. Val-
ues within this range are generally consistent with the
existing body of cosmic-ray data (see e.g. Ref. [42]).

Diffusive reacceleration is described by a diffusion co-
efficient in momentum space [43],

Dpp ∝
R2v2

A

Dxx(R)
, (3)

where the Alfvén speed, vA, is the speed at which hydro-
magnetic waves propagate in the ISM plasma.

The convective wind speed, vc, has a gradient perpen-
dicular to the Galactic Plane,

vc =
dvc
d|z|
|z|. (4)

To constrain the above parameters, we follow the pro-
cedure described in Refs. [26, 27], using data from AMS-
02, PAMELA and Voyager 1. Previous studies have
found the ∼10-20 GeV antiproton excess to be robust
to variations in the values of these parameters [8, 11, 12].
Instead of repeating the same procedure here, we chose
to adopt three representative models for cosmic-ray injec-
tion and transport (see Table I), each of which provides
a good overall fit to the observed cosmic-ray proton, he-
lium, carbon, and boron-to-carbon ratio spectra up to
200 GV (see also Table I of Ref. [26]).1

1 Our ISM models "I", "II" and "III" are the same as ISM models
"C", "E and "F" from our previous work in Ref. [26, 27]. We find
that if we add the ISM models "A", "B" and "D" from Ref. [27],
our results regarding the GeV p̄/p excess at the 5-20 GeV in Ekin
fall within the same range of significance.
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B. The Antiproton Production Cross Section

The production of antiprotons in the inelastic collisions
of high-energy nuclei has been studied at a number of col-
lider experiments [44–52], and this information has been
parameterized in several different forms [53–59]. Most
of the existing work on this subject has focused on the
direct productions of antiprotons in proton-proton colli-
sions. Also relevant to the problem at hand is the pro-
duction of antineutrons, which lead to the production of
antiprotons through their decay in the ISM. Furthermore,
significant uncertainties apply to the rate of antiproton
production from helium and other nuclei, which are col-
lectively responsible for approximately 40% of the overall
flux.

Using Galprop, we account for the production of an-
tiprotons from all cosmic-ray species [60]. Based on
Ref. [56], the 3σ uncertainty on σpp→X+p̄ is about ' 40%
for antiprotons with a kinetic energy of 1 GeV. This
uncertainty is energy dependent, as shown in Fig. 8 of
Ref. [56]. Following up on our previous work [26], we
first evaluate the antiproton flux for a given cosmic-ray
transport model and cross section, and then marginalize
over a flat prior within the energy-dependent 3σ uncer-
tainties on the antiproton production cross section, as
quoted in Ref. [56]. We do this through the following
energy-dependent scaling factor:

NCS(Ekin) = a+ b ln

(
Ekin

GeV

)
+ c

[
ln

(
Ekin

GeV

)]2

. (5)

The parameters a, b and c and are allowed to vary over a
large range of values in order to cover the range quoted in
Ref. [56]. By allowing this energy dependent cross section
to vary without penalty within the quoted 3σ uncertain-
ties, we are conservatively allowing for a generous range
of behavior in our analysis. By including a greater degree
of flexibility in this parameterization (e.g. a term pro-
portional to [ln(Ekin/GeV)]3), one could absorb much of
the ∼10-20 GeV excess observed in the cosmic-ray an-
tiproton spectrum. We emphasize, however, that the
terms contained in Eq. 5 more than adequately encom-
pass the physically plausible range of uncertainties associ-
ated with this quantity. Moving forward, high precision
laboratory measurements of the antiproton production
cross section could reduce these uncertainties and sub-
stantially increase our ability to search for dark matter
annihilation products in the cosmic-ray spectrum.

