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1 Introduction

Elementary quanta of space—also known as quantum polyhedra [1]—are a characterizing

feature of loop quantum gravity (LQG) [2–5]. These microscopic degrees of freedom are

ultra-local and associated with the N nodes of a finite graph Γ. The collective state of the

system is an element of the kinematical Hilbert space of the theory which, at fixed spin-

network graph Γ and spins j`, has the tensor-product structure

HΓj` =
⊗
n∈Γ

Hn . (1.1)

Here Hn is the Hilbert space of the SU(2) intertwiner associated to each node n, the quan-

tization of a classical polyhedron [1, 6–9]. This decomposition is the basis of the geometric

picture of quantum space: an LQG state is a many-body state of quantum polyhedra with

the adjacency relations given by the connectivity of the graph and areas given by the spins

[10]. A generic state in the space HΓj` is a linear superposition of quantum polyhedra,

|s〉 =
∑

i1,...,iN

ci1...iN |i1〉 · · · |iN 〉 . (1.2)

The factorized orthonormal basis associated to the tensor product (1.1), denoted |Γ, j`, in〉 =

|i1〉 · · · |iN 〉, is called the spin-network basis. This is a basis of simultaneous eigenstates of

of a maximal commuting set of operators that are ultralocal, i.e., each operator measures

a geometric property of a single quantum polyhedron such as its volume or the dihedral

angle between two faces [1, 6–15]. As a result, spin-network basis states are factorized over

polyhedra: they are un-entangled. On the other hand a typical state of this many-body

system has the form (1.2) and represents entangled polyhedra.

The connectivity of the graph Γ, together with the factorized structure of the Hilbert

space HΓj` , allows us to define regions of the graph and their associated Hilbert space. Specif-

ically, we call A a region if the set of nodes n ∈ A is path connected with respect to the graph

structure. The associated Hilbert space is HA =
⊗

n∈AHn and, denoting Ā the complement

of A, we have a bipartition of the Hilbert space as the tensor product

HΓj` = HA⊗HĀ . (1.3)

Given this structure, it is immediate to define the entanglement entropy SA of a pure state

|s〉 restricted to the subsystem A. Let us assume that 1 � dimHA ≤
√

dimHΓj` . In this

case, Page’s result [16] states that a typical state in the Hilbert space HΓj` has entanglement

entropy

SA(typical) ≈ log(dimHA) − 1

2
(dimHA)2/dimHΓ,j` . (1.4)

This result indicates that the restriction ρA of a typical pure state in HΓj` is close to being

maximally mixed when the subsystem A is small. It is instructive to consider the case of a

graph Γ that is dual to an equal-area triangulation. In this case, all spins are assumed to
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be equal to j0 and the dimension of the Hilbert space of a node—an equal-area quantum

tetrahedron—is simply dimHn = 2j0 + 1. The expectation value of the volume of a node

is v(j0) = Tr(V̂n ρn) = 1
2j0+1

∑
k vk, where vk are the eigenvalues of the volume operator V̂n

and ρn is the maximally mixed state. When expressed in terms of these parameters, the

entanglement entropy of a typical state in HΓj0 is

SA(typical) ≈ log(2j0 + 1)

v(j0)
VA −

1

2
exp

(
− log(2j0 + 1)

v(j0)
(VΓ − 2VA)

)
. (1.5)

This is a volume law for the entanglement entropy of a typical state in the Hilbert space HΓj0 .

On the other hand, it is known that taking into account the dynamics—and in particular

constraints such as the selection of an eigenstate of an Hamiltonian with local interactions

[17–19]—selects states that are non-typical in the Hilbert space and leads to a behavior of

the entanglement entropy that deviates qualitatively from Page’s law for typical states.

In this paper, we focus on Bell-network states and show that—instead of a volume law—

their entanglement entropy obeys an area law,

SA(Bell-network) ≈ log(2j0 + 1)

a(j0)
AreaA + . . . , (1.6)

where a(j0) = 8πγG~
√
j0(j0 + 1) is the area eigenvalue of a boundary link.

Bell-network states are defined using squeezed vacuum techniques that enforce prescribed

correlations. In particular, Bell-network states [20] have correlations that reduce the general

twisted geometry [21, 22] at adjacent nodes to vector geometries [23, 24] by introducing Bell-

like correlation in the normals to faces of adjacent polyhedra. The structure of correlations

is well illustrated by the Bell state for two spin-1/2 particles,

|B〉 =
|↑〉1 |↓〉2 − |↓〉1 |↑〉2√

2
=
√

2

∫
d~n

4π
|~n〉1 |−~n〉2 , (1.7)

which is given by a uniform superposition of back-to-back spins. For a given graph Γ and

assignment j` of spins, there is a unique Bell-network state in HΓj` , here denoted |Γ, j`,B〉.
Its expansion coefficients in the basis (1.2) are given by the SU(2) symbol of the graph.

Calculating the entanglement entropy SA of a region A of a Bell-network state is non-

trivial. In this paper, we present analytical and numerical methods to compute it. We will

work only with finite graphs having a finite number of nodes. The problem is structured in

the same way as the standard entanglement entropy computation in many-body quantum

systems, where one considers a state (e.g. the ground state of a specific Hamiltonian) and

then computes the entanglement entropy for various subsystems [16–19]. In this work, we

present a numerical code [25] that, for a given graph, first evaluates the expansion of the

Bell-network state on a factorized basis, and then computes the entanglement entropy of

various subsystems. We present explicit versions of the code adapted to different graphs and

subregions. We consider: the dipole graph, the pentagram graph with subregions containing
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one or two nodes, and the hexagram graph with subregions containing one or two nodes

(either connected or disconnected).

