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We study entanglement in the Hatsugai-Kohmoto model, which exhibits a continuous interaction-
driven Mott transition. By virtue of the all-to-all nature of its center-of-mass conserving interactions,
the model lacks dynamical spectral weight transfer, which is the key to intractability of the Hubbard
model for d > 1. In order to maintain a non-trivial Mott-like electron propagator, SU(2) symmetry
is preserved in the Hamiltonian, leading to a ground state that is mixed on both sides of the phase
transition. Because of this mixture, even the metal in this model is unentangled between any pair
of sites, unlike free fermions whose ground state carries a filling-dependent site-site entanglement.
We focus on the scaling behavior of the one- and two-site entropies s1 and s2, as well as the entropy
density s, of the ground state near the Mott transition. At low temperatures in the two-dimensional
Hubbard model, it was observed numerically (Walsh et al., 2018, arXiv:1807.10409) that s1 and s
increase continuously into the metal, across a first-order Mott transition. In the Hatsugai-Kohmoto
model, s1 acquires the constant value ln 4 even at the Mott transition. On the other hand, s2 and s
each act as a sharp signal of the Mott transition, in any dimension, by decreasing at the transition
into the metal. Specifically, we find that in one dimension, s2 and s exhibit kinks at the transition
while in two dimensions, only s exhibits a kink.

INTRODUCTION

It is well known for the Hubbard model that in the
vicinity of half-filling, adding and removing electrons
changes [1–3] the spectrum at all energies. This state
of affairs obtains because electrons are not the propagat-
ing degrees of freedom. For example, it has been known
since the early work of Harris and Lange [1] in 1967 that
the low-energy spectral weight is not determined solely
by the number of sites, a static quantity, but additionally
depends on microscopic parameters in the Hamiltonian,
specifically the ratio of the hopping, t, to the on-site inter-
action, U . This dependence, dubbed dynamical spectral
weight transfer (DSWT) [2–4], renders the ground state
adiabatically distinct from a Fermi liquid because in such
systems no dynamical corrections to the spectral weight
exist. That is, simply counting electrons exhausts the
spectral weight. It is this dynamical mixing that makes
the Hubbard model non-trivial and gives rise to a slew
of non-trivial properties, in particular (1) an oxygen K-
edge absorption [5, 6] spectrum that increases faster than
twice the doping level, (2) an integrated weight of the op-
tical conductivity[7, 8] in the lower Hubbard band that
exceeds the nominal doping level, and (3) an upper cutoff
on the integral of the optical conductivity, for recovery
of the superfluid density, of O(100∆), ∆, the supercon-
ducting gap [9–11]. In metals described by Fermi liquid
theory, integrating the optical conductivity to O(∆) is
sufficient to recover the superfluid density. All such devi-
ations can be understood [2–4] within the context of the
Hubbard model as a direct consequence of t/U correc-
tions to the spectral weight or the optical conductivity.

As a result of DSWT, exact statements about the d > 1
Hubbard model are scarce. To alleviate this problem, we
consider a simplification. Such a simplification would
be ideal in the context of modern probes of strongly in-

teracting matter such as the entanglement entropy. In
this paper, we evaluate a measure of the entanglement in
an exactly solvable model [12, 13] exhibiting a second-
order Mott transition. In so doing, we show that in
addition to the entanglement entropy in free systems,
which has been studied extensively [14–24], local en-
tanglement in strongly correlated matter also exhibits
key signatures [25, 26] at phase transitions. Whereas
the canonical model for such a transition—the Hubbard
model—remains intractable in general, the Hatsugai-
Kohmoto [12, 13] (HK) model is exactly solvable. The
model considers electrons interacting on a lattice with a
limited class of all-to-all interactions. In one space di-
mension, a scaling analysis shows that both interaction-
and density-driven transitions in the HK model lie in the
same universality class as the density-driven transition in
the Hubbard model [27, 28]. Although markedly different
from the Hubbard model, the HK model retains one cru-
cial signature of the Mott transition: a retarded single-
particle electron propagator whose real part vanishes at
zero energy. The existence of zeros is the hallmark of
Mott insulation [3, 29, 30]. Propagators with zeros fail
to satisfy the Luttinger sum rule for the ground state [31]
and hence are not adiabatically connected to Fermi liq-
uids.

In this paper, we analyze the Mott transition in the
HK model from the perspective of local entropies. These
are the two-point entanglement entropy between a pair
of lattice sites, the entropy density s, and the single-site
(two-site) entropy s1 (s2) of the ground state reduced
to one (two) lattice site(s). Our work is motivated in
part by a recent analysis of the latter quantities in the
Hubbard model [25]. Two salient features of the HK
model are its (1) mixed (i.e. degenerate) ground state
and (2) infinite range interactions, to be contrasted with
the Hubbard model’s (1) pure ground state and (2) lo-
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cal interactions. For a pure state, entanglement entropy
(across a bipartition in position space) measures delocal-
ization of the wavefunction, which appears as itineracy in
linear response [16, 17]. Mixed states, on the other hand,
carry both classical and quantum correlations, which are
generally difficult to distinguish [32]. In low-dimensional
Hilbert spaces, however, the entanglement of formation
is analytically accessible; we utilize the low-dimensional
nature of fermionic modes to compute the entanglement
entropy between degrees of freedom localized on a pair
of lattice sites. In the larger Hilbert space setting, we
study the local entropies s1 and s2 in relation to the en-
tropy density s. Since the former quantities, s1 and s2,
result from position space bipartitions, they necessarily
carry some of the entropy obtained by tracing over delo-
calized states in the ground state ensemble. The latter
quantity, s, cannot encode such quantum correlations in
position space, so the discrepancy between them serves
as a probe of entanglement near the Mott transition in
the HK model.