C. Solar Modulation

As cosmic rays enter the Solar System, their spectra
are modulated by the solar wind and its embedded mag-
netic field. We use the standard formula to model the

impact of the modulation potential [61]:

dN⊕

dEkin
(Ekin) =

(Ekin +m)2 −m2

(Ekin +m+ |Z|eΦ)2 −m2

× dN ISM

dEISM
kin

(Ekin + |Z|eΦ), (6)

where Ekin is the kinetic energy of the cosmic ray mea-
sured at Earth, Ze and m are the charge and mass of
the cosmic ray, dN⊕/dEkin is the spectrum measured
at Earth and dN ISM/dEISM

kin is the spectrum present in
the ISM, prior to the effects of solar modulation. Based
on Ref. [27], we adopt the following rigidity, time and
charge-dependent modulation potential:

Φ(R, t, q) = φ0

(
|Btot(t)|

4 nT

)
+ φ1N

′(q)H(−qA(t)) (7)

×
(
|Btot(t)|

4 nT

)(
1 + (R/R0)2

β(R/R0)3

)(
α(t)

π/2

)4

,

where Btot(t) is the strength of the heliospheric magnetic
field at Earth (as measured by ACE [62]), A(t) is its po-
larity, and α(t) is the tilt angle of the heliospheric current
sheet (based on models provided by the Wilcox Solar Ob-
servatory [63]). R is the rigidity of the cosmic ray prior
to entering the Solar System, and R0 ≡ 0.5 GV.

To model the uncertainties associated with solar modu-
lation, we allow for 0.32 ≤ φ0 ≤ 0.38 GV and 0 ≤ φ1 ≤ 16
GV, each of which represent the 2σ range presented in
Ref. [26]. The quantity N ′(q), along with averaged values
of Btot(t) and α(t), are given in Table II of Ref. [26] for
each six-month interval. We perform the Solar modula-
tion correction over each of the these six-month intervals
and calculate the averaged spectra before comparing to
the data (see Refs. [26, 27] for further details).

III. RESULTS

A. Fitting the Antiproton-to-Proton Ratio
Without Dark Matter

We begin by considering the antiproton-to-proton ra-
tio presented by the AMS-02 Collaboration [6], perform-
ing the fit without any contribution from dark matter or
other exotic physics. We treat the astrophysical and par-
ticle physics uncertainties as described in the previous
section, and consider each model for the injection and
propagation in the ISM independently (see Table I). For
each ISM model, we scan across a six-dimensional grid
(φ0, φ1, a, b, c, and the normalization of the ISM gas
density), calculating the log-likelihood for each point in
this parameter space and then selecting the combination
of values that provides the best fit to the data. The re-
sults of our fit are shown in Fig. 1. The grey band shown
in each frame represents the combined uncertainties as-
sociated with solar modulation and the antiproton pro-
duction cross section. Although these bands are quite
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FIG. 1. The best-fit antiproton-to-proton ratio (gray solid line), without any contribution from annihilating dark matter. From
left-to-right, each frame corresponds to a different model for the injection and propagation of cosmic rays in the ISM (see
Table I). The grey bands represent the combined uncertainties associated with solar modulation and the antiproton production
cross section, which we marginalize over (and which are highly correlated between spectral bins). In the bottom panels, we
show the difference between the measured and predicted values of the antiproton-to-proton ratio. The data points shown refer
to the observations of AMS-02 as presented in Ref. [6].

wide, we emphasize that these uncertainties are highly
correlated, and are not generally capable of producing (or
absorbing) narrow spectral features, such as those which
might arise from annihilating dark matter. In each case,
our model provides a reasonably good description of the
data, yielding a χ2 per degree-of-freedom of 0.79, 1.28
and 1.03 for ISM Models I, II and III, respectively (as
these error bars include both statistical and systematic
uncertainties, we caution that one cannot use these values
to formally address the quality of the fit). In the lower
frames of this figure, however, one can easily identify a
positive residual which appears at ∼10-20 GeV (and a
deficit at ∼5-10 GeV), as well as an excess at energies
above ∼100 GeV.

B. Including Annihilating Dark Matter

The spectrum of antiprotons produced in dark mat-
ter annihilation processes can be calculated using
Monte Carlo event generators such as PYTHIA [64] and
HERWIG [65]. In this study, we use the publicly avail-
able PPPC4DMID code [66] which provides the differential
spectra of antiprotons from DM annihilations, dNp̄/dEp̄.
Although throughout most of this study we focus on the
representative case of annihilations to bb̄, we consider in
the Appendix models in which the dark matter annihi-
lates to light quarks or to W+W−. The PPPC4DMID code
includes electroweak corrections which are important in
the case of heavy dark matter particles, when the anni-
hilation products can be highly boosted and emit aW or
Z before decaying or hadronizing [67].

