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Gravitational wave and electromagnetic observations can provide new insights into the nature of
matter at supra-nuclear densities inside neutron stars. Improvements in electromagnetic and grav-
itational wave sensing instruments continue to enhance the accuracy with which they can measure
the masses, radii, and tidal deformability of neutron stars. These better measurements place tighter
constraints on the equation of state of cold matter above nuclear density. In this article, we discuss
a complementary approach to get insights into the structure of neutron stars by providing a model
prediction for non-linear fundamental eigenmodes (f-modes) and their decay over time, which are
thought to be induced by time-dependent tides in neutron star binaries. Building on pioneering
studies that relate the properties of f-modes to the structure of neutron stars, we systematically
study this link in the non-perturbative regime using models that utilize numerical relativity. Using
a suite of fully relativistic numerical relativity simulations of oscillating TOV stars, we establish
blueprints for the numerical accuracy needed to accurately compute the frequency and damping
times of f-mode oscillations, which we expect to be a good guide for the requirements in the binary
case. We show that the resulting f-mode frequencies match established results from linear pertur-
bation theory, but the damping times within numerical errors depart from linear predictions. This
work lays the foundation for upcoming studies aimed at a comparison of theoretical models of f-
mode signatures in gravitational waves, and their uncertainties with actual gravitational wave data,
searching for neutron star binaries on highly eccentric orbits, and probing neutron star structure at
high densities.

I. INTRODUCTION

Neutron stars [1] present unique opportunities to study
the nature of matter at supra-nuclear densities at rel-
atively low temperatures, and in the presence of ex-
treme gravitational interactions. Given the diverse sce-
narios that have been invoked to describe the proper-
ties of cold, dense matter in the cores of neutron stars
(nucleons, hyperons or free quarks) [2–5], it is essen-
tial to confront these theories with observations in the
gravitational or electromagnetic spectrum, or a combi-
nation of them through multimessenger astrophysics dis-
covery campaigns [6, 7]. These studies will constrain the
space of permissible models and hopefully, gain a bet-
ter understanding of the physics at supranuclear densi-
ties. Electromagnetic observations of the pulsars PSR
J1614-2230 [8] and PSR 0348+0432[9], which are consis-
tent with neutron stars with masses M ∼ 2M�, have
already significantly reduced the existing number of as-
trophysically viable equations of state (EOS), P (ε), i.e.,
the relation between the pressure P and the total energy
density ε. In [10] an upper limit for the neutron star
maximum mass of M = 2.16M� was derived based on
GW170817 and basic arguments on kilonovas. A consis-

tent limit was derived from different considerations [11]
based on previous arguments about the nature of short
gamma-ray bursts [12–14].

X-ray observations of the pulse profiles generated by
hot spots on moderately spinning neutron stars with the
ongoing NICER [15] and future enhanced X-ray Timing
and Polarimetry (eXTP) [16] missions may enable mea-
surements of the neutron star radii at the 5% level [17],
improving existing measurements that are dominated by
systematic errors [18, 19]. This precision can be achieved
through long exposure times using NICER, or using the
polarimetry capabilities of eXTP.

LIGO [20, 21] and Virgo [22] gravitational wave (GW)
observations of the neutron star merger GW170817 [6, 7,
23] imply that the two neutron stars had radii R{1, 2} =

11.9+1.4
−1.4 km. Moreover, these measurements constrain

the dimensionless tidal deformability Λ̃ ∼< 800 [6]. Fur-
thermore, following [24, 25], one can express the loga-
rithm of the adiabatic index of the EOS Γ(P, γi) as a
polynomial of the pressure P (γi are the free EOS pa-
rameters). In this co-called spectral parametrization, the
adiabatic index is used to compute the energy ε(P ; γi)
and the rest-mass density ρ(P ; γi). Thereafter, these two
latter quantities are inverted to give the EOS. Finally,
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this parametrization is connected to the SLy EOS [26]
below half of the nuclear density. Using this approach,
and imposing a number of constraints to ensure causal-
ity, internal and observational consistency, the study pre-
sented in [27] sampled directly the EOS parameter space,
and inferred that the pressure at twice the nuclear sat-
uration density of the GW170817 system is measure to
be P (2εnuc) = 3.5+2.7

−1.7× 1034 dyn cm−2, quantified at the
90% confidence level.

As a reference point, terrestrial laboratories can only
test and constrain cold EOSs at densities near or below
saturation density of nuclei εnuc. GW observations en-
able these measurements because the waveform models
used to analyze LIGO and Virgo data encode information
about the static and dynamic tides that determine the
dynamical evolution of the system, driving it to merger
faster than a system of two point masses [28–31].