MOTTNESS

The model [12, 33] we analyze has long-range all-to-all
non-local interactions with standard tight-binding hop-
pings,

H = −t
∑
〈j,l〉,σ

(
c†jσclσ + h.c.

)
− µ

∑
jσ

c†jσcjσ

+
U

N

∑
j1..j4

δj1+j3,j2+j4c
†
j1↑cj2↑c

†
j3↓cj4↓, (1)

where the first and second terms denote the local hop-
ping, t and chemical potential, µ. The last term is the
infinite-range Hubbard-like interaction U ; this term is
non-zero for electrons that scatter in such a way that
their position vectors satisfy the constraint of center of
mass conservation given by j1 + j3 = j2 + j4. This model
predates the SYK [34, 35] model by 2 years, though it is
considerably less studied. Although both models contain
all-to-all non-local interactions, the current model is ex-
actly solvable as a result of the conservation of the center
of mass in the interaction term. The integrability of this
model, without resorting to a 1/N expansion as in the
SYK model [34, 35], is best seen in momentum space

H =
∑
~k

H~k =
∑
~k

(
ξ(~k)(n̂~k↑ + n̂~k↓) + Un̂~k↑ n̂~k↓

)
, (2)

from which it is clear that the kinetic and potential en-
ergy terms commute. In momentum space, the momenta
are summed over a square Brillouin zone [−π, π)d, within
which the quasiparticle spectrum ξk = εk − µ is set by
the dispersion εk = −(W/2d)

∑d
µ=1 cos kµ with band-

width W and offset by a chemical potential µ. Here

nkσ = c†kσckσ is the fermion number operator for the
mode with momentum k and spin σ =↑, ↓. We consider
the system at half filling, fixed by µ = U/2. As depicted
in Fig. 1, the ground state is metallic for 0 < U < W , in-
sulating for U > W , and undergoes an interaction-driven
metal-insulator transition at U = W . The phase tran-
sition is sharp only at zero temperature, so we work at
T = 0 throughout.

0 W

metal insulatorMott
U

FIG. 1. Phase diagram of the HK model at zero temperature
and half filling, as the interaction strength U is tuned from
the non-interacting point U = 0 across the metal-insulator
transition at U = W .

The retarded single-particle fermion propagator is re-
lated by analytic continuation to the zero temperature
Euclidean propagator. For a fermion in quantum state
(k, σ) in the HK model,

Gkσ(iω) ≡ −
∫
dτ〈ckσ(τ)c†kσ(0)〉eiωτ (3)

=
1− 〈nkσ〉
iω − ξk

+
〈nkσ〉

iω − (ξk + U)
(4)

whose pole in the upper (lower) Hubbard band carries a
spectral weight equal to the probability p = 〈nkσ〉 (1−p)
that a fermion occupies (does not occupy) the mode with
identical momentum k and opposite spin σ. It is cus-
tomary to reformulate the Hubbard model [3] in terms
of holon ζkσ = ckσ(1 − nkσ) and doublon η = ckσnkσ
which comprise the fermion ckσ = ζkσ + ηkσ. What dis-
tinguishes the HK from the Hubbard model is that the
single-particle propagator

−
∫
dτ〈ζkσ(τ)ζ†kσ(0)〉eiωτ =

1− 〈nkσ〉
iω − ξk

, (5)

−
∫
dτ〈ηkσ(τ)η†kσ(0)〉eiωτ =

〈nkσ〉
iω − (ξk + U)

, (6)

is strictly diagonal in terms of these operators because
the cross term,

〈ζkσ(τ)η†kσ〉 = 0 = 〈ηkσ(τ)ζ†kσ〉, (7)

identically vanishes. Consequently, the HK model, al-
though it possesses an interaction-driven Mott transition,
does not contain DSWT. As noted previously, it is this
feature that makes the model tractable regardless of the
spatial dimension. Whether there are other models that
retain this feature but still remain tractable regardless of
the spatial dimension is not known at present.