To identify qualitative features of the behavior of the entanglement entropy for any

Bell-network state and arbitrary subsystem, we employ analytical methods which provide

good approximations under the assumption of uniformly large spins. Under a homogeneous

rescaling of the spins of the state j` → λj`, we derive a bound for the leading order in λ� 1

of the entanglement entropy of a region A,

(|∂A| − cA) log λ ≤ SA ≤ (|∂A| − 3) log λ , (1.8)

where cA is a half-integer and |∂A| is the number of links that cross the boundary of A. In

this regime the bound implies an area-law behavior for SA. We determine also the behavior of

the Rényi entropy of order p of any Bell-network state and arbitrary region. When compared

to our numerical data, we find good agreement within our approximation.

The expectation that entanglement in the degrees of freedom of the gravitational field is a

necessary condition for the emergence of a classical spacetime is shared by various approaches

to nonperturbative quantum gravity [26–34]. The result that Bell-network states satisfy an

area law supports the conjecture that entanglement can be used as a probe of semiclassicality

in quantum gravity [28].

The paper is structured as follows. In Section 2 we give an elementary introduction to

entropic inequalities for the entanglement entropy and the Rényi entropy, together with their

application to LQG. In Section 3 we review the definition of Bell-network states and their

relation to vector geometries. In Section 4 we present the large-spin asymptotic analysis of the

Rényi entropy and the entanglement entropy for a Bell-network state on a generic graph. In

Section 5 we present our code and compare the numerical results to our analytical asymptotic

formulae for some specific graphs. We conclude with a discussion of our results.

2 Entanglement entropy and Rényi entropy in LQG

A quantum system composed of two subsystems A and Ā has a Hilbert space given by the

tensor product:

H = HA ⊗HĀ . (2.1)

Given a state |ψ〉 in H, the reduced density matrix of the subsystem A is defined by the

partial trace over its complement Ā

ρA = TrĀ |ψ〉〈ψ| . (2.2)

The entanglement entropy of the subsystem A is defined as the von Neumann entropy of the

reduced density matrix

SA = −Tr
(
ρA log ρA

)
. (2.3)
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It is also useful to define the Rényi entropy of order p, defined as

R
(p)
A = − 1

p− 1
log TrρpA , (2.4)

with p ≥ 0. The limit p→ 1 reproduces the entanglement entropy, as can be easily shown:

lim
p→1

R
(p)
A =− lim

ε→0

1

ε
log Tr

(
ρA (1 + ε log ρA)

)
=− lim

ε→0

1

ε
log (1 + εTrρA log ρA) = −Tr

(
ρA log ρA

)
= SA . (2.5)

On the other hand, the limit p → 0 of the Rényi entropy reproduces the maximum entropy

Smax
A = log(dimHA),

lim
p→0

R
(p)
A = log Tr lim

p→0
ρpA = log(dimHA) = Smax

A . (2.6)

The Rényi entropies satisfy the useful inequality

R
(p)
A ≤ R

(p′)
A for p > p′ (2.7)

with the equality corresponding to the maximally mixed state ρA = 1/dimHA for which

R
(p)
A = log(dimHA). Considering the limits p→ 0, 1, these inequalities provide an upper and

a lower bound on the entanglement entropy,

R
(p)
A ≤ SA ≤ log(dimHA) with p > 1 . (2.8)

This relation is instrumental in our analysis.

The structures discussed above apply immediately to states in the LQG Hilbert space

HΓj` = H1 ⊗ · · · ⊗ HN with fixed graph Γ, N nodes and fixed spins j`. In this case, a state

of this many-body system is a quantum geometry consisting of N entangled polyhedra.

A similar decomposition of the Hilbert space has been used for the investigation of en-

tanglement in the intertwiner degrees of freedom in [35] and in [36], where a class of area-law

states with spin 1/2 is studied. The decomposition discussed in these works differs from the

edge-mode decomposition of [37–43], where an enlargement of the Hilbert space is consid-

ered. In that case there is a local boundary contribution due to edge modes and a non-local

contribution due to intertwiner entanglement (quantum polyhedra). As an example of the

distinction between the two definitions of entanglement entropy (intertwiner entanglement vs

edge-mode entanglement), we can consider a spin-network basis state |Γ, j`, in〉 and a region

A. The edge-mode entanglement entropy scales as
∑

` log(2j` + 1), while the intertwiner en-

tanglement entropy is simply zero. We refer to [44] for a detailed discussion of the relation

between different definitions of the entanglement entropy in lattice gauge theory and the re-

lated choice of subalgebra of observables.
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While in this paper we focus on the Hilbert space at fixed spins, HΓj` , the notion of

entanglement entropy that we use generalizes immediately to a sum over spins. In fact, the

LQG Hilbert space at fixed graph Γ does not have a tensor product structure. It is instead

given by the direct sum HΓ =
⊕

j`
HΓj` over spaces at fixed spins. Remarkably, in this case

the entanglement entropy can be computed following [44]. Given a state |Γ, v〉 ∈ HΓ,

|Γ, v〉 =
∑
j`

qj` |Γ, j`, v〉 , (2.9)

with |Γ, j`, v〉 ∈ HΓj` , the entanglement entropy of a region A can be computed as

SA = −
∑
j`

pj` log pj` +
∑
j`

pj`SA (j`) (2.10)

where pj` = |qj` |
2 /
∑

j`
|qj` |

2 is the probability of finding the state |Γ, v〉 with definite spins

j`, and the entropy is the sum of the classical Shannon entropy of the probability distribution

pj` and the average entropy at fixed spin.

