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We develop a non-parametric method for inferring the universal neutron star (NS) equation of
state (EOS) from gravitational wave (GW) observations. Many different possible realizations of
the EOS are generated with a Gaussian process conditioned on a set of nuclear-theoretic models.
These synthetic EOSs are causal and thermodynamically stable by construction, span a broad
region of the pressure-density plane, and can be selected to satisfy astrophysical constraints on the
NS mass. Associating every synthetic EOS with a pair of component masses M1,2 and calculating
the corresponding tidal deformabilities Λ1,2, we perform Monte Carlo integration over the GW
likelihood for M1,2 and Λ1,2 to directly infer a posterior process for the NS EOS. We first demonstrate
that the method can accurately recover the properties of an injected GW signal, and subsequently
use it to analyze data from GW170817, finding a canonical deformability of Λ1.4 = 160+448

−113 and

p(2ρnuc) = 1.35+1.8
−1.2 × 1034 dyn/cm2 for the pressure at twice the nuclear saturation density at 90%

confidence, in agreement with previous studies, when assuming a loose EOS prior. With a prior
more tightly constrained to resemble the theoretical EOS models, we recover Λ1.4 = 556+163

−172 and

p(2ρnuc) = 4.73+1.4
−2.5×1034 dyn/cm2. We further infer the maximum NS mass supported by the EOS

to be Mmax = 2.09+0.37
−0.16 (2.04+0.22

−0.002) M� with the loose (tight) prior. The Bayes factor between

the two priors is BAI ' 1.12, suggesting that neither is strongly preferred by the data and that
constraints on the EOS from GW170817 alone may be sensitive to the choice of prior.

I. INTRODUCTION

Determining the neutron star (NS) equation of state (EOS) is a major unsolved problem in nuclear astrophysics. The
NS EOS is the zero-temperature pressure-density relation that arises from the star’s nuclear microphysics, encoding
its composition and internal structure, and determining its macroscopic properties. Because young NSs cool rapidly
via neutrino emission and quickly reach β-equilibrium, thermal and dissipative corrections to the EOS are negligible,
and NS matter is typically modeled as a perfect fluid [1]. The EOS for the low-density NS crust is well known [2], but
the conditions in the dense NS core are so extreme that laboratory experiments are unable to probe its constituent
supranuclear matter. Consequently, astrophysical observations of NSs offer the best opportunity for constraining the
unknown core EOS.

Because a given candidate EOS prescribes a unique mass-radius relation [3], simultaneous mass and radius mea-
surements have been attempted for a number of NSs [4]. However, obtaining an accurate radius measurement, which
involves modeling the star’s thermal X-ray emission, is notoriously challenging [5]. Likewise, simultaneous pulsar mass
and moment of inertia measurements have been proposed as a means of constraining the NS EOS via the mass-moment
of inertia relation [6, 7]. Existing radio observatories are, however, unable to measure the relativistic periastron ad-
vance of any known binary pulsar with sufficient precision to infer the stellar moment of inertia [8]. Although future
moment of inertia measurements from next-generation radio telescopes, such as the Square Kilometre Array [9], and
forthcoming radius measurements from the NICER soft X-ray observatory [10] are expected to make significant con-
tributions to the study of ultra-dense matter, at present the most informative constraints on the NS EOS come from
gravitational-wave (GW) astronomy. Indeed, Advanced LIGO’s [11] and Virgo’s [12] GW measurement of NS tidal
deformability in GW170817 [13], the loud signal of a binary NS merger, was the basis for the analyses that produced
the most discriminating constraints on the supranuclear EOS to date [14, 15].

The tidal forces that arise in NS binaries during inspiral deform the stars away from their spherical equilibrium
shape. The mass quadrupole moments they acquire draw energy from the orbit and add to the binary’s gravitational
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radiation, enhancing its GW luminosity and leading to a slight acceleration of the coalescence. This manifests as
a phase shift in the waveform relative to the merger of point-particles [16–18], which is measurable with existing
GW detectors [19–23]. Its magnitude depends on the size of the induced stellar quadrupoles, measured by the
tidal deformabilities Λ1,2 of the two NSs. Λ is an EOS-dependent, dimensionless function of the NS mass M that
correlates with the pressure gradients inside the star—i.e. with the stiffness of the EOS. A stiff EOS has large pressure
gradients that support bigger, more diffuse stars with large Λ, while a soft EOS has small pressure gradients that yield
more compact stars with small Λ. Thus, as with the mass-radius or mass-moment of inertia relation, simultaneous
measurements can pick out the preferred M -Λ relation, which is in one-to-one correspondence with the NS EOS.

The first GW constraints on NS tidal deformability were reported in Ref. [13]. The parameters Λ1,2 were included
in the waveform model and inferred, along with the masses M1,2 and the other source properties, from GW170817
strain data [24]. The resulting posterior distribution over the tidal deformabilities and masses established an upper
bound on the chirp deformability

Λ̃ =
16

13

(M1 + 12M2)M1
4Λ1 + (M2 + 12M1)M2

4Λ2

(M1 +M2)5
, (1)

the particular mass-weighted average of Λ1,2 that appears in the waveform at lowest post-Newtonian order [18, 25]. As-

suming that GW170817’s components rotated slowly [23, 26, 27], with dimensionless spin χ1,2 := cS1,2/GM1,2
2 ≤ 0.05,

Ref. [13] placed a 90%-credible upper bound Λ̃ ≤ 800. The upper limit on the deformability of a canonical 1.4M� NS

was also found to be Λ1.4 := Λ(1.4M�) ≤ 800. This was refined to Λ̃ = 300+420
−230 (median and highest-posterior-density

90% confidence interval) in a subsequent analysis [28], which made use of improved waveform models and included
lower frequencies within the GW data. For comparison, the widely used candidate EOS sly [29], among the softer
theoretical models, has Λ1.4 ≈ 290, while ms1b [30], one of the stiffest, has Λ1.4 ≈ 1220. Overall, these constraints
favor a relatively soft NS EOS, and bounds from Ref. [28] disfavor several candidate EOSs at the 90% confidence
level.

Nonetheless, the analyses of Refs. [13, 28] neglected important correlations between Λ1 and Λ2 and did not attempt
to translate the tidal constraints into a direct inference of the NS EOS. Because a NS’s composition is dictated by
universal nuclear many-body physics, every NS is thought to share a common EOS. Their individual properties can
thus be parameterized by the stellar mass alone. In particular, since all NSs conform to the same M -Λ relation,
the waveform parameters Λ1,2 are not truly independent. For example, with the standard convention M2 ≤ M1,
Λ2 ≥ Λ1 for any physically realistic EOS, as Λ(M) decreases monotonically. Moreover, the correlation between Λ1,2

has been shown to be approximately universal [31, 32]; knowledge of Λ1 and the binary mass ratio is sufficient to
determine Λ2 with high fidelity, regardless of the EOS. Deviations from the universal relation are at most ∼ 10%,
and are substantially smaller for nearly equal-mass systems. Incorporating these correlations, known as binary Love
relations, into a prior on Λ1,2 can significantly improve the recovery of tidal information from GWs. An injection
study performed in Ref. [33] demonstrated that the area of the 90%-credible region of the Λ1-Λ2 posterior is reduced
by a factor of two or more.

The intrinsic correlations captured by the binary Love relations were taken into account in a pair of reanalyses of
GW170817. Ref. [15] made use of the EOS-insensitive, mass-ratio dependent binary Love relations from Refs. [31,
32] to compute Λ2 as a function of the other parameters in the waveform model. Ref. [14] used a closely related
approximation, Λ2 = (M1/M2)6Λ1, for the same purpose. With the inclusion of these physical restrictions on the tidal

deformabilities, both works tightened the tidal constraints inferred from GW170817. Ref. [14] reported Λ̃ = 222+420
−138

for a uniform component-mass prior, while Ref. [15] found Λ1.4 = 190+390
−120 (both median and symmetric 90% confidence

interval). Both studies employed the low-spin prior described above, and they prefer a marginally softer EOS than
was originally inferred.

Ref. [15] also sought to constrain the NS EOS directly, instead of working exclusively with the tidal deformabilities.
It adopted a spectral parameterization for the EOS [34–37] following methodology originally developed for piecewise
polytropes [38–41]. The spectral coefficients were sampled in place of Λ1,2 in the waveform, and the most probable
EOS was then reconstructed, with error bars, from the first four spectral coefficients. This spectral method ultimately
produced a process in the pressure-density plane, in addition to a joint posterior on Λ1,2; just as a distribution
gives the relative probability of finite sets of variates, a process gives the relative probability of functional degrees
of freedom. Although the Λ1,2 posterior can be used for Bayesian hypothesis ranking of different candidate EOSs
[21, 42, 43], the EOS process is inherently more informative. The discrete set of nuclear theory models tested in a
hypothesis ranking scheme may not capture the full range of possibilities for the EOS, and reducing each model to
an overall evidence score may make it difficult to deduce preferences for specific fine-grained features of the EOS. In
contrast, Ref. [15] was able to report, e.g., the recovered pressure at twice and six times the nuclear saturation density
(ρnuc = 2.8× 1014 g/cm3) independently of existing nuclear-theoretic models with ∼ 60% uncertainty.

However, parametric EOS inference has limitations of its own. The reduction of a complicated pressure-density
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function to a small number of parameters necessarily leads to modeling errors [41]. This problem is especially acute
for sharp features in the pressure-density relation, such as first-order phase transitions, and a four-parameter spectral
representation has been shown to model such discontinuous behavior rather poorly [35]. Indeed, it performs no better
in this regard than a three-segment piecewise polytrope parameterization, whose issues with phase transitions are
widely acknowledged [35, 39]. While it may be possible to design an alternate parameterization specially adapted
to such phase transitions, given the extremely varied phenomenology of hybrid EOSs (e.g. [44–47]; see Ref. [48] for
an overview), it is unlikely that any single parametric model will be able to faithfully represent the full range of
EOS variability with only a handful of parameters. Accordingly, a non-parametric representation of the EOS may be
better suited to the task of inferring the internal structure of NSs from astrophysical observations.

The faithfulness of a non-parametric representation of a function f scales with the amount of underlying knowledge
of f—the way, e.g., the appropriate number of bins to use in a histogram grows as more data are observed—instead
of the number of parameters chosen in a parametric model. Non-parametric representations typically involve a set
of hyperparameters that control allowed types of functional behavior—like the number and placement of bins in
a histogram—but the resulting freedom in f is much larger than that afforded by a parametric model. This is
because hyperparameters describe the correlations between a function’s values rather than the values themselves.
Hence, the uncertainty in the non-parametric representation decreases as observations of the function accrue, while
systematic errors in the parametric representation are fixed by the degree to which the model is suited to f . Given
that information about the unknown EOS will accumulate through successive GW observations, a non-parametric
approach is well-adapted to the so-called relativistic inverse stellar structure problem.

