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Ultralight bosons with masses in the range 10−13 eV ≤ mb ≤ 10−12 eV can induce a superradiant
instability around spinning black holes (BHs) with masses of order 10-100 M⊙. This instability
leads to the formation of a rotating “bosonic cloud” around the BH, which can emit gravitational
waves (GWs) in the frequency band probed by ground-based detectors. The superposition of GWs
from all such systems can generate a stochastic gravitational-wave background (SGWB). In this
work, we develop a Bayesian data analysis framework to study the SGWB from bosonic clouds
using data from Advanced LIGO and Advanced Virgo, building on previous work by Brito et.al. [1].
We further improve this model by adding a BH population of binary merger remnants. To assess
the performance of our pipeline, we quantify the range of boson masses that can be constrained by
Advanced LIGO and Advanced Virgo measurements at design sensitivity. Furthermore, we explore
our capability to distinguish an ultralight boson SGWB from a stochastic signal due to distant
compact binary coalescences (CBC). Finally, we present results of a search for the SGWB from
bosonic clouds using data from Advanced LIGO’s first observing run. We find no evidence of such a
signal. Due to degeneracies between the boson mass and unknown astrophysical quantities such as
the distribution of isolated BH spins, our analysis cannot robustly exclude the presence of a bosonic
field at any mass. Nevertheless, we show that under optimistic assumptions about the BH formation
rate and spin distribution, boson masses in the range 2.0× 10−13 eV ≤ mb ≤ 3.8 × 10−13 eV are
excluded at 95% credibility, although with less optimistic spin distributions, no masses can be
excluded. The framework established here can be used to learn about the nature of fundamental
bosonic fields with future gravitational wave observations.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from
binary black hole (BBH) [2] and neutron star (BNS)
[3] coalescences by the Advanced Laser Interometer
Gravitational-wave Observatory (LIGO) [4] and Ad-
vanced Virgo [5] represented a historical breakthrough,
creating an alternative window through which to view the
Universe. Furthermore, subsequent observations of BBH
coalescence events have firmly established GW astron-
omy [6–10], shedding new light on fundamental physics
[11] and the nature of the stellar mass black hole (BH)
population [12, 13]. In the near future, Advanced LIGO
and Advanced Virgo will be joined by additional detec-
tors, like KAGRA [14] and LIGO-India [15]. A major
target for the advanced detector network is the stochastic
gravitational-wave background (SGWB), a superposition
of many sources too faint to resolve individually [16, 17].
Ultralight bosons around spinning BHs have been pro-

posed as a possible source of the SGWB [1, 18]. Su-
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perradiant instabilities induced by the bosonic fields co-
rotating around BHs result in angular momentum ex-
traction analogous to the so-called Penrose process [19].
This instability not only spins down the BH, but also
triggers an exponential growth of the bosonic field. Sub-
sequently the resulting bosonic cloud exhibits a time-
dependent quadrupole moment, leading to GW radiation.
We could obeserve these GWs with current ground-based
GW detectors in two regimes – the “resolvable” regime in
which nearby sources within O(10Mpc) can be directly
detected [1, 20–22] and the “unresolvable” regime where
a superposition of all other sources in the Universe will
contribute to a SGWB [1, 18].

Ground-based detectors are sensitive to bosons with
a given mass scale that can be determined through
dimensional-analysis [1, 18]. We expect a bosonic field
with the mass mb to couple strongly to BHs whose
Schwarzschild radius rH is comparable to the boson’s
Compton wavelength λC = ~/mbc, where ~ is the re-
duced Planck constant and c is the speed of light. For
BHs of around 10M⊙, this implies
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mbc
2 ∼

~c3

2GM
∼ 10−13 eV×

(

M

10M⊙

)−1

, (1)

where G is the gravitational constant and M is the mass
of a BH. In other words, only BHs within a relatively
narrow window will significantly couple to bosonic field
with a certain mass scale. This can be physically in-
terpreted as follows. For a given boson mass, if BH
mass is too large or small, the timescale of superradiant
instability increases and its effect is exponentially sup-
pressed [1, 23, 24]. As we will demonstrate, Advanced
LIGO could detect superradiant instabilities surround-
ing ∼ 10M⊙ BHs, and therefore can probe boson masses
near mb ≈ 10−13 eV.
Light bosonic fields, such as QCD axions or axion-like

particles have attracted attention, as a promising can-
didate of dark matter [25, 26]. It is challenging to use
traditional particle physics experiments to probe the ex-
istence of light particles that do not couple strongly to or-
dinary matter, but we can use GW observations to study
particle physics beyond the Standard Model [27, 28].
Since angular momentum extraction is followed by

characteristic GW emission, the detection of this class of
GWs could also provide an explanation for the possible
abundance of low spin BHs [29], which is consistent with
the current BH spin measurement by Advanced LIGO
[8, 9, 13, 30]. Additionally, the BH spin distribution is
considered to be a crucial indicator of different BH forma-
tion channels [31–34]. The discovery of ultralight bosons
regulating BH spins would have significant implications
for understanding BH formation scenarios.
Previous work has studied the SGWB from bosonic

clouds [18, 35]. Ref. [35] examined the detectability of a
stochastic background from BHs spinning down, assum-
ing the current ground-based detector network operates
at design sensitivity. They assumed two different sig-
nal spectra, referred to as the Gaussian model and the
quasi-normal-mode model, and using a Fisher analysis
they also assessed the capability of extracting the com-
ponent of their signal models from the total background
including the CBC background. Ref. [18] computed the
background spectrum expected from the superradiant in-
stability assuming only an isolated BH population model.
They also compared the predicted spectrum with the
power-law integrated curves [36] of Advanced LIGO to
study its detectability. In this work, we will develop a
Bayesian analysis framework to search for the SGWB
from the superradiant instability and apply it to data
from Advanced LIGO’s first observing run. We construct
our signal model based on [1, 18], additionally incorpo-
rating the expected contribution from remnant BHs pro-
duced by compact binary mergers to obtain a more ac-
curate prediction.
This paper is structured as follows. In Section II we re-

