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David F. Chernoff,1 Éanna É. Flanagan,1 and Barry Wardell1, 2

1Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

We develop a method for computing the linearized gravitational backreaction for Nambu-Goto
strings using a fully covariant formalism. We work with equations of motion expressed in terms
of a higher dimensional analog of the geodesic equation subject to self-generated forcing terms.
The approach allows arbitrary spacetime and worldsheet gauge choices for the background and
perturbation.

The perturbed spacetime metric may be expressed as an integral over a distributional stress-
energy tensor supported on the string worldsheet. By formally integrating out the distribution,
this quantity may be re-expressed in terms of an integral over the retarded image of the string.
In doing so, one must pay particular attention to contributions that arise from the field point and
from non-smooth regions of the string. Then, the gradient of the perturbed metric decomposes into
a sum of boundary and bulk terms. The decomposition depends upon the worldsheet coordinates
used to describe the string, but the total is independent of those considerations.

We illustrate the method with numerical calculations of the self-force at every point on the
worldsheet for loops with kinks, cusps and self-intersections using a variety of different coordinate
choices. For field points on smooth parts of the worldsheet the self-force is finite. As the field point
approaches a kink or cusp the self-force diverges, but is integrable in the sense that the displacement
of the worldsheet remains finite. As a consistency check, we verify that the period-averaged flux of
energy-momentum at infinity matches the direct work the self-force performs on the string.

The methodology can be applied to address many fundamental questions for string loop evolution.

I. INTRODUCTION

A. Cosmological superstrings

Cosmic superstrings [1] are the strings of string theory
stretched to macroscopic length scales by the universe’s
early phase of exponential, inflationary growth [2–4]. The
strings produced near the close of that epoch form a
complicated evolving network of various string elements
during the subsequent, more leisurely epochs of expan-
sion [5–7]. Long, horizon-crossing strings stretch, short
curved pieces accelerate and attempt to straighten, and,
occasionally, individual segments intercommute (collide,
break and reattach) chopping out loops and forming new,
connected string pathways. Analytic and numerical cal-
culations demonstrate that these processes rapidly drive
the network and the loops to self-similar evolution with
macroscopic statistical properties largely determined by
the string tension [8–12]. The energy densities in long
strings, in loops, and in gravitational radiation divided
by the critical energy density are all independent of time.
The distribution of loops of a given size relative to the
horizon scale is also fixed.

An understanding of this evolution is informed by
previous studies of one dimensional defects in the con-
text of symmetry breaking in grand unified theories
(GUTs; [13]; for a general review see [14]). One im-
portant difference for superstrings is the expected value
of the string tension. In GUT theories the string ten-
sion Gµ/c2 ∼ Λ2

GUT /M
2
p ∼ 10−6 is fixed by the GUT

energy scale ΛGUT . Observations of the microwave sky
have ruled out GUT strings as the source of the cosmo-
logical perturbations [15–17] and led to upper bounds on

the tension. Currently, broadly model-independent lim-
its from lensing [18–25], CMB studies [15–17, 26–35] and
gravitational wave background and bursts [36–49] give
Gµ/c2<∼10−7. More stringent but somewhat more model-
dependent limits from pulsar timing [50–54] have regu-
larly appeared. Currently, the strongest inferred limit is
Gµ/c2 <∼ 10−11 [55, 56].

Low tension strings are natural in string theory and
have little difficulty in this regard. In the most well-
studied compactifications the standard model physics is
located at the bottom of a warped throat where all en-
ergy scales are exponentially diminished compared to the
string scale. Superstrings have tensions that are reduced
by exactly this effect and can correspond to energies as
small as TeV (see [1, 57] for reviews).

The magnitude of Gµ/c2 influences many properties
of the strings and loops that make up the network. A
loop with characteristic size ` and energy ∝ µ` will com-
pletely dissipate by gravitational wave emission in times
t ∼ `/(ΓGµ/c) where Γ ∼ 50 is a loop-dependent pure
number [36, 58–64]. If Gµ/c2 � 10−6 then superstring
loops evaporate by gravitational wave emission much less
rapidly than GUT string loops. The characteristic size of
loops that evaporate gravitationally in tH , the age of the
universe, is `g = tHΓGµ/c. These turn out to dominate
the distribution of loop sizes found in the universe today.

Current simulations report that about 10-20% of the
string network that is chopped out ends up in the form of
large loops, with sizes within a few orders of magnitude
of the horizon scale at birth [11, 12]. The rest forms very
small loops with size scale relative to the horizon set by a
power of Gµ/c2 [65–70]. These rapidly evaporate. Today,
the string network’s energy density is dominated by the
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large loops formed at an early epoch. If Gµ/c2 < 7×10−9

it is before matter-radiation equality. Today’s size distri-
bution increases as `→ `g from above (the universe was
denser at earlier times and formed more smaller loops);
the distribution is cutoff by the evaporation process at
` < `g.

Long gravitational lifetimes have another important ef-
fect: the center of mass velocity of the old loops is small
and they cluster like cold dark matter [71]. This opens
the way to experimental tests of string theory that are
based upon direct detection of gravitational wave emis-
sion and observation of string microlensing of background
stellar sources [72]

B. Gravitational backreaction in the string network

The most numerous loops are close to the characteris-
tic size `g, set by gravitational backreaction. An under-
standing of string gravitational backreaction is crucial for
making forecasts of experimental studies and planning
future observational campaigns. The emission of grav-
itational radiation and the associated dissipative forces
shrink the size of the loop (energy loss) and impart a
recoil (momentum and angular momentum loss). These
may change the character of the loop oscillation over long
timescales. The radiative emission processes have been
well-studied assuming that the loop is a long-lived pe-
riodic oscillator [36, 58–64, 73, 74]. The secular effects
of gravitational backreaction on the loop oscillation are
relatively unexplored. Two important aspects are the
propensity of loops to self-intersection and the evolution
of discontinuous features on the loops.

Self-intersections are important because they can lead
to the rapid demise of the long-lived loops which are of
greatest observational interest. The reason is simple: iso-
lated, dissipationless loops are exactly periodic. If a loop
can self-intersect it will do so over and over again even-
tually leading to intercommutation and breakage. This
process shatters the loop into many small looplets [64]
moving apart at relativistic speeds, each of which will
evaporate in only a fraction of the time required by the
original loop. Self-intersections have the potential to rad-
ically depress the number of old loops of size `g that
would otherwise exist throughout the universe. The loop
distribution will be cutoff at scale > `g; the number den-
sity at that cutoff will be substantially smaller. Further-
more, the intercommutation process evicts the shattered
progeny from being bound to the galaxy. Backreaction
can significantly alter experimental forecasts.

Another important aspect of gravitational backreac-
tion is the presence of kinks and cusps on loops. Typically
when a new loop is formed from a smooth segment of
string the orbit of the new loop will contain an infinites-
imal element of string that moves at the speed of light
for an infinitesimal time, repeating once per period. This
is a cusp, a well-characterized, periodic strong source of
gravitational wave emission. Cusp emission is the princi-

ple target of gravitational wave searches from string loops
because it is strong, beamed and has a well-understood
signal form [36–49]. Ref. [70] has argued that a scaling
network may be inefficient at forming loops with cusps
for the following reason. Scaling requires chopping out a
significant fraction of the long strings’ length each time
the universe doubles in size. The chopping removes loops
and inevitably adds kinks (derivative discontinuities) to
the remaining long string segments. Smooth long strings
accumulate kinks and grow dense with small scale struc-
ture as the universe ages. New loops inherit the small
scale structure. The first time that the loop begins to
form a cusp-like structure the kinky string reconnects, ef-
fectively excising the part of the loop responsible for the
cusp. Such a loop is left with nothing but kinks. Kinks
may also be detected by gravitational wave searches but
are not as strong or as unidirectional. Recent cosmolog-
ical network simulations support this theoretical predic-
tion [11, 12]. In particular, they show that loops with
kinks are formed preferentially and there are few cusps1.

This general evolutionary outline prompts a number
of questions related to how gravitational backreaction
influences the evolution of derivative discontinuities on
loops and long strings. Qualitatively, we understand that
gravitational backreaction will smooth kink discontinu-
ities (lessening the size of the jump in the tangent vector
from one side to the other) and theoretically allow new
cusps to form. There is a competition between the rate at
which the discontinuity diminishes and the rate at which
the loop shrinks. One question is whether the loop fully
evaporates before the cusp reforms. Another question is
whether a reformed cusp has the same scale as the loop
itself or an intrinsically smaller scale. These can be an-
swered by calculating the dynamical evolution of a string
loop with backreaction for many orbits.

Another aspect that requires a full treatment of backre-
action is how a loop with many kinks evolves (since the
scaling solution suggests the ubiquity of kinks). If the
total rate of gravitational wave emission scales linearly
with the number of kinks [75] then the loop’s lifetime is
shortened. However, the backreaction of many closely
spaced radiating kinks may qualitatively effect the evo-
lution predicted on the basis of a single kink. It is there-
fore of interest to understand how backreaction operates
when there is a high density of kinks on long strings and
loops.

C. Theory and simulation

In this paper we develop a complete formalism for com-
puting the gravitational backreaction on cosmic string
loops, and demonstrate the method by computing the

1 It must be noted that it isn’t clear whether the string substruc-
ture in even the biggest simulations has entered a scaling regime
or is still in the process of evolving.
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gravitational self-force for several specific cosmic string
configurations. Some similar studies were previously
done in Refs. [76, 77], but these were limited in scope
and did not include many of the details considered here.

Quashnock and Spergel (QS) [76] derived linearized
equations of motion for a string interacting with its own
gravitational field (in this context, linearized means first
order in Gµ/c2 expanded about flat spacetime). They
worked with particular coordinates and gauge choices
that were chosen to simplify many aspects of the cal-
culation. The weak field approximation breaks down at
kinks, cusps and self-intersections, but these freely mov-
ing line singularities were treated in a perturbative sense.

QS computed the self-force at a field point as sourced
by elements of the retarded, distant string image. They
concluded that only finite divergence-free backreaction
forces existed for field points with smooth sources, and
that the contribution to the backreaction forces tended to
zero as the source point approached the field point. This
situation stands in contrast to the analogous point par-
ticle case studied by Dirac [78], in which self-interaction
leads to a renormalized mass. Carter and Battye [79] and
Buonanno and Damour [80] showed that while a general
string has a local divergent part to its perturbed metric,
the Nambu-Goto string is special and the total force den-
sity due to all the local divergent pieces exactly vanishes.
The remaining force is given by long-range interactions.

Kinks and cusps are examples where smoothness in the
vicinity of the field point fails to hold. QS did not ex-
plicitly discuss the limiting behavior near a kink but did
argue on general grounds that the backreaction force per
source coordinate interval at a cusp would be infinite, but
integrable. They also solved numerically for the evolu-
tion of the loop represented both as a continuous function
and as a set of kinks (straight line segments with small
tangent vector discontinuities) by integrating the back-
reaction over a full period. The simulations showed that
cusps survive backreaction but are deformed and delayed.
Longer integrations suggested that the amplitude of the
cusp and the associated asymmetric rocket effects were
suppressed by backreaction. Finally, QS also showed that
small (compared to the size of the loop) kinks decay more
rapidly than the string as a whole. The magnitude of
the discontinuity at a kink (change in tangent vectors)
lessens but the discontinuity itself is not smoothed out
by dissipation.

It is some measure of the complexity of the prob-
lem that most work since the QS investigation has dealt
with specific issues and not attempted such an ambi-
tious numerical treatment. Anderson [81] analytically
calculated the gravitational backreaction forces for the
Allen-Casper-Ottewill (ACO) loop [61], a rotating loop
configuration with a pair of kinks (one tangent vector
is continuous and the other is discontinuous). The co-
ordinates and gauge conditions used were equivalent to
those of [76]. Anderson demonstrated explicitly that all
the components of 4-vector acceleration diverged near the
kink. The calculated forces were, however, integrable so

that the equations of motion in the weak field limit were
integrable too2.

In this paper we do not evolve the string configura-
tion (that will be for a followup) but study in detail the
method of calculation of the first order self-force. Cer-
tain intermediate quantities in our calculations exhibit
divergences. The occurence of these calculational diver-
gences is tied to three interrelated factors: the choice of
worldsheet gauge (eg conformal or other), the specifica-
tion of residual gauge freedom in the choice of worldsheet
coordinates (eg null or non-null coordinates), and the ex-
istence of discontinuous sources anywhere on the loop’s
retarded image (the intersection of the worldsheet with
the past lightcone of the field point). However, the to-
tal integrated self-force at any point on a smooth region
of the worldsheet is always finite due to cancelations of
divergences, and is independent of these choices. This
finiteness is consistent with the lack of renormalization
of the string tension discussed in [82] and with the the
general conclusions of smoothness of [76].

While the self-force is finite in smooth regions of the
worldsheet, it diverges in the limit when the field point
approaches cusps or kinks on the worldsheet. However,
when one solves the linearized equation of motion for the
perturbation to the worldsheet, the linearized displace-
ment of the worldsheet is finite. Going beyond this treat-
ment will involve critically examining the linearized ap-
proximation and the distributional representation of fea-
tures such as kinks and cusps. The question of whether
physical divergences occur in a fully self-consistent evo-
lution is beyond the scope of this paper. Nevertheless,
the methodology we develop in this paper should allow
adressing certain aspects of the question in the future.
Our methodology will allow us to refine the gauge during
the course of a self-consistent evolution (continuing to
use linearization with distributional models) to separate
invariant physical divergences from calculational diver-
gences. In the case of the cusp, for example, we would
need to step carefully through a single period of oscilla-
tion to handle the occurrence of the divergence at a single
spacetime point.

As a result of the work in this paper there is evidence
that any such singularity is weak in the “physical” sense.
In particular, period-averaged changes are given by sim-
ple quadratures over the worldsheet. Orbit-averaging
does not require instant-by-instant evolution but pre-
sumes the metric and string are only mildly perturbed
in some average sense. We find that over an oscillation
both the kink and cusp lead to finite displacements of
the worldsheet and finite small changes in energy, mo-
mentum and angular momentum. All period-averaged
physical divergences are small and bounded in the sense
of being proportional to Gµ. This is quite mild compared

2 [81] did not evaluate forces at the kink itself where the metric is
ill-determined.
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to the character of the singular behavior of point masses
in general relativity, for example.

Recently, Wachter and Olum [83, 84] have studied the
evolution of loops composed of linear pieces (both right
and left moving modes are given by a set of fixed tangent
vectors which generate kinks). Using the methodology of
[76] they found the metric perturbations and the loop’s
acceleration and analytically evaluated the backreaction
for a planar rectangular loop [59]. They deduced the en-
ergy loss, changes to the left and right moving modes
and the kink smoothing (diminishing the tangent vector
jumps). Small angle kinks (acute angles) disappeared
more quickly than large angle kinks (of order π/4). This
observation is complementary to that of [76] which re-
ported small sized kinks (length small compared to the
loop size) disappeared more quickly than large sized kinks
(length a fraction of the full loop size). Refs. [83, 84] com-
pared the loop evaporation time to the kink smoothing
time and found that the loop angle was a key parameter.
For small angles, kinks disappeared rapidly. For large
angles, the loop evaporated first. Finally, the analysis
of the piecewise loops showed that the straight line seg-
ments begin to curve after a short period for all except
loops with special symmetry.

D. Lagrangian Methodology

Carter pioneered the treatment of perturbations in an
arbitrarily curved spacetime background with relativistic
string, membrane or other brane models where p, the
spatial dimension of the brane, is less than n, the spatial
dimension of spacetime ([85–87]; see [88] for a review).
The action in such models is

I =

∫
LdΣ̄ (1.1)

dΣ̄ = |γ|1/2dp+1ζ (1.2)

where dΣ̄ is the surface measure element induced on the
timelike world sheet by the background metric, γ is the
determinant of the induced metric and ζ stands for the
(p+ 1) internal coordinates. We may assume a constant
scalar Lagrangian L = −mp+1 where m is a character-
istic mass scale and ~ = c = 1. For p < n the brane
and the Lagrangian are distributional in spacetime. The
brane is concentrated on lower dimensional world sheets
in the higher dimensional spacetime. The case p = 1
and n = 3 is an effective low-energy description of mini-
mally coupled F- and D-strings with 2 dimensional world
sheets.

In this work we apply the formalism to compute the
metric perturbation generated by a cosmic string. Two
important considerations guide our efforts. First, the dis-
tributional nature of the strings motivates a Lagrangian
approach. Second, we work as much as possible in terms
of tensorial quantities of the background spacetime and
avoiding the use of specific systems of intrinsic coordi-
nates for the brane submanifolds. We develop a fully

covariant formalism and apply it in a variety of circum-
stances.

E. Conventions used in this paper

Throughout this paper we follow the conventions of
Ref. [89]; we use a “mostly positive” metric signature,
(−,+,+,+) for the spacetime metric and (−,+) for the
worldsheet metric, the connection coefficients are defined
by Γλµν = 1

2g
λσ(gσµ,ν+gσν,µ−gµν,σ), the Riemann tensor

is Rαλµν = Γαλν,µ − Γαλµ,ν + ΓασµΓσλν − ΓασνΓσλµ, the Ricci
tensor and scalar are Rαβ = Rµαµβ and R = Rα

α, and the
Einstein equations areGαβ = Rαβ− 1

2gαβR = 8πTαβ . We
use standard geometrized units, with c = G = 1, Latin
indices for worldsheet components and Greek indices for
four-dimensional spacetime components.

II. COVARIANT EQUATIONS OF MOTION
FOR A NAMBU-GOTO COSMIC STRING LOOP

We begin by considering a Nambu-Goto cosmic string
tracing out a two-dimensional worldsheet in spacetime.
We identify a point on the string by a pair of worldsheet
coordinates {ζ1, ζ2} and denote the spacetime coordinate
of that point by zα(ζa).

Given the full spacetime metric, gαβ , the induced met-
ric on the worldsheet is defined by

γab = gαβ∂az
α∂bz

β . (2.1)

The worldsheet-tangent projection tensor is defined as

Pαβ = γab∂az
α∂bz

β (2.2)

where γabγbc = δac . The corresponding worldsheet-
orthogonal projection tensor is

⊥αβ= gαβ − Pαβ . (2.3)

For tensor fields with support confined to the world sheet,
the tangentially projected covariant derivative is

∇̄α = Pα
µ∇µ. (2.4)

Finally, defining the extrinsic curvature (or second fun-
damental tensor) and its trace,

Kαβ
γ ≡ Pµβ∇̄αPµγ , Kγ ≡ gαβKαβ

γ , (2.5)

Battye and Carter [90] showed that the equation of mo-
tion of the string may be written in the compact form

Kρ = 0. (2.6)

This can be expanded explicitly as

Kγ =
1√
−γ

∂a(
√
−γγab∂bzγ) + PαβΓγαβ , (2.7)

where γ = det(γab) and Γγαβ is evaluated at the spacetime

coordinate of the worldsheet point zµ(ζa).
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III. GRAVITATIONAL PERTURBATIONS OF
COSMIC STRING LOOPS

We now wish to specialize to the case where the string
tension is small and the problem may be treated pertur-
batively in Gµ/c2. Then, the string can be considered to
be moving in a perturbed spacetime with metric

gαβ = g̊αβ + hαβ ,

where the background, unperturbed metric is g̊αβ and
the perturbation hαβ is sourced by the string’s own stress
energy. We can likewise parameterise the worldsheet in
terms of a background piece plus a perturbation,

zα = zα(0) + zα(1), (3.1)

and will work to first order3 in both the metric pertur-
bation, hαβ , and in the worldsheet perturbation, zα(1).

A. Zeroth order equation of motion

For the case where backreaction is ignored, we may
treat the string as moving in a fixed background space-
time with equation of motion

1√
−γ

∂a(
√
−γγab∂bzγ(0)) + PαβΓγαβ = 0. (3.2)

If the background is Minkowski spacetime, the second
term vanishes and the equation of motion is just the
standard two-dimensional scalar wave equation for each
component of the worldsheet coordinate vector.

Further simplification can be obtained by considering
the gauge freedom in defining the worldsheet coordinates.
A common class of choices invokes the conformal gauge
condition, whereby the worldsheet metric is required to
be conformally flat:

γab = φηab, (3.3)

where ηab is a two-dimensional Minkowski metric and
φ > 0 is a conformal factor. A consequence of this choice
is that the worldsheet derivatives, ∂ζ1zµ and ∂ζ2zµ, must
satisfy certain orthogonality conditions (the details of
which depend on the particular choice of worldsheet co-
ordinates) and that the equation of motion is given by

φ−1ηab∂a∂bz
γ
(0) = 0. (3.4)

This is just the 1+1D flat space scalar wave equation
for each spacetime component of the string worldsheet

3 For notational simplicity, from here on we will always make ex-
plicit the dependence on the perturbed quantities hαβ and zα

(1)
,

but will implicitly define everything else in terms of background

quantities. So, for example, we will have γab = g̊αβ∂az
α
(0)
∂bz

β
(0)

and likewise for all of the other quantities defined in Sec. II.

vector zα(0). The solutions to this equation are periodic

in both ζ1 and ζ2 in the sense that for a loop of length
L we have zα(ζ1, ζ2) = zα(ζ1 + L/2, ζ2 + L/2).

Weak solutions of equations (3.2) and (3.4) allow
derivative discontinuities, so generic solutions are not
smooth. The tangent sphere representation provides a
description of the derivatives of the two components of a
solution [14]. Perfectly smooth string loop solutions have
two continuous paths on the tangent sphere. However,
there may be long-lived kinks (corresponding to gaps in
the tangent sphere) that propagate around the string
along null worldsheet directions, and cusps (correspond-
ing to intersections in the tangent sphere) that only ex-
ist instantaneously. There may also be self-intersections,
where the string crosses over on itself.

B. First order equation of motion for the string
worldsheet

We now return to the general case (no specialization of
gauge or metric) to write down the perturbed equation
of motion. Demanding that the perturbed trace of the
extrinsic curvature vanish as in Eq. (2.6), and assuming
that the zeroth order equation of motion is satisfied gives
[87, 90]

⊥ρχ ∇̄µ∇̄µz
χ
(1) − 2∇̄µzα(1)K

µ ρ
α + ⊥βρ PµνRµενβzε(1)

= Kαβρhαβ− ⊥ρβ P
λτ

(
∇λhβτ −

1

2
∇βhλτ

)
.

(3.5)

The homogeneous version of this equation is a higher
dimensional analog of the geodesic deviation equation.

Identifying the term on the right hand side as a self-
force, it is convenient to split this force into separate
contributions, one involving the metric perturbation and
the other involving its derivative,

F ρ = F ρ1 + F ρ2 , (3.6a)

F ρ1 ≡ − ⊥ρ λPµν
(
∇µhνλ −

1

2
∇λhµν

)
, (3.6b)

F ρ2 ≡ Kµνρhµν . (3.6c)

Using the definition (2.5) of Kµνρ we can write F ρ2 in
terms of Hab ≡ hµν∂azµ∂bzν (the projection of hµν along
the worldsheet),

F ρ2 =
(
γacγbd∂cz

σ∂dz
λ∇λPσρ

)
Hab

=⊥ρ σγacγbd
(
∂c∂dz

σ + Γσλτ∂cz
λ∂dz

τ
)
Hab. (3.7)

We can also write the first term as

F ρ1 = − 1
√
γ
⊥ρ λFλconf , (3.8)
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where4

Fρconf ≡
√
−γPµν

(
∇µhνρ −

1

2
∇ρhµν

)
. (3.9)

is the quantity that appears on the right hand side of
the conformal gauge equation of motion (3.14) below.
Battye and Carter [90] showed that for a general choice
of gauge it is crucial to both project orthogonal to the
worldsheet and to include the additional term involving
Kµνρ in order to get the correct gravitational self-force5.
In a subsequent work [91] they showed that, despite the
presence of divergences in the metric perturbation, the
gravitational self-force (3.6) is finite for strings in four
spacetime dimensions with smooth worldsheets.

The very general form for the equations of motion
given by Eq. (3.5) allows arbitrary choice of gauge for
the background, both for the spacetime coordinates and
for the worldsheet coordinates. It also allows separate ar-
bitrary gauge transformations for the perturbations, and
is invariant under two different types of linearized gauge
transformations:

• Linearized coordinate transformations in space-
time, which induce changes in the worldsheet and
metric perturbations, zα(1) → zα(1) + ξα, hαβ →
hαβ − 2∇(αξβ).

• Linearized coordinate transformations on the
worldsheet, which induce the changes

zα(1) → zα(1) + ∂az
αξa. (3.10)

This gauge freedom shows that only the compo-
nent of zα(1) that is perpendicular to the worldsheet

contains physical information.

C. Choices of Gauge

1. Gauge choice to zeroth order

We now once again specialize to Minkowski spacetime
in Lorentzian coordinates at zeroth order. Then, the

4 We use a caligraphic font for Fµconf since it is not a gauge-
specialized version of the general self force Fµ, because the left
hand side of Eq. (3.14) is not obtained from the left hand side of
(3.5) by a gauge specialization.