In this paper, we introduce a non-parametric method for directly inferring the NS EOS from GW data. Rather
than prescribing a functional form for the relation between the star’s pressure p and its total energy density ε, as
was done in Ref. [15], we use Gaussian process regression (GPR) to generate a large number of possible realizations
ε(a)(p) of the EOS, labeled by a = 1, 2, ..., N . These synthetic EOSs span the full range of stiffnesses, core pressures
and other characteristics consistent with thermodynamic stability, causality, astrophysical observations of NSs, and
candidate models ε(α)(p), α = 1, 2, ..., n, from nuclear theory.1 We then associate each synthetic EOS ε(a)(p) with NS

masses M
(a)
1,2 drawn from a prior distribution and calculate the corresponding tidal deformabilities Λ

(a)
1,2. A Gaussian

kernel density estimate (KDE) approximates the marginal conditional likelihood L(a) := L(d|M (a)
1 ,M

(a)
2 ,Λ

(a)
1 ,Λ

(a)
2 ;H)

obtained from standard parameter estimation [24, 49]. By assigning L(a) to ε(a)(p), we establish a statistical map
between observables (M1,2, Λ1,2) and the pressure-density plane. In the limit of many samples (N →∞), we obtain
a smooth EOS posterior process. This inference scheme is similar to what was used in Ref. [39] in the context of
piecewise polytropes, but our approach adopts a different representation of the EOS prior and employs different
techniques for obtaining the posterior. Ref. [50] employs integration techniques similar to ours in order to bound
macroscopic NS observables, but adopts an ad hoc EOS prior and applies cuts based on the Λ1.4 bounds reported in
Refs. [13, 51].

Besides possessing systematics that are completely independent from those for parametric methods, a non-
parametric approach to EOS inference has several attractive features. Instead of requiring a separate analysis
of GW strain data with an alternate waveform model, our method operates on the standard GW M1,2-Λ1,2 likeli-
hoods produced by parameter estimation. Moreover, a GPR representation of the EOS naturally comes equipped
with smooth error estimates for the function, unlike simple interpolation or a spectral construction. Most importantly,
such a representation provides immense flexibility when selecting the EOS prior; by conditioning the GPR on different
sets of candidate EOSs, priors specialized to different classes of theoretical models can easily be specified. With these,
one could investigate, e.g., the prevalence of hyperonic degrees of freedom or first-order phase transitions in the EOS
by calculating the relative posterior support for the relevant priors. Astrophysical priors on NS masses and radii can
also be accommodated by the GPR, and physical constraints on the EOS—like causality, thermodynamic stability,
and the binary Love relations—are automatically incorporated. Furthermore, conditioning the priors on tabulated
EOSs may make our prior beliefs more transparent compared to ad hoc choices for parameters which may not have
immediate physical interpretations. The flexibility and transparency afforded by a non-parametric representation of
the EOS may become increasingly important as more binary NS systems are observed, reducing statistical uncertainty
to levels comparable to systematic model uncertainties [52].

Leveraging these advantages, we develop two non-parametric priors with Gaussian processes conditioned on a
fiducial set of tabulated candidate EOSs. Our model-agnostic prior attempts to span the full range of physically
plausible EOSs and is only loosely informed by the theoretical models, while our model-informed prior is more
tightly constrained by the candidate EOSs. Applying both priors to a series of simulated signals, we confirm
that our inference scheme behaves as expected. Performing our analysis on GW170817, we infer Λ̃ = 210+383

−113

1 We index tabulated candidate EOSs with Greek letters (α), (β), (γ), ... and synthetic EOSs with Latin letters (a), (b), (c), ... .
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(631+164
−122) and Λ1.4 = 160+448

−113 (556+163
−172) with the model-agnostic (model-informed) prior.2 We also infer the pres-

sures p(2ρnuc) = 1.35+1.8
−1.2 × 1034 (4.73+1.4

−2.5 × 1034) dyn/cm2 and p(6ρnuc) = 8.86+4.3
−5.9×1035 (7.55+2.0

−3.2×1035) dyn/cm2.
Both the model-agnostic and model-informed results are consistent with previous analyses of GW170817 [14, 15].
Additionally, we extrapolate the correlations between mid-range and high densities in the synthetic EOSs to place
the first constraints on the maximum NS mass derived from GW data alone. Our analysis with the model-agnostic
(model-informed) prior yields Mmax = 2.09+0.37

−0.16 (2.04+0.22
−0.002) M�. Computing the Bayes factor BAI between the two

priors, we find that neither is strongly preferred by the data: BAI = 1.12± 0.06 (point estimate and 1-σ uncertainty).
The fact that the inferred constraints vary significantly depending on the choice of prior, while the Bayes factor is near
unity, suggests that constraints on the EOS and tidal deformabilities from GW170817 may be influenced by the choice
of prior. Modeling systematics associated with the parameterization of prior beliefs may therefore be important.

We detail our development of Gaussian processes in Sec. II and describe our inference scheme in Sec. III. Sec. IV
reports the specific priors used in this analysis. We apply them to simulated signals in Sec. V and to real GW170817
data in Sec. VI. We present our conclusions in Sec. VII.

II. NON-PARAMETRIC REPRESENTATION OF THE EQUATION OF STATE

Our non-parametric approach to GW-based EOS inference relies heavily on Gaussian processes (GPs). We there-
fore begin by reviewing GPs in general, before explaining our specific implementation for causal, thermodynamically
stable EOSs. GPs have been applied to many problems in GW astronomy, such as the modeling of gravitational
waveforms [53, 54] and electromagnetic counterpart light curves [55], the optimization of parameter estimation strate-
gies [56–58], and hierarchical population inference [59, 60], but they have not previously been used in the relativistic
inverse stellar structure problem. Furthermore, many of these applications only use GPs to interpolate between a
sparse sample of known functions, marginalizing over interpolation uncertainty, rather than employing a GP directly
as a Bayesian prior. We use GPs for both purposes. A helpful general reference about GPs can be found in Ref. [61].

A. Gaussian processes

GPs provide an extremely flexible and compact representation of the uncertainty in a function’s values (ordinates).
A GP treats a real-valued function f as an element of an infinite-dimensional vector space with correlations between
its ordinates fi := f(xi) ∈ (−∞,∞) modeled as a multivariate Gaussian distribution N with mean 〈fi〉 and covariance
Cov(fi, fj). The joint distribution on the function’s ordinates, conditioned on their corresponding abscissae xi, is thus

fi |xi ∼ N
(
〈fi〉 ,Cov(fi, fj)

)
. (2)

The elements of the covariance matrix are determined by a covariance kernelK such thatKij := K(xi, xj) = Cov(fi, fj).
Typically, K is chosen such that the covariance is larger for abscissae that are closer together, effectively constraining
f to be smooth over a length scale set by the kernel. More generally, K determines the preferred functional behavior
of realizations drawn from the GP. Each realization f of the GP is therefore a sequence of correlated random variables,
but all such functions nonetheless share some general features.

A standard choice for K is the squared-exponential kernel

Kse(x, x′) = σ2 exp

(
− (x− x′)2

2l2

)
, (3)

in which the hyperparameters σ and l determine the functions’ behavior: σ sets the overall strength of the correlations,
and l governs the length scale over which they occur. Although we did not investigate alternative choices, other
common kernels are the Ornstein-Uhlenbeck and Mortén kernels (see Sec. 4.2 of Ref. [61] for a more complete list).
We choose the squared-exponential because it is analytic and adequately captures the observed variations within our
data. Hence, our GP is built from this kernel, along with variants of the white-noise kernel

Kwn(x, x′) = σ2
wn(x)δ(x− x′), (4)

2 Here and in the remainder of the paper, quoted error bars refer to highest-posterior-density 90% confidence intervals about the maximum
a posteriori unless otherwise specified.
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which models measurement uncertainty at a specific point.
One can determine conditional distributions for an arbitrary set of ordinates fi given a set {fj∗} of known values

via

P (fi|xi, {fj∗ , xj∗}) =
P (fi, {fj∗}|xi, {xj∗})

P ({fj∗}|{xj∗})
, (5)

the definition of a conditional probability. Here and throughout this work, starred indices (e.g. xi∗) indicate abscissae
upon which we condition the GP, as opposed to generic abscissae (e.g. xi) at which the ordinates are unknown. We
also adopt the Einstein summation convention throughout. Applying Eq. (5) to a GP yields

fi | xi, {fj∗ , xj∗} ∼ N
(
〈fi〉+Kik∗

(
K−1

)
k∗j∗

(fj∗ − 〈fj∗〉) ,Kij −Kim∗
(
K−1

)
m∗n∗

Kn∗j

)
. (6)

As the set {fj∗} of known values is expanded, the conditioned processes from which the ordinates are drawn become
tighter, reducing the variance between different realizations f of the GP. That is, the uncertainty in the representation
decreases as knowledge of the function accrues.

Furthermore, conditioned processes can be inferred simultaneously for fi and its first derivative ∂if := df/dx|x=xi

via a self-consistent joint distribution (see Secs. 4.1.1 and 9.4 of Ref. [61] for a derivation)[
fi
∂if

] ∣∣∣∣ xi ∼ N ([ 〈fi〉〈∂if〉

]
,

[
Kij ∂jKi�

∂iK�j ∂i∂jK��

])
. (7)

Here we introduce the notation ∂iK�j := ∂xK(x, xj)|x=xi , ∂jKi� := ∂x′K(xi, x
′)|x′=xj , and

∂i∂jK�� := ∂x∂x′K(x, x′)|x=xi,x′=xj . Applying Eq. (5), the conditioned distribution becomes[
fi
∂if

] ∣∣∣∣ xi, {fj∗ , xj∗} ∼ N
(

E

([
fi
∂if

])
, Cov

([
fi
∂if

]
,

[
fj
∂jf

]))
, (8)

where

E

([
fi
∂if

])
=

[
〈fi〉
〈∂if〉

]
+

[
Kij∗

∂iK�j∗

] (
K−1

)
j∗k∗

(fk∗ − 〈fk∗〉) , (9)

Cov

([
fi
∂if

]
,

[
fj
∂jf

])
=

[
Kij ∂jKi�

∂iK�j ∂i∂jK��

]
−
[
Kij∗

∂iK�j∗

] (
K−1

)
j∗k∗

[
Kk∗j ∂jKk∗�

]
, (10)

given known values {fj∗} and corresponding abscissae {xj∗}. Contingent on our choice of K and hyperparameters,
this conditioned process allows us to make probabilistic statements about fi and ∂if at arbitrary abscissae based
on observations of ordinates in other regions of the function’s domain. In other words, Eq. (8) generates a function
over its whole domain from a finite set of known values. GPR is more sophisticated than simple interpolation, as it
automatically comes equipped with estimates of the uncertainty in the interpolated values.