3 Bell-network states and vector geometries

The LQG Hilbert space at fixed graph Γ and spins j` consist of a collection of quantum

polyhedra, one for each node. Geometrical quantities like angles, areas, volumes, and shapes

of these polyhedra are quantum operators in this Hilbert space. To glue two polyhedra

together, we need to impose the matching of the shape of the face shared between the two. At

the quantum level, due to the uncertainty relations of shape operators, we cannot require two

shape eigenstates to coincide, but we can impose gluing as expectation values. Moreover, we

can require correlations between two adjacent quantum polyhedra so that also the fluctuations

of the shape of two adjacent faces are correlated. Bell-network states [20, 31, 32] are a specific

proposal that uniformly maximizes correlations of all neighboring polyhedra on a given graph.

They are given by the formula

|Γ, j`,B〉 =
1√
Z

∑
in

AΓ (j`, in)
⊗
n

|in〉 , (3.1)

where Z is a normalization and the amplitude A is the SU(2)-symbol of the graph Γ, i.e.,

AΓ (j`, in) =
∑
{m}

∏
n

[in]m1···mFn . (3.2)

Here the intertwining tensors [in]m1···mFn are contracted according to the connectivity of the

graph Γ and Fn is the number of faces of the quantum polyhedron in the node n.

These states have an appealing geometrical interpretation: for large spins, they describe

a uniform superposition of vector geometries, a collection of polyhedra glued together by re-

quiring that the normals of adjacent faces are back-to-back, even though in general the faces
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don’t have the same shape. This class of geometries plays an essential role in the study of

the asymptotic behavior of topological BF SU(2) spin foam vertex amplitudes [24, 45–49].

Bell-network states have built-in short-range correlations and are expected to satisfy an area

law for the entanglement entropy. Proving that the area law arises at the gauge-invariant

level is not immediate as it requires us to control correlations in the intertwiner degrees of

freedom. Here we present the explicit computations necessary to determine this behavior.

While in this paper we focus on Bell-network states at fixed spins, their full definition

includes also specific weights for the sum over spins. We review briefly the related construc-

tion.

Bell-network states are defined using the formalism of squeezed spin networks, developed

in [31, 32]. The objective is to build entangled states for neighboring quantum polyhedra.

Given a graph Γ, the Hilbert space of a link ` ∈ Γ can be thought of as the Hilbert space

of four harmonic oscillators, two at the source and two at the target of the link [32]. Denoting

the creation operators a†sα and a†t
α, where α = 1, 2 is a spinor index, we build a Bell state of

the link ` as

|B, λ〉` =
(

1− |λ|2
)

exp
(
λεαβa

†
s
αa†t

β
)
|0〉s |0〉t , (3.3)

where the squeezing paramenter λ is a complex number that encodes the average area A` and

the average extrinsic angle θ` associated to the link. The Bell-network state of a full graph Γ

is then defined as the gauge-invariant projection of the tensor product of link Bell states

|Γ, λ`,B〉 = PΓ ⊗`∈Γ |B, λ`〉` . (3.4)

The gauge-invariant projection can be implemented using the resolution of the identity in

the spin-network basis PΓ =
∑

j`,in
|Γ, j`, in〉 〈Γ, j`, in|. The result of this projection takes a

simple form. We obtain an expression for the graph Bell-network states in terms of a sum

over spins

|Γ, λ`,B〉 =
∑
j`

(∏
`

(
1− |λ`|2

)
λ2j`
`

√
2j` + 1

)
|Γ, j`,B〉 , (3.5)

where |Γ, j`,B〉 are the states (3.1) we focus on in this paper.

Computing the entanglement entropy of |Γ, j`,B〉 is non-trivial. Once the result of the

entanglement entropy at fixed spins is obtained, the entanglement entropy of the full state

can be computed using (2.10) with qj` =
∏
`

(
1− |λ`|2

)
λ2j`
`

√
2j` + 1.

4 Large-spin asymptotic analysis of the entanglement entropy

Given a Bell-network state on a general graph Γ with fixed spins j` (3.1), we consider a region

A containing a certain number of nodes NA. We denote |∂A| the number of links crossing

the boundary of A, see Figure 1. The density matrix of A is defined by tracing away the

– 7 –



� ��

Figure 1: Example of a general spin network on a graph Γ. We shaded in green a region

A which contains NA = 4 nodes and |∂A| = 7 boundary links (marked with a cross). The

region A determines a subsystem HA =
⊗

n∈AHn.

intertwiners in Ā, i.e.,

ρA = TrĀ |Γ, j`,B〉 〈Γ, j`,B| =
1

Z

∑
in,i′n

M
(
in, i

′
n

)⊗
n∈A
|in〉

〈
i′n
∣∣ . (4.1)

The normalization Z guaranties that Trρ = 1. The matrix M(in, i
′
n) is defined as

M(in, i
′
n) =

∑
kn∈Ā

AΓ (j`, in, kn) AΓ

(
j`, i

′
n, kn

)
, (4.2)

where the sum is over the intertwiners kn associated to the nodes contained in Ā, the com-

plement of A. The normalization factor is easily expressed in terms of the matrix M as