For the distribution of dark matter in the Milky Way

we adopt an Navarro-Frenk-White (NFW) profile [68]:

ρ(r) =
ρ0

(r/rs)(1 + r/rs)2
. (8)

We set the normalization parameter, ρ0, such that the
local density (at r = 8.5 kpc) is 0.4 GeV/cm3 [69, 70]
and adopt a scale radius of rs = 20 kpc. We note that
the results presented here are not highly sensitive to the
choice of the halo profile. If we had instead adopted an
Einasto profile [71] or a profile with a slightly steeper
inner slope (as motivated by the observed profile of the
Galactic Center gamma-ray excess [17, 18]), the local an-
tiproton spectrum would be largely unaffected. The rea-
son for this is that most of the cosmic rays in the energy
range of interest originate from the surrounding few kpc,
and thus the dependence on the dark matter halo profile
is largely limited to the overall normalization (i.e. the
local density).

In Fig. 2, we show the impact of annihilating dark
matter on the fit to the antiproton-to-proton ratio for
the case of dark matter annihilating to bb̄. For the case
of the thermal relic benchmark cross section (shown as
a white dashed line [72]), this data excludes (at the 2σ
level) dark matter masses up to 47 GeV and between 136-
286 GeV, representing one of the strongest constraints
on annihilating dark matter. There are two regions of
parameter space, however, in which a dark matter anni-
hilation signal improves the quality of the fit. The best
overall fit is found for the case in which a mχ = 64− 88
GeV dark matter candidate annihilates with a cross sec-
tion of σv = (0.8 − 5.2) × 10−26 cm3/s. Such a contri-
bution improves the fit by 2∆ lnL = 22.0, 59.8 and 54.2
for ISM Models I, II, and III, respectively, correspond-
ing to a statistical preference between 4.7 and 7.7σ. It
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FIG. 2. The impact of a contribution from annihilating dark matter on the log-likelihood of the fit to the AMS-02 antiproton-
to-proton ratio, for the case of annihilations to bb̄. Each frame corresponds to a different model for cosmic-ray injection and
transport (see Table I) and we have marginalized over the parameters associated with the antiproton production cross section
and solar modulation (see Sec. II). In each frame we find a statistically significant (4.7σ or higher) preference for dark matter
with mχ = 64 − 88 GeV and σv = (0.7 − 5.2) × 10−26 cm3/s (see Table II). The solid black curve represents the 2σ upper
limit on the annihilation cross section. The dashed white curve denotes the annihilation cross section predicted for dark matter
in the form of a simple (s−wave) thermal relic. Note that the lowest value of 2∆ lnL shown in the color bar represents the
significance of the best-fit dark matter model in that frame.
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FIG. 3. As in Fig. 1, but including the best-fit contribution from annihilating dark matter (shown in each frame as a green
dashed line). In the lower frames, we plot the observed spectrum minus the astrophysical model, and thus these residuals
include the best-fit contribution from annihilating dark matter.

is noteworthy how similar these parameters are to those
that are required to generate the observed characteris-
tics of the Galactic Center gamma-ray excess [17, 18]. At
higher masses (>∼ 1 TeV), annihilating dark matter parti-
cles can also improve the fit to this dataset, although to
a lesser extent. We remind the reader that at each point
in the fit we have marginalized over the parameters asso-
ciated with the antiproton production cross section and
solar modulation as described in Sec. II, and therefore
our results indicate that the presence of this excess is
statistically significant, even in light of these systematic
uncertainties.

In Fig. 3, we show the spectrum of the antiproton-to-

proton ratio, including the best-fit contribution from an-
nihilating dark matter. The residual plots (lower frames)
clearly illustrate the preference for a contribution from
annihilating dark matter peaking in at energies near ∼10-
20 GeV. In the top three rows of Table II we summarize
our results, listing the values of the dark matter mass
and annihilation cross section that are favored by this fit,
for each of the three cosmic-ray injection and transport
models considered in this study. In each case, we find a
statistically significant preference for a contribution from
annihilating dark matter.