In our application, we use GPR to model uncertainty in the NS EOS. Viewing the GP as a generator of random
functions with (specifiable) common overall behavior, we harness GPR to produce many random synthetic EOSs that
resemble candidate EOSs from nuclear theory. We find that the squared-exponential covariance suitably reproduces
the variability observed in the nuclear-theoretic candidate EOSs when the hyperparameters are appropriately selected.
In principle, one could choose the hyperparameters by optimizing the likelihood P ({fj∗}|{xj∗}, σ, l) of observing the
known data fj∗ at xj∗ with respect to (σ, l); or, better still, marginalize over the hyperparameters according to this
likelihood and a prior P (σ, l) so that

P (fi|xi, {fj∗ , xj∗}) =

∫
dσdl P (fi|xi, {fj∗ , xj∗};σ, l)P ({fj∗}|{xj∗};σ, l)P (σ, l), (11)

in effect defining a mixture model of many GPs. However, in our implementation we simply set the hyperparame-
ters by inspection, such that the GP can reproduce the features of the candidate EOSs. This manual selection of
hyperparameters does not influence our results, and exploring refinements of these choices is left to future work.

B. Gaussian process model for the equation of state

The NS EOS is a function ε(p) that relates the star’s pressure p to its total energy density ε, the sum of rest-mass
energy density ρ and internal energy density ε. The rest-mass and total energy densities are related by the first law
of thermodynamics,
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dε =
(ε+ p)

ρ
dρ. (12)

Since the precise functional relationship between ε and p is uncertain, but partial knowledge of the nuclear microphysics
places some restrictions on its behavior, a GP conditioned on candidate models from nuclear theory is especially well-
suited to modeling EOS uncertainty. In particular, individual realizations of the GP serve as samples from the set of
physically viable EOSs.

The simplest way to construct a non-parametric representation of the EOS would be to apply GPR directly in the p-ε
plane. However, the resulting GP would formally support EOSs with ε < 0, since its range is necessarily the whole real
line. Moreover, by default, GPR on ε(p) would include thermodynamically unstable or acausal EOSs—i.e. functions

with dp/dε < 0 or superluminal sound speeds cs =
√
dp/dε > c. To incorporate causality, thermodynamic stability,

and positivity of the total energy automatically, we instead build a GP over

φ = log

(
c2
dε

dp
− 1

)
. (13)

The auxiliary variable φ, first introduced in Ref. [35], can take any value along the real line, and it naturally incor-
porates the desired physical constraints because φ ∈ R corresponds to 0 ≤ dp/dε ≤ c2. Positivity of p then ensures
cs ≤ c and ε ≥ 0. The spectral approach to EOS inference [36, 37] employed in Ref. [15] also starts with a similar
transformation, but goes on to decompose the EOS onto a small set of basis functions. In contrast, we assign a prior
process to φ = φ(log p) via GPR conditioned on tabulated EOSs. The process over φ can easily be translated to
a process over ε. Since the map from φ to ε is nonlinear, Gaussian uncertainty in φ will, however, generally not
correspond to Gaussian uncertainty in ε.

We condition the GP for φ(log p) on a training set of n candidate EOSs ε(α)(p) from the literature. The data

for the αth candidate EOS constitute a function log ε(α)(log p
(α)
j∗ ) with ordinates log ε

(α)
j∗ and abscissae log p

(α)
j∗ .3 As

the amount of {log ε
(α)
j∗ , log p

(α)
j∗ } data available may vary from candidate EOS to candidate EOS, and the relative

weight assigned to each model in the training set is proportional to the number of data points included, we resample
each ε(α)(p) to s points so that the GP for φ(log p) is conditioned equally on every input EOS. This need not be
the case—one could formulate a mixture model of GPs (see, e.g., Refs. [62, 63]) to establish a weighted training
set of candidate EOSs—but for simplicity we assume equal weights here. This resampling could be performed with,
e.g., linear interpolation, but we instead use GPR to obtain an estimate of the uncertainty associated with the
interpolation. Thus, we construct a GP representation of φ(α)(log p) for each candidate EOS in the training set, such

that one realization of the αth GP is an s-fold list of ordinates {φ(α)
i } at evenly spaced points in log p. In this way,

the maps from ε to φ for the tabulated EOSs—which come without uncertainties—are effectively equipped with error
bars. The GPs for φ(α)(log p) are subordinate to, and used as input for, the overarching GP for φ(log p). We next
describe the construction of the GPs for φ(α)(log p) in some detail, before addressing the GP for φ(log p) itself.

For every candidate EOS ε(α)(p), we first fit log ε(α) with a low-order polynomial in log p and construct a GP for
the residuals. The resulting joint distribution on log ε(α), its first derivative ∂i log ε(α) := d log ε(α)/d log p |p=pi and

the tabulated data {log ε
(α)
j∗ } is log ε

(α)
i

∂i log ε(α)

log ε
(α)
j∗


∣∣∣∣∣∣∣ log pi, {log p

(α)
j∗ } ∼ N


 log ε̂

(α)
i

∂i log ε̂(α)

log ε̂
(α)
j∗

 ,
 K

(α)
ij ∂jK

(α)
i� K

(α)
ij∗

∂iK
(α)
�j ∂i∂jK

(α)
�� ∂iK

(α)
�j∗

K
(α)
i∗j ∂jK

(α)
i∗� K

(α)
i∗j∗


 . (14)

Here we take the values {log ε̂
(α)
i , ∂i log ε̂(α), log ε̂

(α)
j∗ } from the low-order polynomial fit as the mean in the process and

model correlations among the residuals around this fit. While we assume a squared-exponential covariance kernel for

all tabulated EOSs, we choose hyperparameters (σ(α), l(α)) by hand separately for each K
(α)
ij and inspect the resulting

GPs to ensure that they adequately reproduce the features of the input EOSs.

Conditioning the joint distribution on the tabulated ordinates {log ε
(α)
j∗ } via Eq. (5), we obtain[

log ε
(α)
i

∂i log ε(α)

] ∣∣∣∣ log pi,
{

log ε
(α)
j∗ , log p

(α)
j∗

}
∼ N

(
E(α)

([
log εi
∂i log ε

])
, Cov(α)

([
log εi
∂i log ε

]
,

[
log εj
∂j log ε

]))
, (15)

3 Candidate EOS data tabulated as p vs. ρ can also be accommodated by transforming the rest-mass energy density to total energy
density via Eq. (12).
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where the explicit expressions for the expectation value and conditioned covariance follow from Eqs. (9) and (10).
The corresponding process for φ(α) is calculated from Eq. (13) as

φ
(α)
i | log pi,

{
log ε

(α)
j∗ , log p

(α)
j∗

}
∼ N

(
E(α)(φi), Cov(α) (φi, φj)

)
, (16)

with

E(α)(φi) = log

(
E(α) (∂i log ε)

(
eE(α)(log εi)

pi

)
c2 − 1

)
. (17)

We approximate the covariance matrix Cov(α)(φi, φj) through a first order Taylor expansion for φi in terms of log εi
and ∂i log ε, i.e.

φi(log εi, ∂i log ε) ≈ φi +
δφ

δ log ε

∣∣∣∣
i

δ log εi +
δφ

δ(∂ log ε)

∣∣∣∣
i

δ(∂i log ε), (18)

so that

Cov (φi, φj) =

(
δφ

δ log ε

∣∣∣∣
i

)(
δφ

δ log ε

∣∣∣∣
j

)
Cov (log εi, log εj)

+

(
δφ

δ(∂ log ε)

∣∣∣∣
i

)(
δφ

δ log ε

∣∣∣∣
j

)
Cov (∂i log ε, log εj)

+

(
δφ

δ log ε

∣∣∣∣
i

)(
δφ

δ(∂ log ε)

∣∣∣∣
j

)
Cov (log εi, ∂j log ε)

+

(
δφ

δ(∂ log ε)

∣∣∣∣
i

)(
δφ

δ(∂ log ε)

∣∣∣∣
j

)
Cov (∂i log ε, ∂j log ε) . (19)

This allows us to translate log ε(α)(log p
(α)
j∗ ) to the auxiliary variable φ(α)(log pi), interpolated at an arbitrary set of

abscissae, while keeping track of the uncertainty associated with the interpolation. We refer to this as resampling
the tabulated EOSs, because we take irregularly spaced tabulated data for ε(α)(p) and transform it into a process for
φ(α)(log p) from which we can extract regularly sampled data. Fig. 1 shows the φ(α)(log p) process we construct for
one of the candidate EOSs described in Sec. IV.

The overarching GP for φ(log p) is subsequently conditioned on the collection of processes φ(α)(log p) for the
individual candidate EOSs. We again use a squared-exponential kernel, but supplement it with a white-noise kernel
(cf. Eq. (4))

K
(EOS)
ij = δij

σn
2

n

∑
α

(
E(α) (φi)− E(EOS)(φi)

)2

(20)

scaled by the observed variance between the n tabulated EOSs at the pressures pi, where

E(EOS)(φi) =
1

n

∑
β

E(β) (φi) . (21)

In this way, we not only model the covariance between φ at different pressures, but also the spread in candidate
EOSs at each abscissa. The scaling hyperparameter σn in Eq. (20) allows us to specify how closely we wish the
synthetic EOSs to follow the tabulated ones; small values enforce the conditioned process to closely follow the average

of the tabulated EOSs. For simplicity, we condition based on the interpolated ordinates φ
(α)
i∗ at the same regularly

sampled set of pressures log pi∗ regardless of the EOS, though this is not strictly necessary.
Equipped with processes φ(α)(log p) for each tabulated EOS, and the white-noise kernel approximating modeling

uncertainty at each pressure, we construct the overarching GP for φ(log p) conditioned on all the tabulated EOSs.
The joint distribution on φ(log p) and the subordinate φ(α)(log p) is thus

φk
φ

(α=1)
i∗

φ
(α=2)
i∗

...

φ
(α=n)
i∗



∣∣∣∣∣∣∣∣∣∣∣∣
log pk, log pi∗ ∼ N (E,Cov) (22)
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FIG. 1. A demonstration of our GP mapping from ε(h4) to φ(h4) using a 3rd-order polynomial fit and a squared-exponential
kernel with σ(h4) = 0.1 and l(h4) = 0.6 (see Eq. (14)). Irregularly sampled tabulated values and estimates obtained from numeric
differentiation (red) are resampled to a regular grid in log p via GPR, along with residuals and associated error estimates (gray).