5 In fact, a sequence of papers provided derivations of the fun-
damental equations of motion with increasing degrees of rigor.
Following on from Ref. [90], Battye and Carter [87] performed a
more careful analysis using a second order Lagrangian variational
treatment to derive the first order equations of motion for the
displacement vector of the world sheet and for the metric pertur-
bations. When restricted to the linearized backreaction regime,
their final results (given in Eqs. (30), (31) and (33) of [87] with
terms involving Kρ identically zero for linearized backreaction)
are consistent with their earlier results and with the expressions
above.

third term on the left hand side of Eq. (3.5) vanishes
identically. The first term simplifies to

⊥ρ χ
1√
−γ

∂a

(√
−γγab∂bzχ(1)

)
, (3.11)

and the second term is

− 2∂az
(1)
α γabzσ(0),bdz

α
(0),cγ

cd ⊥σ ρ. (3.12)

The first two terms simplify further if we use the confor-
mal gauge [Eq. (3.3)] to zeroth order, in which case the
left hand side becomes

⊥ρ χ
1√
−γ

ηab∂a∂bz
χ
(1). (3.13)

2. Gauge choice to first order

At first order we adopt Lorenz gauge6 for the spacetime
coordinates. For the worldsheet coordinates there are
several natural choices. We focus here on the conformal
gauge as it is computationally the most convenient, and
direct the reader to Appendix A 4 for a discussion of other
possible choices.

The choice of conformal gauge at first order amounts
to choosing the worldsheet coordinates so that the con-
formal flatness condition (3.3) holds to first order as well
as zeroth order. Anderson [81] showed that in this gauge
the equation of motion, Eq. (3.5) takes the simple form

ηab∂a∂bz
χ
(1) = −Fχconf (3.14)

When our sign convention for the metric is taken into
account, this form is consistent with that used by Buo-
nanno and Damour [82].

Comparing with the covariant equation, Eq. (3.5), we
see a number of differences due to the gauge specializa-
tion:

• The right hand side of Eq. (3.14) corresponds to the
second term on the right hand side of Eq. (3.5), but
with the projection tensor dropped.

• The left hand side of Eq. (3.14) corresponds to the
first term on the left hand side of Eq. (3.5), but
again with the projection tensor dropped.

• The remaining two terms in Eq. (3.5) involving cou-
plings to the extrinsic curvature tensor have been
dropped – they cancel against the effect of drop-
ping the projection tensors in this gauge. (We have
already dropped the term involving the Riemann
tensor since we are working in flat spacetime.)

6 This gauge condition is often referred to as Lorentz gauge but is
actually due to Lorenz [92].
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A simple proof of this can be obtained by starting with
the general coordinate expression (2.7) for Kρ before con-
sidering perturbations, and applying the conformal gauge
condition (3.3). We have

Kρ =
1√
−γ

ηab∂a∂bz
ρ + γabzλ,az

µ
,bΓ

ρ
λµ. (3.15)

without approximation (zρ, γab, gαβ , Γρλµ exact). Now
consider evaluating this expression with the metric
gαβ → ηαβ + hαβ and worldsheet zα → zα(0) + zα(1). The

zeroth order term vanishes by assumption. The varia-
tion of the first term in Eq. (3.15) comes from replac-
ing zρ with zρ(0) + zρ(1), since the zeroth order quantity

ηab∂a∂bz
ρ
(0) vanishes. Therefore this term yields the left

hand side of Eq. (3.14). Similarly, the variation of the
second term in Eq. (3.15) comes from the variation in
Γρλµ, since this quantity vanishes in the background by

assumption (we are working in Lorentzian coordinates
in Minkowski spacetime). Using expression (2.2) for the
projection tensor we see that the variation of this term
yields the right hand side of Eq. (3.14).

For the specific choice of gauge in this section Fρconf
naturally appears in the balance laws for energy and mo-
mentum relating the flux of radiation at infinity to the
local dissipation forces (see Appendix C).

D. First order metric perturbation

The stress tensor for a Nambu-Goto cosmic string is
given by [14]

Tαβ(x) = −Gµ
∫∫

Pαβδ4(x, z)
√
−γ dζ1′dζ2′ (3.16)

where δ4(x, z) = δ4(x−z)√
−g is the four-dimensional invari-

ant Dirac delta distribution and z, Pαβ and γ are all
functions of ζa

′
. A coupling of the string to gravity leads

to deviations of the spacetime from the background. For
sufficiently small string tensions, Gµ/c2 � 1, this de-
viation may be treated perturbatively by expanding the
metric about the background spacetime,

gαβ = g̊αβ + hαβ . (3.17)

The perturbation satisfies the linearized Einstein equa-
tion, which in Lorenz gauge is just the wave equation,

�h̄αβ + 2Rα
γ
β
δhγδ = −16πTαβ (3.18)

where h̄αβ ≡ hαβ− 1
2 g̊αβ g̊

γδhγδ is the trace-reversed met-
ric perturbation. We can invert this equation using the
retarded Green function, which satisfies the wave equa-
tion,

�Gαβ
α′β′ + 2Rα

γ
β
δGγδ

α′β′ = −gαα
′
gβ
β′δ4(x, x′).

(3.19)

In a four-dimensional Minkowski background (̊gαβ =
ηαβ) the solution is

Gret
αβ

α′β′(x, x′) = 1
4πΘ−(x, x′)δα

′

(αδ
β′

β)δ[σ(x, x′)]. (3.20)

Here, σ(x, x′) is the Synge world-function, defined to be
one-half of the square of the geodesic distance between
x and x′, so that the Dirac delta function is non-zero
only when x and x′ are null-separated. In Minkowski
spacetime, we have the closed form

σ(x, x′) =
1

2
ηαβ(xα − xα

′
)(xβ − xβ

′
). (3.21)

The metric perturbation is then given by convolving the
Green function with the source,

h̄αβ(x) = 16π

∫
Gret
αβ

α′β′(x, x′)Tα′β′(x
′)
√
−g(x′)d4x′

= − 4Gµ

∫∫
Pαβδ[σ(x, z)]

√
−γdζ1′dζ2′ .

(3.22)

where Pαβ , zα and γ are all functions of ζ1′ and ζ2′ .
In practical calculations it is convenient to perform one

of the integrals immediately using the identity

δ
[
σ
(
x, z(ζ1, ζ2)

)]
=
δ
[
ζ1 − ζ1

ret(x, ζ
2)
]

|r1|
(3.23)

where r1 ≡ ∂ζ1′σ = (∂ζ1zα
′
)(∂α′σ) and ζ1

ret(x, ζ
2) param-

eterizes the retarded image, defined by

σ[x, z(ζ1
ret, ζ

2)] = 0. (3.24)

This gives

h̄αβ(x) = −4Gµ

∮ [√
−γPαβ
|r1|

]
ζ1′
ret

dζ2′ , (3.25)

where the quantity in square brackets is evaluated at
ζ1′ = ζ1′

ret(ζ
2′). The one-dimensional integration traces

exactly one period of the loop’s retarded image and there
is no boundary; it is a closed loop. Equivalently, the non-
trace-reversed metric perturbation is given by

hαβ(x) = −4Gµ

∮ [√
−γ
|r1|

ΣαβP

]
ζ1′
ret

dζ2′ , (3.26)

where Σαβ ≡ Pαβ − 1
2ηαβP with P ≡ P γγ . Note that

the integral does not converge when x is a point on the
worldsheet; this is because the integrand diverges when-
ever r1 = 0, which occurs when source and field points
coincide, i.e. x = z.

Derivatives of the first order metric perturbation may
be computed in a similar manner to hαβ itself, with the
caveat that care must be taken in non-smooth regions of
the string. These non-smooth regions occur at kinks and
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cusps, and also in the vicinity of the field point, x, if it
is on the worldsheet.

Ignoring the issue of smoothness for now, and differ-
entiating Eq. (3.22) with respect to the field point, x, we
get

∂γ h̄αβ(x) = −4Gµ

∫∫
Pαβ ∂γ

(
δ[σ(x, z)]

)√
−γ dζ1′dζ2′

= −4Gµ

∫∫
Pαβ ∂γσ δ

′[σ(x, z)]
√
−γ dζ1′dζ2′

= −4Gµ

∫∫
Pαβ

∂γσ

∂ζ1′σ
∂ζ1′

(
δ[σ(x, z)]

)√
−γ dζ1′dζ2′

= −4Gµ

∫∫
PαβΩγ
r1

∂ζ1′
(
δ[σ(x, z)]

)√
−γ dζ1′dζ2′ ,

(3.27)

where Ωα ≡ xα−xα′ is the coordinate distance between x
and x′. On a smooth worldsheet, this may be integrated
by parts to give

∂γ h̄αβ(x)

= 4Gµ

∫∫
∂ζ1′

[√
−γPαβΩγ
r1

]
δ[σ(x, z)]dζ1′dζ2′

= 4Gµ

∮ [
1

|r1|
∂ζ1′

(√
−γPαβΩγ
r1

)]
ζ1′
ret

dζ2′ . (3.28)

Note that there are no boundary terms introduced in the
integration by parts as the integration is over a closed
loop. Additionally, note that we can also arrive at the
same equation by differentiating Eq. (3.25) and account-
ing for the fact that the dependence on x appears both
through r1 and through ζ1′

ret, along with the relation

∂γζ
1′

ret = −Ωγ/r1 (see Sec. 10 of [93]). Again, we may
write this in the non-trace-reversed form,

∂γhαβ(x) =

4Gµ

∮ [
1

|r1|
∂ζ1′

(√
−γΣαβΩγ

r1

)]
ζ1′
ret

dζ2′ . (3.29)

E. First order self-force

With the results from the previous section at hand,
it is straightforward to obtain an integral expression
for the first-order gravitational self-force. Substituting
Eqs. (3.26) and (3.29) into (3.6) we obtain

Fµ1 (z) = −4Gµ ⊥µγ Pαβ×∮ [
1

|r1|
∂ζ1′

(√
−γ
(
ΣβγΩα − 1

2ΣαβΩγ
)

r1

)]
ζ1′
ret

dζ2′ ,

(3.30)

Fµ2 (z) = −4GµKβαµ

∮ [√
−γΣαβ
|r1|

]
ζ1′
ret

dζ2′ . (3.31)

Here, it is understood that the ⊥µγ , Pαβ and Kβαµ ap-
pearing outside the integral are to be evaluated at z,
whereas the Pαβ and γ appearing inside the integral are
to be evaluated at the retarded point z′.

One may expect a difficulty to arise from the fact that
h̄αβ diverges logarithmically (and ∂γ h̄αβ is even more di-
vergent) when the source and field points coincide. This
would appear to be a major obstacle for computing the
self-force since the integral expressions for h̄αβ and ∂γ h̄αβ
will not converge when the field point, x, is on the world-
sheet. Fortunately, it turns out that for field points on
smooth parts of the worldsheet, some miraculous can-
cellations in the particular combination appearing in the
equation of motion [and hence the self-force, Eq. (3.6)]
lead to many of the divergent terms canceling. The result
is that one obtains a convergent integral and a finite self-
force. This was shown to hold in [82] for the conformal
gauge and in [91] for an arbitrary gauge. However, both
cases implicitly assumed a smooth string worldsheet. It
turns out that the conclusions continue to hold for a non-
smooth worldsheet provided the field point is on a smooth
part of the worldsheet. As a field point approaches a
non-smooth point on the worldsheet the total self-force
diverges.

Despite this latter divergence, there is one further im-
portant consideration, namely the physical significance
of the self-force itself. It is possible that a divergence
in the self-force is a spurious artifact arising from, for
example, an unfortunate choice of gauge or from a dis-
tributional treatment of non-smooth worldsheet features.
Indeed, Anderson [81] computed explicit closed form ex-
pressions for the self-force in the case of the ACO string.
His expressions diverge logarithmically and as negative
powers in the vicinity of the kink. However, this diver-
gence is integrable and he was able to solve the equations
of motion to compute finite deviations in both the posi-
tion and velocity of the string7. Similar conclusions have
also been drawn in other work [76, 83, 84].

In this work, we empirically find results that are consis-
tent with these previous conclusions; although the equa-
tion of motion has a divergent self-force term it turns out
to give a finite change to the worldsheet. Any physical
measurement must be consistent with the inferred finite
displacement. With a distributional description of kinks
and cusps as adopted here finite displacements can lead
to singular changes in derivative quantities such as tan-
gent vectors on the worldsheet.8 Optimistically, we can
expect the finiteness of worldsheet displacements to carry

7 More precisely, the derivative along the direction orthogonal to
the kink’s propagation direction was divergent at the kink, how-
ever Anderson was able to obtain a gauge transformation which
eliminated this divergence and so it can be attributed to non-
physical coordinate effects.

8 Divergent behavior of this sort (changes of order Gµ/c2 in the
tangent vector direction over a single period of oscillation) has
recently been reported by Blanco-Pillado, Olum and Wachter
[see acknowledgements]. In our treatment here we emphasize
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through to more general scenarios, and hope that the di-
vergences in the force are always integrable. A proof of
this fact can likely be obtained from a local expansion
of the type given in Sec. IV D below, adapted to allow
for a kink or cusp within the “local” region. Since there
are considerable subtle details in this calculation, we will
leave its exploration for future work.

IV. EVALUATING THE GRADIENT OF THE
RETARDED METRIC PERTURBATION

In the previous section, we obtained integral expres-
sions for the metric perturbation, its derivative, and the
gravitational self-force. The latter two are valid provided
the retarded image of the worldsheet is smooth. In re-
ality, we do not have the luxury of a smooth worldsheet
for at least two reasons:

1. We are interested in studying strings with kinks
and cusps, and the worldsheet is non-smooth at
the location of any kink or cusp;

2. We are interested in computing the self-force, which
requires us to evaluate the metric perturbation and
its derivative in the limit x→ z. In that case, if one
considers the retarded image of a point directly on
the string, x = z, one finds that it is not in general
smooth at the field point, ζ2′ = ζ2′(x).

These can lead to important distributional-type contribu-
tions to the integrand in the expression for the self force
which are easily missed. In the following subsections, we
extend Eqs. (3.29) and (3.30) above to allow for these
non-smooth features. We begin with a general covari-
ant derivation of the integral to explain how coordinate-
dependent divergences arise, and follow up with an ex-
plicit treatment of both issues mentioned above.

A. Covariant evaluation of the worldsheet integral

The expression for the gradient of the metric pertur-
bation at a point xα is of the form (dropping spacetime
tensor indices)

I =

∫
W
ωabδ

′(σ). (4.1)

that we ignore the possibility of additional contributions coming
from the kink itself. It is difficult to validate this assumption
within a distributional approach. It is likely that a matched
asymptotic approach along the lines of Ref. [94] for point par-
ticles would be required to provide a definitive answer to the
question of whether the distributional treatment omits any im-
portant physical effects. We anticipate that such a treatment
would also regularize singular tangent vector derivatives so that
all physical measurements are finite, not merely consistent with
the inferred finite worldsheet displacement.

Here W is the worldsheet defined by xα = zα(ζa), ωab is
some given smooth two-form on the worldsheet, and the
function σ is as defined in Eq. (3.21). In this subsection
we will derive some identities for integrals of the form
(4.1) for arbitrary ωab and arbitrary smooth σ, and in
the next subsection we will specialize to the specific form
(3.21) of σ for our application here.

As a warm up, let us first consider a simpler version of
the integral (4.1), namely

J =

∫
W
ωabδ(σ). (4.2)

Let C be the curve given by σ = 0. We would like to
derive an expression for J of the form

J =

∫
C
θa (4.3)

where θa is a one-form on the worldsheet. The result for
θa is

θa =
Dah

ωbcDbσDch
(4.4)

Here Da can be taken to be either a covariant or a partial
derivative on the worldsheet, and ωab is the inverse of ωab.
Finally h can be taken to be any smooth function on the
worldsheet which has the property that dh ∧ dσ 6= 0.

Note that the expression (4.4) for the one-form, when
pulled back onto the curve C, is independent of the choice
of h. To see this, suppose we replace h with a function
H of h and σ,

h→ H(h, σ). (4.5)

Under this transformation

Dah→ H,hDah+H,σDaσ. (4.6)

When this expression is inserted into the one-form (4.4),
the contribution from the second term to the denomina-
tor vanishes because of antisymmetrization, and the con-
tribution to the numerator vanishes when the one form
is pulled back to C, since σ = 0 on C. The factors of H,h

cancel between the numerator and the denominator, and
so we see that the pullback of θa to C is invariant under
the transformation. Thus it is independent of the choice
of h.

We now turn to the derivation of the formula (4.4). We

specialize to coordinates ζ 0̄ = σ, ζ 1̄ = h. The integral
(4.2) becomes

J =

∫
dσ

∫
dhωσh(σ, h)δ(σ) (4.7)

where ωσh = ω0̄1̄. Evaluating the integral using the delta
function gives

J =

∫
dhωσh(0, h). (4.8)
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We now rewrite this in a form which is valid in arbitrary
coordinate systems. The factor

∫
dh can be written as

the integral over C of the one-form Dah. The factor ωσh
can be written as

ωσh =
1

ωσh
. (4.9)

Using the tensor transformation law we have

ωσh = ω0̄1̄ = ωab
∂ζ 0̄

∂ζa
∂ζ 1̄

∂ζb
= ωab

∂σ

∂ζa
∂h

∂ζb
. (4.10)

Combining Eqs. (4.8), (4.9), and (4.10) now yields the
result given by Eqs. (4.3) and (4.4).

Turn next to the corresponding analysis for the integral
(4.1). Suppose that instead of integrating over the entire
worldsheet, we integrate over a region ∆W of it. The
intersection of the boundary ∂∆W of this region with
the curve C will consist of a set of discrete points Pi.
The formula for the integral is

I =

∫
∆W

ωabδ
′(σ) = Iboundary + Ibulk (4.11)

where the contribution from the boundary is

Iboundary =
∑
i

± 1

ϕ

kaDah

kbDbσ
. (4.12)

Here ka is the tangent to the boundary δ∆W and

ϕ = ωabDaσDbh. (4.13)

The contribution from the bulk is

Ibulk =

∫
C
θa (4.14)

where the one-form θa is

θa =
1

ϕ3

(
ωbcDbϕDch

)
Dah. (4.15)

Under a change of the function h of the form (4.5), the
one-form θa is no longer invariant. Instead, it transforms
by an exact form9

θa → θa +Daλ, (4.16)

where λ = H,σ/(ϕH,h). The change in the boundary
integral is ∑

i

± H,σ

ϕH,h
, (4.17)

which cancels against the change (4.16) in the one-form.
Thus we make the important observation that the inte-
gral (4.11) is independent of choice of h, but the split
into boundary and integral terms is not.

9 This formula is valid when pulled back to the curve C.

We now turn to the derivation of the formula (4.11).

As before we initially specialize to coordinates (ζ 0̄, ζ 1̄) =
(σ, h). Inserting the identity

ωσhδ
′(σ)dσ∧dh = d [ωσhδ(σ)dh]−δ(σ)dωσh∧dh (4.18)

into the integral (4.11)and using Stokes’s theorem gives
a result of the form of the right hand side of (4.11), with

Iboundary =

∫
∂∆W

ωσhδ(σ)dh (4.19)

and

Ibulk = −
∫

∆W
δ(σ)ωσh,σ dσdh. (4.20)

We evaluate the first term by taking the parameter along
the boundary δ∆W to be σ and using dh = dσ(dh/dσ).
This gives

Iboundary =
∑
i

ωσh
dh

dσ
, (4.21)

Using Eqs. (4.10) and (4.13) this reduces to the formula
(4.12).

For the bulk contribution, from the formula (4.20) and
using arguments similar to those given for the integral J ,
we find

θa = −∂σ(1/ϕ)Dah =
ϕ,σ
ϕ2

Dah, (4.22)

where we have used ϕ = 1/ωσh. We evaluate the σ
derivative using

ϕ,σ =
∂ϕ

∂ζ 0̄
=

∂ϕ

∂ζa
∂ζa

∂ζ 0̄
. (4.23)

We express the Jacobian matrix in terms of its inverse
using

∂ζa

∂ζ ā
=

2[
ωcdωc̄d̄

∂ζc̄

∂ζc
∂ζd̄

∂ζd

] ωabωāb̄ ∂ζ b̄∂ζb
. (4.24)

This formula is specific to two dimensions, and is valid
for any choice of two-form. Specializing to ā = 0̄ gives

∂ζa

∂ζ 0̄
=

ωabDbh

ωcdDcσDdh
. (4.25)

Inserting this into (4.23) and then into (4.22) finally gives
the result (4.15).

Finally, although the results derived in this subsection
are covariant, they do depend on a choice of arbitrary
function h on the worldsheet. While the complete final
result (4.11) does not depend on h, the integrand (4.15)
of the bulk integral, as well as the splitting into bulk
and boundary terms, do depend on h. Elsewhere in this
paper, we choose to identify h with one of the worldsheet
coordinates, which explains the coordinate dependence
of the integrand and of the splitting.
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B. Worldsheets with kinks

We may now consider how our 1-D integral expres-
sions (3.26) and (3.29) for the retarded metric perturba-
tion and its gradient must be modified to allow for the
presence of a kink. A cosmic string with a kink may
be treated as piecewise smooth, with discontinuities in
certain tangent vectors whenever a kink is crossed. To
obtain an expression allowing for these discontinuities we
assume that the retarded image on the worldsheet is non-
smooth at ζ2 = k, where k may depend on the field point
x.10 Then, one way to achieve the desired result is to
break up the integration in Eq. (3.25) at the discontinu-
ity,

h̄αβ(x) = −4Gµ

∫ k−+L

k+

[√
−γPαβ
|r1|

]
ζ1′
ret

dζ2′ , (4.26)

where k+ (k−) is a point just to the right (left) of the
kink. Now, when we differentiate this expression we have
to take account of the possible dependence of the end
points on x. If the discontinuity in the string is at a
fixed value of ζ2 (i.e. in the case of a kink propagat-
ing along the ζ1 direction), then k does not depend on
x and the boundary terms vanish. If, instead, the dis-
continuity is at a fixed value of ζ1 (i.e. in the case of
a kink propagating along the ζ2 direction), then k does
depend on x. Then, using ∂γζ

2(ζ1
ret) = −Ωγ/r2, where

r2 ≡ ∂ζ2′σ = (∂ζ2zα
′
)(∂α′σ), we get

∂γ h̄αβ(x)

= 4Gµ

{∫ k−+L

k+

[
1

|r1|
∂ζ1′

(√
−γPαβΩγ
r1

)]
ζ1′
ret

dζ2′

+

[√
−γPαβΩγ
|r1|r2

]
k−
−
[√
−γPαβΩγ
|r1|r2

]
k+

}
.

(4.27)

It is easy to check that one can arrive at the same expres-
sion by appropriately including the boundary terms from
the integration by parts described in Sec. IV A above.
The presence (or lack thereof) of boundary terms is then
manifestly dependent on the particular choice of world-
sheet coordinates. Importantly, this apparent worldsheet
coordinate dependence only appears in the split between
boundary and bulk terms; the sum of the two does not
have any worldsheet coordinate dependence.

In the case of a smooth string, the two boundary terms
are identical and cancel, so we recover the same formula
as we had before. In the presence of a kink, however,
the boundary terms in the two limits k+ and k− yield

10 Although there are worldsheet coordinates where one of the co-
ordinates is a constant along a kink, we will not restrict ourselves
to only that case here.

different values and so we pick up an overall contribution
from the kink in addition to the integral over the smooth
portion of the string.

C. Worldsheets with cusps

We have already seen that care must be taken in com-
puting the self-force for cosmic strings with kinks. Since
cusps also introduce non-smoothness in the worldsheet,
one may expect similar care to be required for cuspy
strings. However, there is one crucial difference between
a string with kinks and one with cusps: cusps typically
occur at a single point on a worldsheet while kinks oc-
cur along a one-dimensional curve. The result is that, in
the case of kinks, all points on the string “see” a kink
at some point in their retarded image, and hence the in-
tegrand in Eq. (3.29) will always be supplemented by a
boundary term somewhere. Conversely, there is only a
one-dimensional set of points on the string which “see”
a cusp in their retarded image; everywhere else the inte-
grand does not encounter a discontinuity.

This suggests that strings with cusps may not need the
same careful treatment as those with kinks. This appears
to be the case in our test case in Sec. VI below, where we
probe the region around the one-dimensional cusp-seeing
curve and find no evidence of unusual behavior. This
is, of course, merely empirical evidence, and should be
followed with a more formal treatment; it is likely that
the local expansions developed in Sec. IV D will prove
useful in such an analysis.

D. Contribution from the field point

The final place where we must take care is in the case
where the field point itself is on the string. Then, just
as in the case of a kink, the retarded image may have a
discontinuity at the field point. While it may be possi-
ble in such cases to use a similar treatment to what we
have done for kinks, there is subtlety in taking the limit
of the field point to the worldsheet which makes such
a treatment difficult. Instead we choose a more robust
approach, by using a local expansion of the integrand
for field points nearby11 the string and then analytically
taking the limit of the field point to the worldsheet.

11 Here, we use the term “nearby” loosely as such a notion is obvi-
ously dependent on the choice of worldsheets, and in particular
on the choice of coordinate which is used as the variable of in-
tegration. Not surprisingly, we will find that the conclusions
we draw will depend on the choice of worldsheet coordinates.
Nevertheless, just as in Sec. IV A, this apparent coordinate de-
pendence is merely an artifact of how we choose to split up the
self-force into contributions from various integrals and boundary
terms. In reality, the total self-force obtained by combining all
of these contributions is independent of the choice of worldsheet
coordinates.
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The purpose of the following subsections is to develop
the pieces required for such an expansion. In doing so we
make some assumptions:

1. We will study the contribution to the self-force in-
tegral nearby where the force is to be computed and
will ultimately shrink the size of this region down
to zero;

2. We will assume that the worldsheet is smooth in
this region. This is true everywhere except when
the field point exactly lies on a kink or cusp; points
arbitrarily close to a kink or cusp will, however, be
perfectly acceptable.