Z = TrM . The trace of the density matrix raised to a power p can also be expressed in terms

of M as TrρpA = TrMp/ (TrM)p. This formula allows us to compute the Rényi entropies in

terms of the matrix M :

R
(p)
A = − 1

p− 1
log TrρpA = − 1

p− 1
(log TrMp − p log TrM) . (4.3)

The ingredients needed in the formula are the traces TrMp. For instance, TrM can be written

in terms of SU(2)-symbols as

TrM =
∑
in,kn

AΓ (j`, in, kn)AΓ (j`, in, kn) = Z . (4.4)

Clearly, these quantities can be computed using SU(2) recoupling theory. However, no closed

expression is available and one has to resort to numerical or symbolic codes, as the ones

discussed in the next section. Here we are interested in the behavior of the Rényi entropies

under uniform rescaling of the spins. To this end we introduce a reformulation in terms

of auxiliary variables familiar in spin foam calculations. This reformulation allows us to
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estimate the value of the Rényi entropies analytically in the large-spin regime using a saddle

point approximation.

To write the Rényi entropies in spinfoam-like variables, we express each of the p ·N sums

over intertwiners appearing in TrMp as an integral over SU(2) Wigner matrices,∑
i

īm1···mF i
n1···nF =

∫
SU(2)

dg D(j1)n1
m1

(g) · · ·D(jF )nF
mF

(g) . (4.5)

The indices are contracted according to the connectivity of the graph (3.2) and result into

SU(2) characters. In particular, there is one SU(2) character for each link crossing the

boundary of A, and p characters for each link completely inside or outside the region A. In

total, there are pL − (p − 1) |∂A| characters. By introducing a resolution of the identity in

terms of SU(2) coherent states |j ~n〉 [50], each SU(2) character χ(j) = TrD(j) can be expressed

as an integral over a unit vector ~n ∈ S2,

χ(j) (g) = (2j + 1)

∫
S2

d~n 〈j ~n| g |j ~n〉 = (2j + 1)

∫
S2

d~n exp
(
2j log

〈
1
2 ~n
∣∣ g ∣∣12 ~n〉) . (4.6)

The trace TrMp can then be written as an integral over SU(2) group elements ge and over

unit vectors ~nf as

TrMp =

∫
d~nfdge e

fp(j`,~nf ,ge) . (4.7)

The function fp (j, ~nf , ge) is linear in j` and can be determined using diagrammatic techniques

as illustrated for a specific example in the Appendix A.

In the large spin limit, the integral (4.7) can be evaluated using a saddle point ap-

proximation. Under a uniform rescaling of all the spins j` → λj`, the function scales as

fp (j`, ~nf , ge)→ λfp (j`, ~nf , ge), and the leading order in λ of the logarithm of the trace TrMp

is given by:

log (TrMp) =

(
#S2integrals− 1

2
#Hessian (fp)

)
log λ+O(1) . (4.8)

The first term, the number of integrals over coherent states is due to the dimensional factor

2j + 1 in (4.6). The second term, #Hessian, is the rank of the Hessian of fp and it can be

expressed in terms of the number of SU(2) integrals, the number of S2 integrals, the number

of symmetries of fp and the dimension of the space of solutions of the system of saddle point

equations (denoted #space of solutions). If multiple saddle points exist, the dominant saddle

point is characterized by the largest space of solutions. Therefore,

#Hessian (fp) = + 3×#SU(2)integrals (4.9)

+ 2×#S2 integrals (4.10)

−#symmetries (4.11)

−#space of solutions (fp) . (4.12)
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The symmetries of fp are related to right and left SU(2) multiplication of the integration

group elements ge. It can be shown that the function fp always has 2p SU(2) symmetries,

resulting in #symmetries = 3× 2p. As already discussed, the number of SU(2) integrals are

p times the total number N of nodes of the graph Γ. Therefore,

log (TrMp) = −1

2

(
3pN − 6p−#space of solutions (fp)

)
log λ+O(1) . (4.13)

The number #space of solutions is given by the total number of independent variables (2

per unit vector), minus the number of independent critical point equations and a global

rotation. In the case p = 1, the number of independent critical point equations coming

from f1 is 3(N − 1) (i.e., N − 1 vectorial equations), resulting in #space of solutions (f1) =

2L− 3− 3(N − 1) = 2L− 3N . This number appears in [24] where it is derived in the context

of the asymptotic analysis of spin foam amplitudes of topological theories.

In the general case, denoting

C
(p)
A = #redundant critical-point equations of fp , (4.14)

we find that the number of independent critical point equations of fp is 3pN − C
(p)
A − 3,

corresponding to pN total vectorial equations minus the number of redundant equations

(C
(p)
A ) and a global rotation.

The number C
(p)
A can be computed case-by-case for a given graph Γ, region A and power

p. However, a general closed formula is not available. We note that C
(p)
A has two important

properties: C
(p)
A is an integer and is bounded from below by

C
(p)
A ≥ 6 (p− 1) , (4.15)

which is the number of equations that are redundant because of symmetries1. The resulting

expression is #space of solutions (fp) = 2(pL− (p− 1) |∂A|)− 3− 3pN + C
(p)
A + 3.