We note that the residuals between tabulated values and our interpolation of ε(α) are . 1% at high pressures, resulting in
. 10% relative uncertainty in φ.

with

E =


Ê(EOS)(φk)

Ê(EOS)(φi∗)

Ê(EOS)(φi∗)
...

Ê(EOS)(φi∗)

 , (23)

where Ê(EOS)(φi∗) is a low-order polynomial fit to E(EOS)(φi∗) in log p, and

Cov =



Kij Kij∗ Kij∗ · · · Kij∗

Ki∗j Ki∗j∗ + Cov
(α=1)
i∗j∗ +K

(EOS)
i∗j∗ Ki∗j∗ · · · Ki∗j∗

Ki∗j Ki∗j∗ Ki∗j∗ + Cov
(α=2)
i∗j∗ +K

(EOS)
i∗j∗ · · · Ki∗j∗

...
...

...
. . .

...

Ki∗j Ki∗j∗ Ki∗j∗ · · · Ki∗j∗ + Cov
(α=n)
i∗j∗ +K

(EOS)
i∗j∗

 . (24)

The covariance matrix for this GP representation of the NS EOS is composed of several terms:

a) block diagonal contributions Cov(α) from the conditioned uncertainty in φ
(α)
i for each candidate EOS, as in

Eq. (16);

b) diagonal contributions K(EOS) from the white-noise kernel (20), encoding modeling uncertainty in the ordinates

{φ(α)
j∗ } from the candidate EOSs at each pressure pj∗ ; and

c) a squared-exponential covariance matrix K, as in Eq. (3), describing the correlations between all ordinates φi.

Specific choices for the squared-exponential kernel hyperparameters (σ, l) and the white-noise kernel scaling factor
σn complete the model. Conditioning this process on the means E(α) for the tabulated EOSs yields

φi| log pi, {E(α=1)(φj∗),E
(α=2)(φj∗), · · · ,E(α=n)(φj∗), log pj∗} ∼ N

(
Ẽ, C̃ov

)
, (25)



9

−10

−5

0

5

10

φ

1010 1011 1012 1013 1014 1015

p/c2

−4
−3
−2
−1

0
1
2
3
4

φ
∗
−
φ

1012

1013

1014

p/
c2

[g
/c

m
3
]

1014 1015

ρ [g/cm3]

10−1

100

101

p/
c2

[g
/c

m
3
]/m

ed
ia

n
FIG. 2. Inferred processes for several φ(α)(log p) (red) and an example overarching GP φ(log p) (black) conditioned on all of
them (left) along with the same reference EOSs and the model-agnostic (cyan, loosely informed by nuclear theory) and model-
informed (blue, more tightly constrained by nuclear theory) priors used in this analysis (right, see Sec. IV). Shaded regions
correspond to 1-σ confidence regions. We see that the model-agnostic prior comfortably contains all the reference EOSs, while
the model-informed prior more closely follows a group of tabulated EOS.

which approximates the desired process φi| log pi, {log ε
(α=1)
j∗ , log p

(α=1)
j∗ }, {log ε

(α=2)
k∗ , log p

(α=2)
k∗ }, · · · ,

{log ε
(α=n)
l∗ , log p

(α=n)
l∗ } by conditioning on interpolated values E(α) with associated uncertainties instead of con-

ditioning directly on the tabulated EOS data. This is illustrated in Fig. 2. Concrete expressions for the final
conditioned expectation value and covariance follow from Eq. (6).

The GP defined by Eq. (25) models φ(log p), rather than ε(p). Nonetheless, for each realization φ(a)(log p) of the

process, we invert Eq. (13) and numerically integrate ∂ε(a)/∂p = (1 + eφ
(a)

)/c2 to obtain ε(a)(p), which is suitable for
calculating macroscopic NS properties. The rest-mass density can be obtained from ε(a) via Eq. (12), allowing us to
plot the EOS in conventional p(a)(ρ) form. The individual realizations of the EOS are stitched onto a model for the
low-density crust EOS, which is well known below nuclear saturation density; we use a piecewise polytrope implemen-
tation of sly [38]. In this way, we obtain a unified EOS valid at all densities up to a specified maximum value. The

distribution of functions ε(a)(p) calculated in this manner defines the EOS prior process P (ε(p)|{ε(α)
j∗ }, ~σ). Each syn-

thetic EOS drawn from this process is a random function that resembles the input tabulated EOSs both qualitatively
and quantitatively. The choice of hyperparameters ~σ :=

[
σ, l, σn, σ

(α=1), l(α=1), σ(α=2), l(α=2), ..., σ(α=n), l(α=n)
]

for
the GP provides the freedom to self-consistently explore a wide swath of the space of possible EOSs, or to mimic to
the behavior observed in the candidate EOSs more closely.

The process for ε(p), conditioned on the full training set of candidate EOSs, generates a large set of new proposals
for the pressure-density relation without resorting to a parameterization. Astrophysical constraints on the EOS, such
as the requirement that it support observed NS masses, are applied by directly checking, e.g., the maximum mass for
each synthetic EOS. Any synthetic EOS that violates the constraint is discarded from the prior. Similar astrophysical
cutoffs could incorporate future information about NS radii and moments of inertia from electromagnetic astronomy.

III. BAYESIAN INFERENCE OF THE EQUATION OF STATE VIA MONTE CARLO INTEGRATION

GP representations of the uncertainty in NS internal structure play a fundamental role in our non-parametric infer-
ence of the EOS. The candidate EOSs upon which the GP is conditioned, as well as the choice of the hyperparameters

~σ, determine the characteristics of the EOS prior process P (ε(p)|{ε(α)
j∗ }, ~σ). In particular, the degree to which elements

ε(a)(p) ∼ P (ε(p)|{ε(α)
j∗ }, ~σ) of the prior process resemble the input EOSs is controlled by the hyperparameters σ, l
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and σn. Here we show how the GW likelihood from parameter estimation is used in conjunction with the prior to
produce an EOS posterior process.

The posterior process for the EOS is ultimately derived from GW detector data (d), which is sensitive to macroscopic
NS observables like masses and tidal deformabilities. Source properties are recovered from d via Bayesian inference
for the parameters of a prescribed waveform model. The waveform parameters include the masses M1,2, the tidal
deformabilities Λ1,2, and other source properties and phenomenological parameters denoted as ϑ. The priors chosen
for M1,2 and ϑ, along with the underlying description of the waveform, constitute the Bayesian model H for the data.

Strictly speaking, the waveform parameters M1,2 and Λ1,2 are not completely independent, as a specification of M
and the EOS is sufficient to determine Λ. Indeed, an EOS ε(p) predicts a unique M -Λ relation, which we denote as
Λ(M ; ε). This relation is calculated by first integrating the Tolman-Oppenheimer-Volkoff (TOV) equations [64, 65]
and the field equation governing the quadrupolar tidal perturbation [66] simultaneously from the center of the NS
to its surface for a choice of central density ρc. These equations of stellar structure determine the mass, radius and
tidal deformability of the NS. A sequence of stable neutron stars is then constructed by repeating the integration
for a sequence of central densities up to ρmax

c , the central density for which the mass reaches a maximum Mmax

and beyond which the star becomes unstable [67]. The resulting tidal deformability and mass sequence constitutes
Λ(M ; ε). Integration of the equations of stellar structure also gives us access to the M -ρc relation M(ρc; ε), which
includes Mmax information.

The EOS posterior process P (ε|d; {ε(α)
j∗ }, ~σ,H) is obtained from the GW data through an application of Bayes’

theorem, which states

P (ε|d; {ε(α)
j∗ }, ~σ,H) ∝ P (d|ε;H)P (ε|{ε(α)

j∗ }, ~σ). (26)

P (d|εi;H) is the likelihood of the data given an EOS ε(p) and the model H. Marginalizing separately over the
waveform parameters of interest (M1,2,Λ1,2) and the nuisance parameters ϑ, it can be written as

P (d|ε;H) =

∫
dM1dM2 P (M1,M2|H)

[∫
dϑP (ϑ|H)P

(
d|ϑ,M1,M2,Λ1(M1; ε),Λ2(M2; ε)

)]
. (27)

The integral in square brackets is the marginal conditional likelihood L(d|M1,M2,Λ1(M1; ε),Λ2(M2; ε);H) for the
observed GW data given a pair of masses and tidal deformabilities. In terms of this likelihood, Eq. (26) reads

P (εi|d; {ε(α)
j∗ }, ~σ,H) ∝P (εi|{ε(α)

j∗ }, ~σ)

×
∫
dΛ1dΛ2dM1dM2 P (M1,M2|H)δ(Λ1 − Λ(M1; εi))δ(Λ2 − Λ(M2; εi)) [L(d|M1,M2,Λ1,Λ2;H)] .

(28)

Here, we marginalize over Λ1,2 in addition to M1,2 by introducing Dirac delta functions over Λ(M ; ε). This ac-
counts for the fact that the likelihood available from standard parameter estimation does not include intrinsic cor-
relations among Λ1,2 (cf. Ref. [28]); most stochastic samplers employed in GW parameter estimation sample from
L(d|M1,M2,Λ1,Λ2;H), treating Λ1,2 as completely independent parameters.4

Thus, provided that L(d|M1,M2,Λ1,Λ2;H) is known, we need only compute the integral (28) to obtain a posterior
process for the EOS. In practice, however, standard parameter estimation gives us access to a finite number of samples
from the likelihood instead of the distribution itself. Assuming that the exact marginal conditional likelihood can be
accurately modeled from the available samples [68], we simply approximate L(d|M1,M2,Λ1,Λ2;H) with a Gaussian
KDE (see, e.g., Ref. [28]). The integral is then evaluated with Monte Carlo techniques. Although Monte Carlo
integration is relatively inefficient, it provides the most straightforward way to compute the posterior process. More
advanced methods, such as Markov-Chain Monte Carlo, may be amenable to the inclusion of a GP prior, but the
associated jump proposals are non-trivial (see, e.g., Refs. [69, 70]). We therefore rely exclusively on direct Monte
Carlo integration in this paper, implementing the following algorithm to calculate the posterior process:

a) draw a synthetic EOS ε
(a)
i ∼ P (εi|{ε(α)

j∗ }, ~σ) as a realization of the GP prior;

b) draw a pair of component masses M
(a)
1 ,M

(a)
2 ∼ P (M1,M2|H) from a specified prior;

4 Some parameter estimation analyses may include non-trivial priors for M1,2 and Λ1,2, but we can account for this by appropriately
re-weighting their samples.
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c) compute tidal deformabilities Λ
(a)
1 and Λ

(a)
2 associated with M

(a)
1 , M

(a)
2 , and ε

(a)
i via the equations of stellar

structure;

d) evaluate the corresponding GW likelihood L(a) = L(d|M (a)
1 ,M

(a)
2 ,Λ

(a)
1 ,Λ

(a)
2 ;H) via the KDE; and

e) repeat until a sufficiently large number of samples have been collected.