GW and electromagnetic observations will continue to
provide new and detailed information about the nature of
neutron star matter. GW observations will shed light on
the masses and tidal deformability of neutron stars, while
electromagnetic observations will enable accurate mea-
surements of their mass and radius [15] and may even be
informative for studies of stellar structure in the context
of non-GR spacetimes [32].

Even though multimessenger observations will provide
new and detailed information about the properties of
neutron stars, they are likely to leave open questions, es-
pecially in light of potential emission-model dependence,
which calls for independent and complementary measure-
ments. In this article, we will focus on a different ob-
servational scenario to obtain this information from di-
rect observations of the stars, namely, the measurement
of fundamental eigenmodes (f-modes) of the individual
stars, which can be caused by tidal effects, and for which
pressure is the restoring force.

Proposed scenarios for the generation of f-modes in
neutron stars include neutron star binaries or neutron
star-black hole systems in highly eccentric orbits [33–39],
i.e. binary separations comparable to the radii of the bi-
nary components, such that violent changes in the tidal
field can perturb the stars without necessarily causing
an immediate collision [40–45]. These close interactions
will induce f-mode oscillations in cold, slowly rotating
neutron stars, thereby simplifying the analysis and mod-
eling of f-modes as compared to the differentially rotat-
ing scenario [40] or shock heated matter in hypermassive
neutron stars (HMNSs) [46–49].

Extracting physics encoded in the f-modes from ob-
servational data involves an accurate model prediction
[50, 51], and measurement of their frequencies ω and
damping times τ . Seminal studies have established that
these two observables are related to the average density
and compactness [52–54]. In [55, 56] universal relations

using the effective compactness η =
(
M/I3

)1/2
with mass

M and moment of inertia I were discovered, and were
tested in [57].

In principle, once ω and τ are extracted from GW ob-

servations, it may be possible to infer M and I. Further-
more, the amplitude of the f-mode depends on the orbital
energy deposited in the mode, and this can be used to
measure the Love number λ and the rotationally-induced
quadrupole Q through I-Love-Q relations [58–61].

In this article, we carry out a detailed analyses to quan-
tify the required accuracy in numerical relativity sim-
ulations to extract the f-mode oscillations and damp-
ing times. To do this, we simulate oscillating neutron
stars using the open source Einstein Toolkit numeri-
cal relativity software, and compare these results to lin-
ear perturbation theory (where appropriate) similar in
setup and spirit to [62], but with a different focus. In
addition to perturbations in the linear regime we also
explore perturbation amplitudes more akin to those seen
in highly eccentric neutron star binary tidal interactions.
This work lays the foundation for future numerical rela-
tivity simulations of highly eccentric neutron star merg-
ers (see [63] for a state-of-the-art library) with the aim of
accurately extracting f-mode oscillation damping times
and frequencies as well as a systematic investigation for
a variety of equations of state and the effect of model
uncertainties on parameter estimation. A successful de-
tection and accurate parameter estimation from eccentric
neutron star binaries would provide a wealth of informa-
tion on astrophysical evolution scenarios [64].

This article is organized as follows: Section II outlines
the approach we have followed to couple Einstein’s field
equations with a relativistic perfect fluid. We describe
the construction of initial data to excite f-mode oscilla-
tions in Tolman-Oppenheimer-Volkoff (TOV) stars, and
the extraction of the corresponding GWs. In Section III,
we show that the numerical formalism introduced in this
study exhibits the necessary convergence to accurately
compute the frequency and damping time of f-mode oscil-
lations. We also demonstrate that our simulations repro-
duce the expected results from linear perturbation theory
in the appropriate limit. We summarize our findings and
future directions of work in Section IV.

II. METHODS

We evolve the spacetime by solving the Einstein field
equations using the tools of numerical relativity.

Rµν −
1

2
Rgµν = 8πTµν (1)

We express the four-dimensional metric gµν in the
standard 3+1 split of spacetime [65–70] as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) (2)

with the spatial metric γij induced on each hypersurface
of the spacetime foliation, the lapse α, shift βi, and the
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hypersurface unit normal vector

nµ =

(
α−1,−β

i

α

)
(3)

Projecting the Einstein equations onto the hypersurface
and along nµ yields a set of constraint and evolution
equations that together with suitable initial data form
our initial value problem.

