
This is the accepted manuscript made available via CHORUS. The article has been
published as:

An exact time-dependent interior Schwarzschild solution
Philip Beltracchi and Paolo Gondolo

Phys. Rev. D 99, 084021 — Published 12 April 2019
DOI: 10.1103/PhysRevD.99.084021

http://dx.doi.org/10.1103/PhysRevD.99.084021


An exact time-dependent interior Schwarzschild solution∗

Philip Beltracchi and Paolo Gondolo†

Department of Physics and Astronomy, University of Utah,

115 South 1400 East Suite 201, Salt Lake City, UT 84012-0830

1



Abstract

We present a time-dependent uniform-density interior Schwarzschild solution, an exact solution

to the Einstein field equations. Our solution describes the collapse (or the time-reversed expansion)

of an object from an infinite radius to an intermediate radius of 9/8 of the Schwarzschild radius, at

which time a curvature singularity appears at the origin, and then continues beyond the singularity

to a gravastar with radius equal to the Schwarzschild radius.

I. INTRODUCTION

Nearly 100 years after its original discovery, the constant density interior Schwarzschild

solution [1] was analyzed in more detail and shown to behave as a gravastar in the limit that

the radius approaches the Schwarzschild radius RS = 2GM [2]. If the radius reaches 9/8RS

the pressure at the center diverges and the convention was this implied a static solution no

longer existed [1, 3]. However, the static interior Schwarzschild solution may be maintained,

without modification, if one accepts a region of negative pressure [4]. While the interior

Schwarzschild solution strictly speaking does not avoid singularities (it is singular where

the pressure diverges [5]) it is a simple and mathematically valid solution with potential for

high compactness and negative pressures that can be interesting to study in its own right.

For example, Schwarzschild stars in the compact gravastar limit are stable against radial

perturbations [6], and behave almost exactly as non black hole extended Kerr sources [7]

when slow rotation is added. Also, if one allows for a Dirac delta function in the transverse

stress at the radius of the pressure divergence, the singularity has a well-defined contribution

to the Komar integral [2].

In this paper, we show that if one allows for a time-dependent radius and for anisotropic

stress, the interior Schwarzschild solution generalizes into a new exact solution to the Ein-

stein field equations. Its line element has the same form as the static interior Schwarzschild
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solution except for a time-dependent radius R(t). For r < R(t),

ds2 = −1

4

(
3

√
1− RS

R(t)
−

√
1− RSr2

R(t)3

)2

dt2 +

(
1− RSr

2

R(t)3

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2,

(1)

and for r ≥ R(t),

ds2 = −
(

1− RS

r

)
dt2 +

(
1− RS

r

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2. (2)

The time-dependence of the radius is implicitly defined as the solution to the equation

1

7a7
− 2

5a5
+

1

3a3
= αt+ β, where a =

√
1− RS

R(t)
(3)

and α and β are determined by the choice of time origin and collapse or expansion time

scale.

II. ENERGY- MOMENTUM TENSOR

The following functions will be used for shortening some expressions:

a =

√
1− RS

R
, b =

√
1− RSr2

R3
, R = R(t). (4)

In terms of a and b the interior metric reads

ds2 = −1

4
(3a− b)2 dt2 + b−2dr2 + r2dθ2 + r2 sin2 θ dφ2. (5)

In the interior Schwarzschild solution the radius R is always greater than the Schwarzschild

radius RS. The energy-momentum tensor for the standard time-independent interior

Schwarzschild solution contains a constant density and equal pressures in the radial and

transverse directions and no off-diagonal terms. For the time-dependent solution, the energy-

momentum tensor Tµν demanded by the Einstein equations Gµν = 8πGTµν is slightly differ-

ent. One can isolate the energy density and pressures on the diagonal by raising an index,

but the off-diagonal terms are no longer symmetric. Alternatively, one can use tetrads to

find the energy tensor in a local Lorentz frame. In this way, one fixes the functions on the

diagonal to their correct value and also keeps the off-diagonal terms symmetric. Introducing
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a tetrad

eµµ̂ =


2

|3a−b| 0 0 0

0 b 0 0

0 0 1
r

0

0 0 0 1
r sin θ

 , (6)

such that

eµµ̂e
ν
ν̂gµν = ηµ̂ν̂ = diag(−1, 1, 1, 1), (7)

we have

eµµ̂e
ν
ν̂Tµν = Tµ̂ν̂ =


ρ −Sr 0 0

−Sr pr 0 0

0 0 pT 0

0 0 0 pT

 . (8)