Because our samples have unequal weights, we gauge the precision of the Monte Carlo integral through the effective
number of samples

Neff = exp

(
−
∑
a

w(a) logw(a)

)
(29)

with

w(a) =

(
L(a)

/∑
b

L(b)

)
(30)

based on the entropy of the weights observed a posteriori. The larger Neff, the better the precision. If only a few
samples have significant weights, then both the entropy and Neff will be small. However, if most samples have similar
weights, the entropy and Neff will be large, possibly approaching the upper bound Neff = N achieved for equal weights.

Monte Carlo integration also provides a means of directly estimating the evidence P (d|{ε(α)
j∗ }, ~σ,H) for a given prior

process as a functional integral over ε(p):

P (d|{ε(α)
j∗ }, ~σ,H) =

∫
Dε dM1dM2 P (ε|{ε(α)

j∗ }, ~σ)P (M1,M2|H)L
(
d|M1,M2,Λ

(
M1; ε

)
,Λ
(
M2; ε

)
;H
)

≈ 1

N

N∑
a

L(a)

∣∣∣∣∣ ε(a) ∼ P (ε|{ε(α)
j∗ }, ~σ)

M
(a)
1 ,M

(a)
2 ∼ P (M1,M2|H)

. (31)

Unlike the posterior process, the sampling uncertainty in P (d|{ε(α)
j∗ }, ~σ,H) scales inversely with

√
N rather than

√
Neff ,

although Neff ∝ N as N → ∞. Because our KDE approximation of the likelihood has an unknown normalization
factor, only relative measures of evidence are meaningful, and we therefore compute the Bayes factor—the ratio of
evidences—when comparing support for different priors.

IV. GAUSSIAN PROCESS EQUATION-OF-STATE PRIORS

In our specific implementation, we condition our GP EOS prior on a fiducial set of candidate EOSs selected from
extant nuclear-theoretic models. Our training set of candidate EOSs is composed of seven well-established models
[71]: alf2 [72], eng [73], h4 [74], mpa1 [75], ms1, ms1b [76], and sly [77]. These models span a wide range of stiffnesses
and support 1.93M� stars, a conservative observational bound on the maximum NS mass [78]. Our candidate EOSs
are purely hadronic, except for alf2 and H4, which contain color-flavor-locked quarks and hyperons, respectively.

First off, we seek to build an uninformative EOS prior process that uniformly covers the entire range of physically
viable EOSs, from the stiffest possible (saturating the causality constraint) to the softest possible (marginally failing
to support a 1.93M� NS). Within this range, synthetic EOSs should vary as freely as possible subject to the physical
constraints discussed in Sec. II B. We therefore use the tabulated EOSs to provide only weak, general guidance to the
form of the synthetic EOSs. This is achieved by setting a large white-noise variance σn, orders of magnitude larger
than the correlation amplitude σ, while choosing σ and l of order unity. Thus, synthetic EOSs drawn from the prior
can depart significantly from the mean of the tabulated EOSs upon which they are conditioned (cf. Eq. (23)) and
can exhibit different types of functional behavior (cf. Eq. (24)) while exploring a large swath of the pressure-density
plane. We refer to this fiducial EOS prior process as the model-agnostic prior.

We also explore an alternate choice of prior. Our second prior seeks to conform more closely to our tabulated
EOSs, producing much tighter a priori bounds in the pressure-density plane. In this case, hyperparameters are
chosen to yield synthetic EOS behavior that reproduces the features common to all of the input EOSs: σn is set to
be comparable to σ, while σ and l are essentially unchanged from the model-agnostic case, and the synthetic EOSs
consequently depart relatively little from the average of the candidate EOSs. We call the resulting EOS prior process
the model-informed prior.
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While the model agnostic prior approximates an uninformative process over the EOS, the model-informed prior
preferentially encodes features that are common to most nuclear-theoretic models, producing a non-trivial process
that favors certain candidate EOSs. Accordingly, EOSs that are outliers in, e.g., stiffness are relatively unlikely given
the model-informed prior, and hence particularly stiff or soft EOSs are disfavored a posteriori as well as a priori. We
note that our specific hyperparameter selections for the model-informed prior are somewhat ad hoc and certainly not
unique. Different choices would produce different non-trivial priors, and these may be worth exploring in the future.

Our GP priors are shown in Fig. 2 along with our set of tabulated EOSs. We see that the model-agnostic prior
supports a much broader range of possible EOSs, while remaining centered—like the model-informed prior—on our
representative set of candidate models. We also compare our prior processes to the spectral method’s [15] in Fig. 3.
One observes that the spectral prior is centered on a similar region of the pressure-density plane as both our model-
agnostic and model-informed priors, but that our model-agnostic prior covers a somewhat broader region. Because
our synthetic EOSs are not restricted to a single parametric form, they also encapsulate a wider range of functional
behaviors than the spectral EOSs, though this may not be apparent from the two-dimensional projection in the figures.

We first evaluate the non-parametric method’s performance by analyzing simulated GW signals with both the model-
agnostic and model-informed GP prior processes (Sec. V). We then place constraints on the true NS EOS (Sec. VI)
using publicly available GW170817 M -Λ posteriors [68].5 When performing the Monte Carlo integration, we draw
component masses from a uniform prior consistent with the low-spin prior of Ref. [13], and we iterate until O(103)
effective samples have been returned, typically corresponding to O(105) draws from the prior. The two parallel
inferences demonstrate how the non-parametric method can be tuned to assume different levels of a priori confidence
in the fiducial candidate EOSs. We remark, however, that neither of the priors constructed here should be construed as
an optimal representation of the variability in the NS EOS. Our selection of hyperparameters and training EOSs simply
provides a qualitative illustration of possible designs for the GP prior process; the optimization of the EOS prior will
be pursued in future work. For example, the fiducial set of candidate EOSs could be expanded to include more recently
developed models with broader phenomenology, including first-order phase transitions or strange quark matter. The
hyperparameters could also be selected more judiciously to produce an EOS prior process that covers an even larger
region of the pressure-density plane; this is particularly relevant for the model-informed prior, as excessively stiff or soft
EOSs tend to fall toward its edge. Nonetheless, the GP priors introduced here are sufficiently broad to demonstrate
the non-parametric method’s efficacy, and we expect the model-agnostic prior in particular to resemble more carefully
designed EOS prior processes.

V. SIMULATED GRAVITATIONAL WAVE SIGNALS

We perform an injection campaign to demonstrate the non-parametric method’s ability to infer a known EOS from
GW data. This proof of principle study is conducted with the intention of applying the same analysis to GW170817,
and, accordingly, our simulated signals are designed to resemble that event. We define three different sources with
parameters similar to those inferred for GW170817, and inject the corresponding GW signals into real detector noise
surrounding the event [13, 79]. In particular, the injections have component masses and spins that are compatible
with the inferred source properties for GW170817; the sources are placed at a comparable distance and orientation
relative to the detectors; and the signals’ network signal-to-noise ratios are approximately the same (SNR ≈ 35) [28].
The injected component spins are restricted to χ < 0.1; while spins can impact the estimation of tidal effects, those
inferred for GW170817 are sufficiently small that they are not thought to significantly affect our analysis. Nontheless,
while we assume the spins are small, we do not fix them to be identically zero, and we marginalize over spin when
recovering the injected parameters. For each of these sources, we further select one of three candidate EOSs—ms1, h4,
sly—ranging from relatively stiff to soft. The choice of injected masses and EOS determines the tidal deformabilities
in the simulated GW signal. The M1,2 and Λ1,2 values for each mock event, as well as the associated EOS, are listed
in Table I. Injections are performed with the TaylorF2 waveform (see, e.g., Ref. [80]) and the M1,2-Λ1,2 marginal
likelihoods are sampled with LALInference [24, 49] using the same.

The posteriors obtained for one simulated event, injection I with h4, are shown by way of example in Figs. 4 and
5 along with the associated priors. Fig. 4 shows projections of the joint probability distribution over M1,2 and Λ1,2

into the Λ1-Λ2 and Λ1-M1 subspaces, as well as marginal distributions for M1, Λ1 and Λ2. On the left, one can see
that the model-agnostic prior supports a wide range of possible M -Λ relations, and the inferred posterior comfortably
includes the injected value. This is in keeping with our expectations, since the model-agnostic prior is designed to
contain all feasible EOSs. Nonetheless, the inference produced informative constraints on the tidal deformabilities, as
the 90% confidence region of the posterior is much reduced relative to the prior.

5 Our analysis technically requires M -Λ likelihoods, but because Ref. [28] assumed flat priors, the likelihood is proportional to the posterior
distribution for these variables.
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FIG. 3. A comparison for GW170817 between the spectral prior from Ref. [15] (black) and our model-agnostic (cyan) and
model-informed (blue) priors (left), as well as between the spectral posteriors (black) and our model-agnostic (magenta) and
model-informed (red) posteriors (right). Solid lines show the medians and shaded regions correspond to 50% and 90% credible
regions. We see that our model-agnostic posterior favors even softer EOSs than the spectral approach, whereas the model-
informed prior favors slightly stiffer EOSs than the spectral approach. However, the associated uncertainties suggest all results
are consistent.

Fig. 5 shows the corresponding EOS prior and posterior processes in the pressure-density plane. In the lefthand
panel, the broad model-agnostic prior is significantly narrowed by the inference, especially around 2ρnuc, producing a
posterior process that favors an EOS somewhat softer than the prior’s median. The inference also yields information
about the central density ρc and pressure pc of each NS, since the M -ρc relation for each synthetic EOS is known.
The overplotted contours indicate the posterior for the more massive component’s central values. Constraints on the
EOS above ρc,1, the central density associated with M1, arise exclusively through correlations within the synthetic
EOSs; the GW likelihood directly constrains the EOS only below ρc,1.

The righthand panels of Figs. 4 and 5 show our inference with the model-informed prior. In terms of the joint M1,2-
Λ1,2 probability distribution, the model-informed prior is much more restrictive, leading to a tighter posterior than
in the model-agnostic case. Specifically, the model-informed posterior has limited support for very soft EOSs (small
tidal deformabilities). This is consistent with the fact that the model-informed prior is closely tied to the training
set of candidate EOSs, which includes models no softer than sly (Λ1.4 ≈ 290), whereas the less constrained synthetic
EOSs from the model-agnostic prior explore softer regions of the pressure-density plane. Despite the model-informed
posterior’s smaller support, the injected parameters M1,2 and Λ1,2 are still recovered within 90% confidence, although

Λ̃ happens to lie marginally outside the 90% confidence region for this event.
In the model-informed case, we note that the posterior in the pressure-density plane is nearly identical to the prior.