In summary, at the leading order in λ, the Rényi entropy of a Bell-network state is

R
(p)
A = − 1

2 (p− 1)

(
2(pL− (p− 1) |∂A|)− 3pN + C

(p)
A − p (2L− 3N)

)
log λ+O(1) =

=

(
|∂A| −

C
(p)
A

2 (p− 1)

)
log λ+O(1) . (4.16)

Using the properties of Rényi entropy, we can characterize the dependence of C
(p)
A on the

order p. From the set of inequalities (2.8) we find

C
(p)
A

2 (p− 1)
≤
C

(p+1)
A

2p
⇒ C

(p)
A <

p

p− 1
C

(p)
A ≤ C(p+1)

A . (4.17)

1We note that there are 2p symmetries fp (j`, ~nf , g̃e) = fp (j`, ~nf , ge) with g̃e = hge or g̃e = geh for some e,

with h ∈ SU(2). For h close to the identity, these symmetries result in a linear constraint δhfp (j`, ~nf , g̃e) = 0

on the critical point equations.
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The parameter C
(p)
A is monotonically increasing in p and, since R

(p)
A is positive, for each p > 1

is bounded from above by 2 (p− 1) (|∂A| − 3).

As discussed in Section 2 the entanglement entropy can be obtained from the limit of

p→ 1 of the Rényi entropy of order p. At the leading order in λ� 1,

SA = lim
p→1

R
(p)
A ≈ lim

p→1

(
|∂A| −

C
(p)
A

2 (p− 1)

)
log λ = (|∂A| − cA) log λ (4.18)

where we denoted as cA the limit limp→1
C

(p)
A

2(p−1) . This limit exists and is finite since the

entanglement entropy of a system with a finite number of degrees of freedom is a well-defined

quantity. From the properties of C
(p)
A , we also find that

R
(p)
A ≈

(
|∂A| −

C
(p)
A

2 (p− 1)

)
log λ ≤ (|∂A| − 3) log λ . (4.19)

Note that the inequalities here are understood as asymptotic statements holding at the leading

order in λ � 1. Combining the limit of this inequality (that is guaranteed to exist by the

monotonicity of C
(p)
A ) with the most strict of the inequality in (2.8) we can determine that

at the leading order in λ the entanglement entropy of a region A of a Bell-network state is

bounded from below and above by(
|∂A| −

C
(2)
A

2

)
log λ ≤ SA ≤ (|∂A| − 3) log λ . (4.20)

The explicit computation of C
(p)
A requires the analysis of critical points equations for a

given graph Γ and subsystem A. However, in the special case of a subsystem A containing

one single node, we can prove that C
(p)
A = 6(p − 1), which is independent of the number of

boundary links. In this case, at the leading order, the Rényi entropy of order p is independent

of p and (4.18) implies that SA = (|∂A| − 3) log λ. This is an area law.

In general, while we don’t have a closed formula for cA, in order to show that an area law

arises we only need that cA does not grow with |∂A|. If this is the case, then—for a region

with a large number of boundary links—we obtain an area law.

5 Large-spin numerical analysis of the entanglement entropy

We provide a numerical code to compute the entanglement entropy and the Rényi entropy of

any order of the density matrix of a Bell-network state restricted to a region A. In this section,

we provide three explicit examples with Bell-network states defined on different graphs: the

dipole graph, the pentagram graph, and the hexagram graph. We consider subsystems defined

by regions Ai containing one or two nodes. The code for the pentagram and the hexagram

graph are available in [25].
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�
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(e) Hexagram Graph: two con-

nected nodes subsystem AB

�

D
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(f) Hexagram Graph: two

disconnected nodes subsystem

AD

Figure 2: Graphs and regions considered in our numerical analysis.

The algorithm implemented in our C code is illustrated in the panel below (See Algorithm

1). The key ingredient of the calculation is the precomputation of all the {6j} and {9j}
symbols needed for the evaluation of the symbol of the graph. To efficiently perform this task

we employ the wigxjpf library and its extension fastwigxj developed in [51] and previously

employed in LQG computations [24, 52].
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Algorithm 1 Numerical algorithm for the evaluation of the Bell-network state entropy

1: Precompute the {6j} symbols with wigxjpf if needed

2: Precompute the {9j} symbols with wigxjpf if needed

3: Load the symbol tables in the memory

4: for each j` do

5: for each in do

6: Assemble the matrix (AΓ)ik = AΓ (j`, in, kn) with the intertwiners in, kn in A, Ā

7: Compute the matrix Mii′ =
(
ATΓ · AΓ

)
ii′

8: Normalize it to obtain the density matrix (ρA)ii′ = Mii′/Tr (M)

9: Find its eigenvalues ρA → νi
10: Compute the entanglement entropy SA = −

∑
i νi log νi

11: Compute the Rényi entropy R
(p)
A = − log

∑
i ν

p
i

The range of applicability of our numerical code is limited to spins up to O(20) because

of two factors. First, we need a considerable amount of RAM to keep accessible all {6j}
and {9j} symbols required in the computation. For example, the computation of any symbol

with spins up to 25 (both integers and half-integers) requires ≈ 15 GB of available RAM,

while its extension to spin 30 requires ≈ 40 GB of available RAM, not commonly available

on ordinary Laptop Computers. This obstacle can be possibly circumvented performing a

selection of the symbols prepared and loaded by fastwigxj. At the present stage, we are

not selecting symbols and therefore we need to load all of them in the memory. Second,

we use an array of double-precision floating-point numbers to store the symbols. Compilers

generally limit the size of this array to the amount of available RAM. For example, the array

of symbols for the hexagram graph occupies (2j + 1)6 · 8 Byte. We executed our code on a

machine with 16 GB of RAM, therefore our maximum spin was limited by a hard cutoff at

about jmax ≈ 1
2

(
6
√

(16 GB)/(8 Byte)− 1
)
≈ 17.