The energy-momentum tensor can be brought to canonical from and it is either type I or

type IV depending on the sign of (ρ+ pr)
2 − 4S2

r (positive or 0 for type I, negative for type

IV). The energy density ρ and radial pressure pr assume the standard expressions found in

the literature [2–4], although with a time-dependent radius,

ρ ≡ −T 0
0 = T0̂0̂ =

3M

4πR3
, pr ≡ T 1

1 = T1̂1̂ = ρ
b− a
3a− b

. (9)

The radial pressure pr diverges where

r = R
√

9− 8R/RS. (10)

The Tµ̂ν̂ components that differ from the static case are a new radial momentum flux term

Sr and the tangential pressure pT ,

Sr = −T1̂0̂ = −T0̂1̂ =
2ρrṘ

b|3a− b|R
, pT ≡ T 2

2 = T 3
3 = T2̂2̂ = T3̂3̂ = pr + ∆. (11)

Here Ṙ = dR/dt and the pressure anisotropy ∆ follows from Einstein’s equations as

∆ =
2ρr2bR3

2π(3a− b)
∂

∂t

[
Ṙ

(3a− b)b3R4

]
. (12)

All other terms in the energy-momentum tensor are 0 as they must be for a spherical

symmetric time-dependent system.

The static solution is recovered for Ṙ = 0, and it has Sr = 0 and ∆ = 0, i.e., isotropic

pressure pr = pT . At the outer boundary r = R(t), the energy density jumps from ρ inside

4



to zero outside, the radial pressure pr(R) vanishes and is continuous, and the tangential

pressure pT assumes the expression

pT (R) = ∆(R) = −ρ Ṙ
2(2GM + 8R) + 2RR̈(2GM −R)

4R(1− 2GM/R)3
. (13)

A natural boundary condition is for the tangential pressure to be continuous at the surface,

i.e., to set pT (R) = 0. This leads to the differential equation

2RR̈(2GM −R) + Ṙ2(2GM + 8R) = 0. (14)

We use this equation to determine the time dependence of the radius R(t).

III. TIME DEPENDENCE OF THE RADIUS

The static solution Ṙ = R̈ = 0, or constant R, satisfies Eq. (14), as expected. We find

that an additional time-dependent solution exists. The general solution to Eq. (14) can be

found by reexpressing it as an equation for the function t(R) instead of the function R(t)

using the formulas for derivatives of inverse functions dt/dR = 1/Ṙ and d2t/dR2 = −R̈/Ṙ3.

This leads to the linear differential equation for t(R̃), where R̃ = R/RS,(
8R̃ + 1

) dt

dR̃
+ 2

(
R̃− 1

)
R̃
d2t

dR̃2
= 0. (15)

The general solution to Eq. (15) can be written as

t− t0
tc

=
2

105

[
R̃3/2

(
8R̃2 − 28R̃ + 35

)
(R̃− 1)7/2

− 8

]
, (16)

where t0 and tc are integration constants. This coincides with Eq. (3) in the introduction

when α = 1
2tc

and β = 8
105
− t0/(2tc). The time t0 is the time at which R = ∞. The time

tc sets the time scale for the collapse (tc > 0) or expansion (tc < 0). While Eq. (16) is an

implicit equation for R̃, it is possible to find asymptotic expressions for R̃(t) in the regimes

t→ t0 and t→ ±∞,

R̃(t) ≈ 1 +

(
3
t− t0
tc

)−1/3
, t→ t0; R̃(t) ≈ 1 +

(
7

2

t− t0
tc

)−2/7
, t→ ±∞. (17)

Plots of the exact and asymptotic solutions for R̃(t) are shown in Fig. 1.
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Figure 1: Time dependence of the radius R(t). The solid (orange) line is the full solution. The

dashed (blue and gray) lines are the early and late time approximations. The (red) point marks

the central pressure divergence at R̃ = 9/8, (t− t0)/tc = 47072/105. The plot has an inset region

showing earlier times in more detail.