This is because the model-informed prior is already quite narrow, and a single GW event conveys only a limited
amount of information. We expect tighter constraints to be achievable with combined observations from multiple
events [39, 42].

The full set of injected signals is presented in Appendix A, and we summarize the results here, reporting our
method’s performance for each of the injections in Table I. We quote the injected M1,2, Λ1,2 and Λ̃ values along
with one-dimensional 90% credible regions around the maxima a posteriori. In general, we find that the component
masses are always well recovered with both priors, while Λ1,2 are typically well recovered with the model-agnostic
prior, although the maxima a posteriori are not always centered on the injected values. This is due to a combination
of noise fluctuations (the likelihood does not peak at the injected values) and the influence of our priors (the injected
values lie near the edge of the prior). In other words, if the injected EOS is rare a priori, as is the case for some of
the candidate EOSs in the model-informed prior, it is not surprising that they are also rare a posteriori. We expect
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FIG. 4. Prior (cyan/blue), likelihood (green), and posterior (magenta/red) distributions for our model-agnostic (left) and
model-informed (right) GP priors for a single simulated injection, event I with h4 from Table I. Contours for the joint distri-
butions correspond to 50% and 90% credible regions. Because of the broader support in the model-agnostic prior, the injected
value (gray cross-hairs) is comfortably contained in the associated posterior’s support. We note that the model-informed prior
appears to contain the injected value in some marginal distributions, but it actually lives near the edge of the allowed M -Λ
region. This accounts for the fact that the Λ1,2 posterior barely contains the injection even though it appears to be contained
in the Λ1,2 prior. Since we perform inference with a non-trivial prior in a four-dimensional space, the resulting constraints may
not be obvious from two-dimensional projections.

the model-agnostic prior to recover injected EOSs more successfully because it is essentially uninformative, whereas
the model-informed prior is non-trivial by design. Unsurprisingly, Λ̃ is generally less sensitive to the priors and is
consequently recovered more robustly. The GW data constrain Λ1,2 primarily through Λ̃, so a posteriori relative

degrees of belief for combinations of Λ1,2 that produce the same Λ̃ are mostly informed by the prior.

In contrast to the model-agnostic prior, Λ1,2 are not always well recovered with the model-informed prior. While
several two-dimensional projections, such as the marginal Λ1-Λ2 distribution, appear to comfortably contain the
injected signal, in reality it lies near the edge of the allowed M -Λ relations in some cases (see, e.g., Fig. 4). Hence, the
injection is found near the edge of the posterior because of the constraints applied in the full four-dimensional space.
This indicates that our model-informed prior could be too tight to reliably infer the true EOS if it is significantly
softer or stiffer than the candidate EOSs included in our training set. Our model-agnostic prior is more trustworthy
in this regard, though it generally produces looser constraints because of its broader support. What’s more, the
model-informed prior tends to more strongly influence the inferred Λ1,2, resulting at times in injected values recovered
outside the 90% credible regions. However, this is to be expected for injected EOSs lying near or beyond the edge
of our prior. We only expect our confidence regions to have the correct coverage if the injected signals were drawn
directly from our priors, which is not the case here. Although ms1, h4 and sly are among the candidate EOSs upon
which the GP was conditioned, they are not themselves synthetic EOSs drawn from the EOS prior process.
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FIG. 5. Processes corresponding to the injection in Fig. 4 (event I with h4 from Table I), showing the prior (cyan/blue) and
posterior (magenta/red) for our model-agnostic (left) and model-informed (right) priors. Solid lines show the medians and
shaded regions correspond to 50% and 90% credible regions for the one-dimensional marginal distributions for p(ρ). Contours
correspond to the 50% and 90% credible regions for the central density and pressure of M1 and vertical black bars denote
ρnuc, 2ρnuc, and 6ρnuc. We see stronger relative a posteriori constraints with the model-agnostic prior, whereas the posterior
obtained with the model-informed prior is nearly indistinguishable from the prior itself.

Since the recovered posteriors for the injections depend on the GP prior, we may quantify the degree to which the
GW data prefer one prior or the other via Bayesian model selection. We estimate the Bayes factor

BAI =
P (d|{ε(α)

j∗ }, ~σA,H)

P (d|{ε(α)
j∗ }, ~σI ,H)

(32)

between our model-agnostic and model-informed priors for all events listed in Table I, calculating the evidences
according to Eq. (31). For most simulated signals, neither prior is strongly preferred by the data, with the exception
of injection I with ms1. As ms1 is particularly stiff, it lies at the very edge of our model-informed prior’s support,
and therefore there is much more evidence in favor of the model-agnostic prior. This appears to be more prevalent
for particularly stiff EOSs than for particularly soft ones (compare BAI for ms1 and sly), but we typically find that
the GW data do not disfavor our model-informed prior at high confidence. One could imagine performing a similar
model selection scheme on different GP priors conditioned on specific features of the NS EOS, to test, e.g., for the
existence of a first-order phase transition in the NS EOS.

VI. GW170817

Having tested our non-parametric inference on simulated GW events, we now apply it to real data from GW170817.
We repeat the analysis of the previous section using the same model-agnostic and model-informed priors. Our
recovered M1,2-Λ1,2 posteriors and EOS posterior processes are shown in Figs. 6 and 7, respectively. One-dimensional
credible regions for the component masses and tidal deformabilities are reported in Table I, which also presents the
Bayes factor between the two priors.

With the model-agnostic prior, we find that GW170817 places significant a posteriori constraints on the tidal
deformabilities, favoring a limited region corresponding to relatively soft EOSs. Indeed, we infer a chirp deformability
of Λ̃ = 210+383

−113. Using Λ(M ; ε) for every synthetic EOS ε(a)(p), we find Λ1.4 = 160+448
−113. The lower bound of our
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Injected Recovered with model-agnostic (model-informed) prior
BAI

m1 [M�] m2 [M�] EOS Λ1 Λ2 Λ̃ m1 [M�] m2 [M�] Λ1 Λ2 Λ̃

MS1 714 3320 1550
1.40+0.27

−0.04 1.30+0.05
−0.20 611+979

−276 2350+2030
−897 1530+387

−455 22.6± 0.7
(1.72+0.03

−0.27) (1.08+0.18
−0.03) (210+472

−70 ) (3190+279
−2070) (890+177

−112)

(I) 1.57 1.19 H4 390 2250 983
1.57+0.12

−0.22 1.15+0.18
−0.07 341+504

−265 1200+1440
−488 836+337

−366 0.26± 0.01
(1.60+0.10

−0.23) (1.14+0.17
−0.07) (231+413

−109) (1152+1340
−407 ) (740+167

−164)

SLy 130 834 354
1.41+0.27

−0.05 1.22+0.11
−0.13 155+363

−121 792+842
−563 463+277

−320 0.44± 0.01
(1.40+0.24

−0.05) (1.30+0.05
−0.18) (316+328

−192) (862+1080
−281 ) (667+147

−144)

MS1 1580 1630 1600
1.40+0.20

−0.05 1.29+0.06
−0.15 636+637

−546 1670+1330
−1028 1200+541

−686 0.85± 0.02
(1.40+0.23

−0.05) (1.29+0.05
−0.17) (406+345

−226) (1030+1210
−329 ) (776+192

−199)

(II) 1.37 1.36 H4 1000 1034 1020
1.39+0.22

−0.04 1.31+0.04
−0.17 341+527

−257 942+1240
−452 721+461

−386 0.30± 0.01
(1.39+0.23

−0.04) (1.31+0.04
−0.18) (306+440

−121) (942+1080
−276 ) (728+178

−162)

SLy 349 362 355
1.40+0.17

−0.05 1.29+0.06
−0.13 140+278

−109 341+581
−217 247+332

−162 1.40± 0.03
(1.41+0.13

−0.06) (1.29+0.06
−0.10) (431+210

−202) (902+547
−304) (655+161

−130)

MS1 1270 1850 1530
1.62+0.13

−0.20 1.14+0.17
−0.07 361+725

−278 2550+1620
−1470 1210+458

−474 1.97± 0.06
(1.67+0.09

−0.19) (1.13+0.13
−0.06) (246+194

−121) (1830+1200
−895 ) (782+191

−229)

(III) 1.42 1.33 H4 782 1190 968
1.58+0.16

−0.16 1.14+0.16
−0.07 251+605

−193 2010+1409
−1130 998+376

−515 0.44± 0.01
(1.63+0.12

−0.17) (1.13+0.14
−0.06) (210+308

−94 ) (1960+713
−1050) (697+190

−154)

SLy 269 420 338
1.62+0.10

−0.24 1.15+0.17
−0.08 110+333

−92 641+1020
−480 337+359

−230 0.53± 0.01
(1.46+0.25

−0.09) (1.17+0.16
−0.09) (231+331

−121) (1040+1030
−458 ) (637+133

−139)

GW170817
1.46+0.16

−0.09 1.26+0.10
−0.10 110+278

−81 361+529
−252 210+383

−113 1.12± 0.06
(1.41+0.15

−0.04) (1.32+0.04
−0.13) (426+214

−229) (772+641
−212) (631+164

−122)

TABLE I. Injected parameters used to test EOS recovery and the associated one-dimensional posterior credible regions. Three
mass ratios and three injected EOSs are considered. We report the 90% credible regions for the model-agnostic (model-informed)
prior along with the maximum a posteriori for each parameter separately. Additionally, we report the Bayes factor between
our priors (BAI ), generally showing no strong preference for either prior with a single event. Error estimates correspond to 1-σ
uncertainty for Bayes factors. Analogous results for GW170817 are shown as well, with similar conclusions.

confidence interval suggests some of the smallest tidal deformabilities of any study to date. Our findings agree with
the results of previous analyses, namely Λ̃ = 300+420

−230 [28] (highest-posterior-density 90% confidence interval about

the median), Λ̃ = 222+420
−138 [14] and Λ1.4 = 190+390

−120 [15] (both symmetric 90% confidence intervals about the median).6

Moreover, the 90% confidence region of our Λ1-Λ2 posterior, shown in Fig. 6, is markedly similar to the corresponding
region of the posterior obtained with the spectral method (cf. Fig. 1 of Ref. [15]).