3. We will assume that the induced metric does not
diverge (or vanish) on the string. This will be true
everywhere except where a field point lies exactly
on a cusp.

4. We will assume conformal gauge for the background
worldsheet, in particular Eq. (3.3) and the orthog-
onality relations for ∂ζ1zµ and ∂ζ2zµ which follow
from it. This step is not a strict requirement of the
approach, but does significantly simplify the tensor
algebra in the calculation.

Before we proceed with the derivation of the local ex-
pansion, we point out one interesting feature, namely
that the divergence in the self-force that arises on kinks
and cusps comes purely from the short-distance portion
of the self-field, i.e. the contribution to the integral from
nearby points. It is therefore likely that a more careful
treatment of what happens to the self-force exactly on
a kink or cusp may be obtained from a local expansion
of the kind given here. We leave the exploration of this
issue for future work.

1. Setup of the local expansion

We wish to compute the contribution to the self-force
for points near the field point. To do so, we will con-
struct a local expansion of the self-force integrand about
a point on the worldsheet which is assumed to be nearby
the field point, xα, and to lie on its retarded image,
zα[ζ1

ret(x, ζ
2), ζ2]. We denote this expansion point by

z̄α ≡ zα[ζ̄1, ζ̄2] with ζ̄1 ≡ ζ1
ret(x, ζ̄

2) for a particu-
lar choice of ζ̄2. The conformal factor at this point is
φ̄ ≡ φ(ζ̄1, ζ̄2) and we assume the expansion has a radius
of convergence that includes part of the image. We can
then simplify the evaluation of the local integration over
that part of the image utilizing the approximate expan-
sion.

We will now seek an expansion of the self-force inte-
grand (3.30) (note that there is no contribution to Fµ2
from the field point since it does not involve derivatives

of hαβ) in ∆ζ2 ≡ ζ2 − ζ̄2.12 The first stage in our calcu-
lation is to find an expansion of the retarded coordinate
ζ1
ret(x, ζ

2) about ζ̄1 = ζ1
ret(x, ζ̄

2). We denote the differ-
ence between these two quantities ∆ζ1 and will seek an
expansion of it in powers of ∆ζ2. In doing so, we will
need to be careful about what our particular choice of
worldsheet coordinate is. We will also need to separately
consider the cases where ∆ζ2 is positive or negative, as
in some instances the expansion has a different form in
the two cases.

2. Expansion of the light-cone condition: space-time
coordinates

In this section we focus on a pair of spacelike and
timelike type coordinates which we will denote by ζ (for
space) and τ (for time), i.e. (ζ1, ζ2) = (τ, ζ). The impor-
tant defining feature of these coordinates are the confor-
mal gauge orthogonality relations

gαβ∂τz
α∂τz

β = −φ, (4.28)

gαβ∂τz
α∂ζz

β = 0, (4.29)

gαβ∂ζz
α∂ζz

β = φ. (4.30)

We can also obtain similar relations involving higher
derivatives (with respect to τ and/or ζ) of zα by differ-
entiating these fundamental relations. We additionally
have the conformal gauge equation of motion, Eq. (3.4),
which in τ − ζ coordinates gives us a relation between
second τ and second ζ derivatives of zα:

∂ττz
α = ∂ζζz

α. (4.31)

We will use these identities throughout the following cal-
culation to simplify the results we obtain.

We will start from the fact that the (retarded) source

point zα
′

and the field point zα are null-separated,
σ(zα, zα

′
) = 0. Expanding this about σ̄ ≡ σ(zα, z̄α)

we obtain a power series in ∆τ and ∆ζ,

σ = σ̄ + σ̄,τ∆τ + σ̄,ζ∆ζ

+ 1
2 (σ̄,ττ∆τ2 + 2σ̄,τζ∆τ∆ζ + σ̄,ζζ∆ζ

2)

+ 1
6 (σ̄,τττ∆τ3 + 3σ̄,ττζ∆τ

2∆ζ + 3σ̄,τζζ∆τ∆ζ2

+ σ̄,ζζζ∆ζ
3) + · · · (4.32)

Using ∂a = (∂az
α)∇α (acting upon the second argument

of σ̄) along with the identities above and the fact that
∇α∇βσ = gαβ for Minkowski spacetime, it is straight-
forward to rewrite the coefficients in terms of worldsheet

12 Notationally, the integration in (3.29) is over the dummy variable

ζ2
′

but we suppress these primes for clarity.
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derivatives of z̄α and φ̄:

σ̄,ττ = z̄α,ζζ σ̄α − φ, (4.33)

σ̄,τζ = z̄α,τζ σ̄α, (4.34)

σ̄,ζζ = z̄α,ζζ σ̄α + φ, (4.35)

σ̄,τττ = z̄α,τζζ σ̄α − 3
2φ,τ , (4.36)

σ̄,ττζ = z̄α,ζζζ σ̄α − 1
2φ,ζ , (4.37)

σ̄,τζζ = z̄α,τζζ σ̄α + 1
2φ,τ , (4.38)

σ̄,ζζζ = z̄α,ζζζ σ̄α + 3
2φ,ζ , (4.39)

and likewise for higher order terms (for the current calcu-
lation of the contribution to the self-force from the field
point it is only necessary to go to the cubic order given
here).

3. Expansion of the retarded time

In order to obtain the desired expansion of ∆τ(∆ζ),
we now make the ansatz that ∆τ has an expansion in in-
teger powers of an order counting parameter ε ∼ ∆ζ and
that σ̄ = O(ε2). Substituting our ansatz into Eq. (4.32)
and solving order by order in ε then yields the desired
expansion of ∆τ in terms of ε,

∆τ =
1

φ

[
σ̄,τ−

√
σ̄2
,τ + φ(2∆ζσ̄,ζ + 2σ̄ + φ∆ζ2)

]
ε+O(ε2).

(4.40)
The expressions for the higher order coefficients are some-
what cumbersome, but are fortunately not required for
the current calculation.

4. Expansion of quantities appearing in the integrand for
the self-force

We now expand each of the quantities appearing in the
integrand of Fµ1 [Eq. (3.30)]:

Σµν = Σ(0,0)
µν + Σ(1,0)

µν ∆τ + Σ(0,1)
µν ∆ζ + · · · , (4.41)

where

Σ(0,0)
µν = ∂ζzµ∂ζzν − ∂τzµ∂τzν − φgµν , (4.42)

Σ(1,0)
µν = ∂τ∂ζzµ∂ζzν + ∂ζzµ∂τ∂ζzν − ∂τzµ∂ζ∂ζzν

− ∂ζ∂ζzµ∂τzν − ∂τφgµν , (4.43)

Σ(0,1)
µν = ∂ζ∂ζzµ∂ζzν + ∂ζzµ∂ζ∂ζzν − ∂τzµ∂τ∂ζzν

− ∂τ∂ζzµ∂τzν − ∂ζφgµν . (4.44)

We also have

r = σ̄,τ + σ̄,ττ∆τ + σ̄,τζ∆ζ

+ 1
2 (σ̄,τττ∆τ2 + 2σ̄,ττζ∆τ∆ζ + σ̄,τζζ∆ζ

2) + · · · ,
(4.45)

and

Ωµ = Ω̄µ − zµ,τ∆τ − zµ,ζ∆ζ − 1
2zµ,ττ∆τ2

− zµ,τζ∆τ∆ζ − 1
2zµ,ζζ∆ζ

2 + · · · . (4.46)

Note that there are three potentially small parameters in
these expansions: ∆τ , ∆ζ and the distance of the field
point from the string, which we will denote ∆x. In the
above, the dependence on ∆τ and ∆ζ appears explicitly;
the dependence on ∆x appears through Ω̄µ ∼ ∆x and
σ̄α ∼ ∆x.

To make further progress, we will assume that all three
are of the same order, ∆τ ∼ ε, ∆ζ ∼ ε and ∆x ∼ ε. Now,
substituting the expansions into the integral equation for
the derivative of the metric perturbation, Eq. (3.29) and
expanding out in powers of ε, we find that the integrand
has a contribution at order ε−2 and at order ε−1, plus
higher order terms. More explicitly, the O

(
ε−2
)

piece is
given by

∂γhαβ ≈ −4

∫
[σ̄,ττ ]Σ

(0,0)
αβ Ω̄γ − [σ̄,ττ ]Σ

(0,0)
αβ zγ,ζ∆ζ + Σ

(0,0)
αβ zγ,τ σ̄,τ

(σ̄,τ + [σ̄,ττ ]∆τ)
3 dζ +O(ε−1) (4.47)

where square brackets denote a coincidence limit, [σ̄,ττ ] ≡ lim∆x→0 σ̄,ττ . Now, it is immediately apparent that if
we instead substitute our expansions into the integral expression for Fµ1 this leading order piece identically vanishes

since PµνΣµν = 0 13 Likewise, since Σ
(0,1)
µν zµ,ζ = Σ

(1,0)
µν zµ,τ , many other terms either identically vanish or simplify

significantly. Then, the only remaining piece of the O(ε−1) contribution to the derivative of the metric perturbation

13 Strictly speaking, this depends on how we extend the definition
of Pµν off the worldsheet. However, since we are in the end only

interested in taking the limit to the worldsheet the particular
choice of extension is irrelevant and does not change the result.
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which does not vanish upon substitution into the self-force is given by

−
∫

4
(σ̄,τ+[σ̄,ττ ]∆τ)3

(
[σ̄,ττ ]Σ

(0,1)
αβ Ω̄γ∆ζ − Σ

(1,0)
αβ Ω̄γ σ̄,τ + Σ

(1,0)
αβ zγ,ζ σ̄,τ∆ζ + Σ

(0,1)
αβ zγ,τ σ̄,τ∆ζ

− [σ̄,ττ ]Σ
(1,0)
αβ zγ,τ∆ζ2 + 2Σ

(1,0)
αβ zγ,τ σ̄,τ∆τ + [σ̄,ττ ]Σ

(1,0)
αβ zγ,τ∆τ2

)
dζ. (4.48)

Our final step is to substitute in the expansion of the
retarded time, rescale our integration range by ε and in-
tegrate from ∆ζ/ε = −∞ to +∞. The factor of ε in the
integral weight cancels with the 1/ε in the integrand and
so the result is ultimately independent of ε.

5. Expansion of the self-force

Performing the integral explicitly in the limit where
the field field point tends to the worldsheet, we finally
arrive at a surprisingly simple expression for the field
point contribution to the self-force. In τ − ζ coordinates,
this is given by

Fµfield,ST = 4φ−2 ⊥µ α

(
zα,ζφ,ζ + zα,τφ,τ − 2zα,ζζφ

)
.

(4.49)
One can go through a similar procedure in the null

case (see Appendix D for details of the retarded time
expansion in null coordinates). Then, if we use ζ− as
our integration variable, the equivalent expression for the
field point contribution to the self-force is

Fαfield,N = 4φ−2 ⊥µ α

(
zα,ζ+φ,ζ+ − zα,ζ+ζ+φ

)
. (4.50)

Likewise, one can change + → − when ζ+ is used as
the integration variable. The expressions (4.49) or (4.50)
must be added to the previous results given by Eq. (3.30)
to obtain the total contribution to Fα1 .

V. NUMERICAL METHODS AND
REGULARIZATION

For this work have developed several different tech-
niques to evaluate the self-force on the string by com-
pletely finite, numerical calculations. In the next section,
we will compare these calculations to validate the exact
methods we have discussed. Before doing so, here we will
schematically outline the different approaches. The ab-
breviation for the methods are given in square brackets.

2D, smoothed kink or cusp [2D]

The most general approach is to do the 2D integra-
tion over the worldsheet in Eq. (3.22). This circumvents
having to eliminate one worldsheet coordinate in terms
of another (e.g. solving for the retarded time in τ − ζ

coordinates) and possibly having to patch different coor-
dinate systems (e.g. two different null coordinate systems
either side of the field point). The worldsheet integration
produces manifestly coordinate invariant results.

Schematically, we replace the singular retarded Green
function with a finite approximation. For a source at xs
and field at xf

G(xf , xs) = Θ(xs, xf )δ(σ) (5.1)

where the Θ = 1 when the time of the source ts pre-
cedes the time of the field point tf and 0 otherwise. We
transform

δ(σ)→ e−σ
2/(2w2

1)

√
2πw1

(5.2)

Θ→ 1− tanh((ts − tf )/w2)

2
(5.3)

to generate a smooth, finite integrand. The parameters
w1 and w2 describe the width of the smoothed delta func-
tion and the width of the causal function. (We use wi
schematically in this discussion. In Appendix E we in-
troduce unique symbols.)

Source points are over-retarded and appear slightly
inside the field point’s backwards light cone. Over-
retardation [95] is a covariant method for classical renor-
malization. We modify the Synge function

σ(x, z) =
1

2
(x− z)αgαβ(x− z)β + w3 (5.4)

where w3 ≥ 0 is the parameter. Over-retardation disal-
lows the source-field point coincidence.

Finally, we round off discontinuous features on the
string. For kinks the transition from one derivative value
to another is smoothed. For cusps a small patch of the
worldsheet near the cusp is excised. We introduce a pa-
rameter w4 that yields the discontinuous solution when
w4 → 0. Smoothing must be implemented separately for
each loop of interest. In the 2D approach any disconti-
nuity, even if it were not on the field point’s exact light
cone, must be smoothed because all worldsheet points
are sampled by the smoothed delta function.

The 2D calculation does not require any special treat-
ment for boundaries, any special choice of coordinates
or any special handling of the field point. The dis-
continuities in the source must be smoothed. We let
{w1, w2, w3, w4} → 0 in lockstep together. We have
found that the limit is not impacted if we set w2 = 0 (the
smoothing of the causal step function) and w3 = 0 (the
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over-retardation) from the beginning. Using the Gaus-
sian approximation to the delta function and smoothing
the discontinuities on the string are sufficient to regulate
the calculation.

1D, over-retarded, smoothed kink or cusp [1DOS]

The 1D calculations in which the Green function has
been integrated out must handle the field equals source
point, the string discontinuities and coordinate changes
along the retarded loop image.

In the [1DOS] method we use over-retardation and
smooth the discontinuities on the string if they are vis-
ible on the field point’s exact light cone. We integrate
Eq. (3.30) over the image if coordinate ζ2 covers the en-
tire image; we additionally include boundary terms of the
type given in Eq. (4.27) if multiple coordinate systems
are utilized. Here a boundary term arises not because
of a string discontinuity but because of the coordinate
change. We let {w3, w4} → 0.

1D, over-retarded, discontinuous kink or cusp [1DO]

As above we use over-retardation for the [1DO]
method, but we do not smooth the kink. We numerically
locate the kink and use boundary terms of the type given
in Eq. (4.27) to handle both jumps in the string source
and coordinate changes. We can evaluate the force for
the cusp as long as the cusp is not on the light cone
(almost all worldsheet points). We let {w3} → 0.

1D, discontinuous kink or cusp [1D]

For the [1D] method we use the analytic results (4.49)
for the source equals field point and boundary terms of
the form given in Eq. (4.27) for jumps in the string source
and coordinate changes. As above we can evaluate the
force for strings with cusps as long as the cusp is not on
the light cone. This is the computationally most efficient
method and the one we are primarily interested in vali-
dating for future calculations of loops evolving under the
effect of gravitational backreaction. It does not require
any regularization parameters wi.

There are many related questions that we address using
these techniques. For example, we compare the self force
calculated utilizing different coordinate systems (this is
possible for all the methods, but we concentrate on the
[1D] case). We also consider a limiting process in which
the [1DO] method is used for a field point off the world-
sheet, and verify the correct behavior is recovered as the
field point approaches the worldsheet.

VI. NUMERICAL RESULTS

We now apply the derivations of the previous sections
to some specific examples, numerically computing the
self-force for a range of nontrivial string configurations
that feature kinks, cusps and self-intersections. We per-
form several consistency checks in the process:

1. For strings with a particularly simple structure we
compare against existing calculations in the litera-
ture;

2. For more non-trivial strings we compare different
versions of the [1D] integration done with different
choices of worldsheet coordinates;

3. We compare against the smoothed approaches
[1DOS] and [1DO] for handling kinks and field
point contributions. The field point contribution
is recovered by evaluating the integral for the
force with a small over-retardation of the retarded
time and numerically taking the limit as this over-
retardation vanishes. The kink contribution is sim-
ilarly recovered by introducing a small smoothing
to the kink and taking the limit of the smoothing
parameter going to zero.

4. We further compare against our other entirely in-
dependent [2D] approach, whereby the force is di-
rectly determined from a full 2D integration over
the worldsheet, approximating the Dirac δ distri-
bution in the Green function by a narrow Gaussian.

5. We verify that the flux of radiation to infinity (as
computed using standard frequency domain meth-
ods [96]) appropriately balances the local self-force.

There are infinitely many possible cosmic string loops
which satisfy (3.4). The examples which have typically
been studied in the literature are those with a low number
of harmonics. As a demonstration of our prescription
for computing the self-force, we will compute the self-
force for several of these strings. Our goal is not to be
exhaustive, but rather to select a set of test cases that
cover all scenarios (kinks, cusps, self-intersections, and
strings without too much symmetry). In all cases below,
we define the worldsheet in terms of two functions aα(ζ+)
and bα(ζ−), where ζ+ ≡ τ + ζ and ζ− ≡ τ − ζ are null
worldsheet coordinates. Then, the spacetime position of
the string is zµ = (1/2)[aµ(ζ+) + bµ(ζ−)]. Throughout
the discussion, we will also refer to the three-vectors a
and b, which are defined to be the spatial projections
of aα(ζ+) and bα(ζ−). Finally, we will specialize to the
specific case t = τ within the class of conformal gauges.

A. Allen, Casper and Ottewill self-similar string

Allen, Casper and Ottewill (ACO) [61] identified a par-
ticularly simple class of strings for which the average
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power radiated is easily calculated in closed form. All
strings in the class have a pair of kinks, each propagating
along lines of constant ζ+

k1
= 0 and ζ+

k2
= L/2, respec-

tively. ACO’s motivation was to find the string which
radiates most slowly and is thus most long-lived. Our
motivation for studying the ACO string14 stems from a
different consequence of the simplicity of the ACO solu-
tion. Anderson [81] showed that the description of the
ACO string worldsheet is sufficiently simple that it is
possible to determine the self-force analytically.15 This
provides a valuable reference point against which we can
check our numerical approach.

The ACO string worldsheet is given in Cartesian coor-
dinates by

aα(ζ+) =A[ζ+/A, 0, 0, |ζ+|],
bα(ζ−) =A[ζ−/A, cos(ζ−/A), sin(ζ−/A), 0], (6.1)

where A ≡ L
2π and L is the length of the string. For

ζ+ < −L2 or ζ+ > L
2 the periodic extension of az is used,

i.e. az is the triangle function centered about the origin
and with period L. The ACO string can be visualised
as shown in Fig. 1; its evolution is a rigid rotation of
this shape about the z-axis.16 We characterize the ACO
string in terms of its tangent-sphere representation, as
shown in Fig. 2.

14 We will study just one case in the class of ACO strings, the one
which is simplest and which radiates power most slowly. ACO
call this particular string “case (1) with M = 1”. We will simply
refer to it as the ACO string.

15 In fact, in [97] Anderson was able to go one step further and
analytically self-consistently evolve the string under the influence
of gravitational backreaction.

16 In [97] Anderson showed that this shape is preserved when back-
reaction is taken into account, in which case the string evolves
(shrinks) self-similarly.
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FIG. 1. Snapshot of the ACO string loop configuration in
spacetime at time τ = 0. At later times the configuration can
be obtained by a rigid rotation about the z-axis.

FIG. 2. Tangent sphere representation of the ACO string
loop configuration with a′(ζ+) denoted by the two blue dots
and b′(ζ−) by the orange circle.

Adopting conformal gauge to first order, Anderson [81]
was able to compute the self-force (which, in the con-
formal gauge case is defined to be the right-hand side
of Eq. (3.14)) by analytically determining the first-order
metric perturbation generated by an ACO string. Fac-
toring out the rigid rotation using the matrix

Mα
β =

 1 0 0 0
0 cos(2πζ−) sin(2πζ−) 0
0 − sin(2πζ−) cos(2πζ−) 0
0 0 0 1

 , (6.2)

the conformal gauge self-force in a co-rotating frame
is given by fµ = Mµ

αFαconf , where fµ =
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[f t(ζ+), fL(ζ+), fN (ζ+), sgn(ζ+)f t(ζ+)]. We can inter-
pret fN and fL as the normal and longitudinal compo-
nents of the force in the x–y plane, respectively. Note
that this factorized form is quite convenient as the de-
pendence on ζ+ is entirely contained within fµ, while
the dependence on ζ− is entirely in Mχ

µ.

f t

fL

fN

-3 -2 -1 0 1 2 3

-20

-15

-10

-5

0

ζ+

fμ

FIG. 3. Co-rotating self-force for the ACO string.

As an important consistency check on our work, we
have verified that our numerical approach exactly repro-
duces the analytic result derived by Anderson. Figure 3
shows the factored components of the force as a function
of ζ+, with Anderson’s expressions plotted as solid lines
and our numerical values (computed using Eq. (3.30)
plus boundary terms of the type given in Eq. (4.27) at
the kinks and Eq. (4.49) for the field point contribution)
shown as dots.

One interesting feature is the divergence of the force
components as a kink is approached. Although one may
be concerned about the physical implications of this di-
vergence, for the ACO string it turns out that it is a
spurious gauge artifact, and that the string worldsheet
itself only ever picks up a small perturbation from the
self-force. The simplicity of the ACO solution makes it
straightforward to see this explicitly: as shown by An-
derson [81], the explicit form of the divergence near the
kink can be written as

f t ≈{−32( 1
6π

2)1/3µ/|ζ+|1/3,−128π2µ(ζ+)2},
fL ≈ 32πµ ln |ζ+|{ 1

3 , 1},
fN ≈{−32( 1

6π
2)1/3µ/|ζ+|1/3, 128π2µζ+ ln |ζ+|}, (6.3)

depending on whether the limit ζ+ → 0 is taken from
the left or the right. Anderson goes on to show that
integrating up the equation of motion, the physical (non-
gauge) displacement of the string due to this divergent
force is finite.

B. Kibble and Turok strings with cusps and
self-intersections

A simple family of string loop solutions of the zeroth
order equations of motion was written down by Kibble
and Turok [98, 99]. The gravitational radiation of rep-
resentative examples was calculated by Vachaspati and
Vilenkin [36]. We will refer to the family as KT strings.
The family is described by the general form

aα(ζ+) =A
[
ζ+/A, (1− α) sin(ζ+/A) + α

3 sin(3ζ+/A),

(α− 1) cos(ζ+/A)− α
3 cos(3ζ+/A),

− 2
√
α(1− α) cos(ζ+/A)

]
,

bα(ζ−) =A
[
ζ−/A, sin(ζ−/A),

− cosφ cos(ζ−/A),− sinφ cos(ζ−/A)
]
,

(6.4)

where 0 ≤ α ≤ 1 and −π ≤ φ ≤ π are two parameters.

We first focus on the case α = 0 and φ = π/6
(N = M = 1 Burden loops [58]). Nine snapshots of the
spacetime configuration of the loop are shown in Fig. 4.
The loop generally possesses an elliptical shape. It tum-
bles in space while stretching and contracting. Twice per
period it forms a degenerate, line-like shape with a pair
of cusps on opposite sides. The tangent sphere represen-
tation is particularly simple: there are two continuous
great circles that cross at τ + nπ = ζ + mπ = 0 for any
integers n and m. Each crossing gives rise to a cusp and
to a spacelike line of string overlap in the center of mo-
mentum frame. These two effects make the calculation
of the self-force particularly challenging.
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FIG. 4. Snapshots of the KT string loop (α = 0 and φ = π/6)
configuration in spacetime, each labeled by time in units of
L. All the boxes have the same size axes, −1 to 1 for L = 2π,
and fixed orientation.

We first compute the self-force at two points on the
string (which we denote Case I and Case II):

(τ, ζ) = (32π/50, 13π/50) Case I (6.5)

(τ, ζ) ' (0.42, π/5) Case II (6.6)

For Case I, the field point is such that no cusp is present
on the retarded image of the string. Since the left and
right moving modes are continuous the loop stress-energy
source is completely smooth except at the field point it-
self.17 The Case I results calculated by the [1D] method
described in Sec. IV are given in the first part of Table
I. In this case, there are two important contributions to
F ρ1 : the row labeled

∫
is the integral contribution arising

from the 1D integral over the smooth worldsheet using
Eq. (3.30); and δ is the contribution from the field point
obtained using Eq. (4.49). The total is F1 =

∫
+δ.

17 In a patch of the world sheet that extends ±π about the field
point the cusps at (τ, ζ) = (0, 0) and (0, π) are potentially visible
for a causal off-shell Green function.

Case Force contravariant spacetime components
t x y z

I
∫

9.28612 -4.96366 14.7739 -1.68376
δ -0.680917 1.09474 1.16578 -4.35077
F1 8.6052 -3.86891 15.9397 -6.03453
F2 -12.181 4.56246 -25.3768 14.1391

II
∫

44.5678 49.5374 22.8974 -1.99924
δ 1.7937 1.5892 1.1546 -4.30897
F1 46.3615 51.1266 24.052 -6.30821
F2 -75.6739 -82.35 -39.8936 21.8117

TABLE I. Self-force at two points on the KT string (α = 0
and φ = π/6) calculated by the 1D method.