ENTANGLEMENT

Consider the ground state produced by the zero tem-
perature limit β ≡ 1/T → ∞ of the equilibrium Gibbs
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FIG. 2. Upper and lower Hubbard bands of the one-
dimensional HK model in the metallic phase U < W . Shaded
segments indicate occupied momenta. Ω2 labels the doubly-
occupied region and Ω1 the singly-occupied region.

state

e−βH/Z =
⊗

e−βHk/Zk, (8)

where e−βHk/Zk is the reduced density matrix for the
mode k. Here Zk = tr e−βHk and

e−βHk =


1
e−βξk

e−βξk

e−β(2ξk+U)

 (9)

is diagonal in the tensor product basis
{|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉} of the Hilbert spaceHk↑⊗Hk↓.
Then e−βHk/Zk is separable across Hk↑ and Hk↓, and
likewise e−βH/Z is separable across H↑ =

⊗
kHk↑ and

H↓ =
⊗

kHk↓, showing that no entanglement is present
between the spin up and down sectors of e−βH/Z. Notice
however that e−βHk/Zk cannot be written as ρk↑ ⊗ ρk↓,
and thereby implements classical correlations between
the spin sectors. We will see that reduced states on one
or two sites, instead, have completely uncorrelated spin
sectors. Since 〈nkσ〉 is a good quantum number, the
ground state at zero temperature can be deduced from

ρk ≡ lim
β→∞

e−βHk/Zk =


|0〉〈0|↑ ⊗ |0〉〈0|↓ if ξk > 0
1
2 |1〉〈1|↑ ⊗ |0〉〈0|↓ + 1

2 |0〉〈0|↑ ⊗ |1〉〈1|↓ if ξk < 0 and ξk + U > 0

|1〉〈1|↑ ⊗ |1〉〈1|↓ if ξk < 0 and ξk + U < 0,

(10)

such that modes k with ξk > 0 are unoccupied, those
with ξk < 0 and ξk + U > 0 are singly-occupied, and
those with ξk < 0 and ξk+U < 0 are doubly-occupied. In
the metallic phase with U < W , the ground state forms
an inner doubly-occupied Fermi volume Ω2 in which
〈nkσ〉 = 1 and an outer singly-occupied shell Ω1 in which
〈nkσ〉 = 1/2, as depicted in Fig. 2. The ground state is
indeed half-filled since 2|Ω2|+ |Ω1| = (2π)d is preserved.
In terms of the number of modes Ni in Ωi, this half-filling
condition reads 2N2 +N1 = Ld, and in terms of the frac-
tion of modes singly- or doubly-occupied ni = Ni/L

d it
reads 2n2 +n1 = 1. As the phase boundary U = W is ap-
proached from the metallic side, Ω2 vanishes and Ω1 cov-
ers the entire Brillouin zone. This state persists through-
out the insulating phase with U > W . On the other side
of the phase diagram, Ω1 vanishes in the non-interacting
limit U → 0. In each phase, the singly-occupied modes
k ∈ Ω1 form a mixed sector of the ground state. The
reduced state ρk on each singly-occupied mode has non-
vanishing mutual information I(k ↑ : k ↓) = ln 2 between
spin sectors. As a result, ρk indeed carries classical cor-
relations while being unentangled. Distributing the mo-
mentum (tensor) product over the mixing sum in ρk∈Ω1 ,
we see that the ground state takes the form of a uniform

mixture over paramagnetic spin configurations

ρ = pπ
∑

∑
q π(q)=0

|π〉〈π| (11)

|π〉 =
∏
q∈Ω1

c†qπ(q)

∏
k∈Ω2

(c†k↑c
†
k↓) |0〉 , (12)

where each of the
(
N1

N1/2

)
= 1/pπ permutations π : Ω1 →

{↑, ↓} maps the N1 modes in Ω1 to a paramagnetic
spin configuration, resulting in the Bloch state |π〉. The
ground state in the insulating phase has Ω1 covering the
entire Brillouin zone, such that N1 = Ld and the number
of modes N2 in the doubly-occupied region Ω2 is zero.

Within the singly-occupied region Ω1, the real part of
the retarded propagator at zero temperature takes the
form

ReGR
kσ(ω) =

1

2
P
[

1

ω − εk + U/2
+

1

ω − εk − U/2

]
,

(13)
given by continuing iω 7→ ω + i0+. At zero energy,
the real part ReGR

kσ(ω = 0) vanishes on the surface
{k ∈ [−π, π)d : εk = 0} which always lies inside the re-
gion Ω1. It is this zero surface [3, 29, 30] that is the
hallmark of Mottness. Because the region Ω1 is finite for
all couplings U > 0, the quasiparticle description is valid
only at the non-interacting point U = 0 and breaks down
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everywhere else in the phase diagram.
From the point of view of position space, each delo-

calized Bloch wavefunction in the ground state ensem-
ble appears entangled. Formally the Fourier transform⊗

kHkσ →
⊗

j Hjσ acts as a global entangling map
within each spin sector [16, 17]. Since the ground state
ρ is spin-separable, it remains similarly separable after a
Fourier transform to position space, and entanglement in
ρ can be present only within each spin sector. Entangle-
ment between the spin-σ modes localized on sites j and
j′ can be determined conclusively from the reduced state
ρjj

′σ on Hjσ ⊗Hj′σ. We refer to entanglement between
these modes as two-point entanglement. Following Za-
nardi’s notation in [16], conservation of particle number
mandates that the reduced state be