From Fig. 7, we observe a preference for a slightly softer-than-average pressure-density relation at mid-range densi-
ties. In particular, we obtain the 90%-credible regions p(2ρnuc) = 1.35+1.8

−1.2 × 1034 dyn/cm2 and

p(6ρnuc) = 8.86+4.3
−5.9 × 1035 dyn/cm2 on the pressure at twice and six times nuclear density. These values agree

with the median pressures p(2ρnuc) = 3.5+2.7
−1.7 × 1034 dyn/cm2 and p(6ρnuc) = 9.0+7.9

−2.6 × 1035 dyn/cm2 (90% confi-
dence) obtained in Ref. [15]. Furthermore, Fig. 7 displays our inference for the central density ρc,1 and pressure pc,1
of the more massive component of the binary; we find that the posterior peaks at ρc,1 ≈ 3ρnuc. Since M(ρc; ε) is
known for each synthetic EOS, the posterior process can also be used to make an inference for the maximum mass
supported by the NS EOS. We find that Mmax = 2.09+0.37

−0.16 M� with the model-agnostic prior.
Repeating the inference with the model-informed prior, we recover a smaller a posteriori 90% confidence region that

has less support for soft EOSs, as can be seen in the right-hand panel of Fig. 6. Our inferred tidal deformabilities are
thus somewhat larger: Λ̃ = 631+164

−122 and Λ1.4 = 556+163
−172. The upper bounds on the tidal deformabilities are similar

to the results of the original analyses of GW170817 [13, 28], but the lower bounds are much larger. This is because
the tabulated EOSs used to construct the model-informed prior cannot produce Λ1.4 . 290 (the sly value), while
the GW data appear to support deformabilities Λ1.4 . 200. Electromagnetic observations of the kilonova associated

with GW170817 have found similarly large lower bounds for Λ̃ [51, 55, 81]. The numerical relativity simulations of

Ref. [81], in particular, suggest Λ̃ & 300, in mild tension with our model-agnostic result but more compatible with our

6 Because the results reported in the literature are generally symmetric confidence intervals about the median, whereas ours are highest-
posterior-density intervals about the maximum a posteriori, our confidence intervals are systematically shifted downwards relative to
them (see, for example, Fig. 11 of Ref. [28]).
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model-informed analysis. Curiously, the Λ1.4 90% confidence region for the model-agnostic prior includes a long tail
to large values and contains the maximum a posteriori estimate from the model-informed prior, although the 50%
confidence region is much tighter.

The EOS posterior process for the model-informed prior is plotted in the right-hand panel of Fig. 7. The pressure
constraints extracted from the posterior are p(2ρnuc) = 4.73+1.4

−2.5 × 1034 dyn/cm2 and

p(6ρnuc) = 7.55+2.0
−3.2 × 1035 dyn/cm2, consistent with Ref. [15] (see Fig. 3). The posterior for the central density

ρc,1 peaks around 2ρnuc, and the constraint on the maximum mass supported is tightened to Mmax = 2.04+0.22
−0.002 M�.

Overall, our results for GW170817 are consistent with the literature [13–15, 28], favoring relatively low Λ̃ and a
correspondingly soft EOS. In fact, Fig. 3 shows that our inferred model-agnostic posterior process for ε(p) favors a
slightly softer EOS than that found with the spectral method [15], though the uncertainties are quite broad. On the
other hand, the model-informed posterior prefers slightly larger pressures than the spectral method’s. Nonetheless,
compared to our priors—i.e. pprior(2ρnuc) = 1.09+8.8

−1.1× 1034 (4.96+1.3
−2.9× 1034) dyn/cm2 for the model-agnostic (model-

informed) prior—we generally see smaller 90% confidence regions and shifted modes in the pressure-density plane a
posteriori.

Although the differences between prior and posterior are more pronounced in the model-agnostic case, neither prior
is strongly favored by the data. We find BAI = 1.12± 0.06 (point estimate and 1-σ uncertainty), suggesting that our
inference of the tidal deformabilities and the EOS itself may be relatively prior-dominated. In other words, the data
from GW170817 alone cannot strongly differentiate between a model that yields p(2ρnuc) = 1.35+1.8

−1.2 × 1034 dyn/cm2

and one that yields p(2ρnuc) = 4.73+1.4
−2.5 × 1034 dyn/cm2, suggesting that all such constraints should be interpreted

with care. We expect that combined data from multiple GW signals will be needed to discriminate between different
models for the EOS.

VII. CONCLUSIONS

GW measurements of the macroscopic properties of NSs offer a promising means of deducing information about
the nuclear microphysics that governs their internal structure. The non-parametric framework for NS EOS inference
developed here provides direct constraints on the pressure-density relation inside the star from the standard GW
likelihood. The GP formulation of the EOS can compactly and faithfully represent a more diverse set of possible
EOSs than parametric models, and since its systematic uncertainties are independent of those from previous analyses,
non-parametric inference can be used to complement and corroborate existing approaches. The full EOS posterior
process produced by our approach allows pressures and densities within the NS to be inferred, derived properties like
the maximum NS mass to be constrained, and model selection between various EOS priors to be performed.

We studied simulated GW170817-like signals using real detector noise as a demonstration of our method’s efficacy
at recovering a known EOS. The inference produced informative constraints on the tidal deformabilities and the
pressure-density relation, in the sense that the 90% confidence region of the posterior was reduced. Overall, we find
that injections with stiffer EOSs favor stiffer EOSs a posteriori, and softer injected EOSs favor softer posteriors, as
expected. However, the constraints depend somewhat strongly on the prior assumed, and the data typically do not
favor the model-agnostic prior over the model-informed one, or vice-versa.

Using the same model-informed and model-agnostic priors, we analyzed GW170817 to infer tidal deformabilities,
pressures and the maximum mass supported by the EOS. We summarize the results below and discuss their signifi-
cance.

Tidal deformabilities. Analyzing GW170817 with the model-agnostic prior, we infer a canonical deformability of
Λ1.4 = 160+448

−113 and a chirp deformability of Λ̃ = 210+383
−113, in comfortable agreement with previous analyses [14, 15].

The maximum a posteriori values we obtain for the canonical and chirp deformabilities are the smallest claimed to date,
but come with broad uncertainties. Such small tidal deformabilities favor an EOS that resembles the softest nuclear-
theoretic models available. Repeating the analysis with the model-informed prior, the inferred tidal deformabilities
are Λ1.4 = 556+163

−172 and Λ̃ = 631+164
−122. The 90% confidence regions from both priors overlap, although the maxima a

posteriori are notably different.
Pressures. The posterior process places direct constraints on the EOS in the pressure-density plane, enabling us to

extract the constraints p(2ρnuc) = 1.35+1.8
−1.2 × 1034 dyn/cm2 and p(6ρnuc) = 8.86+4.3

−5.9 × 1035 dyn/cm2 on the pressure
at twice and six times the nuclear saturation density with the model-agnostic prior. These figures are consistent
with the pressure constraints calculated with the spectral method. Qualitatively, we observe a similar preference
for lower-than-average pressures at mid-range densities as was noted in Ref. [15]. The pressures inferred with the
model-informed prior are p(2ρnuc) = 4.73+1.4

−2.5 × 1034 dyn/cm2 and p(6ρnuc) = 7.55+2.0
−3.2 × 1035 dyn/cm2, favoring a

slightly stiffer EOS. Nonetheless, the results of the inference are still consistent with those of previous analyses [15]
within their uncertainties.
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FIG. 6. Marginal distributions for GW170817, analogous to Fig. 4. The priors (cyan/blue), likelihood (green), and posteriors
(magenta/red) are shown for both the model-agnostic (left) and model-informed (right) priors. Reference curves (gray) are
shown for (from left to right) sly, h4, and ms1. Contours in the joint distributions correspond to the 50% and 90% credible
regions, and we see that the model-agnostic prior’s a posteriori constraints are similar to those reported in Ref. [15], whereas
the model-informed prior favors significantly larger Λ1,2 but similar masses.

Maximum mass. The EOS posterior process gives us access to maximum-mass information through correlations
between the high densities relevant for Mmax and the mid-range densities probed by GW170817. With the model-
agnostic prior, we constrain the maximum NS mass to be Mmax = 2.09+0.37

−0.16M�, disfavoring especially stiff candidate
EOSs that produce Mmax & 2.5M�. Ours is the first reported constraint derived exclusively from GW data. This
is compatible with multimessenger studies of GW170817 via EOS model selection [82] and approximate universal
relations [83], numerical relativity [84], and general-relativistic magnetohydrodynamic simulations [85], which account
for the observed spectrum of the electromagnetic counterpart, the lifetime of the merger remnant, and the GW-inferred
source properties. Taken together, the multimessenger studies suggest 2.15M� . Mmax . 2.28M�. The constraint
on the maximum NS mass is tightened to Mmax = 2.04+0.22

−0.002M� with the model-informed prior.

Bayes factor. Despite producing noticeably dissimilar a posteriori credible regions for the tidal deformabilities
and the pressure-density relation, the Bayes factors between the model-agnostic and model-informed priors are O(1)
for virtually all of the simulated events considered. For GW170817, we find BAI = 1.12 ± 0.06 (point estimate and
1-σ uncertainty). This implies that data from a single event are not sufficiently informative to strongly favor either
model. We conclude that EOS constraints derived from GW170817 alone are likely to be sensitive to the choice of
prior. Thus, the EOS priors must be carefully motivated on physical grounds and associated constraints interpreted
scrupulously.

Given the prior-dependence of the results, revisiting the choice of candidate EOSs used to condition the GP priors
may be worthwhile. One could expand the training set to include candidate EOSs softer than sly and stiffer than
ms1. Since early indications are that the NS EOS is relatively soft, extending the prior at its soft edge is particularly
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FIG. 7. Processes for the model-agnostic (left) and model-informed (right) priors with GW170817, both a posteriori (ma-
genta/red) and a priori (cyan/blue). We find only marginally tightened posterior constraints with the model-informed prior,
whereas the model-agnostic posterior clearly favors softer EOSs. As in Fig. 5, solid lines show medians, shaded regions repre-
sent 50% and 90% credible regions for p(ρ), contours represent the 50% and 90% credible regions for the central densities and
pressures of M1, and vertical bars denote ρnuc, 2ρnuc, and 6ρnuc.

important for obtaining reliable model-informed inferences from GW data. Adding candidate EOSs with, e.g., first
order phase transitions or strange quark matter could also make the training set more fully representative of the
theoretical possibilities for the EOS. Similarly, one could broaden the training set to include nonbarotropic candidate
EOSs, such as recent proposals that depend on the environmental dark matter density [86–88]. Despite already
covering a large area of the pressure-density plane, the model-agnostic prior could also benefit from conditioning on
an expanded and more representative set of input EOSs, as it would assimilate an even greater degree of variation in
the functional behavior of the EOS. Coupled with improved hyperparameter selection via automated marginalization
over many possible settings (cf. Eq. (11)), it may be possible to deliver tighter constraints on the tidal deformabilities
and the pressure-density relation with priors better grounded in nuclear theory.