view the model of superradiant instabilities as previously
computed in [1, 18, 23]. In Section III, we present the
predicted SGWB signal, including the contribution from

population of binary merger remnants. In Section IV, we
present a Bayesian framework with which to search for
this background. In Section V, we discuss the sensitive
range in the boson mass and the model selection capa-
bility between this background and the projected SGWB
that arises due to unresolved CBCs. Furthermore, in
Section VI we show the range of excluded boson masses
using data from Advanced LIGO’s first observing run.
Finally, Section VII summarizes the results and future
work.
In what follows, all quantities are described in units

G = c = 1.

II. SUPERRADIANT INSTABILITY

Before describing the data analysis methods, first we
briefly review the theoretical basis of the bosonic cloud
model as described in [1, 18]. For a review of supper-
radiance, see [29]. Hereafter, we will restrict ourselves
to scalar (spin-0) fields. Although vector (spin-1) [37–
39] and tensor (spin-2) [40] fields can additionally induce
superradiant instabilities, the scalar case has been inves-
tigated most extensively [24, 27–29, 41].
Incident radiation can by amplified by extracting en-

ergy and angular momentum from a BH. As a result,
the mass and angular momentum of the BH transitions
from the initial states Mi, Ji to the final states Mf , Jf ,
respectively. Denoting the frequency of the radiation by
ω and letting l,m be the quantum numbers for angular
momentum, the condition for superradiance to occur is
given by [29]

0 < ω < mΩH , (2)

where ΩH is the horizon angular velocity of the BH, given
by

ΩH =
χ

2r+
. (3)

Here, χ is the dimensionless spin parameter and r+ is the
outer event horizon of a Kerr BH.
Using black hole perturbation theory, in the limit that

the scalar field’s Compton wavelength is much larger than
the radius of the BH (Miµ≪ 1), where

µ ≡
mb

~
, (4)

an approximate expression can be found for the eigenfre-
quencies of the scalar field [1, 24]:

ωlmn ≡ ωR + iωI

≃ µ+ i 2γµr+(mΩH − µ)(Miµ)
4l+4,

(5)

where n, l,m are the quantum numbers for energy and
angular momentum for a wave function in a spherical
potential, γ is a positive numerical factor depending on
n, l,m, and ωR/I are real quantities. The imaginary part
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of the eigenfrequency, ωI , will be positive, indicating that
the mode is (linearly) unstable, whenever Eq. (2) is
satisfied1. This instability leads to the formation of a
scalar “cloud” around the BH. We define the instabil-
ity timescale τinst ≡ ω−1

I as the characteristic timescale
over which the cloud forms. We will focus only on the
n = 0, l = m = 1 mode hereafter since this mode has the
shortest timescale and dominates the gravitational-wave
radiation. In the large Compton wavelength limit, the
instability timescale is given by [1, 18, 23]

τinst ∼ 0.07χ−1

(

Mi

10M⊙

)(

0.1

Miµ

)9

yr. (6)

As illustrated in Figure 1, after the scalar cloud has
been formed, the scalar field profile will source a stress-
energy tensor with a time-dependent quadrupole mo-
ment. The energy stored in the rotating scalar field con-
figuration will emit gravitational-waves, with a frequency
of ωGW = 2ωR and a luminosity given by [1, 18, 23]

dEGW

dt
≈

484 + 9π2

23040

(

MS

Mf

)2

(Mfµ)
14, (7)

where MS is the total mass (energy) of the amplified
scalar field configuration. Eventually, the scalar cloud
will lose energy due to gravitational radiation. This pro-
cess will happen over the course of the emission timescale
τGW, given by [1, 18, 23]

τGW ∼ 6× 104χ−1

(

Mf

10M⊙

)(

0.1

Mfµ

)15

yr. (8)

Crucially, there is a significant difference between the
instability and emission timescales, τGW/τinst ∼ 106.
Thus, we make the approximation that the scalar cloud
forms more or less instantaneously and then starts to
emit GWs. Neglecting the emission of GWs during the
growth of the scalar cloud, conservation of energy and
angular momentum implies that [18]

Jf = Ji −
m

ωR
(Mi −Mf ). (9)

The amplification of the cloud stops when the condition
ωR = mΩH is satisfied. Combining this with Eq. (9), we
obtain the final mass of the BH

Mf =
m3 −

√

m6 − 16m2ω2
R(mMi − ωRJi)2

8ω2
R(mMi − ωRJi)

. (10)

For the lowest mode m = 1, in the long Compton wave-
length limit Miµ ≪ 1, the maximum mass of the scalar
cloud reads

Mmax
S =Mi −Mf ≈ 0.1Miχ

(

Miµ

0.1

)

. (11)

1 Note that we have used the relation ωR = µ, which is valid to
leading order in Miµ.

Thus, for typical parameters Miµ ≈ 0.1, about 10% of
the energy of the initial BH is stored in the scalar cloud
configuration.
Finally, we can evaluate the total GW energy emit-

ted between the superradiance saturation and the present
time as follows

EGW =

∫ ∆t

0

dt
dEGW

dt
=

Mmax
S ∆t

∆t+ τGW

, (12)

where τGW is the GW emission timescale. Here, the
signal duration ∆t is reasonably defined as ∆t ≡
min(τGW, t0), in which t0 is the age of the Universe
≈ 13.8Gyr. The SGWB will be calculated by summing
the energy emitted by each source over the population of
rotating BHs.