A. Spacetime Evolution

There are infinitely many formulations of the Einstein
equations that are equivalent in the continuum limit of
infinite spatial and temporal resolution, but that have
distinct principal parts and hyperbolicity properties, and
hence behave differently at finite resolution. In this study
we primarily employed the BSSN formalism [71, 72],
though the CCZ4 formalism [73] was also used for some
results. For the cases in this work in which the CCZ4
formulation was used, we set the damping coefficients
κ1 = 0.02 and κ2 = 0.

The evolution of the gauge conditions, i.e., lapse and
shift, is governed by standard 1+log slicing condition and
a Gamma driver (see e.g.[67, 74]).

We are making use of the publicly available McLachlan
code [75] which implements the above evolution equa-
tions with fourth order central finite differences and is
part of the Einstein Toolkit [76].

The non-linear stability of smoothness properties of the
spacetime evolution is enhanced by adding an artificial
Kreiss-Oliger dissipation [77] to the spacetime variables.

B. General Relativistic Hydrodynamics

The neutron stars are modeled by a relativistic perfect
fluid

Tµν = ρhuµuν + pgµν (4)

where uµ is the 4-velocity, ρ is the rest mass, h is the
specific enthalpy and p is the pressure of the fluid.

The standard relativistic hydrodynamic equations are
the local conservation law for the energy-momentum ten-
sor

∇µTµν = 0, (5)

and the conservation of rest mass

∇µ (ρuµ) = 0 (6)

Both equations together with the spacetime metric gµν
represent the equations of motion of the fluid, which are
closed by a suitable equation of state (EOS) with the
general form p = p (ρ, T, Ye) where T is the temperature
and Ye the so-called electron fraction (low Ye indicates

neutron-rich material). In this pilot study we restrict
ourselfs to polytropes, but in the future we intend to
investigate more realistic equations of state.

These equations can be cast into conservative form,
which is also known as the “Valencia formulation” [78]

∂tU + ∂iF
i = S (7)

where the conserved variables U are defined by

U
√
γ

=

 D
Sj
τ

 =

 ρW
ρhW 2vj

ρhW 2 − p− ρW

 (8)

and the fluxes as well as the sources are given by

F i

√
γ

=

 D
(
αvi − βi

)
αS̃ij − βSj

α
(
Si −Dvi

)
− τβi

 (9)

These conservation equations are implemented in the
Einstein Toolkit’s GRHydro code [79], which uses high-
resolution shock-capturing methods.

We employ a fourth order Runge-Kutta method to ad-
vance in time, either the WENO or PPM reconstruc-
tion method, second order flux evaluations and either the
HLLE or Marquina Riemann solver. We set the Courant
factor to 0.4.

Since we are not able to accurately track regions that
transition from the fluid to the vacuum regime, all sim-
ulations have an artificial low-density background at-
mosphere which is evolved freely. For all simulations
presented in this study we choose an atmosphere value
of ρatm = 10−10M−2 ≈ 6.2 × 107g/cm

3
or ρatm =

10−14 M−2 ≈ 6.2× 103g/cm
3
.

C. Initial Data

We use a perturbed TOV solution as initial data. The
matter perturbation is implemented by adding the (2,2)
pressure eigenfunction of an incompressible Newtonian
star in the Cowling approximation [80]. This form of the
perturbation is smooth and provides a well controlled
framework to quantify numerical accuracy.

Specifically, the initial data was created with the
Einstein Toolkit’s TOVSolver thorn. Then, we added
a pressure perturbation to excite f-mode oscillations us-
ing an expression derived in the Cowling approximation.
The perturbation was given by

δP = αρ
( r
R

)2

Y22 (10)

where δP is the perturbed pressure, α is the amplitude
of the perturbation, ρ is density, r is radial distance from
the center of the star, R is the radius of the star, and
Y22 is the l = 2 m = 2 spherical harmonic. A plot of the
density distribution resulting from this perturbation can
be seen in Fig 1.
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FIG. 1. Plot of density contours ρ (in code units) of a strongly
perturbed TOV solution. The star was excited using a pres-
sure perturbation that was derived in the Cowling approxi-
mation to induce f-mode oscillations. The perturbation am-
plitude is chosen as α = 0.141 for the star shown in the figure.

D. Equation of state

We adopt a polytropic equation of state

P = KρΓ (11)

where Γ is the adiabatic index and K is the constant of
proportionality. For this work, we examined a polytrope
with Γ = 2 and K = 100 which is a common choice in
the literature. We leave to future work the expansion of
the methods applied in this paper to other EOSs.

E. Grid Setup

The numerical grid is managed by the mesh refinement
Carpet [81] driver for Cactus [82].