In the following, we report the numerical computation of the entanglement entropy and

the Rényi entropy of order two for a set of specific cases.

We set all spins equal j` = 1
2 and rescale them with a parameter λ so that j` → λ/2. We

will compare the numerical results to the analytical bounds derived in (4.20). We note that

in all cases considered, the number of nodes in the region A is small. As a result, the bound

R
(0)
A = log dimHA on the entanglement entropy SA is tighter than the bound (|∂A| − 3) log λ.

5.1 The dipole graph

The dipole Bell-network state takes a simple form, computed explicitly in [20]. In this case,

analytical computations of the entropy are possible and useful for checking some of the prop-

erties derived before. We consider a dipole graph with four links (Γ2, see Figure 2a):

|Γ2, j`,B〉 =
1√

dimH1

∑
i∈H1

|i〉1 |i〉2 , (5.1)
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Figure 3: [Graph Γ5, entropy of a single node]. The figure shows our numerical results on

the Bell-network state with pentagram graph Γ5 and equal spins j` = λ/2. The entanglement

entropy SA is denoted by blue dots, the Rényi entropy R
(2)
A by red diamonds. The lower bound

asymptotic estimate is shown as a solid orange line (the O(1) is fitted using the numerical

data). The upper bound estimate given by the maximal entropy is shown as a dashed orange

line. We show also the bounds (4.20) as a yellow band. The inset shows the 20 data points

with the largest spins.

where H1 is the intertwiner space of a node. The two intertwiners are maximally entangled.

Choosing a region A that contains a single node, the reduced density matrix is:

ρA = Tr2 (|Γ2, j`,B〉 〈Γ2, j`,B|) =
1

dimH1
. (5.2)

The resulting state is maximally mixed, and all the entropies are maximal and equal to

SA = R
(p)
A = log dimH1 . (5.3)

We can verify the asymptotic formula (4.16) from the exact computation in the limit of large

spins. In the four valent case |∂A| = 4 the asymptotic estimate reduces to SA = R
(p)
A = log λ

which can also be obtained from the uniform rescaling of (5.3). A similar conclusion can be

reached for a dipole graph with an arbitrary number of links greater or equal to three.
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Figure 4: [Graph Γ5, entropy of two connected nodes]. The figure shows our numerical

results on the Bell-network state with pentagram graph Γ5 and equal spins j` = λ/2. The

entanglement entropy SAB is denoted by blue dots, the Rényi entropy R
(2)
AB by red diamonds.

The lower bound asymptotic estimate is shown as a solid orange line (the O(1) is fitted using

the numerical data). The upper bound estimate given by the maximal entropy is shown as a

dashed orange line. We show also the bounds (4.20) as a yellow band. Using the 10 largest-

spin data points, the entanglement entropy SAB is fitted by a log(λ) + b + cλ−1 on the last

10 data points obtaining a ≈ 1.94, b ≈ −0.30 and c ≈ 3.19.

5.2 The pentagram graph

The pentagram Bell-network state (see the graph Γ5 in Figures 2b, and 2c) is a superposition

of the intertwiner states weighted by the symbol of the graph, the {15j} symbol,

|Γ5, j`,B〉 =
1√
Z

∑
in

{15j} (j`, in) |i1〉 |i2〉 |i3〉 |i4〉 |i5〉 . (5.4)

One node subsystem of Γ5. Choosing a region A containing a single node, our asymptotic

formula reduces to

SA ≈ R(p)
A ≈ log λ (5.5)

at the leading order. Note that SA and R
(p)
A can differ by O(1) terms. We used our code to

compute the entanglement entropy and Rényi entropy of order two for all equal spins j` = λ/2

and the scale parameter up to λ ≤ 50. We report the numerical results in Figure 3. The plot
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shows clearly that SA, R
(2)
A and the maximal entropy R

(0)
A = log (λ+ 1) ≈ log λ + O

(
λ−1

)
differ only by a constant contribution. We interpret this O(1) difference as an indication that

the restriction of the Bell-network state is not maximally mixed and the state is not typical

in the Hilbert space.

Two nodes subsystem of Γ5. If we choose a subsystem AB containing two nodes, our

asymptotic estimates reduce to

R
(2)
AB =

3

2
log λ+O(1) (5.6)

and to an asymptotic band for the entanglement entropy given by

3

2
log λ ≤ SAB ≤ 3 log λ . (5.7)

For this specific configuration, the bound from above given by the maximal entropy SAB ≤
2 log λ is tighter. The results of the computation of the entanglement entropy and Rényi

entropy of order two for the case of all equal spins j` = λ
2 and the scale parameter up to

λ ≤ 44 are reported in Figure 4.