III. MODELING THE SGWB

Now we turn to modelling the SGWB produced by
scalar clouds which form around BHs. We consider iso-
lated BHs, following the model of [1]. We also derive the
contribution due to remnant BHs formed from compact
binary coalescences, and verify that it is smaller than
the contribution of isolated BHs for most scalar masses
of interest.

A. Framework to compute the SGWB

The SGWB is described by its energy density spectrum
[42, 43], defined as

ΩGW(f) ≡
1

ρc

dρGW

d ln(f)
, (13)

where ρGW is the energy density of GWs existing in the
Universe and ρc is the critical energy density required to
have a spatially flat Universe. The astrophysical SGWB
has been studied for a wide array of sources [44–49] and
is generally given by

ΩGW(f) =
f

ρc

∫

dz
dt

dz

∫

dθp(θ)R(z; θ)
dEs

dfs
(θ; f(1 + z)),

(14)

where dEs/ dfs is the source-frame energy spectrum of
an individual astrophysical event, R(z; θ) is the num-
ber of sources per unit comoving volume per unit source
frame time, and p(θ) is the multivariate probability dis-
tribution of the source parameters θ. Note that the
source frame frequency fs is related to the observed fre-
quency f by a factor of the redshift: fs = (1 + z)f . The
function dt/dz is determined by standard cosmology

dt

dz
=

1

(1 + z)H0

√

ΩM (1 + z)3 +ΩΛ

, (15)
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FIG. 1. Cartoon of a superradiant instability. MS is the total mass of amplified scalar field. The angular frequency ωGW

of emitted GWs depends on the mass of the scalar field mb (or equivalently the inverse of its Compton wavelength µ). The
timescale of the instability and GW emission are denoted by τinst and τGW, respectively. If Eq. (2) is satisfied, quantum vacuum
fluctuations in the scalar field will repeatedly scatter off the BH, growing exponentially with a typical timescale τinst ∼ 0.07 yr
(see Eq. (6)). The result of this runaway process is a scalar cloud, whose quadrupole moment induces gravitational radiation
at the constant frequency ωGW = 2µ. For BHs with a mass of order 10 M⊙, GWs are emitted continuously over a typical
timescale τGW ∼ 6× 104 yr (see Eq. (8)) until the energy of the scalar cloud has been completely dissipated.

where ΩM and ΩΛ are the dimensionless matter den-
sity and the dimensionless cosmological constant den-
sity, respectively. We use the cosmological parameters
inferred from Planck [50], i.e. H0 = 68km s−1Mpc−1

and ΩM = 1− ΩΛ = 0.308 .

When constructing a model for the SGWB from a su-
perradiant instability, we take the source parameters θ

to be BH masses and their dimensionless initial spin pa-
rameter χ. This χ represents the BH spin before spinning
down due to the instability. We note that the GWs emit-
ted from an individual system actually have a slight fre-
quency drift caused by the change in the cloud’s binding
energy during the GW emission [22]. However, its over-
all drift is well within the width of each frequency bin
that we use for our analysis. This leads to the following
simple spectrum for a single source

dEs

dfs
≈ EGWδ(f(1 + z)− f0), (16)

where f0 = ωR/π ≈ µ/π (see Eq. (5)) and EGW is given
by Eq. (12).

In order to compute the background due to unresolved
sources, we only integrate over the range of parameters θ
that produces a signal-to-noise ratio (SNR) of less than
8 in a typical search for the astrophysical system in ques-
tion [21, 22]. Nevertheless, the specifics of this cutoff
do not change the overall shape of the predicted spectra
significantly.

B. BH population models

To search for and constrain the stochastic background
from a superradiant instability, we will need to assume
a specific source number density and the mass and spin
distributions of BHs. Below, we will consider two possible
BH populations: (i) isolated BHs formed by core-collapse
supernovae (CCSNe) and (ii) BBH merger remnants.

1. Isolated black holes

Here we assume a population of isolated BHs born from
CCSNe. Eq. (14) can be reorganized as

Ωiso
GW(f) =

f

ρc

∫

dz
dt

dz

∫

dM dχp(χ)
dṅ

dM

dEs

dfs
, (17)

where dṅ/ dM is the source-frame BH formation rate per
comoving volume per BH mass M . For the probability
density of χ, we assume a uniform distribution

p(χ) =

{

0 (χ < χll, χul < χ)
1

χul−χll

(χll ≤ χ ≤ χul),
(18)

where χll, χul are the lower and upper limit of the distri-
bution. Inspired by [18], we adopt two different parame-
terizations of p(χ), either (a) varying the lower limit χll

and fixing χul = 1, or (b) varying the upper limit χul

and fixing χll = 0. Note that the first case is more op-
timistic than the second case, as it ensures a population
of high-spin BHs that readily yield superradiant instabil-
ities. Although these models for p(χ) admittedly quite
simple, the true spin distribution of isolated BHs is ex-
tremely uncertain. As we will show, different χll,ul values
crucially affect the background spectrum.
The BH formation rate dṅ/ dM reads

dṅ

dM
≡ p(M)R(z;M) (19)

= ψ(zf )
ξ(M∗)

M∗

dM∗

dM
. (20)

M∗ is the mass of the BH’s progenitor star, whose pop-
ulation properties follow the cosmic star formation rate
(SFR) ψ(z) and initial mass function (IMF) ξ(M∗). We
adopt the SFR model proposed in [51],

ψ(z) = ν
a exp(b(z − zm))

a− b+ b exp(a(z − zm))
,

a = 2.37, b = 1.80, ν = 0.178, zm = 2.00.