It implements a non-uniform grid via a nested set of
movable boxes (box-in-box) together with a hierarchi-
cal (Berger-Oliger-style) timestepping. In these simula-
tions we employ four refinement levels where each addi-
tional level doubles the resolution of the enclosing one.
On the finest grid, which is separately centered around
each neutron star, the resolution in each dimension is
∆x = 0.0625M ≈ 93.75m for the highest resolution. The
physical domain extends to 128M ≈ 192km.

F. Gravitational Waves

The gravitational wave strain is extracted using the
standard Newman-Penrose formalism [83], in which a

particular contraction of the Weyl tensor with a suit-
ably chosen null tetrad yields a gauge-invariant quantity
ψ4 that encodes the outgoing gravitational radiation [84].
Specifically, ψ4 is related to the second time derivative of
the two strain polarizations ḧ+,× by

ḧ+ − iḧ× = ψ4 =

∞∑
`=2

∑̀
m=−`

ψ`m4 −2Y`m(θ, ϕ), (12)

where we also introduced the multipole expansion of ψ4

in spin-weighted spherical harmonics [85] of spin-weight
s = −2.

G. Models

We employed various models in which we altered sim-
ulation parameters such as perturbation amplitude, the
spacetime formalism, etc. We present and label these
models in Table I. All models used a 1.4M� TOV star
which had a central density of 0.00128M−2 and the EOS
described in Section II D.

TABLE I. This table lists all of the models in the first col-
umn and the important quantities that changed between mod-
els. These quantities were the spacetime formalism, the at-
mospheric density ρatm, the perturbation amplitude α, the
Riemann solver, and the reconstruction method.

Model Formalism ρatm (M−2) α Riemann Recon.
PPM Big α BSSN 10−10 0.141 Marquina PPM
PPM Big ρatm BSSN 10−10 0.0141 Marquina PPM
PPM CCZ4 CCZ4 10−10 0.0141 Marquina PPM
PPM BSSN 10−14 0.0141 Marquina PPM
WENO BSSN 10−14 0.0141 Marquina WENO
WENO HLLE BSSN 10−14 0.0141 HLLE WENO

III. RESULTS

A. Extracted Gravitational Waveforms

We extracted the gravitational waves at distances of
10M, 40M, 70M, 100M, and 120M. The analysis relied
on the l = 2 m = 2 mode of the ψ4 data extracted from
100M unless otherwise stated.

This system produced linearly polarized gravitational
waves, which differs from other phenomena in gravita-
tional wave physics which produce elliptically polarized
waves. This linear polarization arises from the lack of ro-
tation in our oscillating neutron star. In contrast, more
often studied gravitational wave producing systems such
as binary neutron star mergers and binary black hole
mergers, use their rotation to produce their gravitational
waves and give their gravitational waves their elliptical
polarization.
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FIG. 2. The panel shows the real part of ψ4 from the PPM
run with a resolution of 0.08M. We observe that ψ4 takes
the form of a decaying exponential. Furthermore, since the
gravitational waves are linearly polarized, we have confirmed
that the imaginary part of ψ4 vanishes.

The polarization is imprinted in the real and imaginary
parts of ψ4 which represent the plus and cross polariza-
tions respectively. The real part exhibits a sinusoidal
form with a frequency close to the fundamental oscilla-
tion mode frequency and on top a secular exponential
decay, see Fig 2. The imaginary part is zero to almost
machine precision, indicating that no cross polarization
was present.

We note that ψ4 had high frequency noise as a re-
sult from passing through refinement layers. We removed
these high frequency features with low pass filters that
are described in detail in Appendix A.

B. Convergence

We demonstrate that differences between resolutions
behave as expected given the numerical method we
adopt. This implies that the numerical error in our simu-
lations can be quantified. Only with such a reliable error
estimate is it possible to tell whether any damping in the
gravitational waves is physically caused by gravitational
radiation or by numerical dissipation. There are several
possibilities to demonstrate convergence in the GW out-
put of such models. We choose to perform convergence
tests on the extrema of ψ4.