We note that our analysis arrives at qualitatively differ-
ent conclusions than those presented in Ref. [73], which
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FIG. 4. As in Fig. 2, but including a contribution from stochastically accelerated secondary antiprotons with values of KB and
ngas selected in order to provide a good fit the measured boron-to-carbon ratio. The presence of the accelerated secondaries
largely removes the excess above ∼100 GeV, erasing the preference seen in Fig. 2 for a ∼1-3 TeV dark matter particle. The
preference for a lighter dark matter particle largely persists, favoring mχ = 46 − 94 GeV and σv = (0.7 − 3.3) × 10−26 cm3/s
with a statistical significance of 3.3σ (see Table II).
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FIG. 5. As in Fig. 3, but including a contribution from stochastically accelerated secondary antiprotons with a values of KB

and ngas selected in order to provide a good fit the measured boron-to-carbon ratio.

finds that the statistical significance of the antiproton
excess can be reduced to approximately 2.2σ after sys-
tematic uncertainties are taken into account. We note
that there are many significant differences between the
cosmic-ray propagation models employed between these
papers. Most notably, the authors of Ref. [73] utilize
an analytic two-zone cosmic-ray propagation model, with
parameters that are tuned to the antiproton data, as well
as to the cosmic-ray positron flux. We utilize numeri-
cal cosmic-ray propagation models based on the Galprop
code, and choose not to normalize our astrophysical back-
ground models to cosmic-ray antiprotons (to avoid bias-
ing the results) or to the spectrum of cosmic-ray leptons
(which have vastly different cooling times). In addition,
there are significant differences in our modeling of the an-

tiproton production cross section and in our treatment of
solar modulation.

Up to this point, we have not considered the possibility
that secondary antiprotons could be accelerated in the
environments surrounding supernova remnants [26, 74–
78]. In the following section we will consider how such a
contribution could impact our results.

IV. STOCHASTIC ACCELERATION OF
SECONDARY COSMIC RAYS IN SUPERNOVA

REMNANTS

In the standard picture, cosmic rays are produced
when a supernova shockfront expands and sweeps
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FIG. 6. As in Figs. 2 and 4, but including a contribution from stochastically accelerated secondary antiprotons with a freely
floating value of ngas. The presence of the accelerated secondaries largely removes the excess above ∼100 GeV, erasing the
preference seen in Fig. 2 for a ∼1-3 TeV dark matter particle. The preference for a lighter dark matter particle largely persists,
favoring mχ = 46− 89 GeV and σv = (0.9− 3.8)× 10−26 cm3/s with a statistical significance of 3.4σ (see Table II).
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FIG. 7. As in Figs. 3 and 5, but including a contribution from stochastically accelerated secondary antiprotons with a freely
floating value of ngas

through the ISM, trapping particles within its turbulent
magnetic field structure long enough for them to be accel-
erated. These particle species can also interact with the
dense gas on either side of the shockfront. Cosmic rays
undergo inelastic scattering and decay at the following
rate:

Γi(Ekin) = σinelastic
i β c ngas +

1

Ekin τdeci

, (9)

where σinelastic
i and τdec

i are the inelastic scattering cross
section and lifetime of cosmic ray species, i, and ngas is
the number density of gas. If the timescale for accelera-
tion is much shorter than that of inelastic scattering or
decay, the secondaries will be efficiently accelerated. Fol-
lowing Refs. [74–76, 79], we assume Bohm diffusion for

the cosmic rays near the shockfront:

D±i (E) =
KB rL(E) c

3
(10)

= 3.3× 1022KB

(
1µG

B

)(
E

1GeV

)
Z−1
i cm2 s−1,

where rL the Larmor radius of the cosmic rays within
the magnetic fields and KB ' (B/δB)2 [74] quantifies
the turbulent nature of the magnetic fields around the
shockfront.