For Case II, we have carefully chosen a field point such
that the cusp at (τ, ζ) = (0, 0) lies on the retarded string
image. Numerical results for this case (which were again
obtained using the [1D] method) are given in the second
part of Table I.

One notable feature of these numerical results is that
the field point contribution is comparable in magnitude
to the contribution from the integral. As such, this case
provides a valuable and stringent test of our derivation of
the expression for the field point contribution. By com-
paring to a different approach which doesn’t rely on these
terms we may distinguish between

∫
and F1. The [2D]

integration method (described in detail in Appendix E)
provides just such a comparison. In Table II we tabulate
the results of the [2D] integration method and compare
against the 1D results for Case I in Table I. This com-
parison unambiguously confirms that the field point con-
tribution is essential. The agreement provides a strong
validation of our formalism. Appendix E includes analo-
gous [2D] results for Case II. These are in equally good
agreement so we omit additional discussion of the com-
parison.

Force Extrapolated Force Extr. error 2D-1D
F t1 8.60882 0.0020 −0.0036
F x1 −3.87143 −0.0016 0.0025
F y1 15.9437 0.0013 −0.0040
F z1 −6.0318 0.0030 −0.0027
F t2 −12.181 3.6× 10−5 1.0× 10−5

F x2 4.56246 −1.5× 10−6 −9.6× 10−7

F y2 −25.3768 −1.6× 10−5 2.7× 10−5

F z2 14.1391 −7.5× 10−6 1.5× 10−5

TABLE II. Extrapolated self-force calculated by the [2D]
method in Case I of the KT string (α = 0 and φ = π/6).

We now proceed to compute the self-force at all points
on the worldsheet. The results are shown in Figs. 5 and
6. Unlike the ACO case, the extra complexity in the KT
solution means that there is no simple factorization of the
force into a piece which only depends on ζ+ and another
piece which depends on ζ−. As such, the self-force for
the KT string is presented as a 2D surface plot, showing
the force contributions to Fµ (log10 of the absolute value
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of a contribution, color coded by sign) at all18 points
on the two-dimensional worldsheet. The green and red
curves trace the advanced images of the cusps on the
loop; each point on these curves has the cusp at (τ, ζ) =
(0, 0) (red) or at (τ, ζ) = (0, L/2) (green) on its past
light cone. The gross variation of the self-force depends
on the product of two factors which have simple physical

origins. First, the loop’s line-like structure, periodically
formed at τ = 0 and L/2, creates a ridge spanning all ζ
at these particular times. Second, at any given time the
points along the string loop which are least contracted
and have the largest

√
−γ occur at ζ = ±L/4. These

produce a trough or minimum in the force at ζ = ±L/4.
The product of these two factors yields the egg-crate-like
symmetry in the force with the cusps at the corners.

FIG. 5. Contributions to Fµ1 for the KT string (α = 0 and φ = π/6) when computed using the 1D integration method with
integration with respect to ζ. Each sub-figure shows the relevant contribution to the force at all points on the string in the
region τ ∈ (0, L/2), ζ ∈ (−L/2, L/2); all other points can be obtained from the standard periodic extension of the string. Each
column corresponds to a different component of the force: F t1 , F x1 , F y1 , and F z1 . The rows correspond to the contributions
from: (i) the field point; and (ii) the integral over ζ (ignoring distributional contributions at the field point). For the purposes
of the plots, we have set the string tension, µ, and Newton’s constant, G equal to one; other values simply introduce an overall
scaling. Note that we have used a logarithmic scale and denoted positive (negative) values by coloring the plot orange (blue).

18 In all of our plots we show the segment of the worldsheet defined
by τ ∈ [0, L/2], ζ ∈ [−L/2, L/2]. This covers the entire set of

unique points on the worldsheet; other values can be obtained
by periodically extending in the τ and/or ζ direction.
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FIG. 6. The two pieces of the self-force, Fµ1 (row 1) and Fµ2 (row 2), and the total self-force Fµ (row 3) for the KT string
(α = 0 and φ = π/6) as a function of position on the string. The Fµ1 part can be obtained by summing the two rows in Fig. 5.
For the purposes of the plots, we have set the string tension, µ, and Newton’s constant, G equal to one; other values simply
introduce an overall scaling. Note that we have used a logarithmic scale and denoted positive (negative) values by coloring the
plot orange (blue).

These plots show several interesting features:

1. The self-force is finite at almost all points on the
worldsheet, the notable exceptions being the loca-
tion of the two cusps, where it appears to diverge.

2. The two contributions to Fµ1 (coming from the inte-
gral over the smooth worldsheet and from the field
point) are comparable in magnitude. It is therefore
crucial that both contributions be included.

3. The contributions from Fµ1 and Fµ2 are both com-
parable in magnitude and both exhibit the same
qualitative behavior in terms of divergence at the
cusp and finiteness elsewhere.

Although this case provides a good check of the gen-
eral methodology it involves special features that can be
traced to the self-intersections. In the next section we
modify the parameter choice to avoid self-intersections.

C. KT strings with cusps without self-intersections

Next we consider a KT string with parameter values
α = 1/2 and φ = 0. Snapshots of this loop are shown in
Fig. 7. The loop rotates about the z-axis and forms cusps
transiently at (τ, ζ) = (0, 0) and (0, L/2). There are no
self-intersections except infinitesimally close to the cusp
itself.
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FIG. 7. Snapshots of the KT string loop (α = 1/2 and
φ = 0) configuration in spacetime, each labeled by time in
units of L. All the boxes have the same size axes, −1 to 1 for
L = 2π, and fixed orientation.

FIG. 8. Contributions to Fµ1 for the KT string (α = 1/2 and φ = 0) as otherwise described in Fig. 5.
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FIG. 9. The two pieces of the self-force, Fµ1 (row 1) and Fµ2 (row 2), and the total self-force Fµ (row 3) for the KT string
(α = 1/2 and φ = 0) as otherwise described in Fig. 6.

Figs. 8 and 9 show the self-force at all points on the
worldsheet of this KT string. These are analogous to the
plots for the self-intersecting KT string shown Figs. 5
and 6. The peaks clearly show the cusp locations and
the diagonal striping is related to the overall sense of
rotation of the loop. The spacelike line of overlap and
the egg-crate symmetry seen in the previous KT case are
now absent.

This non-intersecting case allows for a detailed analy-
sis of the behavior of the total backreaction force in the
vicinity of the cusp at (τ, ζ) = (0, 0). At times close to
cusp formation the tip’s position (the string coordinate
at fixed ζ = 0) is

zi ∼ {0,−0.83,−0.5}+ {1, 0, 0}τ +

{0, 1.5, 0.5}τ
2

2
+ {−3, 0, 0}τ

3

6
+

{0,−7.5,−0.5}τ
4

24
+ . . . (6.7)

The velocity lies in the x-direction and the acceleration in
the y- and z-directions. Conversely, the velocities in the
y- and z-directions and the acceleration in the x-direction
vanish. On physical grounds we expect the y- and z-
accelerations to source transverse gravitational waves and
the relativistic motion in the x-direction to lead to strong
beaming.

The driving force Fα which enters the string loop’s
equation of motion, Eq. (3.5), encodes the fully non-
local, self-interacting gravitational dynamics. If we were
to adopt the conformal gauge at first order then Fαconf
would naturally appear as the driving force in the equa-
tion of motion. We will not restrict ourselves to that
choice for much of the discussion in this section. We
will show, however, that many of the features of the full
worldsheet variation of Fα1 can be understood based on
the observed properties of the formally defined quantity
Fαconf (which may be defined in any gauge; only its inter-
pretation as the driving force is restricted to conformal
gauge). We will be explicit whenever our statements de-
mand the specification of the conformal gauge.
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FIG. 10. The four components (t, x, y and z) of ln |Fαconf | on a small patch of the worldsheet about the cusp. Four quadrants
in {log τ, log ζ} are displayed with the smallest |τ | and |ζ| at the center of the picture, oriented in the same way as the usual
linear system about {0, 0}. Orange (blue) represent positive (negative) values.

The large dynamic range evident in Figs. 8 and 9 necessi-
tates looking at small patches to examine special features
like the cusp. We begin by displaying Fµconf in Fig. 10.
The special coordinate system shows a small patch near
the cusp which is located at ζ = 0 = τ . Results for
ln |Fµconf | are displayed in these figures, color coded ac-
cording to the sign of the quantity: orange (blue) dots
represent positive (negative) values. Each figure com-
bines four plots with axes {sgn(ζ) ln |ζ|, sgn(τ) ln |τ |}, ar-
ranged and oriented in the same way as a normal linear
plot (plus a constant shift selected to bring small values
close to the center). The lower left hand quadrant has
ζ < 0 and τ < 0. Smaller values of |τ | and |ζ| lie near
the center for all four quadrants. The gap encompasses
all values near the sign change of the independent coor-

dinates.

We find that F tconf < 0 for the entire area of the patch.
The magnitude of F tconf is much less than F t and is less
strongly divergent — the two are related by a projection
factor and an overall factor of 1/

√
−γ (see Eq. (3.6)),

both of which diverge as the cusp is approached. Like-
wise, Fxconf < 0, Fyconf > 0 and Fzconf > 0 have single,
well-defined signs throughout most of the area of corre-
sponding patch.

In the conformal gauge the negative value for F tconf
implies (see Eq. (C57) in Appendix C) that the string is
losing energy and decelerating in the x-direction both be-
fore and after the cusp forms . This makes physical sense;
the self-force saps the mechanical energy during the pe-
riod of large acceleration and the relativistic beaming
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ensures that gravitational waves are emitted primarily
in the x-direction, thus creating the largest decelerating
force in that direction. A small spatial segment of the
string near where the cusp forms behaves in a coherent
fashion before and after the moment of cusp formation
in terms of the signs of Fαconf for all components. Fαconf
shows a net positive acceleration in y- and z-directions

throughout most of the area of these figures.
As the figures of Fµconf make clear, the asymptotic be-

havior near the cusp varies depending upon the direction
of approach. A common diagonal feature is the locus in
the worldsheet where

√
−γ ≥ 0 is small. Only at the

cusp is γ exactly equal to zero, but along the visible fold
its values are small.
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FIG. 11. The components of the smooth integral contribution to Fµconf along two rays at angles θ = 0 and π/2 are
shown. Red dots are numerical results and blue lines are fits of the form log |Fµ| = a log | log r| + b log r + c. For µ = t,
(a, b, c) = (0.098,−0.99, 2.45) for θ = 0 and (0.046,−1, 3.24) for θ = π/2; likewise, for µ = x, (a, b, c) = (0.044,−1, 2.52) and
(0.018,−1, 3.28). These fits show that the dominant behavior in the direction of motion of the cusp as r → 0 is 1/r. In the
other directions, the behavior is consistent with a logarithmic divergence at leading order: µ = y, (a, b, c) = (0.79,−0.011, 3.35)
and (1.23, 0.013, 2.39); µ = z, (a, b, c) = (0.43,−0.025, 2.13) and (0.41,−0.026, 2.17).
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FIG. 12. Fµconf for the non-intersecting KT string (α = 1/2 and φ = 0) in the neighborhood of the cusp at τ = 0 = ζ. The
t and x components have been scaled by the radial (Euclidean) distance from the cusp, and the y and z components have
not been scaled at all. Each panel displays two separate contributions to the total force. For t and x components the upper
(green solid and red dotted) lines give the field point contribution. It is antisymmetric in angle and integrates over angle to
give zero (in fact, when taken over the whole worldsheet the integral also vanishes exactly). The lower (blue solid and orange
dashed) lines give the smooth integral contribution. It is single signed and large where

√
−γ is small. We plot scaled results

for r = 0.02 (solid lines) and r = 0.002 (dashed/dotted lines) for each contribution to the total. These overlap and show in
a qualitative fashion the dominant 1/r scaling near the cusp for both contributions to the t and x components. In the lower
panels we display the y and z components. As before, the contribution from the field point is given by the green solid and
red dotted curves. In this case it is independent of r to lowest order (and integrates over angle to give 4π at this order). The
solid blue and dashed orange lines show the integral contributions increase slowly as r decreases, consistent with the log r type
behavior.

Regardless of direction, however, the scaling with radial
distance from the cusp is clear and unambiguous in each
of the components. The smooth integral contribution to
Fµconf is shown in Fig. 11 for rays approaching the cusp
with angle θ = 0 (δτ = 0) and θ = π/2 (δζ = 0). The
red dots are numerical results and the blue lines are fits
of the form log |Fµ| = a log | log r| + b log r + c.19 The
angular variation and scaling of the delta-function term
and the smooth integral contribution are illustrated in

Fig. 12 and discussed in the caption.
Two-dimensional numerical fits for the integral part of
Fµconf are summarized in Appendix F. We find that F tconf
and Fxconf scale as the inverse distance from the cusp,
and that Fyconf and Fzconf are at worst much less singular
(consistent with a log divergence). From this we conclude
that when one adopts the conformal gauge at first order
the self-force near the cusp has a weak, integrable diver-
gence on the worldsheet and that any integrated quanti-
ties (such as the radiated energy) are finite.

19 The occurence of both log | log r| and log r are consistent with
recently reported analytic results of Blanco-Pillado, Olum and

Wachter [see acknowledgements].



26

Quantity a b c d e f log10 ε log10Q
F t − F x 14.68 276.43 117.42 −41.51 12.47 −25.45 −3.08 1.06

F z(τ + ζ) + F y(3τ + ζ) 0 521.81 175.92 −126.45 38.64 16.21 −2.67 0.91
Hττ 11.49 −6.53 −15.33 18.76 84.03 101.7 −7.22 3.9
Hζζ 0 0 0.01 64.4 196 237.13 −7.03 1.32
Hτζ 0 −7.66 −17.94 22.71 69.29 56.75 −7.05 3.8

TABLE III. First order fits for force combinations near the cusp with form a+ bτ + cζ+(dτ2 +eτζ+fζ2)/r with r =
√
τ2 + ζ2

and second order fits for the worldsheet projected metric pertubations with form a+ bτ + cζ + dτ2 + eτζ + fζ2 over the radial
range 2×10−8 ≤ r ≤ 2×10−4. The Table provides the two force combinations and 3 worldsheet projected metric perturbations
that appear in the asymptotic forms for Fµ1 and Fµ2 . The last two columns give the common log of ε (the root mean square
error between the data and the fit), and Q (the ratio of the variation in the data divided by ε).

Order −4 −3 −2 −1 0
Component

t < < −2.01 1.28 1.25
x < < −2.01 1.28 1.25
y < < < < 2.75
z < < < < 2.03

TABLE IV. The numerical results for the expansion of√
−γFµ in r (averaged over angle) for the fit given in Ta-

ble III. For
√
−γ(F1 + F2) ∼

∑
n cnr

n the columns are the
leading powers of the expansion (n = −4 to 0), the rows are
the spacetime components and the table values are the com-
mon log of the expansion coefficients (dn = log10 |cn|). The
symbol < means a numerical result |cn| < 10−12. When the
fitting range is narrowed about the cusp the 1/r2 contribution
decreases ∝ r and the other pieces are fixed. From this we
infer that the leading non-zero piece of Fµ varies as 1/r.

Given the scalings for Fµconf nearby the cusp, it is
straightforward to deduce the corresponding scaling for
Fµ1 = − 1√

−γ ⊥
µ
νFνconf . Working with the exact expres-

sion for the determinant of the induced metric in this
case,

γ = − 1

16
[2− cos(2ζ)− cos(4ζ + 2τ)]

2
, (6.8)

and expanding the relationship between Fµ1 and Fµconf to
next from leading order, we find

F t1 ≈ F x1 ≈ −
1

γ

{(
F tconf −Fxconf

)
(6.9)

− 1

2
[(Fzconf + 3Fyconf) τ + (Fzconf + Fyconf) ζ] + · · ·

}
,

F y1 ≈ −
1

2γ

(
F tconf −Fxconf

)
(ζ + 3τ) + · · · , (6.10)

F z1 ≈ −
1

2γ

(
F tconf −Fxconf

)
(ζ + τ) + · · · . (6.11)

Since γ scales as the fourth power of the distance from
the cusp we infer that Fµ1 is naively four orders more
singular than Fµconf . However, as can be seen in Table
III, it turns out that F tconf ≈ Fxconf near the cusp so the
leading-order divergence cancels and at worst Fµ1 diverges

as the inverse fourth power of the distance from the cusp.
At next from leading order the asymptotic expression for
Fµ1 is antisymmetric about the cusp. (This behavior,
combined with the mixing of components is what makes
the analysis of Fµconf clearer than working directly with
Fµ1 .) With the worldsheet weighting we naively infer that√
−γFµ1 diverges as the inverse quadratic power of the

distance from the cusp, one power worse than Fµconf . Now
we must consider the role of Fµ2 .

To understand the behaviour of Fµ2 near the cusp
we begin with the perturbed metric projected along the
worldsheet vectors ∂τz

α and ∂ζz
α according to

Hττ = ∂τz
αhαβ∂τz

β (6.12)

Hτζ = ∂τz
αhαβ∂ζz

β (6.13)

Hζζ = ∂ζz
αhαβ∂τz

β . (6.14)

Evaluating the simple expression Eq. (3.7) for the rela-
tionship between Fµ2 and the worldsheet projections of
the metric perturbation, we find

F t2 ≈ F x2 ≈
1

2(−γ)3/2

[
2 (5Hτζ −Hττ −Hζζ) ζ

+ (4Hτζ −Hττ −Hζζ) τ + · · ·
]
,

(6.15)

F y2 ≈
2 (6Hτζ −Hττ −Hζζ) (ζ2 + 3τζ + τ2) + · · ·

2(−γ)3/2
,

(6.16)

F z2 ≈
2 (2Hτζ −Hττ −Hζζ) (ζ2 + 3τζ + τ2) + · · ·

2(−γ)3/2
.

(6.17)

With the finite behavior of the the worldsheet projec-
tions of the metric perturbation, it is straightforward to
deduce the corresponding scaling of the divergence in
Fµ2 . We find that at worst F t2 and F x2 diverge as the
inverse fifth power of distance from the cusp. With the
worldsheet weighting

√
−γFµ2 diverges as the inverse cu-

bic power of the distance from the cusp. However, as
this leading-order divergence is antisymmetric about the
cusp its integral over a patch around the cusp cancels the
leading-order divergence to leave only subleading pieces.
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We are now left with asymptotic forms for
√
−γFµ1 and√

−γFµ2 each scaling as the square of the inverse distance
from the cusp. These are individually non-integrable.
However, once the asymptotic forms given in Table III
for the quantities in Eqs. (6.9)-(6.11) and (6.15)-(6.17)
are taken into account, we find that the leading order
divergent behavior exactly cancels (see Table IV) to the
level of accuracy of the numerically fitted coefficients in
the combination

√
−γ(Fµ1 + Fµ2 ) yielding the full force√

−γFµ which at worst diverges as the inverse distance
from the cusp, and hence is integrable. This divergence
is no worse than Fµconf itself.

A detailed understanding of the behavior of these di-
vergences near cusps allows us to solve either the general
covariant equation of motion Eq. (3.5) or the correspond-
ing Eq. (3.14) in which specific conformal gauge choices
have been adopted.

D. Garfinkle and Vachaspati string with kinks

The third case we will explore is from a class of strings
found by Garfinkle and Vachaspati (GV) [59]. These
strings contain two kinks that travel in the same direction
on an oscillating and twisting string loop. We choose a
particular representation from the general class with the
following right and left-moving modes

aµ(ζ+) =
[
ζ+, 0, a2(ζ+), a3(ζ+)

]
(6.18)

bµ(ζ−) =

[
ζ−,

L

2π
cos

2πζ−

L
, 0,

L

2π
sin

2πζ−

L

]
(6.19)

where

a2(x) =
L

π

∑
j

δj,b 2x
L c

(−1)
b j+1

2 c×

cos
(π

4
+ (−1)

j πx

L

)
a3(x) =

L

π

∑
j

δj,b 2x
L c

(−1)
b j2 c×

[
sin

(
π

4
+ j (−1)

j π
2

L

)
− sin

(π
4

+ (−1)
j πx

L

)]
,

(6.20)

and where the sums are over all integers j, L is the in-
variant length, bxc is the floor function and δj,k is the
Kronecker delta.

Figure 13 illustrates the configuration in spacetime at
equally spaced moments in the oscillation cycle. The
kink discontinuities are visible in all four snapshots. In
the tangent sphere representation (shown in Fig. 14), b′

traverses a complete great circle through the North and
South poles at a steady rate; a′ follows two disjoint seg-
ments of a great circle (longitude offset by π/2 from the
one traced by b′) between latitudes θ = ±π/4, also at a
steady rate. The vector a′ traces one segment and then
abruptly jumps from the point (0, y, z) to (0,−y, z) and

traces out the mirrored arc at a steady rate (and repeats).
Each jump from one segment to the other yields a kink
discontinuity in the spacetime representation.

FIG. 13. The GV string loop configuration in spacetime
at four equally spaced moments in the basic loop oscillation
cycle τ = 0, L/8, L/4 and 3L/4. Each box is the same size
with fixed axes −1 to 1 and fixed orientation.
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FIG. 14. The arcs on the tangent sphere traced by b′(x) (red
line, a complete great circle passing through poles) and a′(x)
(two green segments symmetrically cut from a great circle)
for the GV string. The line is made by a series of points,
equally spaced in argument x for the left and right moving
mode. A blow up of the line in the figure would show equal
intervals between the points. When the kink is “rounded off”
(non-zero ∆ as described in the text) a few of these points
will sit between the pictured green arcs and the green line
is formally continuous. The a′(x) tangent vector moves very
rapidly from one side to the other.

While the ACO string provided a useful analytic test
case with kinks against which we could compare our nu-
merical results, it turns out that the simplicity of the
ACO string (in particular, that many quantities are a
constant along the string) means that many important
terms that appear in the general expression for the self-
force are identically zero for the ACO string. Fortunately,
the GV string is sufficiently general that this is not the
case. Unfortunately, however, there is no known analytic
solution for the self-force for the GV string. Instead,
in order to use the GV string as a test of our method,
we chose a particular point on the string (τ = 0.3L,
ζ = 0.4L) and computed the self-force at that point using
an extensive set of different and independent methods:

1. We used our exact 1D method including a field
point contribution and contributions from the two
kinks (this is method [1D] discussed in Sec. V).

2. We repeated our 1D calculation (again, method
[1D]) using multiple choices of integration variable
(ζ+, ζ− and ζ). In each case, the various contribu-
tions (from the integral, field point, and two kinks)
were different. Indeed, in some cases there was no
contribution picked up from the kinks.

3. We again repeated our 1D calculation using method
[1D], but using a mixed coordinate choice; we used
ζ+ on one side of the field point and ζ− on the
other side. We then included a contribution at the
point where these two segments meet up again, to
account for the change in integration variable at
that point. This contribution is exactly the one
discussed in Secs. IV B, and an explicit expression
is the same as one obtains when breaking the inte-
gration at a kink, as discussed in Sec. IV A.

4. We repeated the previously mentioned 1D calcu-
lations again, but instead of including the exact
field point term, we considered an over-retarded
image of the string (method [1DO]). In that case,
we find that the over-retarded integrand picks up a
δ-function type feature nearby the field point (see
Fig. 15). For finite over-retardation this manifests
itself as a narrow Gaussian, and the Gaussian gets
narrower and sharper as the over-retardation pa-
rameter is shrunk towards zero. Reassuringly, in
the limit of the Gaussian shrinking down to zero
size we recover a result which agrees with the pre-
vious calculations and can identify the δ-function
with the field point contribution.
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FIG. 15. Integrand used to compute to the self-force for the
Garfinkle-Vachaspati string. These correspond to the values
in the ζ column of Table V. Distributional contributions from
the kinks and field point are denoted by dashed and solid
arrows, respectively.

5. Finally, we repeated the calculation in a completely
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independent way, directly evaluating the self-force
from the 2D integral (method [2D]) without the re-
duction to a 1D integral. This was significantly less
efficient, but provided an important check as there
is no need to consider any split into field-point-
plus-integralplus-kink contributions. Instead, we
smeared out the δ function in the Green function
and also introduced a slight smoothing of the kinks,
as discussed in detail in Appendix E. Yet again, re-
assuringly, in the limit of our smearing and smooth-
ing parameters going to zero we recovered a result
which was in perfect agreement with all of the other
methods.

The results of this extensive set of tests are given in
Table V. We see that all methods produce results which
are consistent within their respective error bars. The
[2D] method is least accurate, due the need for a 2D
rather than 1D numerical integral. The [1DO] method
also poses challenges for numerical accuracy due to the

presence of sharp features (i.e. the Gaussian approxima-
tion to the delta function for the field point contribution),
as does the [1DOS] method for portions of the integral
nearby kinks.

The three exact [1D] methods all work reasonably
well, however even in this case not all methods are
equally computationally efficient. In particular, calcu-
lations based on a single null coordinate encounter a
strong divergence in the integrand as the field point is
approached from one side (the particular side is depen-
dent on whether one uses ζ+ or ζ− as integration vari-
able). This diverging integral largely cancels against the
field point contribution20, leaving a relatively small over-
all contribution from the field-point-plus-integral combi-
nation. We found that the remaining two approaches
(integration with respect to ζ; and half-ζ+ half-ζ− plus
coordinate change term) were comparable in terms of
computational efficiency.