As usual, we assume that the numerical error as repre-
sented by a Taylor expansion is dominated by the lead-
ing order term. In this case three resolutions suffice to
demonstrate convergence and fit the parameters of the
Taylor expansion. Specifically, the numerical solution for

FIG. 3. Convergence of the extrema of ψ4. Here low, med,
high refer to runs with fine resolutions of 0.125M, 0.08M and,
0.0625M respectively for the WENO case. This information
can be inferred by noticing that the resolutions satisfy the
relation (high − med) = cn(med − low), see Eq. (13). We
found cn ∼ 0.197 by taking cn to be the best fit of our data
to Eq.(13). Using Eq. (14) for c2.84 ∼ 0.197, we found that
n = 2.84 which is consistent with the assumed order of con-
vergence. This result is close to the order of our lowest order
contributions to our numerical method, which demonstrates
both the convergence and internal consistency of our numer-
ical methods. We acknowledge that the value in this plot
differs from that quoted in Table II as this convergence test
applies to a longer portion of the waveform. The value quoted
in Table II only uses the portion of the waveform that was
used to compute the damping times. See Section III F for
more details.

high, medium, and low resolutions are related by

ψ4,high − ψ4,med = cn(ψ4,med − ψ4,low) , (13)

where cn is the convergence factor of order n and is de-
termined only by the resolutions and convergence order
as

cn =
∆xnhigh −∆xnmed

∆xnmed −∆xnlow

. (14)

We present the convergence order for all our numerical
relativity simulations in Table II. A sample case of this
analysis for the WENO reconstruction is presented in
Fig 3. Using the convergence factor and order, we were
able to estimate the systematic error due to the changing
resolution as

error = |cn∆xn| . (15)

The results for the estimated error of the WENO re-
construction is presented in Fig 4. This error behaves
as systematic error caused by the differences in simula-
tion resolution. As such, we did not propagate this error
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FIG. 4. Estimate for the relative error in ψ4. Here low, med,
high refer to runs with fine resolutions of 0.125M, 0.08M and,
0.0625M respectively for the WENO case. This error estimate
was obtained using Eq. (15) and dividing by the value of ψ4 at
each instant in time. Unlike Fig 3 where we used a constant
value of cn for a best fit to Eq. (13), our value of cn and n
here are solutions to Eqs. (13) and (14) at each point in time.

into the analysis because the analysis aims at character-
izing the effect of this same resolution dependence on the
damping times.

C. Fourier Analysis

Frequency spectra of the gravitational waveform were
examined by taking the Fast Fourier Transform (FFT)
of the ψ4 data. We plot the frequency spectrum of one
of the runs in Fig 5. We see that the most excited fre-
quency is nearly aligned with the expected frequency of
1.579 kHz, illustrating that our perturbation excited the
desired f-mode. In addition, we observe at least three
secondary excitations otherwise known as p-modes. We
have verified that the first two excitations occur at 3.710
kHz and 5.684 kHz, which is consistent with our results.

D. Frequency

We also investigated the frequency evolution as the run
progressed. Therefore, we took the roots of the ψ4 time
series to estimate the period, which was in turn used to
obtain frequency estimates for each cycle. We used the
average frequency as the value for the simulation and the
standard deviation as the error.

Although most of the runs exhibited constant fre-
quency regardless of resolution, runs with high density
atmospheres 10−10M−2 of and a length longer than 10 ms
experienced a rise in frequency as runs progressed.

FIG. 5. Fast Fourier Transform (FFT) of the ψ4 data from
WENO HLLE simulation with a fine resolution of 0.0625M.
The gravitational waves here were extracted from 10M. The
10M data best illuminates the excitations in the frequency
spectrum because it occurs before any AMR boundary intro-
duces high frequency features (we also present the frequency
spectrum extracted at 100M in Figure A.2). We note the
primary is near the expected f-mode excitation frequency of
1.579 kHz. We also observe secondary excitations at 3.710
kHz, 5.684 kHz, and 7.658 kHz which are consistent with the
first overtones (p-modes) of the f-mode. We note that the
spikes at the higher frequencies are suppressed after applying
the filtering. See Appendix A for more details.

In contrast, the frequency of low density atmosphere
runs of 10−14M−2 remained constant for even the longest
runs which lasted 50 ms. We can see the frequency evolu-
tion in Fig 6. The likely physical cause of this behavior is
accretion of artificial atmosphere material onto the star
which leads to a steady change in the background stel-
lar model and hence a slight change in its fundamental
oscillation frequencies.

We found that the frequency was fairly independent
of resolution as displayed in Table II. Though the higher
amplitude runs did experience a lower frequency than the
lower perturbation runs. The frequencies all appear to
be around 1.579 kHz which is the expected frequency for
f-mode oscillations based on linear theory.

We note that since the gravitational waves were lin-
early polarized, we could not determine instantaneous
frequency by taking the derivative of the phase of the
gravitational waves as the imaginary part was nearly
zero.