The contribution to the cosmic-ray antiproton spec-
trum from secondary acceleration depends on the value
of KB as well as the density of gas in the scattering re-
gion, ngas. Both of these parameters have a similar im-
pact on the resulting antiproton spectrum, with larger
values leading to a higher antiproton-to-proton ratio at
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ISM Model KB ngas (cm−3) mχ (GeV) σv (cm3/s) Statistical Preference
I – – 78.3± 4.9 (1.18± 0.18)× 10−26 4.7σ
II – – 71.0± 3.3 (2.37± 0.28)× 10−26 7.7σ
III – – 74.7± 3.8 (4.17± 0.53)× 10−26 7.4σ
I 3.05 2.0 (Fixed) 81.9± 6.1 (1.08± 0.19)× 10−26 3.3σ
II 5.2 2.0 (Fixed) 57.0± 3.1 (1.63± 0.08)× 10−26 5.1σ
III 3.7 2.0 (Fixed) 51.9± 2.8 (3.05± 0.14)× 10−26 5.6σ
I 6.1 0.39 (Float) 78.1± 5.5 (1.30± 0.17)× 10−26 3.4σ
II 10.4 1.28 (Float) 61.4± 2.5 (1.67± 0.10)× 10−26 4.6σ
III 7.4 1.57 (Float) 52.3± 3.3 (3.20± 0.30)× 10−26 5.1σ

TABLE II. The values of the dark matter mass and annihilation cross section favored by the AMS-02 antiproton-to-proton
ratio, for the case of annihilations to bb̄ and for each of the cosmic-ray injection and transport models listed in Table I. In
the top three rows, we have not included any contribution from the acceleration of secondary antiprotons. In the middle three
rows, secondary acceleration is included with values of KB and ngas chosen to reproduce the observed boron-to-carbon ratio. In
the bottom three rows, secondary acceleration is included with a freely floating value of ngas. The rightmost column indicates
the statistical preference for a contribution from annihilating dark matter in each case. We remind the reader that we have
marginalized over the parameters associated with the antiproton production cross section and solar modulation at each point in
the fit (see Sec. II) and thus conclude that the excess is statistically significant, even in light of these systematic uncertainties.

high energies. IncreasingKB or ngas will also increase the
boron-to-carbon ratio at high energies, and this informa-
tion can be used to independently constrain the values of
these parameters [26, 76, 80].

We begin by adopting values for these parameters that
provide a good fit to the observed boron-to-carbon ratio:
ngas = 2.0 cm−3 and KB = 3.05, 5.2 and 3.7 for ISM
models I, II and III, respectively [76, 80]. The results
for these cases are shown in Figs. 4 and 5. The pres-
ence of the contribution from accelerated secondaries al-
most entirely removes the excess at energies above ∼100
GeV, erasing the preference for ∼1-3 TeV dark matter
seen in Fig. 2 [26]. The evidence for a lighter dark
matter particle persists in the presence of accelerated
secondaries, however, favoring mχ = 46 − 94 GeV and
σv = (0.7− 3.3)× 10−26 cm3/s with a statistical signifi-
cance of 3.3σ (see Table II).

By fixing the values of KB and ngas in our calculations
to those which reproduce the observed boron-to-carbon
ratio, we are implicitly making the assumption that car-
bon and protons are accelerated in the same supernova
remnants. It is conceivable that carbon nuclei and pro-
tons are preferentially accelerated in different subsets of
the supernova remnant population, with different average
values of KB and ngas. With this possibility in mind, we
repeat the above fit, allowing the impact of secondary
acceleration to vary. In particular, we set KB = 6.1, 10.4
and 7.4 for ISM models I, II and III, respectively, and
allow the value of ngas to float freely in the fit (see Ta-
ble IV of Ref. [26]). We show the results of this fit in
Figs. 6 and 7. Although the value of ngas takes on differ-
ent values throughout the mass-cross section plane, we
note that our best-fit points correspond to ngas = 0.39
cm−3, 1.28 cm−3 and 1.57 cm−3 for ISM models I, II and
III, respectively. The fact that these values are similar
to those favored to explain the measured boron-to-carbon
ratio suggests that carbon nuclei and protons are likely
accelerated in the same class of astrophysical sources.

Somewhat surprisingly, the favored parameter space in
the right frame of Fig. 6 is entirely surrounded by an ex-
cluded region. This stems from the competing demands
of the fitting algorithm to match both the (1) high-energy
(>∼100 GeV) antiproton excess, which requires large val-
ues of ngas, and the (2) low-energy (∼10-20 GeV) antipro-
ton excess, which is best fit by dark matter in a scenario
with a smaller value of ngas. For dark matter masses
near our best fit value, moderate values of the annihila-
tion cross section are disfavored, because they force the
fit to overproduce the low-energy antiproton excess for
the values of ngas that provide the best fit to the high-
energy data.