(21)



5

zf is the redshift at the progenitor’s time of birth, that
is, tf = t − τ(M∗), where τ(M∗) is the lifetime of a
progenitor based on [52]. Note that ξ(M) is the IMF
defined in terms of stellar mass fraction. This implies
that ξ(M∗) dM∗ yields the ratio of the total mass of
stars whose mass lies between M∗ ∼ M∗ + dM∗ to the
whole stellar mass. Since the Salpeter IMF is chosen as
ξ(M∗) in the mass range M∗ ∈ [0.1 ∼ 100] M⊙, its
expression is2

ξ(M∗) =
M−1.35

∗
∫ 100M⊙

0.1M⊙
M−1.35

∗ dM∗

. (22)

The BH mass is related to the mass and metalliticity of
the progenitor star via M = g(M∗, Z). In this work we
use a numerical fit for g(M∗, Z) given by [53]. It follows
that

dM∗

dM
=

(

dg(M∗, Z)

dM∗

)−1

. (23)

Note that g(M, Z) implicitly depends on redshift via the
stellar metallicity Z, whose evolution over the cosmic his-
tory is evaluated in [54]. The lower BH mass cutoff of
g(M, Z) is set as 3M⊙.

2. Binary black hole merger remnants

We also consider remnant BHs formed by BBH merg-
ers, whose background spectrum is evaluated such that

Ωrem
GW(f) =

f

ρc

∫

dz
dt

dz

×

∫

dm dχp (m)Rm(z;m)p(χ)
dEs

dfs
.

(24)

m represents a set of component masses of BBHs, i.e. the
primary mass m1 and the secondary mass m2 (m1 > m2

by definition) and dm ≡ dm1 dm2. Rm(z;m) is the
BBH merger rate density for a given m and z. Unlike
the spin distribution of isolated BHs, here p(χ) can be
motivated by both the spin measurement of final remnant
BHs by Advanced LIGO and Virgo [7–9, 30] and several
numerical simulations for mergers of similar-mass BHs
[55–57]. Both suggest that the spin magnitude of final
remnant BHs is around 0.7. Therefore, we assume all
the remnant BHs initially have χ = 0.7, namely

p(χ) = δ(χ− 0.7). (25)

2 One should not confuse it with the other definition, that is,
the number fraction of stars whose mass lies between M∗ ∼

M∗ + dM∗. Let this be φ(M∗). The Salpeter function in this
definition follows φ(M∗) ∝ M

−2.35
∗ .

Following [17, 30, 58], we adopt the BH mass distribu-
tion

p(m1,m2) ∝
m−2.35

1

m1 − 5M⊙

, (26)

with the constraints that 5M⊙ < m1,m2 < 95M⊙ and
m1+m2 < 100M⊙. We approximate the mass of remnant
BHs as

M ≈ m1 +m2 − 5.7× 10−2 m1m2

m1 +m2

, (27)

where the binding energy of the inner most stable orbit
in a binary system is subtracted from the total mass [59].
We evaluate the merger rate as described in [16, 17,

58, 60],

Rm(z;m) =

∫ tmax

tmin

Rf (zf ;m)p(td) dtd, (28)

where td is the time delay between a binary formation and
its merger and p(td) is the time delay distribution. zf is
the redshift at the binary formation time tf = t(z)− td,
in which t(z) is the cosmic time at merger. Following
[16, 17], we assume that: (i) the distribution p(td) is
taken as p(td) ∝ 1/td in the range tmin < td < tmax,
where tmin is 50 Myr [16, 60] and tmax is the Hubble
time [60–63], (ii) the formation rate of BBHs, both of
which are lighter than 30M⊙, evolves proportionally to
the SFR ψ(z), (iii) the SFR of [51] is consistent with
the one used for the isolated BHs model (see Eq. (21)),
(iv) massive binaries in which at least one of the two
component masses is above 30M⊙ cannot be formed in a
high metallicity environment where Z > Z⊙/2 (Z⊙ is the
solar metallicity). For the assumption (iv), we instead
multiply the SFR by a weighting factor e(z) to account
for the fraction of star formation in an environment where
Z ≤ Z⊙/2 [64]. In other words,

Rf (zf ;m) ∝

{

ψ(zf ) if m1,m2 < 30M⊙

e(zf )ψ(zf ) otherwise.
(29)

After marginalizing Eq. (28) over the component mass
distribution p(m), the calibration at z = 0 is performed
with the published estimate of local merger rate with the
power-law mass distribution3, 103 Gpc−3yr−1 [7] such
that

∫

p(m)Rm(z = 0;m) dm = 103 Gpc−3yr−1. (30)

3 At the time of writing the paper, Advanced LIGO and Virgo
collaboration published a new paper on the inferred BBH pop-
ulation property using their first and second observing runs and
the local merger rate estimate has been updated. However, we
stick to the local merger rate, previously estimated in [7], to
demonstrate the pipeline performance. The normalization with
the new merger rate estimate will be considered in future work.
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Although we have assumed this rate is known exactly,
we note that the true rate is uncertain – the current
90% credible bounds on the BBH merger rate span [9.7,
101] Gpc−3yr−1. This uncertainty will correspondingly
introduce a systematic uncertainty in our prediction of
the remnant spectrum Ωrem

gw
(f), whose effect should be

considered in future work.