E. Damping Times

Damping times were extracted by performing linear
fits to the natural log of the extrema of ψ4, as shown in
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FIG. 6. Frequency evolution of the waveform as time pro-
gressed of the PPM and PPM Big ρatm runs at a fine resolu-
tion of 0.125M. This frequency was computed by examining
the roots of the waveform time series and finding the time
interval between them. This allows us to track the frequency
evolution throughout the run. For the high atmosphere plot
in red, the frequency increases after about 10 ms. The low
atmosphere run in blue remained constant throughout the
entirety of the run.

FIG. 7. Linear fit of the extrema of ψ4 that was used to ob-
tain damping times of the gravitational waves for the PPM
CCZ4 simulation with a fine resolution of 0.16M. We note in
particular that the extrema of ψ4 differed by an offset that
may skew the results. Therefore, we examined the slopes com-
puted using the maxima and minima individually to provide
an error estimate for the damping time of each simulation.
The quoted value for the damping times were computed us-
ing the full dataset of extrema.

Fig 7. Error estimates were computed using the stan-
dard deviations of the damping time calculations using
the extrema of ψ4 individually rather than from all the
extrema in the simulation dataset.

To compute the damping times from our suite of nu-
merical relativity simulations we used the WENO and
PPM reconstructions methods, finding that the former
is much more robust and accurate than the latter. We
also show results for a sample simulation, ”PPM Big
α” in Fig 8, whose perturbation amplitude is ten times
larger than those that reproduce predictions in the linear
regime. This simulation was prepared to exhibit the non-
linear regime of neutron star f-mode oscillations. Since
simulations with ∆x < 0.0625M were deemed to be too
computationally intensive to run, we extrapolated these
results to the continuum limit to see if they approach the
expected value of 298 ms. We used Richardson extrapola-
tion with unequal resolution ratios to estimate the value
at infinitely fine resolution. A summary of these calcula-
tions is presented in Table II.

Fig 8 shows that the WENO reconstruction approaches
the linear perturbation prediction of 298 ms for the high-
est resolution run of each simulation. The three sim-
ulations that significantly depart from the linear per-
turbation regime correspond to two categories: (i) the
two simulations with damping times much larger than
298 ms correspond to simulations with large artificial at-
mospheres, ρatm ∼ 10−10M−2; (ii) the simulation with
estimated damping time much smaller than 298 ms is
clearly outside of the linear perturbation regime by con-
struction.

These results indicate that provided a numerical setup
in which the atmosphere used for the simulations satis-
fies ρatm ∼< 10−14M−2, and the perturbation applied to
the TOV star is within the linear regime, the extracted
damping times with the WENO reconstruction method
from our suite of numerical simulations is consistent with
linear perturbation predictions.

F. Evolution of Damping Time

High resolution runs with longer damping times re-
quired longer analysis times to obtain satisfactory statis-
tical fits. This necessity derives from the difference in po-
sition of individual points being significant compared to
the difference induced by the true damping of the wave-
form over short timescales. In essence, the longer we run
the simulation, the closer we get to running for the damp-
ing time we would like to measure; thereby, we reduce the
statistical fitting error in the damping time.

Although increasing the run time decreases the statis-
tical error in the damping time, it introduces systematic
error in the damping time calculation. We found that as
the run progressed, the waveform did not exhibit a true
exponential decay. Instead, the waveform systematically
decayed quicker than an exponential damping time would
suggest at long times. This posits the existence of some
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FIG. 8. Damping times for simulations of neutron star f-mode oscillations as a function of fine resolution. The black dash-
dot line represent the expected damping time for a static TOV of this mass computed using linear theory. The star value
at ∆x → 0M is the value obtain for the frequencies by extrapolating to infinite resolution. We notice that the runs using
PPM reconstruction behaved similarly to one another. However, the high atmosphere PPM ρatm and PPM CCZ4 runs diverge
from the PPM run at finer resolutions. This causes the Richardson extrapolated value of those high atmosphere sequences to
significantly overshoot the expected damping time from linear theory. We described in Section III D that the high atmosphere
runs experience increased frequency as the run progressed. We believe the effects of this evolving frequency propagate into the
damping time calculation, leading to the divergence of these sequences of damping times. The WENO reconstruction runs also
exhibited similar characteristics to each other. In addition, the WENO runs are significantly more accurate than the PPM
runs at a given resolution. PPM models required twice the resolution than the WENO models for similar accuracy. The high
perturbation run exhibited entirely different damping time characteristics from the others, indicating that it was likely not in
the linear perturbation regime.

other source of decay in the waveforms, most likely some
form of numerical dissipation.