ρjj
′σ =


u
w1 z
z∗ w2

v

 (14)

in the tensor product basis {|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉} of
Hjσ ⊗Hj′σ, where the matrix elements are given by

z = 〈c†jσcj′σ〉 (15)

w1 = 〈(1− njσ)nj′σ〉 (16)

w2 = 〈njσ(1− nj′σ)〉 (17)

v = 〈njσnj′σ〉 (18)

u = 1− w1 − w2 − v. (19)

At half filling where 〈njσ〉 = 1/2, translation invariance
obtains

w1 = w2 = 1/2− v (20)

with u = v, and Wick contraction within the ground
state ensemble (of pure Bloch wavefunctions) obtains

v = (1/2)2 − |z|2. (21)

That |z| must be sufficiently large, in order that ρjj
′σ be

entangled, can be seen from the Peres-Horodecki crite-
rion [14]: the two-qubit state ρAB is separable if and only
if its partial transpose (ρAB)PT has no negative eigenval-
ues. Since ρjj

′σ is written in the tensor product basis,
transposition in the second (inner) Hilbert space Hj′σ
can be read off as

ρjj
′σ 7→ (ρjj

′σ)PT =


u z

w1

w2

z∗ v

 . (22)

The probability spectrum is mapped to
{w1, w2, (1/2)2 − |z|2 ± |z|}, thereby developing a
negative eigenvalue if

|z| > z0 ≡ (
√

2− 1)/2 ≈ 0.207. (23)

Turning to momentum space to compute |z|, we find that

z =
1

Ld

∑
kk′

〈c†kσck′σ〉e
−i(k·j−k′·j′) (24)

=
1

Ld

∑
k

〈nkσ〉e−ik·(j−j
′) (25)

=
1

2

1

Ld

∑
k∈Ω1

e−ik·(j−j
′) +

1

Ld

∑
k∈Ω2

e−ik·(j−j
′). (26)

Writing the momentum vector with constant components
~πµ = π, the sum on Ω1 reduces to the sum J (j − j′) ≡
1
Ld

∑
k∈Ω2

e−ik·(j−j
′) on Ω2 as

1

Ld

∑
k∈Ω1

e−ik·(j−j
′)

=
1

Ld

∑
k∈BZ

−
∑
k∈Ω2

−
∑

(k−~π)∈Ω2

 e−ik·(j−j
′) (27)

= 0− J (j − j′)− e−i~π·(j−j
′)J (j − j′) (28)

where e−i~π·(j−j
′) is −1 if ‖j − j′‖1 is odd, but is +1 if

‖j − j′‖1 is even. Then

z =

{
0 if ‖j − j′‖1 is even,

J (j − j′) if ‖j − j′‖1 is odd.
(29)

In order to evaluate the domain-restricted sum ana-
lytically, we work in the thermodynamic limit near the
Mott transition, where the Fermi volumes have spher-
ical symmetry and the sums approach integrals. As
shown in Fig. 2, the boundary of Ω2 is the locus of
εk + U = ε~π+k. In the metallic phase near the Mott
transition, where U = W (1 − δu) for small δu > 0, Ω2

is a d-dimensional ball Bd(kF,2,~0) centered on the origin

with radius kF,2 =
√

2d(1− U/W ) ≡
√

2d δu. In this
regime, the fraction of modes that are doubly-occupied
n2 = N2/L

d � 1 is a natural small parameter. The
domain-restricted integral reduces to

J (j − j′)→
∫
k∈Ω2

ddk

(2π)d
e−ik·(j−j

′) (30)

=

(
kF,2/2π

|j − j′|

)d/2
Jd/2(kF,2|j − j′|) (31)

∼ n2 (32)

at leading order in n2 � 1. Then near the Mott transi-
tion, n2 6> z0 so ρjj

′σ is separable there. z = J (j − j′)
crosses the threshold value z0 only in one dimension
d = 1, where Eq. (31) holds also away from the Mott
transition, for neighboring sites j − j′ = 1 and deep in
the metallic phase at U/W ≈ 0.7835. Free lattice fermion
ground states similarly have z < z0 in any dimension
d > 1, so two-point entanglement cannot distinguish the
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state ρ in d > 1. In d = 1, however, the free ground
state has J (j − j′ = 1) > z0 as long as the lattice is
extensively filled [16]. We conclude for d = 1 that the
ground state ρ, in the vicinity of the Mott transition, is
less entangled than any state with a free Fermi surface.
For d > 1, the ground state ρ remains devoid of two-point
entanglement—indistinguishable from free fermions.