C. Total background model

The actual background spectrum that one would ob-
serve is the sum of the contributions from these two BH
populations, that is,

ΩGW(f) = Ωiso
GW(f) + Ωrem

GW(f), (31)

where the superscripts represent each of the isolated BH
and BBH merger remnant population given by Eq. (17)
and Eq. (24), respectively. For the comparison between
these components, Fig. 2 shows background spectra com-
puted from each BH population model, plotted with
power-law integrated curves [36] of Advanced LIGO at
different phases and the CBC background approximated
as a power-law spectrum [17].
The solid curves are the energy density spectra con-

tributed from the isolated BH population for different
scalar masses under an assumption of a uniform distri-
bution p(χ) over 0 to 1. The spin distribution skewed
towards high χ would simply scale the overall spectrum.
See Fig. 2 of [18] for its dependence on different spin
distributions. The dotted curves, meanwhile, show the
contribution from BBH merger remnants. In general,
the abundance of isolated BHs exceeds the merger rate
by four orders of magnitude. The isolated BH chan-
nel therefore dominates the SGWB for scalar masses
mb ≥ 10−12.5eV. However, if the mb ∼ 10−13eV, the
SGWB from isolated BHs is significantly suppressed due
to the lack of BHs heavier than 50M⊙. In other words,
although scalar fields with mb ∼ 10−13 eV is sensitively
coupled to these heavy BHs (see Fig. 1 of [1]), such
massive BHs are only rarely produced by CCSNe [53].
In contrast, heavy BHs can readily be produced by the
merger remnant channel, and so remnant BHs dominate
the SGWB when mb ∼ 10−13eV.
It is worth noting that the SGWB may dominate the

projected CBC background, which is approximated as

ΩCBC
GW (f) = 1.8× 10−9

(

f

25Hz

)2/3

, (32)

as inferred from [17]. We will discuss the capability to
distinguish between these two signal models based on the
Bayesian framework in Section VD.

IV. SEARCH METHOD

This section provides the overview of a statistical
methodology that can be used to claim a detection or

FIG. 2. Energy density spectra in the LIGO band overlapped
with the power-law integrated curves [36] of LIGO O1 [65] and
design sensitivity [66]. Solid curves are spectra based on the
isolated BH model with uniform distribution of χ ∈ [0, 1.0],
whereas dotted curves represent spectra with the BBH merger
remnant model. The gray line indicates the projected back-
ground of compact binary coalescence (CBC) modeled as a
simple power-law spectrum with a power law index of 2/3 [17].
The solid yellow curve is much lower than the other curves, be-
cause of the predicted lack of isolated BHs with large enough
mass to couple to scalar fields with mb = 10−13 eV.

to place constraints related to the model of the superra-
diant instability. Here, we assume the GW background
to be; (a) isotropic, (b) unpolarized, (c) stationary and
(d) Gaussian.

A. Setup

The SGWB is analyzed by taking the cross-correlation
between outputs from a pair of detectors. In this work we
will focus on the case of two detectors for simplicity, but
the formalism can be extended to handle a larger network
of detectors [42, 43]. Following the notation of [67], we
define a cross-correlation estimator for each frequency bin
[43, 68] as,

Ĉ(f) ≡
f3

T

20π2

3H2
0

s̃∗1(f)s̃2(f). (33)

Here, s̃i(f) is the Fourier transform of time series output
of the i-th detector and T is the total observation time.
This is normalized such that

〈

Ĉ(f)
〉

= γ(f)ΩGW(f), (34)

where γ(f) is the overlap reduction function to encode
the geometry and separation between a pair of detectors
[69]. In the low signal-to-noise limit, the variance is ap-
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proximately given by

σ2(f) ≈
1

2T∆f

(

10π2f3

3H2
0

)2

P1(f)P2(f), (35)

where ∆f is frequency resolution and Pi(f) is the power
spectral density (PSD) of the i-th detector.
Then, the unbiased broadband estimator and its vari-

ance can be constructed from Ĉ(f) and σ2(f) as follows

Ŷ ≡

∑

f Ĉ(f)w(f)/σ
2(f)

∑

f w(f)/σ
2(f)

(36)

and

σ2
Y =

∑

f w
2(f)/σ2(f)

(

∑

f w(f)/σ
2(f)

)2
, (37)

where w(f) is a linear filter formed by a given background
model ΩA(f), so that

w(f) = γ(f)ΩA(f). (38)

Once the broadband estimator is obtained, the SNR can
be computed in a straightforward manner.

SNR ≡
Ŷ

σY
. (39)

B. Bayesian inference

We now develop a Bayesian formalism to perform pa-
rameter estimation and model selection for the superradi-
ant instability model, following [70]. In practice, the GW
signal can be described by a set of unknown parameters
θ = {θ1, θ2..., θN} and one needs to evaluate their pos-
terior probability given new data. Then, Bayes’ theorem
states that

p(θA|{Ĉ},A) =
L({Ĉ}|θA,A)π(θA|A)

Z({Ĉ}|A)
, (40)

where {Ĉ} is the cross-correlation estimator over fre-
quency band computed from observed data and θA is
a set of parameters characteristic of GW signals in the
signal hypothesis A. p(θA|{Ĉ},A) is the posterior prob-

ability on the multi-dimensional space, L({Ĉ}|θA,A)
is the likelihood, π(θA|A) is the prior probability and

Z({Ĉ}|A) is the evidence. To construct a posterior in an
efficient manner, we apply the PyMultiNest package [71]
to our search pipeline. PyMultiNest is a python inter-
face to the nested sampling package MultiNest [72–74],
which produces a set of samples drawn from an estimated
posterior.

1. Likelihood

For one realization of Ĉ(f), the joint likelihood over
frequency bins is given by [70]

L({Ĉ}|θA,A) =
∏

f

L(Ĉ(f)|θA,A). (41)

L(Ĉ(f)|θA,A) is the likelihood within a single frequency
bin. We assume a Gaussian likelihood, such that

ln
[

L(Ĉ(f)|θA,A)
]

≡

−

[

Ĉ(f)− γ(f)ΩA(f ; θA)
]2

2σ2(f)
−

1

2
ln
(

2πσ2(f)
)

.