Fig 9 illustrates the evolution of the damping time
value vs the analysis time, the cutoff time for waveform
data in the analysis to calculate the damping time beyond
which the data would not be used for such analysis. We
also note that the first 2 ms of data also was not used in
the analysis to allow time for any transients to die out. In

addition, the figure depicts the statistical fitting error at
each of those points. One can observe that the damping
time and statistical error decrease as the analysis time
increase. We observed a local minimum in the statistical
error at an analysis time of 15 ms and thus chose that
analysis time for the computation of the damping times
in Table II.
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TABLE II. Table depicting the results our from oscillating
neutron star simulations. These results include the resolu-
tion of the simulation ∆x, its frequency f , the error in that
frequency ∆f , the damping time τ and its estimated error
∆τ . The damping error is the statistical fitting error of the
data and does not include any systematic errors alluded to
in Sections III B and III F. The table is divided by the simu-
lation models described in Table I. Some cases yield conver-
gence orders that exceed the formal accuracy of the numerical
schemes involved. Such so-called overconvergence usually in-
dicates that the data is close to but not quite within the con-
vergent regime. At the end of each group of simulations, we
include the damping time value at ∆x→ 0 using Richardson
extrapolation. This procedure will systematically underesti-
mate the error in presence of over-convergence and should be
taken with a grain of salt. We did not include errors on this
value nor the frequency when performing this extrapolation to
infinitely fine resolution. The expected frequency and damp-
ing time for all simulations in the table according to linear
theory are 1.579 kHz and 298 ms respectively.

∆x (M) f (kHz) ∆f (kHz) τ (ms) ∆τ (ms) n
PPM Big α 0.25 1.551 0.023 45.29 0.39 4.84

0.16 1.552 0.013 58.02 0.93 4.84
0.125 1.555 0.017 59.81 1.65 4.84
0.08 1.555 0.013 63.76 1.42 4.84

0.0625 1.555 0.011 64.39 1.46 4.84
0 - - 64.83 - 4.84

PPM Big ρatm 0.25 1.572 0.019 8.44 0.21 3.83
0.16 1.579 0.014 38.36 1.56 3.83

0.125 1.580 0.023 63.48 9.88 3.83
0.08 1.580 0.004 178.73 3.79 3.83

0.0625 1.581 0.004 262.11 7.58 3.83
0 - - 433.80 - 3.83

PPM CCZ4 0.25 1.574 0.004 8.41 0.13 3.14
0.16 1.577 0.003 35.36 0.96 3.14

0.125 1.579 0.004 73.21 0.57 3.14
0.08 1.580 0.004 195.57 3.76 3.14

0.0625 1.581 0.004 268.25 6.33 3.14
0 - - 376.65 - 3.14

PPM 0.25 1.573 0.005 7.47 0.16 2.98
0.16 1.576 0.004 36.61 0.55 2.98

0.125 1.576 0.003 73.35 1.05 2.98
0.08 1.577 0.004 168.48 2.71 2.98

0.0625 1.577 0.003 222.20 3.85 2.98
0 - - 313.74 - 2.98

WENO 0.25 1.573 0.005 80.61 0.99 2.79
0.16 1.576 0.004 165.98 1.54 2.79

0.125 1.577 0.004 209.60 2.14 2.79
0.08 1.577 0.003 258.09 4.07 2.79

0.0625 1.578 0.003 270.44 4.80 2.79
0 - - 283.80 - 2.79

WENO HLLE 0.25 1.574 0.005 124.48 8.42 5.77
0.16 1.576 0.004 195.72 1.71 5.77

0.125 1.577 0.003 232.12 2.44 5.77
0.08 1.579 0.011 265.56 2.80 5.77

0.0625 1.578 0.003 275.47 5.00 5.77
0 - - 290.37 - 5.77

IV. CONCLUSIONS

We have carried out systematic analyses of the accu-
racy needed to extract the frequency and damping time
of f-mode oscillations. We have demonstrated the robust-
ness of our results by extracting these observables, and

FIG. 9. Plot of the damping time τ vs analysis time with
the statistical fitting error at each data point for the WENO
HLLE and PPM data sets with ∆x = 0.0625M. The analysis
time is defined as the cutoff time for waveform data to be used
in the analysis. Data beyond the analysis time was discarded
for the purpose of the analysis. The first 2 ms of data which
is included in the analysis was also discarded to allow for any
transient effects to decay. We notice that statistical error
clearly decreases as the analysis time increases. However, we
observe that τ decreases away from the expected value of 298
ms with increased analysis time. We noticed that in both
curves in the plot that there appears to be a local minimum
in the statistical uncertainty at an analysis time of 15. As
such we selected, an analysis time of 15 ms for the damping
time analysis in this paper.

demonstrating that our results are similar when using
both the WENO and PPM reconstruction methods.