5.3 The hexagram graph

The hexagram Bell-network state (Γ6, see Figures 2d, 2e, and 2f) is a superposition of the

intertwiner states weighted by the symbol of the graph, the {18j} symbol,

|Γ6, j`,B〉 =
1√
Z

∑
in

{18j} (j`, in) |i1〉 |i2〉 |i3〉 |i4〉 |i5〉 |i6〉 . (5.8)

One node subsystem of Γ6. Choosing a region A containing a single node, our asymptotic

formula reduces to

SA = R
(p)
A = log λ+O(1) . (5.9)

Note that SA and R
(p)
A can differ by O(1) terms. As already done for the graph Γ5, we

compute the entanglement entropy and Rényi entropy of order two for the hexagram Γ6 with

all equal spins j` = λ
2 and scale parameter up to λ ≤ 34. We report the results in Figure

5. The plot shows that the O(1) contributions differ for SA, R
(2)
A and the maximal entropy

R
(0)
A = log (λ+ 1) ≈ log λ + O

(
λ−1

)
. We interpret this difference as an indication that the

subsystem is not maximally mixed and the Bell-network state is not typical in the Hilbert

space.

Two connected nodes subsystem of Γ6. Choosing the subsystem AB consisting of two

connected nodes, our asymptotic formula reduces to

R
(2)
AB =

3

2
log λ+O(1) . (5.10)
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Figure 5: [Graph Γ6, entropy of a single node]. The figure shows our numerical results on

the Bell-network state with hexagram graph Γ6 and equal spins j` = λ/2. The entanglement

entropy SA is denoted by blue dots, the Rényi entropy R
(2)
A by red diamonds. The lower

bound asymptotic estimate is shown as a solid orange line (the O(1) term is fitted using the

numerical data). The upper bound estimate given by the maximal entropy is shown as a

dashed orange line. We show also the bounds (4.20) as a yellow band. The inset shows the

20 data points with the largest spins.

The asymptotic band with upper and lower bounds on the entanglement entropy given by

3

2
log λ ≤ SAB ≤ 3 log λ (5.11)

For this specific configuration, the maximal entropy SAB ≤ 2 log λ provides a tighter upper

bound. The results of the numerical computation of the entanglement entropy and Rényi

entropy of order two for the case of all equal spins j` = λ
2 and the scale parameter up to

λ ≤ 34 are reported in Figure 6.

Two disconnected nodes subsystem of Γ6. Choosing a subsystem AD consisting of two

disconnected nodes, our asymptotic formula reduces again to

R
(2)
AD =

3

2
log λ+O(1) . (5.12)
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Figure 6: [Graph Γ6, entropy of two connected nodes]. The figure shows our numerical results

on the Bell-network state with hexagram graph Γ6 and equal spins j` = λ/2, for a region

consisting of two connected nodes. The entanglement entropy SAB is denoted by blue dots,

the Rényi entropy R
(2)
AB by red diamonds. The lower bound asymptotic estimate is shown as

a solid orange line (the O(1) is fitted using the numerical data). The upper bound estimate

given by the maximal entropy is shown as a dashed orange line. We show also the bounds

(4.20) as a yellow band. Using the 10 largest-spin data points, the entanglement entropy SAB
is fitted by a log(λ) + b+ cλ−1 on the last 10 data points obtaining a ≈ 1.85, b ≈ −0.08 and

c ≈ 2.23.

The asymptotic band providing upper and lower bounds for the entanglement entropy is now

3

2
log λ ≤ SAD ≤ 5 log λ . (5.13)

Again, as the subsystem still consists of a small number of nodes, the maximal entropy

SAD ≤ 2 log λ provides a tighter upper bound. The results of our numerical computations

of the entanglement entropy and Rényi entropy of order two for the case of all equal spins

j` = λ
2 and the scale parameter up to λ ≤ 34 are reported in Figure 7.
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Figure 7: [Graph Γ6, entropy of two disconnected nodes]. The figure shows our numerical

results on the Bell-network state with hexagram graph Γ6 and equal spins j` = λ/2, for a

region consisting of two disconnected nodes. The entanglement entropy SAD is denoted by

blue dots, the Rényi entropy R
(2)
AD by red diamonds. The lower bound asymptotic estimate is

shown as a solid orange line (the O(1) is fitted using the numerical data). The upper bound

estimate given by the maximal entropy is shown as a dashed orange line. We show also the

bounds (4.20) as a yellow band. Using the 10 largest-spin data points, the entanglement

entropy SAD is fitted by a log(λ) + b + c λ−1 on the last 10 data points obtaininga ≈ 1.86,

b ≈ 0.09 and c ≈ 1.97.

6 Discussion

We studied the entanglement entropy of Bell-network states, numerically and analytically.

Bell-network states were introduced in [20] as states that glue quantum polyhedra with en-

tanglement. For given graph Γ and spin assignment j`, there is a unique Bell-network state

|Γ, j`,B〉 defined by the SU(2) symbol of the graph. Computing their entanglement entropy

allows us to put information-theoretic bounds on correlations of shapes of adjacent polyhedra.

On the numerical side, we presented a code for evaluating the reduced density matrix of a

Bell-network state and its entropy. We use the code to evaluate the entropy for small graphs

containing up to six nodes. We consider various subsystems as described in Figure (2). At

fixed graph, we studied spins ranging from 1/2 to approximately 20. The numerical results

show that Bell-network states are non-typical in the Hilbert space: We find that, at large
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spins, their entropy remains below by a term O(1) with respect to the one of the maximally

mixed state.

While the specific code used here is adapted to small graphs and large spins, a similar

procedure can be adopted for general graphs.