Consider now the local entropies. As seen above, even
the ground state in this model is a mixed state with both
classical and quantum uncertainty. Whereas its quantum
uncertainty—in the form of entanglement across biparti-
tions in position space—indicates itineracy, its classical
uncertainty simply originates from an unbroken SU(2)
symmetry. Now the presence of both classical and quan-
tum uncertainty in the ground state ρ makes it difficult
to isolate either portion [32], leaving us with hints of
itineracy that are muddled by classical uncertainty. In
this context, we consider two local entropies that sig-
nal the Mott transition—the entropy density s and the
two-site entropy s2—as well as one that does not signal
the transition—the single-site entropy s1. The local en-
tropies,

s1 ≡ S(ρj) = − tr
(
ρj ln ρj

)
, (33)

s2 ≡ S(ρ〈jj
′〉) = − tr

(
ρ〈jj

′〉 ln ρ〈jj
′〉
)
, (34)

are von Neumann entropies of the reduced states ρj =
tri6=j ρ and ρ〈jj

′〉 = tri6=j,j′ ρ associated with the bipar-
titions Hj ⊗ Hj and (Hj ⊗ Hj′) ⊗ Hj,j′ across position
space, with j and j′ neighboring and the overline denotes
the set complement on the lattice, whereas

s ≡ 1

Ld
S(ρ) = − 1

Ld
tr(ρ ln ρ) (35)

is the entropy density of the full many-body ground state
ρ and does not involve any bipartition of degrees of free-
dom. s1 and s2 are not entanglement entropies because
the ground state ρ is not pure.1 s2 and 2s measure
entropy on the same volume of phase space, each one
bounded between zero and ln(dimHj)2

= ln 16, so the
two quantities are readily comparable. However only s2

is sensitive to the details of correlations in the ground
state, for instance whether they are concentrated in po-
sition or momentum space. Subadditivity of the entropy
requires that 2s1 ≥ s2 ≥ 2s. The former bound is sat-
urated only if ρ〈jj

′〉 = ρj ⊗ ρj′ is uncorrelated between
single-site subsystems, and the latter bound is saturated
only if ρ =

⊗
n ρ

2n,2n+1 is uncorrelated between all (dis-
joint) two-site subsystems, with the latter implying the

1 We are unable to perform a conclusive analysis of the entangle-

ment structure of ρ, as was done for ρjj
′σ , because the involved

Hilbert space dimensions (4⊗ 4L
d−1 and 42 ⊗ 4L

d−2) are larger
than 2⊗ 2 and 2⊗ 3.

former due to translation-invariance. Then any discrep-
ancy between 2s, 2s1, and s2 indicates the presence of
local correlations in the ground state, which may be en-
tirely classical. The entropy density is obtained straight-
forwardly from the decomposition ρ =

⊗
k ρ

k, with ρk

from Eq. (10), as

s =
1

Ld

∑
k

S(ρk) (36)

=
1

Ld

∑
k∈Ω1

S(ρk) (37)

= n1 ln 2 (38)

= ln 2− (ln 4)n2 (39)

having used additivity of entropy in the first line, van-
ishing entropy of all pure states ρk/∈Ω1 in the second, the
definition n1 = |Ω1|/(2π)d = N1/L

d in the third, and the
half filling condition n1 + 2n2 = 1 in the final line.

The computation of s1 and s2 follows simply from the
factorization of the associated reduced states ρj = ρj↑ ⊗
ρj↓ and ρ〈jj

′〉 = ρjj
′↑ ⊗ ρjj

′↓, which can be seen from
the factorization of their matrix elements. That is, for
operators Oσ localized on the spin-σ sector

⊗
j∈AHjσ

of HA, the matrix elements2 of the reduced state ρA on
subregion A factorize as

〈O↑O↓〉ρA = 〈O↑〉ρA〈O↓〉ρA . (41)

This factorization is shown in the appendix.
Conservation of particle number leaves ρjσ =
diag(〈1− njσ〉, 〈njσ〉) = 12/2, with the latter equality
set by half filling, such that ρj = 14/4 is maximally
mixed with entropy

s1 = ln 4. (42)

This is consistent with a direct computation of the
double-occupancy density 〈nj↑nj′↓〉 = 1/4,3 which holds
everywhere in the phase diagram and therefore does not
signal the Mott transition. In the Hubbard model, it
is precisely this quantity which changes discontinuously

2 Recall that the matrix elements of a reduced state ρA on HA
can be constructed, given a basis |a〉⊗ |b〉 of HA⊗HB , from the
expectation values

〈|a〉
〈
a′
∣∣⊗ 1B〉ρ = 〈|a〉

〈
a′
∣∣〉ρA = 〈a′|ρA|a〉 (40)

of operators |a〉 〈a′| ⊗ 1B localized on HA.
3 Hatsugai and Kohmoto [12] erroneously find a finite-size cor-

rection to 〈nj↑nj′↓〉 from inconsistent asymptotics. Their cal-
culation amounts to counting N1(N1 − 1) terms in the sum
over {k, q ∈ Ω1 : k 6= q} in the Fourier transform, but evaluating
〈nk↑nq↓〉 as (1/2)2 in the sum. The latter quantity is instead

(1/2)2/(1 − 1/N1) =
( N1−1
(N1−2)/2

)
/
( N1
N1/2

)
, found by counting the

number of states |π〉 in the ensemble with 〈nk↑〉π = 1 = 〈nq↓〉π
for fixed k, q ∈ Ω1.
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across the Mott transition [25]. The matrix elements
of ρjj

′σ were found around Eq. (14), giving its entropy
S(ρjj

′σ) ∼ ln 4 − 4(n2)2 near the Mott transition, such
that

s2 ∼ ln 16− 8(n2)2. (43)

Relating n2 = |Ω2|/(2π)d to the volume |Ω2| of the d-ball
with radius kF,2 yields the scaling n2 ∼ cd(δu)d/2 near
the Mott transition, where cd = (d/2π)d/2/Γ(d/2 + 1).
Then

s2 ∼ ln 16− 8(cd)
2 δud, (44)

2s ∼ ln 4− (ln 16)cd δu
d/2 (45)

near the Mott transition, whereas s1 = ln 4 everywhere
in the phase diagram.