We have shown that for small perturbations, the damp-
ing times extracted from our numerical relativity simu-
lations are consistent with linear theory perturbations
when we consider atmospheres ρatm ≤ 10−14M−2. On
the other hand, we have found that if artificial atmo-
spheres are poorly chosen, ρatm ≤ 10−10M−2, the ex-
tracted damping times from our numerical simulations
differ significantly from linear perturbation predictions
at evolutions ∼> 10ms. This may be caused due to accre-
tion of the atmosphere, which introduces a secular change
(increased mass) in the background solution.

The convergence analyses we present suggest that
even for a careful choice of numerical schemes a min-
imum resolution of ∼ 0.125M is needed to accurately
extract the GW induced damping time of f-mode oscil-
lations. WENO reconstruction clearly outperforms the
PPM scheme, which needed twice the resolution to ob-
tain similar accuracies in the damping times. This reso-
lution is within the range of existing neutron star numer-
ical relativity simulations that have been presented in the
literature albeit on the more computationally expensive
end.



10

Having established a blueprint of numerical accuracy
to extract the frequency and damping times of f-modes,
in future work we will put this setup to use and inves-
tigate the accuracy with which we can infer properties
of the EOS through GW observations of highly eccentric
neutron star encounters.
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J. A. Miralles, Astrophys. J. 476, 221 (1997)
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Appendix A: Filtering

Initially, the ψ4 data contained significant high
frequency noise that interfered with our analysis. We
noted that the signals extracted from 10M, before
passing through the first refinement boundary, did not
exhibit any such high frequency noise. Therefore,we
hypothesized that passing through the various refine-
ment boundaries as it traveled to the relevant extraction
sphere at 100M.

To compensate for this high frequency behavior in-
duced from the refinement layers, we applied a low pass
filter to the raw data. Specifically, we applied a butter
filter with zero phase filtering. Relative to the sample fre-

quency, the filter had a passband frequency of 0.01 and a
stopband frequency of 0.04. The passband ripple ampli-
tude of the filter was 1 dB and the stopband attenuation
was 60 dB. This filtering was essential to ensuring the ex-
tracted ψ4 produced meaningful data analysis especially
for the damping times. Figs A.1 and A.2 illustrates the
effect of the filtering on the data.

We observe the frequency spectrum before and after
the filtering by looking at the looking at the FFTs ex-
tracted at 100M in Fig A.3. We observe that the un-
filtered frequency spectrum is very noisy, which is most
apparent after the second peak. The filtering eliminates
this noise. However, the filtering also significantly sup-
presses the second peak and renders the third and fourth
invisible.
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FIG. A.1. Plot of the ψ4 data extracted at 10M. The left plot depicts the unfiltered data. We note that the unfiltered data
lacks any sort high frequency component as it has yet to pass through a refinement boundary. When we filter the data as in
the right plot, we observe that the waveform is now centered at the origin rather than offset as it had been previously. The
waveform is also hardly distorted, with most of the distortion occurring at the end of the waveform.

FIG. A.2. Plot of the ψ4 data extracted at 100M. The left plot depicts the unfiltered data. We note that the unfiltered data is
much noisier than the data extracted at 10M in Fig A.1, having passed through multiple refinement layers. These refinement
layers are believed to induce high frequency noise in the waveform. In the plot, we show the post filtered data. Compared to
Fig A.1, the data has been significantly changed by the filtering. In turn, the post filtered data appears to match the data
in A.1 much more closely. This supports the notion that the unfiltered 100M data was contaminated by high frequency noise
passing through refinement boundaries. We also note that the end of the waveform is distorted in a similar matter to Fig A.1.
For this reason, we removed the end of the data from the computation of the damping times.
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FIG. A.3. Plots of the FFTs of the WENO HLLE simulation with a fine resolution of 0.0625M before and after the filtering.
The gravitational waves here were extracted from 100M, the portion that was analyzed to extract the frequencies and damping
times. The left plot illustrates the unfiltered FFT, which contains the four distinct peaks seen in 5. However, there is a
significant amount of noise after the second peak. On the right we show the FFT after the filtering has been applied. We
observed that the noise is no longer present. However, the second peak is significantly suppressed, while the third and fourth
peaks are no longer visible. Thus we did not consider effects from these modes in our analysis of the frequency or damping
times.
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