(42)

Here, ΩA(f ; θA) is a model energy-density spectrum for
a given set of parameters θA.

2. Posterior

We choose a uniform prior on every parameter (e.g.
scalar mass mb and spin limits χul/ll):

π(θA|A) ∝ 1. (43)

Our posteriors are therefore proportional to the likeli-
hood:

p(θA|{Ĉ},A) ∝ L({Ĉ}|θA,A). (44)

We will often consider the marginalized posterior for a
particular parameter, θ1, which is defined as

p(θ1|{Ĉ},A) =

∫

p(θA|{Ĉ},A)dθ2...dθN . (45)

The marginalized posterior will allow us to define credible
intervals for the parameter θ1 in a standard way.

3. Model selection

In order to perform model selection between different
models of the SGWB, we need to compute the Bayesian
evidence for each hypothesis. Let {Ĉ} be the cross-
correlation estimator obtained from the data and sup-
pose that one assesses which model, A or B, is better
supported by the data. It is straightforward to compute
the odds ratio OA

B , which is defined as

OA
B ≡

p(A|{Ĉ})

p(B|{Ĉ})
=
Z({Ĉ}|A)

Z({Ĉ}|B)

π(A)

π(B)
. (46)

where Z({Ĉ}|A) and Z({Ĉ}|B) are the evidences for each
model. The evidence Z is calculated through

Z({Ĉ}|A) =

∫

L({Ĉ}|θA,A)π(θA|A)dDθA. (47)
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This expression can also be interpreted as the fully-
marginalized likelihood. In the case where no signal is
present (the null hypothesisH0), the evidence is obtained

by fixing ΩA(f ; θA) to zero. Also Z({Ĉ}|A)/Z({Ĉ}|B)
in Eq. (46) is the so-called Bayes factor, while π(A)/π(B)
is a priori probability ratio for the two models, which we
will set as unity. Since in our framework the odds ra-
tio Eq. (46) is effectively equivalent to the Bayes factor,
hereafter we will evaluate statistical significance in terms
of the Bayes factor and follow the convention that a log
Bayes factor of ≈ 8 indicates a favor for a model over the
other with great confidence [75].

V. RESULTS

In this section, we first describe the parameterization
of our signal model. Section VB shows a scheme for
injecting simulated signals into Gaussian noise and re-
covering those signals. We then discuss the implications
of performed analysis tests, including the construction
of a “sensitivity window” of scalar masses to which Ad-
vanced LIGO might be sensitive. In Section VD, we ex-
amine prospects for successfully discriminating between
a CBC background and a SGWB due to supperradiant
instability.

A. Parameters for the background model

In this work, the signal model is parameterized by
the scalar mass mb and either χll or χul (refer to Sec-
tions III B 1 for the details). We note that this model
contains several sources of systematic uncertainty, such
as the BH formation and merger rates as well as the un-
derlying SFR. Nevertheless, we will assume a particular
SFR (Eq. (21)) and binary formation rate (Eq. (30)).
Our results are also conditional on our specific parame-
terization of the p(χ). A different choice for the BH spin
distribution will generically yield different constraints on
mb. Also, posteriors will be constructed over the two-
dimensional parameter space of mb and either χll or χul.

B. Injection scheme and signal recovery

Here we describe the overview of the injection scheme
adopted in this work. We assume only the LIGO detector
pair, that is, the Hanford and Livingston sites. Injections
are performed in the frequency domain. Given a PSD
of the LIGO detectors, one constructs the variance of a
cross-correlation estimator given by Eq. (35). A cross-
correlation spectrum consistent with Gaussian noise is
then constructed from this variance and the SGWB pre-
dicted from superradiant instability is added to the Gaus-
sian noise. Therefore, the simulated cross-correlation

101 102 103

Frequency (Hz)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

|Ĉ
(f
)|

injection + noise

injection

sigma

posterior samples

FIG. 3. An example of a cross-correlation spectrum Ĉsim(f)
as a function of frequency (the black line), obtained from a
simulated observation of a SGWB from superradiant insta-
bilities. The cyan curve is the standard deviation of Ĉsim(f)
calculated from the design sensitivity after two years of ob-
servation. The red dashed line gives the injected signal. The
injection has SNR ∼ 32 and corresponds to the superradiant
instability model with mb = 7× 10−13 eV and χll = 0.5. The
magenta region represents the model evaluated with 100 sets
of the parameters randomly drawn from the posterior.

spectrum is defined as

Ĉsim(f) ≡ γHL(f)Ωinj(f ; θinj) + σ(f)n̂, (48)

where γHL(f) is the overlap reduction function for the
LIGO baseline [69], Ωinj(f ; θinj) is the injected back-
ground constructed from the parameters θinj, and n̂ is
a random variable drawn from a Gaussian distribution
with zero mean and unit variance. From this simulated
cross-correlation spectrum, our pipeline infers the param-
eters θinj by computing the likelihood and constructing a
Bayesian posterior. We adopt a uniform prior for mb

across the range 10−13 eV to 10−12 eV and a uniform
prior for χul or χll between 0 and 1.

Fig. 3 shows an example cross-correlation spectrum
Ĉsim(f) as a function of frequency using two years of ob-
servation with Advanced LIGO’s design sensitivity. The
red dashed line gives the injected signal. The injection
has SNR ∼ 32 and corresponds to the superradiant insta-
bility model with mb = 7× 10−13 eV and χll = 0.5. The
magenta region represents the model evaluated with 100
sets of the parameters randomly drawn from the poste-
rior. Fig. 4 shows the resulting posterior on mb and χll

derived from this simulated observation. These figures
both demonstrate that the pipeline can recover a loud
injection with great confidence. A statistical discussion
for a consistency test of the parameter estimation is de-
scribed in Appendix A.