Although we found that posterior constraints from a single GW event are rather broad and prior-dependent,
we expect that the impact of prior assumptions will eventually be overcome by the combined data from many
GW signals. Our Monte Carlo integration scheme can be straightforwardly extended to incorporate an arbitrary

number of events: we simply draw masses (e.g., M
(a)
1,A) consistent with each event A separately for each synthetic

EOS, and then combine the likelihoods LA from each event so that the overall weight for the ath synthetic EOS is

L(a) =
∏
A LA(dA|M (a)

1,A,M
(a)
2,A,Λ

(a)
1,A,Λ

(a)
2,A;HA). Electromagnetic observations of NS radii from NICER and moment

of inertia measurements from radio observations can also be incorporated as additional likelihoods when available. A
precise quantification of the non-parametric method’s ability to constrain the EOS with multiple GW signals will be
investigated in future work.

As illustrated by our Bayes factors between the model-agnostic and model-informed priors, our method naturally
provides evidence estimates which can be used for Bayesian hypothesis ranking. Leveraging the flexibility that the
non-parametric representation offers when selecting the EOS prior, one could perform diverse kinds of model selection
beyond the simple example presented here. For instance, evidence for different NS matter compositions (e.g. purely
hadronic vs. hyperonic) or phenomenological features of the EOS (e.g. strong phase transitions) could be compared.
This can be done by changing the set of tabulated EOSs used to condition the underlying GP, so as to construct
separate priors reflecting the typical behavior of different classes of EOS. In the context of GW170817, a hypothesis
ranking scheme could also be applied to determine whether the GW data identify the event as a binary NS, a binary
black hole, or a NS-black hole merger. Model selection with a GP representation for the EOS has the potential to
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shed light on a variety of interesting questions about the macroscopic properties and internal structure of NSs. More
broadly, the versatility of non-parametric EOS inference will help maximize the information obtained from future
observations, serving as a key component in the effort to constrain the supranuclear EOS.
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[86] Grigorios Panotopoulos and Iĺıdio Lopes, “Dark matter effect on realistic equation of state in neutron stars,” Phys. Rev.

D 96, 083004 (2017), arXiv:1709.06312 [hep-ph].
[87] Ann Nelson, Sanjay Reddy, and Dake Zhou, “Dark halos around neutron stars and gravitational waves,” arXiv e-prints ,

arXiv:1803.03266 (2018), arXiv:1803.03266 [hep-ph].
[88] John Ellis, Gert Hütsi, Kristjan Kannike, Luca Marzola, Martti Raidal, and Ville Vaskonen, “Dark matter effects on

neutron star properties,” Phys. Rev. D 97, 123007 (2018), arXiv:1804.01418 [astro-ph.CO].

http://dx.doi.org/10.1103/PhysRevLett.113.251101
http://arxiv.org/abs/1412.3657
http://dx.doi.org/10.1103/PhysRevD.93.064001
http://arxiv.org/abs/1509.04066
http://arxiv.org/abs/1805.10457
http://dx.doi.org/ 10.1103/PhysRevD.98.083017
http://arxiv.org/abs/1806.08365
http://arxiv.org/abs/1808.00901
http://dl.acm.org/citation.cfm?id=2981780.2981929
http://arxiv.org/abs/1402.0645
http://arxiv.org/abs/1402.0645
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/ 10.1103/PhysRevD.89.124011
http://arxiv.org/abs/1404.6798
http://arxiv.org/abs/1404.6798
https://dcc.ligo.org/LIGO-P1800061/public/
https://dcc.ligo.org/LIGO-P1800061/public/
http://arxiv.org/abs/1305.2235
http://dx.doi.org/ 10.1017/CBO9780511984679.015
http://xtreme.as.arizona.edu/NeutronStars/
http://dx.doi.org/10.1086/430902
http://dx.doi.org/10.1086/430902
http://arxiv.org/abs/nucl-th/0411016
http://dx.doi.org/10.1086/177827
http://arxiv.org/abs/nucl-th/9509016
http://dx.doi.org/ 10.1103/PhysRevD.73.024021
http://dx.doi.org/ 10.1103/PhysRevD.73.024021
http://arxiv.org/abs/astro-ph/0507312
http://dx.doi.org/10.1016/0370-2693(87)91611-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://arxiv.org/abs/nucl-th/9603037
http://dx.doi.org/10.1051/0004-6361:20011402
http://dx.doi.org/10.1051/0004-6361:20011402
http://arxiv.org/abs/astro-ph/0111092
http://dx.doi.org/10.1126/science.1233232
http://arxiv.org/abs/1304.6875
http://arxiv.org/abs/1304.6875
https://www.gw-openscience.org/events/GW170817/
https://www.gw-openscience.org/events/GW170817/
http://dx.doi.org/10.1103/PhysRevD.80.084043
http://arxiv.org/abs/0907.0700
http://arxiv.org/abs/1810.12917
http://dx.doi.org/10.3847/2041-8213/aa991c
http://arxiv.org/abs/1710.05938
http://dx.doi.org/ 10.3847/2041-8213/aaa401
http://arxiv.org/abs/1711.00314
http://dx.doi.org/10.1103/PhysRevD.96.123012
http://dx.doi.org/10.1103/PhysRevD.96.123012
http://arxiv.org/abs/1710.07579
http://dx.doi.org/10.1103/PhysRevD.97.021501
http://arxiv.org/abs/1711.00473
http://dx.doi.org/10.1103/PhysRevD.96.083004
http://dx.doi.org/10.1103/PhysRevD.96.083004
http://arxiv.org/abs/1709.06312
http://arxiv.org/abs/1803.03266
http://dx.doi.org/ 10.1103/PhysRevD.97.123007
http://arxiv.org/abs/1804.01418


23

Appendix A: Complete results for simulated GW signals

In this appendix, we present complete results for the injection study described in Sec. V. In Figs. 8-12, we show the
GW likelihood, non-parametric priors, and posteriors for each of the injections listed in Table I, finding the expected
behavior in our posteriors. We omit process plots for the model-informed prior for all injections because they closely
resemble Fig. 5. Injected signals with stiffer EOSs (ms1) shift the posterior to stiffer pressures relative to the prior,
whereas softer EOSs (sly) produce lower pressures a posteriori. EOSs that fall near the middle of the prior (h4)
mainly produce tightened confidence regions. We also see that the central densities for M1 are shifted to smaller
values for stiff EOSs and larger values for soft EOSs. This is because stiffer (softer) EOSs have larger (smaller) radii
for the same mass, and ρc ∼ M/R3 scales inversely with the NS size. All these trends are readily apparent with
the model-agnostic prior, whereas the model-informed prior often produces posteriors nearly identical to the prior.
However, as Table I shows, the data typically do not strongly favor one prior over the other.

Often, ms1 is “too stiff” for our model-informed prior but only disfavored by our model-agnostic prior. Although we
attempt to construct the model-agnostic prior to support an extremely broad range of possible EOSs, there are simply
many more EOSs that support relatively compact stars compared to the few that are at least as stiff as ms1. This is
because causality places a strict upper limit on how stiff an EOS can be, evidenced by the asymmetric one-dimensional
marginal distributions in, e.g., Fig. 5, and our model-informed prior assigns relatively small weight to such EOSs. The
majority of tabulated EOSs used are not that stiff. Similarly, sly is almost “too soft” for our model-informed prior,
although it still appears to be better fit than ms1 in most scenarios. h4 is “just right,” in that the model-informed
prior captures its behavior well and is sometimes preferred over the model-agnostic one by as much as a factor of ' 4.

Generally, the model-agnostic prior’s broader support means that the a posteriori credible regions can stretch to
include the injected values. However, we find that this does not provide a better fit to the data than the model-
informed prior, with the exception of ms1 for injection I (first row of Table I, Figs. 8 and 11). There are a few other
injections for which the injected value is near the edge of the credible regions, but these are typically near the edge
of the support for both the model-informed and model-agnostic priors, resulting in no strong preference for one prior
over the other. We stress that this occurs because of a combination of factors. Primarily, noise fluctuations in the
data shift the likelihood relative to the injected value, meaning that the maximum likelihood parameters are not the
injected ones. Additionally, our priors are non-trivial in (M1,2, Λ1,2) and will prefer certain values over others. One
should only expect credible regions to correspond to correct coverage (e.g. 50% of signals are recovered within the
50% credible regions) if the signals are actually drawn from the prior. Our injections are performed using a subset
of the EOSs used to construct our priors, but they are not actually drawn from our priors. What’s more, we chose
relatively extreme EOSs that live near the edge of our fiducial set, and, compounding the impact of noise fluctuations,
it should consequently not be terribly surprising that some of the injected values are recovered near the edge of our
90% credible regions. Again, EOSs that are rare a priori are often rare a posteriori.
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FIG. 8. Λ1–Λ2 joint prior (cyan), likelihood (green), and posterior (magenta) distributions using the model-agnostic prior.
Injected values are shown as gray cross-hairs and the colored contours correspond to 50% and 90% confidence regions. Rows
correspond to events I-III from Table I and columns are labeled according to the injected EOS.



25

model-agnostic

ms1

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

h4

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8
M

1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

sly

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8

M
1

prior

likelihood

posterior

0 500 1000 1500 2000
Λ1

1.3

1.4

1.5

1.6

1.7

1.8
M

1

prior

likelihood

posterior

FIG. 9. Λ1–M1 joint prior (cyan), likelihood (green), and posterior (magenta) distributions using the model-agnostic prior.
Injected values are shown as gray cross-hairs and the colored contours correspond to 50% and 90% confidence regions. Rows
correspond to events I-III from Table I and columns are labeled according to the injected EOS.
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FIG. 10. Prior (cyan) and posterior (magenta) processes for injections for the model-agnostic prior. Solid lines show the
medians, shaded regions represent the 50% and 90% credible regions for p(ρ), and the contours represent the 50% and 90%
credible regions for the central densities and pressures of M1. Rows correspond to events I-III from Table I and columns are
labeled according to injected EOS.
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FIG. 11. Λ1–Λ2 joint prior (blue), likelihood (green), and posterior (red) distributions using the model-informed prior. Injected
values are shown as gray cross-hairs and the colored contours correspond to 50% and 90% confidence regions. Rows correspond
to events I-III from Table I and columns are labeled according to the injected EOS. We note that ms1’s model-informed posterior
for injection I is relatively under-sampled, with Neff ∼ afew×102 even though N > 106. What’s more, this is the only injection
that strongly favors one prior over the other, with BAI = 22.6 ± 0.7, as evidenced by the dearth of of posterior support for
the model-informed prior. Our evidence estimation, therefore, remains relatively precise even though errors in the posterior’s
shape are dominated by the relatively small number of samples with large weights.
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FIG. 12. Λ1–M1 joint prior (blue), likelihood (green), and posterior (red) distributions using the model-informed prior.
Injected values are shown as gray cross-hairs and the colored contours correspond to 50% and 90% confidence regions. Rows
correspond to events I-III from Table I and columns are labeled according to the injected EOS.
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