V. DISCUSSION AND SUMMARY

In this article, we have studied the cosmic ray
antiproton-to-proton ratio measured by AMS-02 [6], and
considered the implications of this measurement for dark
matter annihilating in the halo of the Milky Way. Our
main results are summarized in Table II and in Fig. 8.
In each case considered, we find a significant excess of
∼10-20 GeV antiprotons, even after marginalizing over a
generous range of parameters associated with the effects
of solar modulation and the antiproton production cross
section. This excess is well fit by annihilating dark mat-
ter particles, with a mass and cross section in the range
of mχ ≈ 46−94 GeV and σv ≈ (0.7−5.2)×10−26 cm3/s,
respectively (for the representative case of annihilations
to bb̄). Other annihilation channels can also provide a
good fit, although for slightly different parameter ranges
(see Appendix).

Although this result is interesting in its own right, it
is particularly intriguing that the range of dark matter
models that can accommodate the antiproton excess is
very similar to those which could generate the excess of
GeV-scale gamma rays observed from the Galactic Cen-
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FIG. 8. Left frame: The regions of dark matter parameter space favored (within 2σ) by the AMS-02 antiproton spectrum
(green closed) and the Galactic Center gamma-ray excess (red closed) [18], for the case of annihilations to bb̄. Right frame:
The upper limit on the dark matter’s annihilation section derived from the cosmic-ray antiproton spectrum. Also shown in
each frame are the regions excluded by measurements of the cosmic microwave background (purple) [81] and by gamma-ray
observations of dwarf galaxies (red) [25]. The dashed green curve denotes the annihilation cross section predicted for dark
matter in the form of a simple (s−wave) thermal relic.

ter [13–19]. In the left frame of Fig. 8 we compare the
regions of dark matter parameter space that are able to
account for the gamma-ray excess [18] to those favored
by the analysis of the antiproton spectrum presented in
this study. These two regions overlap, and collectively
favor dark matter particles with mχ = 48− 67 GeV and
σv = (1.4− 2.4)× 10−26 cm3/s.

Putting the antiproton excess aside for a moment, our
analysis also yields stringent constraints on the dark mat-
ter annihilation cross section, in many cases competitive
with, or more stringent than, other bounds. In the right
frame of Fig. 8, we show our overall constraint on the
dark matter annihilation cross section, which we take to
be the weakest of the constraints shown in Figs. 2, 4
and 6, evaluated at each value of mχ. Compared to
the constraints derived from gamma-ray observations of
dwarf spheroidal galaxies [25], we find that the limit pre-

sented in this study is stronger for dark matter particles
with a mass below 40 GeV or between 130 and 540 GeV
(for annihilations to bb̄).

As this article was being finalized, Ref. [82] appeared
on the arXiv which addresses many of the same questions
discussed here. The authors of Ref. [82] reach conclusions
that are very similar to our own.
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Appendix A: Results For Other Dark Matter
Annihilation Channels

Throughout this study, we have focused on the rep-
resentative case of dark matter particles that annihi-
late to bb̄. Clearly this is not the only possibility, and
dark matter that annihilates to other final states could
also be responsible for the antiproton excess observed
by AMS-02. In Fig. 9 and Table III we show our re-
sults for dark matter candidates that annihilate to light
quarks or to W+W−. We also note that hidden sec-
tor dark matter candidates could produce a similar spec-
trum of antiprotons, in particular within the context of
Higgs portal models (see Fig. 12 of Ref. [83]). In such
a model, the dark matter would annihilate to other hid-
den sector states, which then decay through mixing with
the Standard Model Higgs boson. We note that we uti-
lized PYTHIA [64] for dark matter particles lighter than 86
GeV in theW+W− case, as PPPC [66] does not generate
reliable results in the case of mχ ≈ mW .
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FIG. 9. As in Fig. 2, but for dark matter that annihilates to light quarks (uū, dd̄) or W+W−, and for the case of ISM Model I.