9

FIG. 4. Posterior result on scalar massmb and spin lower limit
χll, given the simulated observation shown in Fig. 3. Within
each one-dimensional posterior, the mean is depicted by a ver-
tical blue solid line and marginalized 90% credible interval is
shown by two dashed lines. On the two-dimensional posterior,
the blue cross is drawn for the mean and the credible inter-
val and the black contour represents 90% credibility. Also,
the true injected parameters are indicated by the red cross.
The errors in parameter recovery are consistent with Gaussian
noise; see the consistency tests reported in Appendix A.

C. Sensitivity window

To study the scalar mass space we can probe through
this model, which we refer to as the “sensitivity window”,
we make a number of injections and compute their Bayes
factors between the signal and noise hypotheses. The sig-
nal injection is performed in the same way as Eq. (48).
For this test, we conservatively adopt the χul parameter-
ization and the injected χul value is fixed as 0.8. The mb

value for each of the 500 injections is uniformly drawn
from the range 10−13 eV to 10−12 eV. In Fig. 5, we rec-
ognize the injections above a log Bayes factor of 8 as
detectable. Therefore, the mb range in which a log Bayes
factor is larger than 8 (presented as the red line in Fig. 5)
can be interpreted as the sensitivity window, which is
around 1.8× 10−13 eV to 7.5× 10−13 eV in Fig. 5. Note
that the actual sensitivity window depends on spin pa-
rameter χul. Since larger χul simply scales the overall
spectrum by a constant factor, we can have a wider de-
tectable range of scalar masses for a larger χul.

0.2 0.4 0.6 0.8 1.0
mb (eV) ×10−12

10−2

10−1

100

101

102

103

104

ln
O

S
IG

N

FIG. 5. Bayes factors as a function of injected mb values. The
red horizontal line indicates a log Bayes factor of 8. In this
test, we conservatively adopt the χul parameterization with
χul of 0.8.

D. Distinguishing superradiant instability and

CBC backgrounds

As seen in Fig. 2, the SGWB signal from the super-
radiant instability model dominates over the projected
CBC background for some choices of scalar mass and
BH spins. Thus, the next question to address is “Given
a detected signal, can we distinguish these two models
from one another?” Here, we consider the case where
both the superradiant instability and the projected CBC
background are present, so that

Ωinj(f ; θ) = ΩSI
inj(f ; θ) + ΩCBC

inj (f), (49)

where ΩSI
inj(f ; θ) is the background due to superradi-

ant instabilities under the χul parametrization given by
Eq. (31), and ΩCBC

inj (f) is the fixed CBC background ap-

proximated as the power law spectrum shown in Eq. (32).
Note that, after three years of observation with Advanced
LIGO’s design sensitivity, ΩCBC

inj (f) alone is detectable
with a log Bayes factor of 8.8 between a CBC-only and
a noise model, which corresponds to an SNR of 5.5.
Given a simulated measurement of the combined back-

ground shown in Eq. (49), we recover our measurements
with different two models: a CBC-only model and a joint
superradiant instabiltity and CBC model (SI+CBC).
The CBC background model for recovery is parameter-
ized by a power-law index and an amplitude at the ref-
erence frequency 25Hz, such that

ΩCBC
rec (f ; Ω0, α) ≡ Ω0

(

f

25Hz

)α

. (50)

We refer to Eq. (50) as a CBC model, even though this
could be generally called “power-law spectrum model”,
because the degrees of freedom in this model can be used
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FIG. 6. Gray-scale map of a log Bayes factor between a su-
perradiant instability + CBC model and a CBC-only model.
The magenta contour represents ln(BF) = 8, while the cyan
is ln(BF) = 0.

to recover the parameters of the CBC injection. Also,
priors for Ω0 and α are taken as a uniform distribution
in the range of 10−10 to 10−17 and −5 to 5 respectively,
while the priors for mb and χul are identical to those de-
scribed in Section VB. The parameters considered when
evaluating the evidence for each background model are
listed in Table I.
We compute a log Bayes factor between these two hy-

potheses. The computation is repeated, changing in-
jected (mb, χul) values until we explore a grid over the
entire prior space. Thus, we can probe the parameter
space on which the superradiant instability signal can be
discerned from the expected CBC background with sta-
tistical significance. Fig. 6 is a gray-scale map of a log
Bayes factor, effectively equivalent to Eq. (46), with two
contours of ln(BF) = 8 (magenta) and 0 (cyan). Since
the injected CBC background is loud enough to be de-
tected in this simulation, Fig. 6 implies that inside the
magenta contour one can expect the superradiant insta-
bility background to be distinguished from the CBC’s.

Models CBC SI+CBC

Parameters Ω0, α mb, χul,Ω0, α

TABLE I. Parameters in each recovered background model.

VI. APPLICATION TO THE FIRST

OBSERVING RUN OF ADVANCED LIGO

We now apply our method to the cross-correlation
spectrum measured in Advanced LIGO’s first observing

FIG. 7. Posterior results given by the data from the first Ad-
vanced LIGO observing run, recovered with the χul param-
eterization. The contour on the two-dimensional posterior
represents the 95% confidence level.