Importantly, other than accuracy concerns, all meth-
ods produced results which are unambiguous in agreeing
with each other.

20 In practice, we were only able to obtain finite results by eval-
uating the integral up to a short distance from the field point
and evaluating the expression for the field point contribution at

the point where the integral was cut off. We recovered a unique
and consistent result as the cut-off point was pushed towards the
actual field point.
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Contribution ζ− ζ+ ζ−/ζ+ ζ 2D ζ−ε ζ+ε ζε

F t1

∫
−330.558 −12.73(1)

6.89229 −25.6962 −12.76(2) −330.60(4) −12.7488(1) −22.4707(2)
δ - 3.22536 - - - -

Kink 1 358.819 - - 16.7989 - 358.819 - 16.7989
Kink 2 −41.0096 - - −7.07683 - −41.0096 - −7.07683
ζ− ↔ ζ+ - - −19.6411 - - - - -

Total −12.7488(1) −12.73(1) −12.7488 −12.7488 −12.76(2) −12.8(1) −12.7488(1) −12.7487(2)

F x1

∫
−300.675(1) −2.64(7)

8.62259 −21.7023 −2.58(3) −300.63(4) −2.56339(6) −14.8591(9)
δ - 6.84317 - - - -

Kink 1 287.628 - - 14.7570 - 287.628 - 14.7570
Kink 2 10.4832 - - −2.46129 - 10.4832 - −2.46129
ζ− ↔ ζ+ - - −11.186 - - - - -

Total −2.5637(8) −2.64(7) −2.56342 −2.56342 −2.58(3) −2.52(8) −2.56339(6) −2.56333(9)

F y1

∫
−304.564 −10.7066(4)

6.6211 −23.4832 −10.72(2) −304.59(3) −10.7068(1) −20.0615(2)
δ - 3.42159 - - - -

Kink 1 326.143 - - 15.4176 - 326.143 - 15.4176
Kink 2 −32.2859 - - −6.06281 - −32.2859 - −6.06281
ζ− ↔ ζ+ - - −17.3279 - - - - -

Total −10.7069 −10.7066(4) −10.7068 −10.7068 −10.72(2) −10.7(1) −10.7068(1) −10.7067(2)

F z1

∫
−190.140(1) −13.82(7)

2.25465 −15.9946 −13.90(1) −190.22(8) −13.8960(1) −16.9795(2)
δ - −0.985094 - - - -

Kink 1 234.551 - - 10.0429 - 234.551 - 10.0429
Kink 2 −58.3072 - - −6.95921 - −58.3072 - −6.95921
ζ− ↔ ζ+ - - −16.1507 - - - - -

Total −13.8958(7) −13.82(7) −13.896 −13.8960 −13.90(1) −13.97(9) −13.8960(1) −13.8958(2)

TABLE V. Comparison of methods for computing the self-force at a generic point (τ = 0.3L, ζ = 0.4L) on the GV string.
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FIG. 16. Contributions to Fµ1 for the Garfinkle and Vachaspati string when computed using the 1D integration method with
integration with respect to ζ. Each sub-figure shows the relevant contribution to the force at all points on the string in the
region τ ∈ (0, L/2), ζ ∈ (−L/2, L/2); all other points can be obtained from the standard periodic extension of the string. Each
column corresponds to a different component of the force: F t1 , F x1 , F y1 , and F z1 . The rows correspond to the contributions
from: (i) the kink that passes through (τ = 0, ζ = 0); (ii) the kink that passes through (τ = 0, ζ = π); (iii) the field point;
and (iv) the integral over ζ (ignoring distributional contributions at the kinks and field point). The two kinks are denoted by
diagonal black lines. For the purposes of the plots, we have set the string tension, µ, and Newton’s constant, G equal to one;
other values simply introduce an overall scaling.
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FIG. 17. The two pieces of the self-force, Fµ1 (row 1) and Fµ2 (row 2), and the total force Fµ = Fµ1 + Fµ2 (row 3), for the
Garfinkle and Vachaspati string as a function of position on the string. The Fµ1 part can be obtained by summing the four
rows in Fig. 16. For the purposes of the plots, we have set the string tension, µ, and Newton’s constant, G equal to one; other
values simply introduce an overall scaling.

Finally, we used the [1D] method (specifically, inte-
grating with respect to ζ and including field point and
kink contributions) to evaluate the self-force at all points
on the GV string. The results are shown in Figs. 16 and
17. Fig. 16 shows how each of the contributions to Fµ1
contribute to the overall result, while Fig. 17 shows Fµ1
and Fµ2 themselves, as well as their sum. As in the other
string test cases, we find that the self-force is finite almost
everywhere on the string, with the exception of exactly
on the kinks, where it diverges.

We have analyzed the form of the divergence near the
kink by calculating the total backreaction force to high
accuracy along a set of worldsheet points for a line that
runs perpendicular to the kink with coordinates (τ, ζ) =
(π/2 + ζ+/2,−π/2 + ζ+/2) for −21 < log |ζ+| < −11 for
positive and negative ζ+. Locally, the kink can be de-
scribed in terms of the changes to the unit tangent vector
et, the velocity vector ev and e⊥ = ev×et/|ev×et| which
form the perpendicular coordinate system {et, ev, e⊥}.
We find ev and et lie in the y-z plane and e⊥ along the
x-direction. Letting ∆e = e+ − e− stand for the change

in time of each unit vector,

∆e⊥ = {2, 0, 0} (6.21)

∆et ' {0,−1.85, 0} (6.22)

δev ' {0,−0.77, 0}. (6.23)

The kink is a y-reflection of the velocity and tangent
vectors in the y-z plane.

On each side of the kink we fit each component of Fα

with forms that include combinations of constant, lin-
ear and ln terms in |ζ+|. We select the linear or ln fit
whichever is best; it turns out that this corresponds to
the term with coefficients that are of order unity. We
report the inferred scaling in Table VI.

sign F t F x F y F z

ζ+ < 0 |ζ+|−0.33 1 |ζ+|−0.33 |ζ+|−0.33

ζ+ > 0 1 1 1 1

TABLE VI. Asymptotic form for the force near the kink; 1
means non-zero constant.
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The results are similar to but not identical to the ACO
case. First, note that there is one redundancy F t = −F z
so we have 3 GV force components to compare to ACO.
The GV coordinate directions of the force are not the
same as the normal and longitudinal directions in the
ACO case and this complicates a direct one-for-one com-
parison. Nonetheless, we see analogous behavior. Most
prominently the GV divergence for ζ+ < 0 of F t and F y

scales close to ∝ (|ζ+|)−1/3 like ACO’s F t and FN . One
difference is that the GV force for all components with
ζ+ > 0 approach non-zero constant values. The ACO
loop has no curvature on one side of the kink, which is
probably responsible for the fact that two of its compo-
nents approach zero. Curiously, the ACO divergence for
FL ∝ ln |ζ+| on both sides of the kink is absent for any
components in the GV case. Likewise, the completely
finite GV result for F x on both sides of the kink is ab-
sent in the ACO case. Despite these differences the most
important observation is that the GV divergent self-force
∝ (|ζ+|)−1/3 integrates to a finite value so we expect the
physical displacement of the string to be finite.

E. Kibble self-intersecting strings

The ACO and GV string possess a pair of traveling
kinks that circulate around the loop throughout the pe-
riod of oscillation while the KT string forms two transient
cusps each period. In the tangent sphere representation
the kink discontinuities are jumps in a′ and/or b′ while
the cusps form whenever a′ and b′ cross. The nature of
the self-intersections of string loops is not immediately
apparent from the tangent sphere representation. In the
case of the KT string with α = 0 and φ = π/6 the string
collapses to a line and the overlap is a spacelike length of
string. Unless nature prefers special loop configurations
the generic type of self-intersection will be weaker than in
the above KT case. Here we investigate the Kibble string
loop [13] which is simpler than any of the previous cases
in these respects: it has no discontinuities or crossings
on the tangent sphere, i.e. the loop is smooth and con-
tinuous everywhere, and it self-intersects at a spacetime
point not along a spacelike line.

We integrate the tangent vectors [59] to give explicit
forms for the right and left modes:

aµ(ζ+) =
[
ζ+, f1(ζ+), f2(ζ+), f3(ζ+)

]
(6.24)

bµ(−ζ−) =
[
ζ−,−f1(ζ−),−f3(ζ−),−f2(ζ−)

]
(6.25)

where

f1(x) =
L

2π

(
(1 + p2)2 sin 2y + (p2/4) sin 4y

2 + 5p2 + 2p4

)
(6.26)

f2(x) =
L

2π
cos 2y×(
−2 + 4p2 + 2p4 + p2 cos 2y

4 + 10p2 + 4p4

)
(6.27)

f3(x) =
L

2π
23/2p cos y×(

5 + 3p2 + 2 cos 2y

6 + 15p2 + 6p4

)
(6.28)

y =
2πx

L
(6.29)

where p is a constant. We choose for the numerical exam-
ple p = 1/2. This is a more complicated loop in terms of
harmonic content than either the GV or KT loops. Fig.
18 shows 6 equally spaced snapshots of the loop during
the fundamental oscillation period. The dashed and dot-
ted lines show the times when a self-intersection occurs at
the center (red dot). Figure 19 gives the tangent sphere
representation which resembles the seams of a baseball.

FIG. 18. The Kibble string loop configuration for p = 1/2 in
spacetime at six equally spaced moments τ = jπ/6 for j = 0
to 5 (invariant length 2π) in the basic loop oscillation cycle.
The blue dashed and dotted loops self-intersect at the central
red dot. The solid blue lines are non-intersecting configura-
tions.
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FIG. 19. The arcs on the tangent sphere traced by a′(x) and
−b′(x) for the Kibble string resemble the seams on a baseball.
The green and red lines are smooth and continuous and do
not intersect each other. They satisfy an integral condition
such that the loop has zero total momentum.
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FIG. 20. Contributions to Fµ1 for the Kibble string when computed using the [1D] integration method with integration with
respect to ζ. Each sub-figure shows the relevant contribution to the force at all points on the string in the region τ ∈ (0, L/2),
ζ ∈ (−L/2, L/2); all other points can be obtained from the standard periodic extension of the string. Each column corresponds
to a different component of the force: F t1 , F x1 , F y1 , and F z1 . The rows correspond to the contributions from: (i) the field point;
and (ii) the integral over ζ (ignoring distributional contributions at the field point). For the purposes of the plots, we have set
the string tension, µ, and Newton’s constant, G equal to one; other values simply introduce an overall scaling. Note that we
have used a logarithmic scale and denoted positive (negative) values by coloring the plot orange (blue).
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FIG. 21. The two pieces of the self-force, Fµ1 (row 1) and Fµ2 (row 2), for the Kibble string as a function of position on the
string. The Fµ1 part can be obtained by summing the two rows in Fig. 20. For the purposes of the plots, we have set the string
tension, µ, and Newton’s constant, G equal to one; other values simply introduce an overall scaling. Note that we have used a
logarithmic scale and denoted positive (negative) values by coloring the plot orange (blue).

This loop has collisions at worldsheet coordinates
{τ, ζ} = {0,±π/2} and {τ, ζ} = {π/2, 0} and {π/2, π}.
We describe the limiting behavior near {τ, ζ} =
{0,±π/2}. The velocities of the two bits of string are
equal and opposite: żi = ±{0,−0.26,−0.26}. The tan-
gent vectors are dzi/dζ = {−0.85,±0.26,∓0.26} (an an-
gle of ∼ 0.94 rad). The acceleration vectors are z̈i =
{0,−0.41, 0.41}. The gravitational radiation emitted by
each piece of string should be similar.

The net effect of the crossing is small. The bumps at
the collision points on the full scale worldsheet represen-
tations in Fig. 21 are difficult to distinguish at all. Here
we look in more detail near those crossings.

Component F t is displayed in a small two-dimensional
patch about the crossing point in the top left plot of Fig.
22. As τ → 0 at fixed ζ = π/2 (the vertical line of small
dots in the picture) F t diverges ∝ τ−1 with change of
sign as τ passes through zero. The results at ±τ are
nearly equal and opposite. We find that the sum of the
two components at ±τ is nearly constant as |τ | → 0,
numerically approximately ∝ |τ |0.05. As ζ varies near
π/2 (fixed τ = 0, the horizontal line of small dots) the
results on each side of the crossing point are finite and
the zero value is not exactly at δζ = 0. These results are
quite sensitive to the size of δτ since the surface changes
sign (from plus to minus infinity) near δτ = 0.
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FIG. 22. The four components (t, x, y, and z) of ln |F tconf | for a small patch of the worldsheet about the crossing point.
Four quadrants in {δτ, δζ} are displayed in log absolute value coordinates (oriented to match the usual linear system about
{τ, ζ} = {0, π/2}). Blue (orange) are negative (positive) values. The small dots have been added for δτ = 0 and δζ = 0.

We have formally fit the power law variation for δτ near
τ = 0 and for δζ near ζ = π/2. Table VII summarizes
the slopes extracted for Fα along fixed τ and fixed ζ
coordinates passing exactly through the crossing point.
Some components vary such that an integral over just
one side would yield a divergent quantity, however, the
symmetric sum is always integrable.

Component ζ varies; τ = 0 τ varies; ζ = π/2
One side Net One side Net

F t - - −1.0 0.04
F x −1.1 −0.04 −0.04 −0.03
F y −1.1 −0.06 −1.0 −0.05
F z −1.1 −0.05 −0.96 −0.04

TABLE VII. Kibble loop divergent behavior at the crossing
point τ = 0 and ζ = π/2. The columns labeled τ = 0 give ν
for the scaling of the force component along the string near
the crossing point ∝ |ζ − π/2|ν . Likewise, the ones labeled
ζ = π/2 describe the scaling ∝ |τ |ν for times before and
after the appearance of the crossing. “One side” means the
scaling of the absolute value (approximately the same on each
side); “Net” means the scaling of the symmetric sum of points
on opposite sides of the crossing point. Small ν results are
numerically close to finite limits but in any case are integrable.
The “-” indicates values that are not well-defined because of
a zero-crossing at τ = 0.
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The plot of F t shows it to be approximately a product
of individual functions of τ and ζ. The other force com-
ponents are more complicated. Components F x, F y and
F z are shown in small two-dimensional patches in the
other plots of Fig. 22. The small dots show the variation
along the coordinate axes.

In summary, we find the effect of the string crossing
leads to integrable forces for all components in this ex-
ample.

F. Comparisons to radiated quantities evaluated in
the far field

As an additional consistency check on our results, we
compute the radiated energy and compare it to the en-
ergy dissipated through the local self-force. The latter
can be computed using the change in the 4-momentum
of the string,

∆Pµ = µ

∫
Fµconfdζdτ, (6.30)

where the conformal-gauge force Fµconf is given by
Eq. (3.9) and where the region of integration is given
by the fundamental period of the worldsheet: −L/2 ≤
ζ < L/2 and 0 ≤ τ < L/2. In practice, we evaluate the
integrand at N ∼ 104 equally spaced points on a two
dimensional surface and approximate the integral as the
sum of the function values at the points times the world-
sheet area per point. This is a low accuracy method
that is suited to the occurrence of steep spikes at various
points on the worldsheet; we estimate the accuracy of the
results to be within 1-5%.

The work done on the string by the self-force lowers
its energy, ∆P 0 < 0, and should be exactly balanced by
the flux carried to infinity, which must be −∆P 0 > 0.
We separately compute this flux to infinity using the for-
malism of Allen and Ottewill [96], in which the stress
energy tensor is a sum of individual Fourier components
of the undamped string. For each overtone n we numeri-
cally integrate dP (n)/dΩ over the sphere. We compute N
overtones and then fit and sum a power law extrapolation
for N →∞. This yields a result which is approximately
1% accurate.

Table VIII compares the results of the two calculations.
We find good numerical agreement within the expected
accuracy of the result.

Case far field far field direct direct
(numerical) (analytic) (numerical) (analytic)

ACO 122.537 122.53 125.515 122.53
KT 349.677 355.643

α = 0, φ = π/6
KT 241.321 238.259

α = 1/2, φ = 0
GV 131.304 132.486

Kibble 137.6 135.428

TABLE VIII. The total energy loss integrated over one fun-
damental period of the loop oscillation in the center of mass
frame of the loop. The far field is calculated with the for-
malism of Allen and Ottewill [96]. The analytic result for
the ACO loop in the far field is from Ref. [61]. The numeri-
cal results for the direct energy loss integrate Fµconf over the
world sheet according to the description in this section. The
analytic results for the direct energy loss for the ACO loop is
from Ref. [81]

VII. DISCUSSION

We have developed a general method for calculat-
ing the self-force due to gravitational perturbations of a
lightly damped string loop. Our approach breaks up the
calculation into smooth integrals over the retarded image
of the loop plus boundary terms. The latter are used to
take account of the special contributions when the source
and field point coincide and when discontinuities are vis-
ible on the past image of the loop. These may be from
kinks or cusps or crossings (spacetime points where in-
tercommutation events might occur). Our methodology
is quite general and can be used for arbitrary choices of
spacetime and worldsheet gauges.

There are some existing calculations of the gravita-
tional self-force for cosmic strings [76, 81, 84], however
these results have all relied on simplifications or approx-
imations that do not hold in general. For example, al-
though Quashnock and Spergel [76] used a numerical ap-
proach not too different from ours, they do not discuss
any of the various distributional-type contributions (near
kinks or the field point; they do, however, discuss transi-
tions between integration variables) that we have studied
in detail here. Our results21 suggest that their use of a
pair of null coordinates sidesteps the issue of a contri-
bution from the field point. The issue of contributions
from kinks, however, remains unaddressed. Addition-
ally, given the limited computational resources available
at the time, their numerical calculations were restricted
to a low-resolution study in a restricted set of cases. In
the case of Refs. [81, 84], approximations based on sim-
ple string configurations were made which, while reason-

21 For example see the third column in Table V for the GV case,
but we also performed the same check for the other configurations
discussed in this paper.
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able in some cases, do not fully capture the behavior for
generic string configurations.

Our numerical calculations have passed a number of
validation checks including: comparisons with existing
analytical results; comparisons of the integrated power
radiated over a fundamental period against the flux of
gravitational energy measured at large distances; and
cross-comparisons of several semi-independent methods
for computing the self-force. From the perspective of
computational efficiency it is clear that the [1D] meth-
ods based on either integration with respect to ζ or a
Quashnock-Spergel type mixed integration with respect
to ζ+ and ζ− are the best choice. The other [1D] methods
(using a single null coordinate or over-retardation) in-
evitably encounter large numerical cancellations nearby
the field point, making them significantly more compu-
tationally demanding. The [2D] method is even worse,
and is orders of magnitude more demanding than any of
the [1D] methods.

While the preferred [1D] methods work well in gen-
eral, there are certain cases where they also run into nu-
merical challenges. Since the self-force diverges as one
approaches kinks and cusps (in a way such that the dis-
placement of the worldsheeet is finite) it is unavoidable
that one would encounter numerically divergent quanti-
ties at one point or another. In this work, we handled
the issue of divergences in a brute force manner by simply
evaluating quantities to a sufficiently high accuracy that
they can be canceled to leave a residual which is still accu-
rately determined. While this approach works reasonably
well, the calculation could be made significantly more ef-
ficient by developing an alternative approach to the prob-
lem. One promising possibility is to borrow from results
in the point particle case [100–102], where it was found
that the separation of the full metric perturbation into
a so-called “puncture field” that captures the singular
behavior plus a “residual field” that is more numerically
well-behaved. In the point particle case, by basing the
puncture field on an approximation to the singular field
proposed by Detweiler and Whiting [103], one can work
directly with the residual field as it is entirely responsi-
ble for driving the motion. In the case of a cosmic string
we do not yet have an analogous Detweiler-Whiting type
singular field. One could attempt to derive one following
the matched expansion methods of Ref. [104]. Alterna-
tively, even without such a derivation a local analysis
of the type done in Sec. IV D may yield an approxima-
tion to the singular behavior of the metric perturbation
which leaves a numerically well-behaved residual field,
and which is sufficiently simple that its integrated con-
tribution to the motion can be determined analytically.
Indeed, a preliminary analysis for the ACO string (where
the self-force is known analytically) suggests that exactly
this approach will work well, and has been found to sig-
nificantly improve the accuracy with which the integrated
motion can be determined, even in the presence of a di-
vergent self-force at the kinks.

The ultimate goal of our program is to evolve cos-

mic strings under the influence of the self-force, and to
study the consequences of backreaction on cusp forma-
tion, smoothing of kinks, and other astrophysically rel-
evant features of cosmic strings. This paper represents
the first step in such an endeavor. We can now compute
the self-force for an arbitrary cosmic string with a reason-
able level of accuracy and with the freedom to arbitrarily
choose coordinates and gauges which are most suitable
for evolution. The next step is to implement this into a
numerical evolution scheme. This will be presented in a
future work.
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Appendix A: Adapted Tetrads on the Worldsheet

1. Definition of adapted tetrad

Suppose that we have a set of four linearly independent
basis vectors ~e0̂, ~e1̂, ~e2̂, ~e3̂, defined on the worldsheet,
where ~e0̂ is timelike and the other vectors are spacelike.
If ~e0̂ and ~e1̂ are tangent to the worldsheet, and if the other
two vectors are orthogonal, we’ll say that the tetrad is
adapted to the worldsheet. Such tetrads are convenient
since the four vectors can be used as a basis for space-
time tensors, while the first two vectors can be used as a
basis for worldsheet tensors. We will not require in the
following that the basis be orthogonal or orthonormal.

We now introduce the following index notations. Hat-
ted lowercase Greek indices will run over 0̂, 1̂, 2̂, 3̂, so for
example an expansion of a vector ~v on the orthonormal
basis will be written as

~v = vα̂~eα̂. (A1)

We will use hatted capital Roman indices Â, B̂, . . . to
run over 0̂, 1̂, the directions along the worldsheet, and
hatted capital Greek indices Γ̂, Σ̂, . . . to run over 2̂, 3̂,
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the directions orthogonal to the worldsheet. So the de-
composition (A1) of a general vector can be rewritten
as

~v = vÂ~eÂ + vΣ̂~eΣ̂. (A2)

We define the dual basis of one forms wα̂α by

wα̂αe
α
β̂

= δα̂
β̂
. (A3)

The basis vectors and dual basis vectors can be used to
express tetrad basis components of tensors in terms of
coordinate basis components and vice versa in the usual
way:

vα̂ = wα̂αv
α, vα̂ = e α

α̂ vα, (A4)

etc.

2. Examples of adapted tetrads

Let us adopt the conventional parameterization of the
background worldsheet [14]:

~X(τ, ζ) =

(
τ,

1

2
a(ζ − τ) +

1

2
b(ζ + τ)

)
, (A5)

where a′
2

= b′
2

= 1. [Here the notation is that bold
faced quantities are three vectors, and quantities with
arrows are four vectors.] We can then define an orthonor-
mal tetrad of basis vectors

~e0̂ = f0

(
2,−a′ + b′

)
, (A6a)

~e1̂ = f1

(
0,a′ + b′

)
, (A6b)

~e2̂ = f2

(
1− a′ · b′,−a′ + b′

)
, (A6c)

~e3̂ = f3

(
0,a′ × b′

)
, (A6d)

where f0 = f1 = [2(1 + a′ · b′)]−1/2, f2 =[
1− (a′ · b′)2

]−1/2
and f3 = 1/|a′ × b′|. This is an

adapted tetrad since the vectors ~e0̂ and ~e1̂ point along the
worldsheet (they are proportional to ∂τ and ∂ζ), while ~e2̂
and ~e3̂ are orthogonal to it. Another choice of adapted
tetrad is given Eqs. (A6) but with the coefficients fα̂ set
to unity. This is an orthogonal tetrad but not an or-
thonormal tetrad, and might be more convenient to use
in computations.

3. Geometric quantities in terms of the tetrad basis

The spacetime metric on the tetrad basis is

gα̂β̂ = ~eα̂ · ~eβ̂ (A7)

It follows from the definition of the adapted tetrad that
this has block diagonal form with two 2 × 2 subblocks,
i.e. that gÂΓ̂ = 0. Also the induced metric on the tetrad
basis is just one of the 2× 2 subblocks:

γÂB̂ = ~eÂ · ~eB̂ = gÂB̂ (A8)

It also follows that

γÂB̂ = gÂB̂ . (A9)

Hatted indices are raised and lowered with gα̂β̂ . For vec-

tors vα̂ parallel to the worldsheet we have vΓ̂ = 0 and
vΓ̂ = 0, so indices can equivalently be raised and lowered
just with γÂB̂ .

The projection tensor (2.2) can be expressed in terms
of the tetrad vectors and dual vectors as

P βγ = e β

Â
wÂγ , (A10)

and the orthogonal projection tensor is

⊥βγ= e β

Γ̂
wΓ̂

γ . (A11)

Inserting these expressions into the definition (2.5) of the
extrinsic curvature tensor gives

Kµνρ = −P α
µ Pνβ∇α ⊥βρ

= −e α
Â
wÂµgνλe

λ
B̂
wB̂β∇α(e β

Γ̂
wΓ̂

ρ)

= −e α
Â
wÂµgνλe

λ
B̂
wB̂β∇α(e β

Γ̂
)wΓ̂

ρ. (A12)

It follows that the nonzero components of the extrinsic
curvature tensor on the tetrad basis are

K B̂
Â Γ̂

= −e α
Â
wB̂β∇αe

β

Γ̂
. (A13)

Note that this formula is valid for an arbitrary adapted
tetrad, not just an orthonormal one.