On the analytical side, we developed methods for computing the Rényi entropy of order

p for arbitrary graph and generic region. For spins that are uniformly large, these methods

provide reliable bounds on the entanglement entropy. The Rényi entropy is computed using

techniques borrowed from spinfoam asymptotics [23, 24]: We write the trace of powers of the

reduced density matrix as an integral over unit vectors and SU(2) group elements,

Tr
(
ρpA
)

=

∫
d~n dg efp(j,~n,g)(∫
d~n dg ef1(j,~n,g)

)p , (6.1)

where fp (j, ~n, g) is a linear function of all spins j`. The integral is then evaluated with saddle-

point techniques under a uniform rescaling of the spins j` → λj` with λ� 1. At the leading

order in λ, we find that the Rényi entropy of order p is

R
(p)
A =

(
|∂A| −

C
(p)
A

2 (p− 1)

)
log λ+O(1) , (6.2)

where |∂A| is the number of links that cross the boundary of the region A. The constant C
(p)
A

is an integer that counts the number of redundant critical point equations for the ‘action’ fp.

While there is no general closed formula, the number C
(p)
A can be computed explicitly for a

given graph and region, as we have done in the cases that we have studied. Moreover, using

our results on the asymptotics of the Rényi entropy, we have shown that the entanglement

entropy, at leading order in λ, scales logarithmically as(
|∂A| −

C
(2)
A

2

)
log λ ≤ SA ≤ (|∂A| − 3) log λ . (6.3)

This result shows that, asymptotically, the entanglement entropy of Bell-network states scales

linearly with the number of links |∂A| that cross the boundary of the region A. This result

can be understood as an area law for Bell-network states. To clarify this point, let us consider

a graph dual to a tessellation of 3-space and a region A. The area of a face dual to a link ` is

a(j`) = 8πG~γ
√
j`(j` + 1). Under a rescaling j` → λj` with λ� 1, the area of the boundary

of the region A can be written as

AreaA =
∑
`∈∂A

a(λj`) = 〈a(λj`)〉 |∂A|, (6.4)

where |∂A| is the number of boundary links and 〈a(λj`)〉 is the average area of a face. There-

fore the entanglement entropy of a Bell-network state takes the form

SA
(
|Γ, λj`,B〉

)
≈ log λ

〈a(λj`)〉
AreaA . (6.5)
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The origin of this area law is the entanglement between the shapes of quantum polyhedra.

We discuss also an application of our numerical results. For the case of a pentagram graph

Γ5, we find that the entanglement entropy of two adjacent nodes in |Γ5, λ/2,B〉 is smaller that

the sum of the entropies of each node. Calling the two nodes A and B, we have SA ≈ log λ,

SB ≈ log λ and SAB ≈ 1.94 log λ, (See Figure 4). Therefore the mutual information I(A,B)

scales as

I(A,B) = SA + SB − SAB ≈ 0.06 log λ (Bell-network state) . (6.6)

This numerical result provides us with a tool to bound correlations of shapes of two adjacent

polyhedra in a Bell-network state. Let us consider observables OA and OB which measure

the shape of the quantum polyhedra A and B. In order to have correlated fluctuations of

shapes [53–57], the connected correlation function

GAB = 〈OAOB〉 − 〈OA〉 〈OB〉 (6.7)

has to be non-vanishing. Remarkably, knowing the mutual information between A and B

provides us with a bound on correlations [58, 59],(
〈OAOB〉 − 〈OA〉 〈OB〉

)2
4‖OA‖2‖OB‖2

≤ I(A,B) . (6.8)

This relation is especially useful for bounded operator with known norm, as is the case for

instance for the operator that measures the dihedral angle between two faces of a quantum

polyhedron [13, 60, 61].

In the case of two quantum tetrahedra in the Bell-network state |Γ5, λ/2,B〉, our numer-

ical result (6.6) tells us that the correlations between shapes are allowed to be non-vanishing

at large spins. This result is to be contrasted to the case of the typical state in the Hilbert

space HΓ5 λ/2 for which, using Page’s result (1.4), we find

I(A,B) = SA + SB − SAB ∼
1

2λ
(Typical state) . (6.9)

Therefore correlations in shapes of adjacent polyhedra are suppressed as 1/λ in a typical

state, but unsuppressed in a Bell-network state.

The developments presented in this paper are part of an ongoing numerical revolution in

the field [52, 62–65] and represent the first numerical results on the entanglement entropy of

space in loop quantum gravity.
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A Diagrammatic method to compute fp : a detailed example

We report here the detailed construction of TrM2 for a pentagram graph and a region A

containing two nodes. Using the same graphical notation used in spin foams, each green box

corresponds to a SU(2) integral and each closed line corresponds to a SU(2) character:

TrM2 =

�4

�5

��

�2

�3

~�4

~�5

~��

~�2

~�3

.

We call ga and g̃a the group elements, jab the spin of the closed line involving the group

elements ga and gb, ~nab and ~mab the unit vectors used to exponentiate the characters as in

(4.6).

The function f2 defined by (4.7), TrM2 =
∫
d~nfdge e

λf2(j`,~nf ,ge), is given in this case by

the expression

f2 (j`, gn, ~nf ) =
3∑

a=1

ja4 log 〈~na4| gag4g̃ag̃4 |~na4〉+
3∑

a=1

ja5 log 〈~na5| gag5g̃ag̃5 |~na5〉+∑
1≤a<b≤3

jab log 〈~nab| gag−1
b |~nab〉+

∑
1≤a<b≤3

jab log 〈~mab| g̃ag̃−1
b |~mab〉+

j45 log 〈~n45| g4g
−1
5 |~n45〉+ j45 log 〈~m45| g̃4g̃

−1
5 |~m45〉 .
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