W
0

ln(4)

ln(16)

d = 1

d = 2
d = 3

s2

d = 1
d = 2
d = 3 2s

U

FIG. 3. Illustrative ground state local entropies in the HK
model at half filling, as the interaction strength U is tuned
across the Mott transition at U = W . s is the entropy density
of the full ground state ρ, and s2 is the entropy of ρ reduced to
two neighbouring sites. The curves are exact only for U ≥W ,
with those in U < W given by U ↗W asymptotics.

As illustrated in Fig. 3, each local entropy deviates
from its insulating value only at U = W , thereby sig-
naling the Mott transition in the approach from the in-
sulating phase. Both local entropies have a kink at the
Mott transition in d = 1, only s has a kink there in d = 2
dimensions, and both quantities are otherwise smooth
there. The decrease in the entropy density s is entirely
explained by a reduced degeneracy of the ground state in
the metallic phase. As discussed earlier, the entropy cap-
tured by s is generically mixed into s2, with s2 ≥ 2s by
subadditivity. Then the decrease in the two-site entropy
s2 should, at least in part, be explained likewise. How-
ever, s2 is substantially larger than 2s for U ≈ W and
U > W , and their scaling exponents near the Mott tran-
sition are different. The spatial bipartition distinguish-
ing the two local entropies is therefore significant; the

decrease in the two-site entropy s2 can be explained in-
dependently of the ground state degeneracy. Given that
the single-site entropy s1 = ln 4 is constant, the behavior
of the two-site mutual information

I(j : j′) ≡ S(ρj) + S(ρj
′
)− S(ρ〈jj

′〉) = 2s1 − s2 (46)

completely determines the behavior of the two-site en-
tropy s2, and I(j : j′) is itself bounded from below by
all connected two-point correlation functions 〈OjOj′〉 −
〈Oj〉〈Oj′〉 between sites j and j′.4 In the insulating
phase, s2 = 2s1 so the mutual information vanishes and
accordingly all connected j-j′ correlation functions van-
ish. From Eq. (3) we know that two-point correlations
turn on at the Mott transition from gapped insulator
to gapless metal, so the mutual information I(j : j′) &
〈c†jσcj′σ〉 ∼ n2 must also turn on there. Consequently
the two-site entropy s2 must decrease from its value in
the insulating phase, in a manner governed by two-point
correlations. In the context of correlations and the single-
site substructure of s2, the local entropies s2 and s are
therefore independent.

DISCUSSION

Dynamical spectral weight transfer, originating from
dynamical double-occupancy, is a fingerprint of the non-
trivial propagating degrees of freedom in the Hubbard
model. We have studied the Hatsugai-Kohmoto (HK)
model of a Mott transition with static double-occupancy,
focusing our analysis on two-point entanglement and lo-
cal entropies in its ground state near the phase transition.
Static double-occupancy directly results in a double-
occupancy density 〈nj↑nj↓〉 that is constant across the
phase diagram, thereby fixing the single-site entropy s1

at the constant value ln 4 even at the Mott transition. On
the other hand, the two-site entropy s2 and entropy den-
sity s serve as sharp signals of the Mott transition in any
dimension d. They are constant in the insulating phase
and decrease only when the interaction U is lowered past

4 Recall that this bound is sufficiently general to apply also to this
mixed state generated by non-local interactions. The mutual
information I(A : B)—between two subsystems A and B in the
state ρAB—is a relative entropy S(ρAB‖ρA ⊗ ρB) = I(A : B)
from the state ρA ⊗ ρB with ρA,B = trB,A ρ

AB , constructed
to remove exactly those correlations between A and B. We use
the quantum Pinsker inequality S(ρ‖σ) ≥ 1

2
(‖ρ− σ‖1)2 and a

Hölder inequality
∥∥ρAB∥∥

1
≥ tr

(
ρABOAOB

)
for operators OI

supported only on I = A,B and normalized such that its largest
singular value ‖OI‖∞ ≤ 1 is bounded by unity. Then

I(A : B)

∣∣∣∣∣
ρAB

≥
1

2

(
〈OAOB〉 − 〈OA〉〈OB〉
‖OA‖∞‖OB‖∞

)
(47)

with expectation values taken in the state ρAB .



7

the transition at U = W . In one dimension, s2 and s
feature kinks at the Mott transition, reminiscent of the
single-site entropy s1 at pure-state quantum phase tran-
sitions in the Hubbard [26, 36, 37] and transverse field
Ising [18] chains. In two dimensions, s alone exhibits a
kink.