4. Explicit Form of equation of motion in
orthogonal gauge using adapted tetrad

a. Orthogonal Gauge

An alternative worldsheet gauge choice is to impose
that the displacement vector be orthogonal to the world-
sheet everywhere:

Pαβ z
β
(1) = 0 (A14)

or

⊥αβ z
β
(1) = zα(1). (A15)

From the general form (3.10) of linearized gauge trans-
formations we see that is always possible to achieve this
gauge.
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b. Form of equation of motion

In orthogonal gauge, the displacement vector is orthog-
onal to the worldsheet, so we can express it as an expan-
sion in terms of two components on an adapted tetrad

~z(1) = zΓ̂
(1)~eΓ̂. (A16)

We now write the general equation of motion (3.5) in the
schematic form

L[~z(1)]
α = Fα, (A17)

where L is the differential operator that appears on the
left hand side, and F is the forcing term linear in hαβ
on the right hand side. Writing this equation on the
orthonormal basis gives

L[~z(1)]
α̂ = F α̂. (A18)

Now the α̂ = 0̂ and α̂ = 1̂ components of this equation
vanish identically, since both sides are perpendicular to
the worldsheet. So, we end up with an equation with
only two components:

L[~z(1)]
Γ̂ = F Γ̂. (A19)

This will give two coupled equations for the two compo-

nents z2̂
(1) and z3̂

(1) of the displacement vector.

We now derive the following explicit form of the differ-
ential operator on the orthonormal basis:

L[~z(1)]
Γ̂ = 4zΓ̂

(1) +KAΓ̂
Σ̂
∂Az

Σ̂
(1) +MΓ̂

Σ̂
zΣ̂

(1). (A20)

Here ∂a denotes a derivative with respect to the world-
sheet coordinates ζa, and 4 is the scalar differential op-
erator

4 =
1
√
γ
ηab∂a∂b. (A21)

The mass matrix M is given by

MΓ̂
Σ̂

= wΓ̂
α4e α

Σ̂
+ λΣ̂ÂB̂K

ÂB̂Γ̂. (A22)

Also

λΣ̂ÂB̂ = −γB̂Ĉw
Ĉ
αe

µ

Â
∇µe α

Σ̂
− γÂĈw

Ĉ
αe

µ

B̂
∇µe α

Σ̂
.

(A23)
Note that all the derivatives in this expression are along
the worldsheet, so the expression is well defined (the basis
vectors are not defined off the worldsheet, so orthogonal
derivatives are not well defined). Finally the quantity K
is given by

KaΓ̂
Σ̂

=
2
√
γ
wΓ̂

αη
ab∂be

α
Σ̂
. (A24)

c. Derivation

From Eq. (3.5)), dropping the Riemann term since we
are working in flat spacetime, and replacing all indices
with hatted indices, we get

L[~z(1)]
Γ̂ =⊥Γ̂

χ̂ ∇̄µ̂∇̄µ̂z
χ̂
(1) − 2∇̄µ̂zα̂(1)K

µ̂ Γ̂
α̂ . (A25)

Consider first the second term in Eq. (A25)). Since the
extrinsic curvature tensor is parallel to the worldsheet on
its first two indices, we can drop the bar on the derivative
operator. Also we can replace the indices µ̂ and α̂ by
worldsheet indices Â and B̂, giving

− 2KÂ Γ̂
B̂
∇Âz

B̂
(1) = −2KÂ Γ̂

B̂
e α
Â
wB̂β∇αz

β
(1). (A26)

Now inserting the expansion (A16) of the displacement
vector gives

−2KÂ Γ̂
B̂
e α
Â
wB̂β∇α(zΓ̂

(1)e
β

Γ̂
) = −2KÂ Γ̂

B̂
e α
Â
wB̂βz

Γ̂
(1)∇αe

β

Γ̂
,

(A27)

where we have used the orthonormality of Â and Γ̂ di-
rections. This gives the second term in the mass matrix
(A22).

To evaluate the first term in Eq. (A25)), we temporar-
ily return to the coordinate form of this term, the first
term on the left hand side of Eq. (3.5)). Then we use the
general result (valid in arbitrary gauges) for this term
that

⊥ρχ ∇̄µ∇̄µz
χ
(1) =⊥ρχ

1
√
γ
∂a

(√
γγab∂bz

χ
(1)

)
. (A28)

We now use the fact that we have chosen conformal gauge
to zeroth order, so that

√
γγab = ηab. This gives

⊥ρχ ∇̄µ∇̄µz
χ
(1) =⊥ρχ

1
√
γ
ηab∂a∂bz

χ
(1). (A29)

We now convert the ρ and χ indices in this equation
to orthonormal indices, by multiplying by appropriate
factors of e and w, and also by inserting the expansion
(A16) of the displacement vector. We use the formula

4(zΓ̂
(1)e

χ

Γ̂
) = 4(zΓ̂

(1))e
χ

Γ̂
+zΓ̂

(1)4e
χ

Γ̂
+

2
√
γ
ηab∂az

Γ̂
(1)∂be

χ

Γ̂
.

(A30)
The three terms in this expression generate, respectively,
the first term in Eq. (A20), the first term in the mass
matrix (A22), and the second term in Eq. (A20)).

Appendix B: Coordinate systems within the class of
conformal gauges

Within the conformal gauge, there is freedom in the
particular choice of worldsheet coordinates {ζ1, ζ2}. For
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example, they may be chosen to be space-time (ζa =
[τ, ζ]), null (ζa = [ζ−, ζ+] ≡ [τ −ζ, τ +ζ] = [2τ −ζ+, ζ+])
or semi-null (ζa = [τ, ζ+] ≡ [τ, τ + ζ]). The relation
between derivatives in the various coordinates is given
by (

∂

∂ζ+

)
τ

=

(
∂

∂ζ

)
τ

=

(
∂

∂ζ+

)
ζ−
−
(

∂

∂ζ−

)
ζ+

, (B1)

(
∂

∂τ

)
ζ+

=

(
∂

∂τ

)
ζ

−
(
∂

∂ζ

)
τ

= 2

(
∂

∂ζ−

)
ζ+

. (B2)

As mentioned in Sec. IV D, the conformal gauge con-
dition imposes that derivatives of the worldsheet are re-
lated. In space-time coordinates the τ and ζ derivatives
are related by,

∂τz
α∂τzα + ∂ζz

α∂ζzα = 0, ∂τz
α∂ζzα = 0. (B3)

Equivalently, the null derivatives are related by

∂ζ+zα∂ζ+zα = 0, ∂ζ−z
α∂ζ−zα = 0, (B4)

and the semi-null derivatives are related by

∂τz
α∂τzα = 0, ∂τz

α∂ζ+zα + ∂ζ+zα∂ζ+zα = 0. (B5)

Additionally, the equation of motion (3.4) reduces to

φ−1
[
∂ζζz

α − ∂ττzα
]

= 0 (B6)

in space-time coordinates, to

− 4φ−1∂ζ+ζ−z
α = 0 (B7)

in null coordinates, and to

− φ−1
[
∂ττz

α + 2∂ζ+τz
α
]

= 0 (B8)

in semi-null coordinates. The solutions can be writ-
ten in terms of left-moving and right-moving waves, i.e.
in terms of two functions aα(ζ+) and bα(ζ−) that sat-
isfy the tangent sphere condition gαβ∂ζ+aα∂ζ+aβ = 0 =

gαβ∂ζ−b
α∂ζ−b

β .

Appendix C: Energy-Momentum Loss Formulae

We review the QS [76] result for energy-momentum
loss by self-forces in light cone coordinates and confor-
mal gauge. We note that these results can be general-
ized to arbitrary gauge choice. Finally, we rewrite the
energy-momentum loss formulae directly in terms of the
conformal-gauge force using Eq. (3.14). We utilize the
result to evaluate the dissipative effects on the string.

QS analyze a string with mass per length µ, spacetime
position of the worldsheet xµ = zµ(ζ1, ζ2) where the two
coordinates covering the worldsheet are ζa = {ζ1, ζ2},

gµν = {−,+,+,+} and ζa = {ζ1, ζ2} = {τ, ζ}. The
Nambu-Goto action is

S = −µ
∫
d2ζ
√
−γ (C1)

γab = gµν
∂zµ

∂ζa
∂zν

∂ζb
(C2)

γ = det γab (C3)

and γ < 0. We have the stress energy tensor [Eq. (12.2.2)
of [105]]

Tµν(x) =
2√
−g(x)

(
δS

δgµν(x)

)
(C4)

g = det gµν . (C5)

Now using żµ = zµ,τ , z′µ = zµ,ζ , ż
2 = gµν ż

µżν , z′2 =

gµνz
′µz′

ν
, z′ · ż = gµνz

′µżν and δgαβ(x)/δgµν(x′) =

δ4(x− x′)
(
δµαδ

ν
β + δναδ

µ
β

)
/2 we can write

Tµν =
µ√
−g

∫
d2ζ√
−γ

δ4(x− z(ζ))Cµν (C6)

Cµν = Dµν + Eµν (C7)

Dµν = żµżν(z′)2 + z′µz′ν(ż)2 (C8)

Eµν = (z′ · ż) (z′µżν + żµz′ν) (C9)

This differs from QS Eq. (3.2) in two details: the power
of the determinant of the induced metric is −1/2 not 1/2
and there is an explicit occurrence of the determinant of
the spacetime metric.

The Lagrangian L = −µ
√
−γ leads to the equations of

motion [QS Eq. (3.3)]. With the gauge choices ẋ · x′ = 0

and (ẋ)2 + (x′
2
) = 0 we have

√
−γ = −(ẋ)2 = (x′)2 (C10)

and QS Eq. (3.6)

ẍν − x′′ν = −Γναβ

(
ẋαẋβ − x′αx′β

)
. (C11)

In light cone coordinates u ≡ τ +ζ and v ≡ τ −ζ these
are

∂u∂vx
µ = −Γµαβ∂ux

α∂vx
β (C12)

gαβ∂ux
α∂ux

β = 0 (C13)

gαβ∂vx
α∂vx

β = 0. (C14)

In flat background these reduce to

xµ(0),uv = 0 (C15)

with gauge conditions

ηµνx
µ
(0),ux

ν
(0),u = ηµνx

µ
(0),vx

ν
(0),v = 0. (C16)

The subscripts here and below label powers of µ. Our
φ = −γ(0) > 0.
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For general background the stress energy tensor is
Tµν ≡ µIµν

Iµν =
1√
−g

∫
dudvGµνδ(4)(x− z) (C17)

Gµν = zµ,uz
ν
,v + zµ,vz

ν
,u. (C18)

The form is exact and doesn’t explicitly involve γ. This is
QS Eq. (3.12) supplemented with an explicit determinant
of the spacetime metric. We can regard G (and γ) as
functions of u and v via x = z(u, v).

Integrating the covariant derivative of the stress energy
tensor ∇νTµν over a large cylinder with spatial extent
beyond the source and asymptotically flat and between
two time slices over weight

√
−gd4x gives the covariant

conservation law∫
d4x
√
−g∇νTµν =

∫
d4x

(√
−gTµν

)
,ν

+∫
d4x
√
−gΓµαβT

αβ . (C19)

The first term on the left is rewritten∫
d4x

(√
−gTµν

)
,ν

=

∫
d4x

(√
−gTµ0

)
,0

+∫
d4x

(√
−gTµi

)
,i
. (C20)

Defining

Pµ ≡
∫
d3x
√
−gTµ0 (C21)

∆Pµ ≡
∫
dtPµ,0 (C22)

and applying Gauss’ law to the integral at spatial infinity∫
d3x

(√
−gTµi

)
,i

= 0 (C23)

we find the change in the source momentum∫
d4x

(√
−gTµν

)
,ν

= ∆Pµ. (C24)

Inserting this result into Eq. (C19) and rearranging

∆Pµ =

∫
d4x
√
−g
(
∇νTµν − ΓµαβT

αβ
)

=

∫
d4x

(√
−gTµν

)
,ν

(C25)

It is not too surprising that the form is identical to
Eq. (C24).

Next, use the explicit form for the stress energy tensor
on the right hand side. How well do we need to know
the terms? Since P ∼ µ, if we wish ∆P ∼ µ2 then we
need

√
−gT ∼ µ

√
−gI accurate to order µ2. Since there

is one factor of µ which is explicit one needs I = I(0+1);

but, as mentioned earlier, I is exact. 22

Integrate over a fundamental period in time and a large
volume containing the string source∫

(
√
−gTµν),νd

4x = µ

∫
d4x∂ν

∫
dudvGµν ×

δ4(x− z) (C26)

= µ

∫
d4x

∫
dudvGµν ×

∂ν
(
δ4(x− z)

)
. (C27)

To handle the derivative of the delta function we intro-
duce two additional independent variables for spanning
the space perpendicular to the worldsheet

ya = {ζ, σ⊥} (C28)

ζ = {u, v} (C29)

σ⊥ = {σ1, σ2} . (C30)

Define Z which extends z off the worldsheet by adding a
perpendicular component h for σ⊥ 6= 0:

Zµ(y) = zµ(ζ) + hµ(ζ, σ⊥) (C31)

hµ|σ⊥=0 = 0 (C32)

gµν(∂ζz
µ)(∂σ⊥h

ν)|σ⊥=0 = 0. (C33)

The third conditions is the requirement that the exten-
sion lie off the worldsheet. This extension is meant to be
exact to all orders in µ.

Now we can formally extend the integration∫
dudvδ4(x− z)→

∫
d4yδ2(σ⊥)δ4(x− Z) (C34)

and rewrite the derivative of the delta function (this is
possible because the extra variables allow 1-to-1 coord.
transformations)

∂

∂xν
δ4(x− Z) = − ∂

∂Zν
δ4(x− Z) (C35)

= − ∂y
a

∂Zν
∂

∂ya
δ4(x− Z) (C36)

= −(∂νy
a)

∂

∂ya
δ4(x− Z), (C37)

insert and integrate by parts∫ (√
−gTµν

)
ν
d4x = −µ

∫
d4xd4yδ2 (σ⊥)Gµν ×

(∂νy
a)
(
∂aδ

4(x− Z)
)

(C38)

= µ

∫
d4y∂a

(
δ2(σ⊥)Gµν×

∂νy
a) . (C39)

22 In our formalism, this is not the case; we start with Eq. (3.16)
with gµν → ηµν and all other quantities evaluated for the back-
ground (see footnote 1). This expression is I(0).
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Finally, note that ∂Zµ

∂ya
∂yb

∂Zµ = δba so that we end up with

∆Pµ = 2µ

∫
dudv

∂2zµ

∂u∂v
. (C40)

This is exact and identical to what QS derive in Eq. (4.6).
Second order results in µ follow by writing zµ = zµ(0) +

zµ(1), noting the unperturbed equations of motion are

zµ(0),uv = 0, and finding

∆Pµ(0+1) = 0 (C41)

∆Pµ(2) = 2µ

∫
dudv

∂2zµ(1)

∂u∂v
. (C42)

One neeeds to know the perturbed string position to ap-
ply this formula directly to calculate energy-momentum
loss in the sense that ∆P(n+1) requires z(n).

QS re-write this using their first order equations of

motion zµ(1),uv = −Γµαβ(1)z
α
(0),uz

β
(0),v giving the final result

for energy-momentum change to second order in µ:

∆Pµ(2) = −2µ

∫
dudvΓµαβ(1)z

α
(0),uz

β
(0),v. (C43)

In this form the numerical evaluation of the energy-
momentum change requires the first order metric per-
turbations instead of the first order string perturbations.
The linearized equations for the metric are

�gµν(1) = −16πG
(
Tµν(1) − (1/2)gµν(0)T

ρ
ρ(1)

)
(C44)

where T(1) = µI(0) (i.e.
√
−g(0) = 1 and unperturbed

worldsheet z = z(0)).
We can generalize this procedure by following the iden-

tical logic without make the choice of the conformal
gauge. In summary,

S = −µ
∫
d2ζ
√
−γ (C45)

Tµν(x) =
2√
−g

δS

δgµν(x)
(C46)

=
µ√
−g

∫
d2ζ
√
−γγabzµ,azν,bδ4(x− z)(C47)

∆Pµ = µ

∫
d2ζ

∂

∂ζb
(√
−γγabzµ,a

)
. (C48)

If we count orders then we need γ(0+1) and z(0+1) to
give ∆P(2). In the previous case there was no explicit
appearance of the induced metric, only z was present so
it was sufficient to give z(0+1) to find ∆P(2). Now there
is the possibility that z(0) couples to γ(1) in addition to
z(1) coupling to γ(0).

Finally, the equation of motion, Kµ = 0 (our Eq. (2.7))
is explicitly

Kµ =
1√
h

∂

∂ζb

(√
hhabzµ,a

)
+ PαβΓµαβ = 0 (C49)

and so we can also write the energy-momentum change
as

∆Pµ = −µ
∫
d2ζ
√
hPαβΓµαβ . (C50)

The above pair of equations is analogous to QS’s
Eq. (3.14) and (4.6). They are valid for any coordinate
and gauge choice and do not presume flat background.

To calculate energy-momentum loss start from
Eq. (C42) above, rewrite u and v in terms of ζ and τ
to give

dudv = 2dζdτ (C51)

∂u∂v = (1/4)
(
∂2
τ − ∂2

ζ

)
(C52)

= −(1/4)ηab∂a∂b (C53)

for our definitions

η =

(
-1 0
0 1

)
(C54)

γab = φηab. (C55)

Now Eq. (3.14) (conformal gauge at zeroth and first or-
der) is

ηab∂a∂bz
µ
(1) = −Fµconf (C56)

so (C42) implies that the change in 4-momentum of the
string is

∆Pµ(2) = µ

∫
Fµconfdζdτ (C57)

with the region of integration given by the fundamental
period of the worldsheet: −L/2 ≤ ζ < L/2 and 0 ≤ τ <
L/2. For F0

conf < 0 the work done on the string lowers
its energy, ∆P 0 < 0, and the flux carried to infinity is
−∆P 0 > 0. This form is analogous to QS Eq. (C43).

Appendix D: Expansion of the retarded time in null
coordinates

In Sec. IV D we derived an expansion which is useful in
the case where spacelike and timelike worldsheet coordi-
nates are used. It is also useful to consider the case where
null coordinates are used (and, in particular, where the
variable of integration is a null worldsheet coordinate).
We will denote these null coordinates by ζ+ and ζ− and
assume they can be related to spacelike and timelike co-
ordinates in the standard way, ζ+ = τ+ζ and ζ− = τ−ζ.
Just like with the spacelike and timelike coordinates, we
can write down conformal gauge orthogonality relations
for these null coordinates23,

gαβ∂ζ+zα∂ζ+zβ = 0, (D1)

gαβ∂ζ−z
α∂ζ−z

β = 0, (D2)

gαβ∂ζ+zα∂ζ−z
β = −φ. (D3)

23 In the coordinates {ζ+, ζ−}, the conformal factor φ is half of its
value in the {τ, ζ} system at the same worldsheet point.
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We also have null coordinate version of the conformal
gauge equation of motion:

∂ζ−ζ+zα = 0. (D4)

Now, proceeding exactly as we did with spacelike and
timelike coordinates, we can seek a local expansion of
∆ζ−(∆ζ+) [or, equivalently, ∆ζ+(∆ζ−)]. As before, we
will achieve this using the fact that source and field points
are null-separated, σ(z, z′) = 0. Unlike before, however,
we can no longer make the assumption that ∆ζ− has an
expansion in integer powers of our order-counting param-
eter ε, where ∆ζ+ = O(ε). We can see this by starting
from our expansion of ∆τ(∆ζ), rewriting it in terms of
∆ζ− and ∆ζ+, and rearranging to get the expansion of
∆ζ−(∆ζ+).

Whether taking the direct approach or going via the
spacelike and timelike expansion, we obtain the same re-
sult upon gathering terms, namely that the expansion
takes a distinct form depending on the sign of ∆ζ+:

1. For ∆ζ+ > 0 we get a standard integer power series;

2. For ∆ζ+ < 0 we find that the O(ε) pieces cancel
and we are left starting with (at least) a cubic term.
The result is that our expansion now has the form

∆ζ− = ∆ζ−1 ε
1/3 + ∆ζ−2 ε

2/3 + · · · . (D5)

This is generically true, provided ∆τ3 in Eq. (4.40)
is non-zero, which is equivalent to the question
of how the retarded image deviates from being a
straight line.

As before, the expressions for the coefficients
∆ζ−1 ,∆ζ

−
2 , · · · are somewhat cumbersome. The

important point this time is that they depend on σ
(which is O(ε2)); on ∂τσ, ∂ζσ, and ∆ζ (all of which are
O(ε)); and on φ̄ and z̄α and their worldsheet derivatives.
Two different expansions are needed based upon the
sign of ∆ζ+.

Appendix E: 2D Calculation of the Self-force

As an independent check on the numerical results of
our 1D method, we also performed a direct 2D integra-
tion to determine the self-force. The results of the 2D
calculation are given in Sec. VI and are found to be con-
sistent with those of the 1D method. In this Appendix
we give the explicit details of the calculation.

1. Regularization

In order to devise a numerical scheme for evaluating
the self-force as a 2D integral, we will allow two modifi-
cations of the delta function that enforces the exact null
condition between source and field points. First, we re-
place the delta function itself with a non-singular, smooth

function of the spacetime interval. Second, we modify the
null condition to select source points marginally time-like
separated from the field point. There are two parame-
ters, one for the characteristic width of the delta function
replacement and one for the amount of over-retardation.
When both jointly approach zero then the smooth func-
tion tends to the singular delta function and the source-
field separation tends to the exact null separation. Our
prescription is that any physical answer is the limit of a
sequence of calculations with (jointly) vanishing param-
eters, assuming, of course, that a unique limit exists.

We integrate over the 2D surface of the source dis-
tribution using a Gaussian approximation to the delta
function. The Gaussian form picks up small source con-
tributions away from exact null separations (off shell).
This 2D method of integration avoids potential pitfalls
associated with the elimination of one world sheet co-
ordinate in terms of another coordinate when solving
σ(x, z(ζ1, ζ2)) = 0. Subtleties can easily arise (and be
missed) in the 1D reduction. The 2D integration method
therefore provides a valuable (if computationally costly)
independent check on other methods.

The 2D integration produces manifestly coordinate in-
variant results. It is potentially susceptible to the effect
of any world sheet singularity that lies off the exact null
image. For example, if a kink or cusp exists anywhere on
the world sheet then the associated divergence must be
integrable for the method to give a well-defined limit for
the force. As a practical matter, all finite integrable off
shell singularities are multiplied by Gaussian wings and
strongly suppressed. We believe but have not proven that
contributions of singularities lying off of the image do not
survive the limiting process.

2. Mathematical forms

As summarized in the main text, in Minkowski space-
time we write the modified Synge world-function for two
spacetime coordinates as

σ(x, z) =
1

2
(x− z)αgαβ(x− z)β + σ0 (E1)

where σ0 is the over-retardation parameter (and σ0 =
0 gives the usual world function). The retarded Green
function for a source at xs and field at xf is

G(xf , xs) = Θ(xs, xf )δ(σ) (E2)

where the Θ = 1 when the time of the source ts precedes
the time of the field point tf and 0 otherwise. We replace
the delta function with the Gaussian

δ(q)→ δG(q) ≡ e−q
2/(2w2)

√
2πw

(E3)

which is finite for any source and field point choices. We
allow two possible representations for the causality condi-
tion. In the “exact” representation we use the discontin-
uous Θ function. For the parts of the integrand that are
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directly proportional to G = Θδ we expect that using the
exact Θ representation suffices for all field-source com-
binations (i.e. we take the limit w → 0 of an integrand
with G ∼ ΘδG). However, parts of integrand include
derivatives with respect to xf of G. Then the situation
is more complicated. We can justify ignoring the func-
tional dependence of Θ on xf if we use the exact delta
function δ(σ) – the only point where both Θ and δ(σ)
are non-vanishing is xf = xs and things are undefined
there anyway. But it is dubious to ignore xf dependence
if we’re replacing the delta function with the Gaussian
δG because there are contributions from points xs (away
from xf ) such that the derivative of Θ with respect to
xf multiplies a non-zero off-shell δG. It is not obvious
that it is safe to drop Θ’s functional dependence on xf
before taking the limit of δG → δ. To study the situation
we replace the cut-off with a smoothed discontinuity i.e.
Θ → Θtanh ≡ (1 − tanh((ts − tf )/w))/2 and take full
derivatives of ΘtanhδG. As a practical matter we use the
same small parameter in the Gaussian and in the tanh,
and will seek convergent results in the joint limit w → 0
and σ0 → 0.

Let f1 and f2 be the self-force integrands

fρ1 (x, z) = − ⊥ρλ (x)ηµν(x)∆Hµνλ (E4)

fρ2 (x, z) = Kµνρ(x)∆hµν . (E5)

These are integrated with uniform weight on the world-
sheet to give Eq. (3.6)

F ρ1 (x) =

∫∫
fρ1 (x, z)dζ1dζ2 (E6)

F ρ2 (x) =

∫∫
fρ2 (x, z)dζ1dζ2. (E7)

The tangential and perpendicular projection operators
and the extrinsic curvature are evaluated at the field
point, x. The metric perturbation quantities, ∆H and
∆h, depend upon both source and field points. Replac-
ing covariant derivatives with partial derivatives (recall
we are working in Minkowski spacetime, in which case
the two derivatives are equal), the integrands for the
trace-reversed metric perturbation and metric perturba-
tion derivative are

∆h̄αβ = −4Gµ
√
−γ(z)ηαβ(z)G(x, z) (E8)

∆h̄αβ,γ = −4Gµ
√
−γ(z)ηαβ(z) (E9)

∂G(x, z)

∂xγf
, (E10)

where source and field point dependence is explicitly in-
dicated.