FIG. 8. Posterior results given by the data from the first Ad-
vanced LIGO observing run, recovered with the χll param-
eterization. The contour on the two-dimensional posterior
represents the 95% confidence level.
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run [58] (the data products given in that paper are pub-
licly available at [65]). No statistically significant signal
is detected, so we attempt to exclude some of the two-
dimensional space of mb and χul,ll through the search.
Figs. 7 and 8 show the posteriors obtained under the χul

and χll parametrizations, respectively. Fig. 7 indicates
that, for the χul case, the posterior is almost uniformly
distributed. Thus, no significant constraint can currently
be placed on mb when χul is allowed to vary. This can
be also verified by the fact that, according to Fig. 2,
almost none of the possible spectra with the χul param-
eterization can reach the O1 power-law integrated curve.
On the other hand, if we fix χul and allow the lower
bound χll to vary, then Fig. 8 suggests that the mass
range 2.0× 10−13 eV ≤ mb ≤ 3.8× 10−13 eV is excluded.
This can be understood by Fig. 2 as well, which shows
the largest SGWB amplitude when mb ∼ 10−12.5 eV ≈
3.2× 10−13 eV. As a forecast for the future, Appendix B
shows the constraints that will be possible once Advanced
LIGO reaches its design sensitivity.

VII. CONCLUSION

This paper presents a first search for signs of supperra-
diant instability in the SGWB. We describe several per-
formance tests of our search pipeline in Section IV. First,
a detectable window in scalar mass is estimated from a
Bayes factor of injections as shown in Fig. 5. Second, we
study the capability to distinguish the model presented
here from the fiducial CBC background model. The gray-
scale map of log Bayes factors suggests that it is separable
from the CBC model with statistical significance in some
parameter space (see Fig. 6).

Finally, we present results obtained by analyzing data
from Advanced LIGO’s first observing run. No signal is
detected with either of our parameterizations of the BH
spin distribution, and so we present constraints on pos-
sible boson masses and BH spin bounds. Using the χul

parametrization, we cannot place any meaningful con-
straints on the scalar mass, while the χll case rules out the
scalar mass range 2.0× 10−13 eV ≤ mb ≤ 3.8× 10−13 eV
with 95% percent credibility. Let us note that this con-
straint is still subject to our choice of the BH spin distri-
bution as well as specific astrophysical models we adopt
in this work.

Future work will generalize the model to take into ac-
count effects of astrophysical uncertainties such as BH
formation rate and the initial spin distribution for BBH
remnant BHs. Also, the updated local merger rate [13]
should be revisited. As the sensitivity increases with fu-
ture observing runs of Advanced LIGO and Advanced
Virgo, this framework can be used to place stronger con-
straints on the existence of ultralight bosons.

FIG. 9. P-p plot obtained by 500 injections into synthesized
noise with Advanced LIGO’s first observing (O1) sensitiv-
ity. Each point represents one injection whose parameters are
drawn from prior distributions described in VB into different
O1 noise realizations. The gray shadow is the 95% credible
error region predicted by statistical fluctuation from the ideal
diagonal. Since the orange curve obtained by data lies within
the error region, the pipeline consistently reproduces the pa-
rameters.
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Appendix A: Consistency test of the parameter

estimation

As a statistical consistency check of the parameter es-
timation performed by our pipeline using PyMultiNest,
we construct a probability-probability plot (p-p plot) by
performing 500 injections into simulated Gaussian noise
drawn from the observed σ(f) spectrum from Advanced
LIGO’s O1 run. For each injection, we first construct
the marginalized posterior for mb. We then compute the
percentile (or p-value), which is defined by

pi ≡

∫ m∗
b

m0

p(mb) dmb, (A1)
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FIG. 10. Posterior results given by a null test for the projected
design sensitivity, recovered with the χll parameterization.
The contour on the two-dimensional posterior represents the
95% confidence level.

where i denotes the label of a given injection, p(mb) the
marginalized posterior for mb, m

∗
b the injected value and

m0 the lower limit of the mb prior space. We then plot
the fraction of injections with p-values less then a given
threshold pi, as a function of the threshold. For correctly
constructed posteriors we expect that for a given thresh-
old pi, the fraction of injections with p-values smaller
than the threshold is pi. If this is the case, then the in-
jections will form a straight line with unit slope on the
pp-plot. Fig. 9 shows the pp-plot we obtain with our
injection campaign. The gray shadow is the 95% credi-
ble error region predicted by statistical fluctuations from
the ideal diagonal. Since the orange curve obtained by
data lies within the error region, the pipeline consistently
reproduces the parameters regardless of the loudness of
those injections.

Appendix B: Demonstration of possible constraints

on scalar mass at the design sensitivity

We run the pipeline with synthesized noise data to
demonstrate constraints on scalar mass expected from
null result by three years of observation with the Ad-
vanced LIGO’s design sensitivity. Following the defini-
tion Eq. (33) and Eq. (35), the cross-correlation estima-

tor Ĉ(f) and its variance σ2(f) for individual frequency
bins are computed.
Figs. 10 and 11 each shows a two-dimensional poste-

FIG. 11. Posterior results given by a null test for the projected
design sensitivity, recovered with the χul parameterization.
The contour on the two-dimensional posterior represents the
95% confidence level.

rior with different p(χ) parameterizations. When χll is
left free, the posterior excludes all scalar masses above
mb ≥ 1.4× 10−13 eV, as shown in Fig. 10. In Fig. 11,
on the other hand, more stringent constraints are placed
in lighter scalar mass and the constraints become looser
in the heavier boson mass regime. This is due to the
strong dependence of the GW background amplitude on
χul. More interestingly, the projected design sensitivity
would place quite different constraints depending on the
p(χ) parameterization. While χll parameterization ex-
cludes upper part of prior space, mb ≥ 1.4× 10−13 eV,
the χul parameterization could exclude the lower edge.
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