We have shown that the HK model, in the vicinity of
the Mott transition in one dimension, is less entangled
than free fermions. Although neither ground state devel-
ops two-point entanglement in higher dimensions d > 1,
a free Fermi surface is known to possess a large degree
of entanglement between global bipartitions [23]. We ex-
pect that larger subsystems of the HK ground state will
continue to exhibit less entanglement. This can be ver-
ified by constructing these states explicitly, building off
of the present work, and numerically testing them for
separability up to arbitrary precision [38].

Our local entropies should be understood in the con-
text of the Hubbard model at finite temperature. Specif-
ically in two dimensions, Walsh et al. have computed
these entropies for the Hubbard model, using a combi-
nation of cluster dynamical mean-field theory and quan-
tum Monte Carlo [25]. They find, at low temperatures,
an interaction-driven Mott transition that is markedly
distinct from the HK transition, being first-order instead
of continuous. At their lowest temperatures, the Hub-
bard model’s entropy density s vanishes in the insulator
and jumps discontinuously to ≈ 1

5 ln 2 at the transition
before smoothly decaying in the metal, whereas its single-

site entropy s1 increases monotonically from ≈ 8
5 ln 2

in the insulator to the metal, with a jump discontinu-
ity of ≈ 1

10 ln 2 at the transition. Following our earlier
discussion of the subadditivity bound 2s1 ≥ s2 ≥ 2s,
this is strong evidence for increasing spatial correlations
in the Hubbard metal, as one expects. The only ob-
struction is the fine-tuned possibility that I(j : j) =
(s1 − s) − ((Ld − 1)s − sLd−1) remains constant while
s1 − s increases. Now the HK metal exhibits a classi-
cal entropy s that similarly decreases and a single-site
entropy s1 that is instead constant throughout, result-
ing in a qualitatively similar increase in the discrepancy
s1 − s. Quantitatively, in the vicinity of their respective
Mott transitions, the Hubbard metal has s1 − s ≈ 3

2 ln 2,
larger than the HK metal’s s1 − s ≈ ln 2. We have ex-
tended this analysis to the next smallest subsystem, with
s2−2s ∼ 2 ln 2+(ln 16)cdδu

d/2 also increasing in the HK
metal. The two models are primarily distinguished on
the basis of coupling between high- and low-energy de-
grees of freedom in their Hamiltonians: coupling with
doubly-occupied modes in the Hubbard model is known
to result in dynamical spectral weight transfer, whereas
the absence of any such coupling in the HK model results
in its static double-occupancy. We expect that this dis-
tinction can explain (at least qualitative) differences in
local correlations between the two models.

We are thankful to helpful comments from B. Langley
and the NSF DMR-1461952 for partial funding of this
project.

APPENDIX: MATRIX ELEMENTS OF THE TWO-SITE DENSITY MATRIX

We compute the matrix elements of the two-site density matrix

ρ〈jj
′〉 = diag(p0,0, ρ1,0, ρ0,1, ρ1,1, p2,0, p0,2, ρ2,1, ρ1,2, p2,2) (48)

block diagonal in the particle number decomposition

Hj ⊗Hj′ = Span{|0, 0〉} (49)

⊕ Span{|↑, 0〉 , |0, ↑〉} ⊕ Span{|↓, 0〉 , |0, ↓〉} (50)

⊕ Span{|↑, ↓〉 , |↓, ↑〉 , |↑↓, 0〉 , |0, ↑↓〉} (51)

⊕ Span{|↑, ↑〉} ⊕ Span{|↓, ↓〉} (52)

⊕ Span{|↑↓, ↑〉 , |↑, ↑↓〉} ⊕ Span{|↑↓, ↓〉 , |↓, ↑↓〉} (53)

⊕ Span{|↑↓, ↑↓〉}. (54)

In the one-dimensional subspaces, the diagonal elements are

p2,2 = 〈nj↑nj↓nj′↑nj′↓〉, (55)

p0,0 = 〈(1− nj↓)(1− nj′↓)(1− nj↑)(1− nj′↑)〉 (56)

= 2〈nj↑nj′↑〉 − 4〈nj↑nj↓nj′↑〉+ p2,2, (57)

p2,0 = 〈(1− nj↓)(1− nj′↓)nj↑nj′↑〉 (58)

= 〈nj↑nj′↑〉 − 2〈nj↑nj↓nj′↑〉+ p2,2, (59)

p0,2 = p2,0. (60)
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In the two-dimensional subspaces,

ρ2,1 =

(
p↑↓,↑ ζ
ζ∗ p↑,↑↓

)
(61)

where p↑,↑↓ = p↑↓,↑ = 〈nj↑nj↓nj′↑(1− nj′↓)〉 (62)

= 〈nj↑nj↓nj′↑〉 − p2,2, (63)

ζ = 〈nj↑nj′↑c†j↓cj′↓〉, (64)

and

ρ1,0 =

(
p↑,0 ζ ′

ζ ′∗ p0,↑

)
(65)

where p0,↑ = p↑,0 = 〈(1− nj↓)(1− nj′↓)nj↑(1− nj′↑)〉 (66)

= −〈nj↑nj′↑〉+ 3〈nj↑nj↓nj′↑〉 − p2,2, (67)

ζ ′ = 〈(1− nj↓)(1− nj′↓)c†j↑cj′↑)〉 (68)

= 〈c†j↑cj′↑〉 − 2〈nj↓c†j↑cj′↑〉+ ζ, (69)

in addition to ρ1,2 = ρ2,1 and ρ0,1 = ρ1,0.