We now proceed with the calculation for a given choice
of w and σ0 for the smoothed Green function. We repeat
the calculation for a sequence with w → 0 and σ0 → 0.
The area of the world sheet includes all non-zero con-
tributions to the integral but as a practical matter we
limit it to regions where the magnitude of the integrand
exceeds some minimum threshold.

We have used several different techniques for estimat-
ing the integrals of interest. The first approach is a sim-
ple quadrature along lines in which we evaluate fρ1 at a
lattice of points z and estimate

F ρ1 (x) ∼ AWS

N

N∑
i=1

fρ1 (x,,i ) (E11)

(E12)

where AWS =
∫
dζ1dζ2 is the world sheet area (and

likewise for F2). This approach makes essentially no as-
sumptions about the integrand’s support but the achiev-
able accuracy is limited in practice by the inefficiencies
of working with a low order scheme and a global grid.

Only a small part of the worldsheet is important in
the limiting results. The second approach is cubature,
an adaptive algorithm for numerical integration based on
the algorithm of Genz and implemented in routine Cuhre
in the Cuba package [106]. The basic integration rule for
the two dimensional application is degree 13. We begin
by identifying a part of the world sheet in which the in-
tegrand is above some threshold (say > 10−12), apply an
integration rule, repeatedly subdivide the region to esti-
mate the global integral and errors and stop when errors
are sufficiently small. This method, being higher order
and more selective about the choice of points, achieves
higher accuracy for a given computational cost but some-
times terminates too early if errors are mis-estimated.

3. KT Cases I and II

The main text compares the Case I and II results for
1D to those found by direct integration over the 2D world
sheet. We used the rectangular area centered on the field
point and of size ±L/2 in both ζ1 and ζ2 which encom-
passes the entire string loop image. We parameterized
the Gaussian width and the Θ function with n and m:

dchar =
L

2n
(E13)

w = d4
char (E14)

σ0 = (mdchar)
2 (E15)

and let n range from 4 to 7 and set m ≥ 0.24. We accu-
mulated the contributions to the integrals only for points
with G > 10−4 for each choice of n and m. This cutoff
effectively removed any effect of cusps lying off the string
image. We checked sensitivity to the cutoff by recalculat-
ing with G > 10−3 and G > 10−2, finding no differences
and will drop further mentions of this parameter.

24 Note δ(σ) ∼ e−σ
2/2χ2

/(
√

2πχ) and σ ∼ ds2 ∝ L2 implies that
χ ∝ d2char ∝ σ0. However, we use Gaussian width w ∝ χ2 ∝
d4char and σ0 ∝ d2char. Of course, both the width and the over-
retardation parameter decrease as w → 0 or n→∞.
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Case I is intrinsically the simplest calculation since
the image of the string loop is smooth, without cusps
or kinks. Several series of integrations using 2D uniform
grids were performed. We studied the convergence for
the following sequences:

• m = 0 (no over-retardation), Θ (exactly causal),
n = 4− 6.25

• m = 0 (no over-retardation), Θtanh (smoothed
causality), n = 4− 5.5

• m = 0.1 (over-retardation), Θ (exactly causal), n =
4− 5.75 .

For the integration for a specific m and n we estimated
the quadrature errors by halving the grid spacing and
looking at successive differences in the answers (here-
after, Cauchy errors). We repeated the process until the
Cauchy errors were small. We then generated sequences
for varying n. In these we observed smooth, steady con-
vergence to the [1D] results.

We extrapolated numerical results to n =∞ by fitting
each component F with the form F (n) = F (∞) + ae−bn.
F (∞), a and b are found from numerical results at 3 spe-
cific values of n. Table II summarizes the results for one
sequence with fixed m = 0 and exact Θ function. The
second column gives the extrapolated force solution for
each component, the third is an estimate of the size of
the systematic errors in extrapolation (by fitting different
grid based calculations) and the fourth is the difference of
F (∞) and the [1D] results. The [1D] results include the
hidden delta function at the field point and the line inte-
gral with no over-retardation and exact causality. Note
that the error with respect to the [1D] results is <∼4×10−3

for the individual components of F ρ1 and <∼3 × 10−5 for
F ρ2 . The size of the 1D-2D differences are comparable,
component by component, to the Cauchy errors for the
quadrature itself. These are much smaller than the con-
tribution of the delta function at field point.

We found Case I sequences with or without over-
retardation, with or without smooth causal condition all
smoothly converged to the [1D] answer. It is perhaps
important to emphasize that this consistency is strong
evidence that a single, well-defined limit exists and is cor-
rectly recovered with the 1D analysis for smooth loops.

We next repeated the Case I sequence for m = 0
(no over-retardation), exactly causal Green function, for
n = 4 − 7 using the cubature method. Cubature will
be used for most of the remaining force evaluations be-
cause it is more efficient and has higher accuracy. We
began by selecting rectangular subregions of the world
sheet that can plausibly contribute to the quadratures
of interest. These closely trace the retarded string im-
age. For example, figure 23 illustrates the field point (red
dot) and outlines 128 subregions of interest for m = 0
and n = 5. The union of all the subregions encloses
the area containing non-trivial integrands in the sense√∑

ρ ((fρ1 )2 + (fρ2 )2) > 10−8. The subregion bounds are

found numerically. The string loop image lies within the
subregions as n grows large.

-2 -1 0 1 2 3 4

σ=ζ2
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2.0

τ=ζ1

FIG. 23. The red dot shows the field point for Case I for
the KT string loop. The boxes enclose the regions with RMS
integrands > 10−8 for m = 0 and n = 5.

The function is integrated by cubature over each sep-
arate subregion and the full answer is the sum over the
set. In the cubature method the subregion is divided re-
peatedly until an estimated error tolerance (absolute or
relative errors<∼10−6) is reached. Sometimes the error es-
timate is inaccurate so we also systematically increased
the number of rectangles from 128 up to 2048 yielding
finer and finer starting conditions. This allows a check
that the error estimates are robust. Once all the subre-
gions are accurately accounted for the total is calculated.

Figures 24 and 25 plot the log10 absolute differences
between the [2D] and [1D] calculations as a function of
n. The solid lines are for [1D] calculations with the delta
function contribution at the field point. The scale for the
y-axis on the figures is quite different and, as expected,
the error is much larger for F1 than for F2. The errors
cease to decrease exponentially with n in figure 25 for
1D-2D differences of size 3 × 10−5, likely a consequence
of the intrinsic accuracy of the cubature integrations.

In summary, the Case I [2D] cubature calculations
agree with the [1D] calculations with delta function con-
tribution at the field point.
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FIG. 24. The difference between smoothed Green function
based, 2D grid evaluation of F ρ1 and the exact delta function,
[1D] evaluation, as a function of n for loop I. The [2D] results
should approach the [1D] results as n → ∞ when the Gaus-
sian tends to the delta function. These results have no over-
retardation (m = 0) and use the exact Θ function for causal-
ity. The colors label results for the four spacetime components
of F1; red, yellow, green and blue correspond to components
0, 1, 2 and 3, respectively. The ordinate, log10 |F

ρ
1,2D−F

ρ
1,1D|,

quantifies the difference, component by component, as a func-
tion of n. The delta function contribution at the field point is
of order unity and far larger than the 1D-2D differences. Ta-
ble II gives detailed information on individual contributions.
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FIG. 25. Same as Fig. 24 except for F ρ2 .

Case II is similar to Case I except that a cusp occurs on
the image of the string loop. We proceeded in the same
manner, breaking the world sheet up into small subre-
gions with non-trivial integrands. The main difference
from Case I is that there is a significant loss in preci-
sion for source points near the cusp. We had to perform
those calculations with quadruple precision arithmetic.
We avoided evaluating quantities at the cusp itself but
sampled points as closely as needed to estimate the in-
tegrated quantities. The integrands are extremely com-
plicated and we did not perform an analytic expansion
in the vicinity of the cusp. We found (1) no numeri-
cal evidence for singular behavior and (2) well-behaved
quadratures. Fig. 26 and 27 show the convergence as n
increases. The basic conclusion is the same as for Case I:

the [2D] numerical results tend to the [1D] results when
the latter include the delta function contribution at the
field point.
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FIG. 26. Same as Fig. 24 except for loop II.
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FIG. 27. Same as Fig. 24 except for F ρ2 and loop II.

4. Garfinkle and Vachaspati string

The assumed field point is (ζ1, ζ2) = (τ, ζ) =
(0.3, 0.4)L. The kinks are located at ζ2 approximately
−0.79 and 1.87. The [1D] results are given in Table V.
These are calculated from the line integrals, boundary
terms at each kink and the delta function at the field
point as described in the main text.

We introduce a small parameter to “round off” the
kinks as follows25: replace δj,b 2x

L c
with a smoothly vary-

25 To recap, in the various 1D methods we took care to accom-
modate the string discontinuities, the issue of field equal source
point and patching different coordinate systems together. The
[2D] calculations is not immune to the first of these issues.
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ing function of characteristic width ∆:

δj(x) =
1

2

(
tanh

(
x− xlo

∆

)
−

tanh

(
xhi − x

∆

))
(E16)

xlo =
jL

2
(E17)

xhi = xlo +
L

2
(E18)

For L = 2π and ∆ = 10−2 changes in the spacetime con-
figuration of the loop are largely confined to the vicinity
of the kink. They remain invisible at the resolution of
Fig. 13. In the tangent sphere representation, non-zero
∆ connects the green arcs. The linking curves do not lie

on the unit sphere and the position ~b′ along the curve
changes very rapidly with its argument, i.e. the tangent
vector quickly passes through the gap.

We have integrated the forces using the cubature
method as was done for the KT string with a sequence
for m = 0 (no over-retardation), exactly causal Green
function, for n = 4− 7 and we adjust ∆ = e−1.15129n (so
∆ = 10−2 at n = 4 and 10−3 at n = 6) so that the limit
is the idealized kink solution. The results are shown in
Figs. 28 and 29. Note that the errors in the [2D] results
are far smaller than the size of the individual components
that make up the [1D] calculation (the line integral, the
delta function and the kink contributions).
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FIG. 28. Same as Fig. 24 except for loop III.
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FIG. 29. Same as Fig. 24 except for F ρ2 and loop III.

Appendix F: Parametrized fits near the cusp for the
non-intersecting KT string

In this appendix we give quantitative numerical fits to
the behaviour of the self-force in the vicinity of the cusp
for the non-intersecting KT string (α = 1/2, φ = 0) de-
scribed in Sec. VI C. We investigated several approaches
to fitting the forces in the vicinity of the cusp.

Here, we begin with fitting the integral part of Fµconf
since the delta-function part is known in analytic form.
We sampled worldsheet points about the cusp extending
from 2× 10−2 to 2× 10−8 in radius and at fixed angle θ
and found

log |Fµ| = Aµ1 (θ) log x+Aµ2 (θ)x+Aµ3 (θ) (F1)

x = log r (F2)

r =
√
δτ2 + δζ2 (F3)

fits each ray very well. The ratio of the magnitude of
log |Fµ| to the root mean square error for one fitted ray
is typically ∼ 103. We observed that angle-dependent
coefficients Aµi (θ) varied systematically and we selected
simple parameterized forms. For F t and F x the form

Aµi = aµi χ(θ)b
µ
i (F4)

χ(θ) = lim
r→0

√
−γ
r2

(F5)

gave reasonable fits. There are 6 scalars needed to fit
each of the 2d function F t and F x. For F y we found
simple angle-dependent coefficients Aµi (θ) worked well:

Ai = ai + biT

(
θ − c
2π

)
(F6)

where T (x) is the triangle wave with amplitude 1, period
1, T (0) = 0 and T ′(0) = 4. There are 7 scalars to fit
(note that c is the same fitted parameter for the 3 Ai).
For F z the form is tolerably well fit by

Ai = ai + biU
(
θ − π

2

)
S

(
θ − c
3π/2

)
− (F7)

diU
(π

2
− θ
)
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where U(x) is the step function (0 for x < 0 and 1 for
x ≥ 0), S(x) is the sawtooth wave that varies from 0
to 1 with period 1, S(0+) = 0, S(1−) = 1. There are
9 scalars to fit (here c = 0.5 is fixed and not varied).
Results are summarized in the Table below. The fits for

F t and F x are close to 1/r because At2 ∼ Ax2 ∼ −1 is the
dominant term (and at2 ∼ ax2 ∼ −1 and bt2 ∼ bx2 ∼ 0).
The fit for F y is close to log r (setting Ay2 = 0 makes
minimal difference in Q, as shown in the Table). The fit
for F z requires both Az1 and Az2.

µ a1 b1 a2 b2 a3 b3 Q
t 0.0512 −0.0474 −0.996 −0.000301 2.982 −0.110 123
x 0.0207 −0.0497 −0.998 −0.000625 3.027 −0.108 123

µ a1 b1 a2 b2 a3 b3 c Q
y 0.931 0.651 0.00119 0.0349 3.096 −1.429 0.314 87

0.942 0.335 - - 3.084 −1.089 0.314 82

µ a1 b1 d1 a2 b2 d2 a3 b3 d3 c Q
z 1.053 −0.961 0.617 0.0145 −0.0524 0.0396 0.679 2.495 −1.422 0.5 87

0.925 −0.490 0.262 - - - 0.815 1.992 −1.041 0.5 30

TABLE IX. Fits based on log |F | = A1 log x+A2x+A3 where x = log r and Ai(θ) are specific forms described in the text. Q
is the ratio of the mean log |F | to the root mean square error of the fit.

We have also fit four parameter, adhoc forms. These
are generally less good than the previous set and the
quality varies considerably. It is best in the quadrants
without the visible fold and it remains difficult to fit all
quadrants together. The results (given in Table X) imply

that the t- and x-components diverge as 1/r, where r ≡√
τ2 + ζ2 is the Euclidean distance on the worldsheet. A

possible divergence in the y- and z-components cannot
be ruled out, but is certainly not as strong as the t- and
x-components.
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µ sgn δτ sgn δζ a b c d ε Q
t All 3.95292 −0.414102 0.151793 0.0721235 0.131773 4.77971

++ 3.01226 −0.502883 0.178088 0.212065 0.00341496 163.388
+- 4.22776 −0.474782 −0.757188 0.686015 0.0569798 11.6713
-+ 3.24345 −0.468097 0.395402 0.427249 0.118002 4.78373
– 2.69632 −0.502038 −0.0722535 −0.418941 0.0189629 28.1211

x All 3.97366 −0.412535 0.151562 0.0719106 0.131271 4.78016
++ 3.04136 −0.500672 0.176313 0.20999 0.00282476 196.672
+- 4.24515 −0.473347 −0.755537 0.684603 0.0567632 11.6804
-+ 3.26301 −0.466743 0.395591 0.425764 0.11768 4.78189
– 2.72609 −0.499806 −0.0708712 −0.416556 0.0186554 28.457

y All 4.20813 −0.0398377 −0.381031 0.144944 0.134169 2.41009
++ 3.26127 −0.0948215 −0.0164481 0.48741 0.0189321 7.52428
+- 3.61753 −0.0744807 −0.580823 −0.340387 0.167632 1.57078
-+ 3.70482 −0.0686625 −0.518819 0.296286 0.019127 8.42306
– 3.92864 −0.0768625 −0.17871 0.10457 0.0088657 15.2576

z All 2.65579 −0.0161345 −0.344105 0.0271806 0.200512 1.58037
++ 1.78559 −0.0666965 −0.072034 0.460484 0.00948379 14.77
+- 1.91589 −0.0211916 −0.156757 −0.808392 0.27011 1.37301
-+ 3.04493 −0.0625678 0.234966 −0.80721 0.0899292 2.78705
– 2.76864 −0.0513231 0.0852916 0.348301 0.0157434 7.3724

TABLE X. Two dimensional fits to log |Fµconf | near the cusp (0.0013 < {τ |, |ζ|} < 0.0021) using the form a + b log
√
−γ +

c cos θ + d sin θ where cos θ = τ/r, sin θ = ζ/r and r =
√
τ2 + ζ2. The fit goodness is quantified by ε, the root mean square

error between the fit and the actual data (both as logs), and Q, the ratio of the total variation in logFµconf divided by ε. “All”
means a single fit to the whole plane; ++ means the fit restricted to τ ≥ 0 and ζ ≥ 0 and similarly for +−, −+ and −−.
Asymptotically F ∝ 2b/τ for ζ = 0 and 2b/ζ for τ = 0.

In addition to the full fits, we have made simpler one-
dimensional fits along the coordinate axes. Table XI gives
fits to | logFµconf | as a power law in | log τ | along the coor-
dinate axis ζ = 0. We have separately fit the total force
and just the part of the force that comes from the in-
tegral contribution. For the t- and x-components of the
total force the scaling is clear and unambiguous. There is
a measurable difference in the amplitude of the force be-
fore and after the cusp formation even though the rate of
divergence is identical. (The delta function contribution
scales as 1/r for t- and x-components.) The amplitude
difference or Stokes phenonmenon is smaller in the inte-
gral piece than in the total. The delta function contribu-
tion is related to the choice of the retarded Green func-
tion and the dichotomy of emission and absorption near
the cusp. The y- and z-components grow more slowly
as the time to the cusp shrinks and the asymptotics are
not as well-determined. Nonetheless, the similarity of
total and integral quantities implies that the delta func-
tion contribution which is constant in r (for the y- and
z-components) is subdominant at the scales probed. Sim-
ilarly, Table XII considers the analogous situation for
| logFµconf | as a power law in | log ζ| along the coordinate
axis τ = 0. Again, the scaling with distance to the cusp
is unambiguous. The t- and x-components diverge like
|ζ|−1 and have similar amplitudes. The Stokes-like phe-
nomenon seems to be weaker or absent in the total force
than it is in the integral contribution alone (contrary to
the previous example). The string segment behaves ap-

proximately symmetrically along its length. Again, the
y- and z-components grow more slowly as the cusp is
approached.

µ sgn δτ a b Q a b Q
total integral

t + 3.56 −1.00 8.9× 103 3.30 −1.00 6.8× 103

− 3.08 −1.00 5.6× 103 3.39 −1.00 7.7× 103

x + 3.56 −1.00 2× 104 3.31 −1.00 1.6× 104

− 3.08 −1.00 1× 104 3.40 −1.00 1.5× 104

y + 3.27 −0.19 60 3.46 −0.18 65
− 4.43 −0.11 1.1× 102 4.51 −0.10 1.1× 102

z + 1.71 −0.14 82 2.50 −0.09 1.3× 102

− 2.94 −0.07 1.5× 102 3.27 −0.05 1.9× 102

TABLE XI. One dimensional fits for the variation of
log |Fµconf | (total and continuous integral contribution) with
τ for ζ = 0. The range of the fit is 0.0013 < |δτ | < 0.0021
and the form is a + b log |τ |. Q is the ratio of the total vari-
ation in logFµconf divided by the RMS error between the fit
and the actual data.
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µ sgn δζ a c Q a c Q
total integral

t + 2.78 −1.00 4× 103 2.56 −1.00 3.3× 103

− 2.70 −1.00 4× 103 2.89 −1.00 4.8× 103

x + 2.79 −1.00 9× 103 2.58 −1.00 7× 103

− 2.71 −1.00 8× 103 2.90 −1.00 104

y + 4.00 −0.14 84 4.02 −0.13 85
− 3.77 −0.15 76 3.80 −0.15 77

z + 2.36 −0.10 120 2.48 −0.09 125
− 2.35 −0.10 110 2.47 −0.09 120

TABLE XII. One dimensional fits for the variation of
log |Fµconf | (total and continuous integral contribution) with
ζ at τ = 0. The range of the fit is 0.0013 < |ζ| < 0.0021 and
the form is a + c log |ζ|. Q is the ratio of the total variation
in logFµconf divided by the RMS error between the fit and the
actual data.

[1] S. H. Henry Tye, Lect. Notes Phys. 737, 949 (2008),
arXiv:hep-th/0610221 [hep-th].

[2] A. H. Guth, Phys. Rev. D23, 347 (1981).
[3] A. D. Linde, Second Seminar on Quantum Gravity

Moscow, USSR, October 13-15, 1981, Phys. Lett. 108B,
389 (1982).

[4] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48,
1220 (1982).

[5] A. Albrecht and N. Turok, Phys. Rev. Lett. 54, 1868
(1985).

[6] D. P. Bennett and F. R. Bouchet, Phys. Rev. Lett. 60,
257 (1988).

[7] B. Allen and E. P. S. Shellard, Phys. Rev. Lett. 64, 119
(1990).

[8] V. Vanchurin, K. Olum, and A. Vilenkin, Phys. Rev.
D72, 063514 (2005), arXiv:gr-qc/0501040 [gr-qc].

[9] C. Ringeval, M. Sakellariadou, and F. Bouchet, JCAP
0702, 023 (2007), arXiv:astro-ph/0511646 [astro-ph].

[10] C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev.
D73, 043515 (2006), arXiv:astro-ph/0511792 [astro-ph].

[11] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer,
Phys. Rev. D83, 083514 (2011), arXiv:1101.5173 [astro-
ph.CO].

[12] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer,
Phys. Rev. D89, 023512 (2014), arXiv:1309.6637 [astro-
ph.CO].

[13] T. W. B. Kibble, J. Phys. A9, 1387 (1976).
[14] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and

Other Topological Defects (Cambridge University Press,
2000).

[15] G. F. Smoot et al. (COBE), Astrophys. J. 396, L1
(1992).

[16] C. L. Bennett, A. Banday, K. M. Gorski, G. Hinshaw,
P. Jackson, P. Keegstra, A. Kogut, G. F. Smoot, D. T.
Wilkinson, and E. L. Wright, Astrophys. J. 464, L1
(1996), arXiv:astro-ph/9601067 [astro-ph].

[17] D. N. Spergel et al. (WMAP), Astrophys. J. Suppl. 170,
377 (2007), arXiv:astro-ph/0603449 [astro-ph].

[18] A. Vilenkin, Phys. Rev. D23, 852 (1981).
[19] C. Hogan and R. Narayan, Monthly Notices of the Royal

Astronomical Society 211, 575 (1984).
[20] A. Vilenkin, Astrophys. J. 282, L51 (1984).
[21] A. A. de Laix, Phys. Rev. D56, 6193 (1997),

arXiv:astro-ph/9705223 [astro-ph].
[22] F. Bernardeau and J.-P. Uzan, Phys. Rev. D63, 023005

(2000), arXiv:astro-ph/0004102 [astro-ph].
[23] M. Sazhin, G. Longo, J. M. Alcala’, R. Silvotti,

G. Covone, O. Khovanskaya, M. Pavlov, M. Pannella,
M. Radovich, and V. Testa, Mon. Not. Roy. Astron.
Soc. 343, 353 (2003), arXiv:astro-ph/0302547 [astro-
ph].

[24] M. V. Sazhin, M. Capaccioli, G. Longo, M. Paolillo, and
O. S. Khovanskaya, (2006), arXiv:astro-ph/0601494
[astro-ph].

[25] J. L. Christiansen, E. Albin, K. A. James, J. Goldman,
D. Maruyama, and G. F. Smoot, Phys. Rev. D77,
123509 (2008), arXiv:0803.0027 [astro-ph].

[26] L. Pogosian, S. H. H. Tye, I. Wasserman, and
M. Wyman, Phys. Rev. D68, 023506 (2003), [Erratum:
Phys. Rev.D73,089904(2006)], arXiv:hep-th/0304188
[hep-th].

[27] L. Pogosian, M. C. Wyman, and I. Wasserman, JCAP
0409, 008 (2004), arXiv:astro-ph/0403268 [astro-ph].

[28] S. H. H. Tye, I. Wasserman, and M. Wyman,
Phys. Rev. D71, 103508 (2005), [Erratum: Phys.
Rev.D71,129906(2005)], arXiv:astro-ph/0503506 [astro-
ph].

[29] M. Wyman, L. Pogosian, and I. Wasserman,
Phys. Rev. D72, 023513 (2005), [Erratum: Phys.
Rev.D73,089905(2006)], arXiv:astro-ph/0503364 [astro-
ph].

[30] L. Pogosian, I. Wasserman, and M. Wyman, (2006),
arXiv:astro-ph/0604141 [astro-ph].

[31] U. Seljak, A. Slosar, and P. McDonald, JCAP 0610,
014 (2006), arXiv:astro-ph/0604335 [astro-ph].

[32] N. Bevis, M. Hindmarsh, M. Kunz, and J. Urrestilla,
Phys. Rev. D76, 043005 (2007), arXiv:0704.3800 [astro-
ph].

[33] A. A. Fraisse, JCAP 0703, 008 (2007), arXiv:astro-
ph/0603589 [astro-ph].

http://arxiv.org/abs/hep-th/0610221
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.54.1868
http://dx.doi.org/10.1103/PhysRevLett.54.1868
http://dx.doi.org/10.1103/PhysRevLett.60.257
http://dx.doi.org/10.1103/PhysRevLett.60.257
http://dx.doi.org/10.1103/PhysRevLett.64.119
http://dx.doi.org/10.1103/PhysRevLett.64.119
http://dx.doi.org/10.1103/PhysRevD.72.063514
http://dx.doi.org/10.1103/PhysRevD.72.063514
http://arxiv.org/abs/gr-qc/0501040
http://dx.doi.org/10.1088/1475-7516/2007/02/023
http://dx.doi.org/10.1088/1475-7516/2007/02/023
http://arxiv.org/abs/astro-ph/0511646
http://dx.doi.org/10.1103/PhysRevD.73.043515
http://dx.doi.org/10.1103/PhysRevD.73.043515
http://arxiv.org/abs/astro-ph/0511792
http://dx.doi.org/10.1103/PhysRevD.83.083514
http://arxiv.org/abs/1101.5173
http://arxiv.org/abs/1101.5173
http://dx.doi.org/10.1103/PhysRevD.89.023512
http://arxiv.org/abs/1309.6637
http://arxiv.org/abs/1309.6637
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/cosmic-strings-and-other-topological-defects?format=PB
http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/cosmic-strings-and-other-topological-defects?format=PB
http://dx.doi.org/ 10.1086/186504
http://dx.doi.org/ 10.1086/186504
http://dx.doi.org/10.1086/310075
http://dx.doi.org/10.1086/310075
http://arxiv.org/abs/astro-ph/9601067
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/513700
http://arxiv.org/abs/astro-ph/0603449
http://dx.doi.org/10.1103/PhysRevD.23.852
http://dx.doi.org/10.1093/mnras/211.3.575
http://dx.doi.org/10.1093/mnras/211.3.575
http://dx.doi.org/10.1086/184303
http://dx.doi.org/10.1103/PhysRevD.56.6193
http://arxiv.org/abs/astro-ph/9705223
http://dx.doi.org/10.1103/PhysRevD.63.023005
http://dx.doi.org/10.1103/PhysRevD.63.023005
http://arxiv.org/abs/astro-ph/0004102
http://dx.doi.org/ 10.1046/j.1365-8711.2003.06568.x
http://dx.doi.org/ 10.1046/j.1365-8711.2003.06568.x
http://arxiv.org/abs/astro-ph/0302547
http://arxiv.org/abs/astro-ph/0302547
http://arxiv.org/abs/astro-ph/0601494
http://arxiv.org/abs/astro-ph/0601494
http://dx.doi.org/ 10.1103/PhysRevD.77.123509
http://dx.doi.org/ 10.1103/PhysRevD.77.123509
http://arxiv.org/abs/0803.0027
http://dx.doi.org/10.1103/PhysRevD.68.023506, 10.1103/PhysRevD.73.089904
http://arxiv.org/abs/hep-th/0304188
http://arxiv.org/abs/hep-th/0304188
http://dx.doi.org/10.1088/1475-7516/2004/09/008
http://dx.doi.org/10.1088/1475-7516/2004/09/008
http://arxiv.org/abs/astro-ph/0403268
http://dx.doi.org/10.1103/PhysRevD.71.103508, 10.1103/PhysRevD.71.129906
http://arxiv.org/abs/astro-ph/0503506
http://arxiv.org/abs/astro-ph/0503506
http://dx.doi.org/10.1103/PhysRevD.72.023513, 10.1103/PhysRevD.73.089905
http://arxiv.org/abs/astro-ph/0503364
http://arxiv.org/abs/astro-ph/0503364
http://arxiv.org/abs/astro-ph/0604141
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://arxiv.org/abs/astro-ph/0604335
http://dx.doi.org/ 10.1103/PhysRevD.76.043005
http://arxiv.org/abs/0704.3800
http://arxiv.org/abs/0704.3800
http://dx.doi.org/10.1088/1475-7516/2007/03/008
http://arxiv.org/abs/astro-ph/0603589
http://arxiv.org/abs/astro-ph/0603589


53

[34] L. Pogosian, S. H. H. Tye, I. Wasserman, and
M. Wyman, JCAP 0902, 013 (2009), arXiv:0804.0810
[astro-ph].

[35] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571,
A25 (2014), arXiv:1303.5085 [astro-ph.CO].

[36] T. Vachaspati and A. Vilenkin, Phys. Rev. D31, 3052
(1985).

[37] A. Economou, D. Harari, and M. Sakellariadou, Phys.
Rev. D45, 433 (1992).

[38] R. A. Battye, R. R. Caldwell, and E. P. S. Shellard,
in Topological defects in cosmology (1997) pp. 11–31,
arXiv:astro-ph/9706013 [astro-ph].

[39] T. Damour and A. Vilenkin, Phys. Rev. Lett. 85, 3761
(2000), arXiv:gr-qc/0004075 [gr-qc].

[40] T. Damour and A. Vilenkin, Phys. Rev. D64, 064008
(2001), arXiv:gr-qc/0104026 [gr-qc].

[41] T. Damour and A. Vilenkin, Phys. Rev. D71, 063510
(2005), arXiv:hep-th/0410222 [hep-th].

[42] X. Siemens, J. Creighton, I. Maor, S. Ray Majumder,
K. Cannon, and J. Read, Phys. Rev. D73, 105001
(2006), arXiv:gr-qc/0603115 [gr-qc].

[43] C. J. Hogan, Phys. Rev. D74, 043526 (2006),
arXiv:astro-ph/0605567 [astro-ph].

[44] X. Siemens, V. Mandic, and J. Creighton, Phys. Rev.
Lett. 98, 111101 (2007), arXiv:astro-ph/0610920 [astro-
ph].

[45] B. Abbott et al. (LIGO Scientific), Phys. Rev. D76,
082001 (2007), arXiv:gr-qc/0605028 [gr-qc].

[46] B. P. Abbott et al. (LIGO Scientific), Phys. Rev. D80,
062002 (2009), arXiv:0904.4718 [astro-ph.CO].

[47] B. P. Abbott et al. (VIRGO, LIGO Scientific), Nature
460, 990 (2009), arXiv:0910.5772 [astro-ph.CO].

[48] J. Aasi et al. (VIRGO, LIGO Scientific), Phys. Rev.
Lett. 112, 131101 (2014), arXiv:1310.2384 [gr-qc].

[49] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys.
Rev. Lett. 118, 121101 (2017), [Erratum: Phys. Rev.
Lett.119,no.2,029901(2017)], arXiv:1612.02029 [gr-qc].

[50] F. R. Bouchet and D. P. Bennett, Phys. Rev. D41, 720
(1990).

[51] R. R. Caldwell and B. Allen, Phys. Rev. D45, 3447
(1992).

[52] V. M. Kaspi, J. H. Taylor, and M. F. Ryba, Astrophys.
J. 428, 713 (1994).

[53] F. A. Jenet, G. B. Hobbs, W. van Straten, R. N. Manch-
ester, M. Bailes, J. P. W. Verbiest, R. T. Edwards,
A. W. Hotan, J. M. Sarkissian, and S. M. Ord, As-
trophys. J. 653, 1571 (2006), arXiv:astro-ph/0609013
[astro-ph].

[54] M. R. DePies and C. J. Hogan, Phys. Rev. D75, 125006
(2007), arXiv:astro-ph/0702335 [astro-ph].

[55] J. J. Blanco-Pillado and K. D. Olum, (2017),
arXiv:1709.02693 [astro-ph.CO].

[56] J. J. Blanco-Pillado, K. D. Olum, and X. Siemens,
(2017), arXiv:1709.02434 [astro-ph.CO].

[57] D. F. Chernoff and S. H. H. Tye, Int. J. Mod. Phys.
D24, 1530010 (2015), arXiv:1412.0579 [astro-ph.CO].

[58] C. J. Burden, Phys. Lett. 164B, 277 (1985).
[59] D. Garfinkle and T. Vachaspati, Phys. Rev. D36, 2229

(1987).
[60] R. Durrer, Nucl. Phys. B328, 238 (1989).
[61] B. Allen, P. Casper, and A. Ottewill, Phys. Rev. D50,

3703 (1994), arXiv:gr-qc/9405037 [gr-qc].
[62] B. Allen and P. Casper, Phys. Rev. D50, 2496 (1994),

arXiv:gr-qc/9405005 [gr-qc].

[63] B. Allen, P. Casper, and A. Ottewill, Phys. Rev. D51,
1546 (1995), arXiv:gr-qc/9407023 [gr-qc].

[64] P. Casper and B. Allen, Phys. Rev. D52, 4337 (1995),
arXiv:gr-qc/9505018 [gr-qc].

[65] J. Polchinski, Particles and fields. Proceedings, Meeting
of the Division of Particles and Fields of the Americal
Physical Society, DPF 2004, Riverside, USA, August
26-31, 2004, Int. J. Mod. Phys. A20, 3413 (2005), [AIP
Conf. Proc.743,331(2005)], arXiv:hep-th/0410082 [hep-
th].

[66] J. Polchinski and J. V. Rocha, Phys. Rev. D74, 083504
(2006), arXiv:hep-ph/0606205 [hep-ph].

[67] J. Polchinski, in Recent developments in theoretical and
experimental general relativity, gravitation and relativis-
tic field theories. Proceedings, 11th Marcel Grossmann
Meeting, MG11, Berlin, Germany, July 23-29, 2006.
Pt. A-C (2007) pp. 105–125, arXiv:0707.0888 [astro-ph].

[68] J. Polchinski and J. V. Rocha, Phys. Rev. D75, 123503
(2007), arXiv:gr-qc/0702055 [GR-QC].

[69] F. Dubath, J. Polchinski, and J. V. Rocha, Phys. Rev.
D77, 123528 (2008), arXiv:0711.0994 [astro-ph].

[70] J. Polchinski, Cosmology Meets Condensed Matter Lon-
don, England, January 28-29, 2008, Phil. Trans. Roy.
Soc. Lond. A366, 2859 (2008), arXiv:0803.0557 [astro-
ph].

[71] D. F. Chernoff, (2009), arXiv:0908.4077 [astro-ph.CO].
[72] D. F. Chernoff and S. H. H. Tye, (2017),

arXiv:1712.05060 [astro-ph.CO].
[73] C. J. Hogan and M. J. Rees, Nature (London) 311, 109

(1984).
[74] C. J. Hogan, Nature (London) 326, 853 (1987).
[75] A. Bohe, Phys. Rev. D84, 065016 (2011),

arXiv:1103.0768 [hep-th].
[76] J. M. Quashnock and D. N. Spergel, Phys. Rev. D42,

2505 (1990).
[77] R. J. Scherrer, J. M. Quashnock, D. N. Spergel, and

W. H. Press, Phys. Rev. D42, 1908 (1990).
[78] P. A. M. Dirac, Proc. Roy. Soc. Lond. A167, 148 (1938).
[79] B. Carter and R. A. Battye, Phys. Lett. B430, 49

(1998), arXiv:hep-th/9803012 [hep-th].
[80] A. Buonanno and T. Damour, Phys. Rev. D60, 023517

(1999), arXiv:gr-qc/9801105 [gr-qc].
[81] M. R. Anderson, Class. Quant. Grav. 22, 2539 (2005),

arXiv:gr-qc/0505160 [gr-qc].
[82] A. Buonanno and T. Damour, Physics Letters B 432,

51 (1998), hep-th/9803025.
[83] J. M. Wachter and K. D. Olum, Phys. Rev. Lett. 118,

051301 (2017), arXiv:1609.01153 [gr-qc].
[84] J. M. Wachter and K. D. Olum, Phys. Rev. D95, 023519

(2017), arXiv:1609.01685 [gr-qc].
[85] R. A. Battye and B. Carter, Phys. Lett. B357, 29

(1995), arXiv:hep-ph/9508300 [hep-ph].
[86] B. Carter, Phys. Rev. D48, 4835 (1993).
[87] R. A. Battye and B. Carter, Class. Quant. Grav. 17,

3325 (2000), arXiv:hep-th/9811075 [hep-th].
[88] B. Carter, in Recent developments in gravitation

and mathematical physics. Proceedings, 2nd Mexican
School, Tlaxcala, Mexico, December 1-7, 1996 (1997)
arXiv:hep-th/9705172 [hep-th].

[89] C. W. Misner, K. S. Thorne, and J. A. Wheeler, San
Francisco: W.H. Freeman and Co., 1973 (1973).

[90] R. A. Battye and B. Carter, Phys. Lett. B 357, 29
(1995).

[91] B. Carter and R. A. Battye, Phys. Lett. B 430, 49

http://dx.doi.org/10.1088/1475-7516/2009/02/013
http://arxiv.org/abs/0804.0810
http://arxiv.org/abs/0804.0810
http://dx.doi.org/10.1051/0004-6361/201321621
http://dx.doi.org/10.1051/0004-6361/201321621
http://arxiv.org/abs/1303.5085
http://dx.doi.org/10.1103/PhysRevD.31.3052
http://dx.doi.org/10.1103/PhysRevD.31.3052
http://dx.doi.org/10.1103/PhysRevD.45.433
http://dx.doi.org/10.1103/PhysRevD.45.433
http://arxiv.org/abs/astro-ph/9706013
http://dx.doi.org/10.1103/PhysRevLett.85.3761
http://dx.doi.org/10.1103/PhysRevLett.85.3761
http://arxiv.org/abs/gr-qc/0004075
http://dx.doi.org/10.1103/PhysRevD.64.064008
http://dx.doi.org/10.1103/PhysRevD.64.064008
http://arxiv.org/abs/gr-qc/0104026
http://dx.doi.org/10.1103/PhysRevD.71.063510
http://dx.doi.org/10.1103/PhysRevD.71.063510
http://arxiv.org/abs/hep-th/0410222
http://dx.doi.org/ 10.1103/PhysRevD.73.105001
http://dx.doi.org/ 10.1103/PhysRevD.73.105001
http://arxiv.org/abs/gr-qc/0603115
http://dx.doi.org/10.1103/PhysRevD.74.043526
http://arxiv.org/abs/astro-ph/0605567
http://dx.doi.org/10.1103/PhysRevLett.98.111101
http://dx.doi.org/10.1103/PhysRevLett.98.111101
http://arxiv.org/abs/astro-ph/0610920
http://arxiv.org/abs/astro-ph/0610920
http://dx.doi.org/10.1103/PhysRevD.76.082001
http://dx.doi.org/10.1103/PhysRevD.76.082001
http://arxiv.org/abs/gr-qc/0605028
http://dx.doi.org/10.1103/PhysRevD.80.062002
http://dx.doi.org/10.1103/PhysRevD.80.062002
http://arxiv.org/abs/0904.4718
http://dx.doi.org/10.1038/nature08278
http://dx.doi.org/10.1038/nature08278
http://arxiv.org/abs/0910.5772
http://dx.doi.org/10.1103/PhysRevLett.112.131101
http://dx.doi.org/10.1103/PhysRevLett.112.131101
http://arxiv.org/abs/1310.2384
http://dx.doi.org/10.1103/PhysRevLett.118.121101, 10.1103/PhysRevLett.119.029901
http://dx.doi.org/10.1103/PhysRevLett.118.121101, 10.1103/PhysRevLett.119.029901
http://arxiv.org/abs/1612.02029
http://dx.doi.org/10.1103/PhysRevD.41.720
http://dx.doi.org/10.1103/PhysRevD.41.720
http://dx.doi.org/10.1103/PhysRevD.45.3447
http://dx.doi.org/10.1103/PhysRevD.45.3447
http://dx.doi.org/10.1086/174280
http://dx.doi.org/10.1086/174280
http://dx.doi.org/ 10.1086/508702
http://dx.doi.org/ 10.1086/508702
http://arxiv.org/abs/astro-ph/0609013
http://arxiv.org/abs/astro-ph/0609013
http://dx.doi.org/10.1103/PhysRevD.75.125006
http://dx.doi.org/10.1103/PhysRevD.75.125006
http://arxiv.org/abs/astro-ph/0702335
http://arxiv.org/abs/1709.02693
http://arxiv.org/abs/1709.02434
http://dx.doi.org/10.1142/S0218271815300104
http://dx.doi.org/10.1142/S0218271815300104
http://arxiv.org/abs/1412.0579
http://dx.doi.org/10.1016/0370-2693(85)90326-0
http://dx.doi.org/10.1103/PhysRevD.36.2229
http://dx.doi.org/10.1103/PhysRevD.36.2229
http://dx.doi.org/10.1016/0550-3213(89)90103-X
http://dx.doi.org/10.1103/PhysRevD.50.3703
http://dx.doi.org/10.1103/PhysRevD.50.3703
http://arxiv.org/abs/gr-qc/9405037
http://dx.doi.org/10.1103/PhysRevD.50.2496
http://arxiv.org/abs/gr-qc/9405005
http://dx.doi.org/10.1103/PhysRevD.51.1546
http://dx.doi.org/10.1103/PhysRevD.51.1546
http://arxiv.org/abs/gr-qc/9407023
http://dx.doi.org/10.1103/PhysRevD.52.4337
http://arxiv.org/abs/gr-qc/9505018
http://dx.doi.org/10.1142/S0217751X05026686
http://arxiv.org/abs/hep-th/0410082
http://arxiv.org/abs/hep-th/0410082
http://dx.doi.org/10.1103/PhysRevD.74.083504
http://dx.doi.org/10.1103/PhysRevD.74.083504
http://arxiv.org/abs/hep-ph/0606205
http://dx.doi.org/10.1142/9789812834300_0007
http://dx.doi.org/10.1142/9789812834300_0007
http://dx.doi.org/10.1142/9789812834300_0007
http://dx.doi.org/10.1142/9789812834300_0007
http://dx.doi.org/10.1142/9789812834300_0007
http://arxiv.org/abs/0707.0888
http://dx.doi.org/10.1103/PhysRevD.75.123503
http://dx.doi.org/10.1103/PhysRevD.75.123503
http://arxiv.org/abs/gr-qc/0702055
http://dx.doi.org/10.1103/PhysRevD.77.123528
http://dx.doi.org/10.1103/PhysRevD.77.123528
http://arxiv.org/abs/0711.0994
http://dx.doi.org/10.1098/rsta.2008.0067
http://dx.doi.org/10.1098/rsta.2008.0067
http://arxiv.org/abs/0803.0557
http://arxiv.org/abs/0803.0557
http://arxiv.org/abs/0908.4077
http://arxiv.org/abs/1712.05060
http://dx.doi.org/10.1038/311109a0
http://dx.doi.org/10.1038/311109a0
http://dx.doi.org/10.1038/326853a0
http://dx.doi.org/10.1103/PhysRevD.84.065016
http://arxiv.org/abs/1103.0768
http://dx.doi.org/10.1103/PhysRevD.42.2505
http://dx.doi.org/10.1103/PhysRevD.42.2505
http://dx.doi.org/10.1103/PhysRevD.42.1908
http://dx.doi.org/10.1098/rspa.1938.0124
http://dx.doi.org/10.1016/S0370-2693(98)00496-1
http://dx.doi.org/10.1016/S0370-2693(98)00496-1
http://arxiv.org/abs/hep-th/9803012
http://dx.doi.org/10.1103/PhysRevD.60.023517
http://dx.doi.org/10.1103/PhysRevD.60.023517
http://arxiv.org/abs/gr-qc/9801105
http://dx.doi.org/10.1088/0264-9381/22/13/002
http://arxiv.org/abs/gr-qc/0505160
http://dx.doi.org/10.1016/S0370-2693(98)00609-1
http://dx.doi.org/10.1016/S0370-2693(98)00609-1
http://arxiv.org/abs/hep-th/9803025
http://dx.doi.org/10.1103/PhysRevLett.118.051301
http://dx.doi.org/10.1103/PhysRevLett.118.051301
http://arxiv.org/abs/1609.01153
http://dx.doi.org/10.1103/PhysRevD.95.023519
http://dx.doi.org/10.1103/PhysRevD.95.023519
http://arxiv.org/abs/1609.01685
http://dx.doi.org/10.1016/0370-2693(95)00752-7
http://dx.doi.org/10.1016/0370-2693(95)00752-7
http://arxiv.org/abs/hep-ph/9508300
http://dx.doi.org/10.1103/PhysRevD.48.4835
http://dx.doi.org/10.1088/0264-9381/17/16/315
http://dx.doi.org/10.1088/0264-9381/17/16/315
http://arxiv.org/abs/hep-th/9811075
http://arxiv.org/abs/hep-th/9705172


54

(1998).
[92] J. V. Bladel, IEEE Antennas and Propagation Magazine

33, 69 (1991).
[93] E. Poisson, A. Pound, and I. Vega, Living Reviews in

Relativity 14, 7 (2011), arXiv:1102.0529.
[94] A. Pound, Phys. Rev. D 81, 124009 (2010),

arXiv:1003.3954 [gr-qc].
[95] T. Damour, Nuovo Cimento B Serie 26, 157 (1975).
[96] B. Allen and A. C. Ottewill, Phys. Rev. D 63, 063507

(2001), gr-qc/0009091.
[97] M. Anderson, Class.Quant.Grav. 26, 025006 (2009),

arXiv:0812.2523 [gr-qc].
[98] T. W. B. Kibble and N. Turok, Phys. Lett. 116B, 141

(1982).
[99] N. Turok, Nucl. Phys. B242, 520 (1984).

[100] I. Vega and S. Detweiler, Phys. Rev. D 77, 084008

(2008).
[101] L. Barack and D. A. Golbourn, Phys. Rev. D76, 044020

(2007), arXiv:arXiv:0705.3620.
[102] B. Wardell and N. Warburton, Phys. Rev. D92, 084019

(2015), arXiv:1505.07841.
[103] S. Detweiler and B. F. Whiting, Phys. Rev. D 67,

024025 (2003).
[104] A. Pound, Phys. Rev. D81, 024023 (2010),

arXiv:arXiv:0907.5197.
[105] S. Weinberg, Gravitation and Cosmology: Principles

and Applications of the General Theory of Relativity, by
Steven Weinberg, pp. 688. ISBN 0-471-92567-5. Wiley-
VCH , July 1972. (1972) p. 688.

[106] T. Hahn, Comput. Phys. Commun. 168, 78 (2005),
arXiv:hep-ph/0404043 [hep-ph].

http://dx.doi.org/10.1109/MAP.1991.5672647
http://dx.doi.org/10.1109/MAP.1991.5672647
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.12942/lrr-2011-7
http://arxiv.org/abs/1102.0529
http://dx.doi.org/10.1103/PhysRevD.81.124009
http://arxiv.org/abs/1003.3954
http://dx.doi.org/10.1007/BF02755544
http://dx.doi.org/10.1103/PhysRevD.63.063507
http://dx.doi.org/10.1103/PhysRevD.63.063507
http://arxiv.org/abs/gr-qc/0009091
http://dx.doi.org/10.1088/0264-9381/26/2/025006
http://arxiv.org/abs/0812.2523
http://dx.doi.org/10.1016/0370-2693(82)90993-5
http://dx.doi.org/10.1016/0370-2693(82)90993-5
http://dx.doi.org/10.1016/0550-3213(84)90407-3
http://dx.doi.org/10.1103/PhysRevD.76.044020
http://dx.doi.org/10.1103/PhysRevD.76.044020
http://arxiv.org/abs/arXiv:0705.3620
http://dx.doi.org/10.1103/PhysRevD.92.084019
http://dx.doi.org/10.1103/PhysRevD.92.084019
http://arxiv.org/abs/1505.07841
http://dx.doi.org/10.1103/PhysRevD.81.024023
http://arxiv.org/abs/arXiv:0907.5197
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043

	Gravitational backreaction on a cosmic string: Formalism
	Abstract
	Introduction
	Cosmological superstrings
	Gravitational backreaction in the string network
	Theory and simulation
	Lagrangian Methodology
	Conventions used in this paper

	Covariant equations of motion for a Nambu-Goto cosmic string loop
	Gravitational perturbations of cosmic string loops
	Zeroth order equation of motion
	First order equation of motion for the string worldsheet
	Choices of Gauge
	Gauge choice to zeroth order
	Gauge choice to first order

	First order metric perturbation
	First order self-force

	Evaluating the Gradient of the Retarded Metric Perturbation
	Covariant evaluation of the worldsheet integral
	Worldsheets with kinks
	Worldsheets with cusps
	Contribution from the field point
	Setup of the local expansion
	Expansion of the light-cone condition: space-time coordinates
	Expansion of the retarded time
	Expansion of quantities appearing in the integrand for the self-force
	Expansion of the self-force


	Numerical Methods and Regularization
	2D, smoothed kink or cusp [2D]
	1D, over-retarded, smoothed kink or cusp [1DOS]
	1D, over-retarded, discontinuous kink or cusp [1DO]
	1D, discontinuous kink or cusp [1D]

	Numerical results
	Allen, Casper and Ottewill self-similar string
	Kibble and Turok strings with cusps and self-intersections
	KT strings with cusps without self-intersections
	Garfinkle and Vachaspati string with kinks
	Kibble self-intersecting strings
	Comparisons to radiated quantities evaluated in the far field

	Discussion
	Acknowledgments
	Adapted Tetrads on the Worldsheet
	Definition of adapted tetrad
	Examples of adapted tetrads
	Geometric quantities in terms of the tetrad basis
	Explicit Form of equation of motion in orthogonal gauge using adapted tetrad
	Orthogonal Gauge
	Form of equation of motion
	Derivation


	Coordinate systems within the class of conformal gauges
	Energy-Momentum Loss Formulae
	Expansion of the retarded time in null coordinates
	2D Calculation of the Self-force
	Regularization
	Mathematical forms
	KT Cases I and II
	Garfinkle and Vachaspati string

	Parametrized fits near the cusp for the non-intersecting KT string
	References