In the only four-dimensional subspace,

ρ1,1 =


p↑,↓ x w w∗

x∗ p↓,↑ −w −w∗
w∗ −w∗ p↑↓,0 x′

w −w x′∗ p0,↑↓

 (70)

where

p↓,↑ = p↑,↓ = 〈(1− nj↓)(1− nj′↑)nj↑nj′↓〉 (71)

= 1/4− 2〈nj↑nj↓nj′↑〉+ p2,2 (72)

p0,↑↓ = p↑↓,0 = 〈(1− nj′↑)(1− nj′↓)nj↑nj↓〉 (73)

= 1/4− 2〈nj↑nj↓nj′↑〉+ p2,2 (74)

x = 〈c†j′↓c
†
j↑cj↓cj′↑〉 (75)

x′ = 〈c†j↓c
†
j↑cj′↑cj′↓〉 (76)

w = 〈(1− nj′↑)nj↑c†j′↓cj↓〉 (77)

= 〈nj′↓c†j↑cj′↑〉
∗ − ζ∗ (78)

We see that all matrix elements can be written in terms of p2,2, ζ, x, x′, 〈c†j↑cj′↑〉, 〈nj↓c
†
j↑cj′↑〉, 〈nj↑nj′↑〉, 〈nj↑nj′↓〉,

and 〈nj↑nj↓nj′↑〉. The simplest of these are

〈nj↑nj′↓〉 =
1

L2d

∑
kp

pπ
∑
π

〈nk↑〉π〈np↓〉π (79)

= p↑↓ (80)

= 1/4 (81)

= 〈nj↑〉〈nj′↓〉 (82)

and z = 〈c†j↑cj′↑〉, already computed in the text.
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Some algebra leads to

〈nj↑nj′↑〉 =
1

L2d

∑
k,k′

(1− e−i(k−k
′)(j−j′))E2(k, k′) (83)

〈c†j′↓c
†
j↑cj↓cj′↑〉 = x = − 1

L2d

∑
k,p

e−i(k−p)(j−j
′)E2(k, p) (84)

〈c†j↓c
†
j↑cj′↑cj′↓〉 = x′ =

1

L2d

∑
k,p

e−i(k+p)(j−j′)E2(k, p) (85)

〈nj′↓c†j↑cj′↑〉 = 〈nj↓c†j↑cj′↑〉 =
1

L2d

∑
kp

e−ik(j−j′)E2(k, p) (86)

〈nj↑nj↓nj′↑〉 =
1

L3d

∑
k,k′,p

(1− e−i(k−k
′)(j−j′))E3(k, k′, p) (87)

〈nj↑nj′↑c†j↓cj′↓〉 = ζ =
1

L3d

∑
k,k′,p

e−ip(j−j
′)(1− e−i(k−k

′)(j−j′))E3(k, k′, p) (88)

p2,2 =
1

L4d

∑
k,k′,p,p′

(1− e−i(k−k
′)·(j−j′))(1− e−i(p−p

′)·(j−j′))E4(k, k′, p, p′), (89)

where

E2(k, k′) = pπ
∑
π

〈nkσ〉π〈nk′σ′〉π (90)

E3(k, k′, p) = pπ
∑
π

〈nk↑〉π〈nk′↑〉π〈np↓〉π (91)

E4(k, k′, p, p′) = pπ
∑
π

〈nk↑〉π〈nk′↑〉π〈np↓〉π〈np′↓〉π (92)

factorize, for distinct momenta in the thermodynamic limit, as

E2(k ∈ Ωa, k
′ ∈ Ωb) =

a

2

b

2
(93)

E3(k ∈ Ωa, k
′ ∈ Ωb, p ∈ Ωc) =

a

2

b

2

c

2
(94)

E4(k ∈ Ωa, k
′ ∈ Ωb, p ∈ Ωc, p

′ ∈ Ωd) =
a

2

b

2

c

2

d

2
. (95)

Since the phase space of distinct momenta dominates the Fourier sums in the thermodynamic limit, one can read off
the above expressions that all matrix elements of the two-site reduced state ρ〈jj

′〉 factorize as described in the text,
so ρ〈jj

′〉 = ρjj
′↑ ⊗ ρjj′↓ also factorizes. Then the single-site reduced state also factorizes as ρj = ρj↑ ⊗ ρj↓.

[1] A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).
[2] M. B. J. Meinders, H. Eskes, and G. A. Sawatzky, Phys. Rev. B 48, 3916 (1993).
[3] P. Phillips, Reviews of Modern Physics 82, 1719 (2010), arXiv:1001.5270 [cond-mat.str-el].
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