For reference, our solution gives

dR̃

dt
= −(R̃− 1)9/2√

R̃tc
,

d2R̃

dt2
=

(R̃− 1)8(8R̃ + 1)

2R̃2t2c
. (18)

These expressions lead to

∆ = 3ρ r2R̃6a16
(b− a)(9a2 + 5ab− 3b2 − a2b2)

(3a− b)3 b4 t2c
, (19)

Sr = − 2rρa9R̃3

|3a− b|btc
. (20)

The pressure at r = 0 diverges when R̃ = 9/8, which happens when t−t0
tc

= 47072/105 ≈

448.3. On the surface of the star (r = R), one has b = a = (1 − RS/R)1/2 and ∆ = 0,

as imposed. As t → ∞ for collapse (or −∞ for expansion), the star radius R → RS,

the density becomes ρS = 3M/(4πR3
S) for r < RS and zero otherwise, the pressure becomes

pr = pT = −ρS for r < RS and zero otherwise. So our solution describes collapse (expansion)

of a constant-density anisotropic object ending (starting) as a sphere with vacuum equation

of state pr = pT = −ρ and radius equal to the Schwarzschild radius.
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IV. ANALYSIS

In this section we analyze the metric functions gtt(t, r), grr(t, r),
√
−g(t, r), where g =

det(gµν), the Ricci scalar, and the matter functions ρ(t, r), pr(t, r), ∆(t, r), and Sr(t, r),

paying particular attention to their singularities. Since R(t) is a continuous function of t,

we study the metric, curvature, and matter functions in the variables r̃ = r/RS, R̃ = R/RS.

A. Metric functions and Ricci scalar

As noted in the introduction, the metric of our dynamical solution is formally the same

as the metric for the static solution at radius R. The metric function gtt(t, r) is

gtt(t, r) =

−
1
4
(3a− b)2 = −1

4

(
3
√

1− 1
R̃
−
√

1− r̃2

R̃3

)2
, r < R,

−
(
1− 1

r̃

)
, r ≥ R.

(21)

The metric function gtt is negative everywhere except it goes to 0 when 3a = b, which happens

on the infinite pressure surface r̃ = R̃
√

9− 8R̃. The interior gtt connects continuously with

continuous derivatives to the Schwarzschild exterior gtt except at r̃ = R̃ = 1.

The metric function grr is

grr(t, r) =


b−2 = 1

1− r̃2

R̃3

, r < R,(
1− 1

r̃

)−1
, r ≥ R.

(22)

It is always positive and goes to infinity at r̃ = R̃ = 1. It does not have any special behavior

connected to the infinite pressure surface. The interior grr connects continuously to the

Schwarzschild exterior grr but grr does not have continuous derivatives.

The function
√
−g(t, r) is √

−g(t, r) =

√
−gttgrrr4 sin2 θ. (23)

It goes to zero on the infinite pressure surface indicating a coordinate singularity.

Profiles of the metric functions gtt, grr, and
√
−g are depicted in Fig. 2. The Ricci scalar

is given by the expression

R = −8πG(ρ+ 3pr + 2∆). (24)

It diverges on the infinite pressure surface, due to divergences in pr and ∆, and at R →

∞ (t = t0) due to ∆. These are therefore curvature singularities. The locations of the
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Figure 2: Plots of the metric functions gtt (panels (a) and (b)), grr (panels (c) and (d)), and
√
−g

(panels (e) and (f), normalized over the r2 sin θ spherical factor) for various star radii R. Panels

(a), (c), and (e) depict R ≤ 1.2RS ; panels (b), (d) and (f) depict R ≥ 1.2RS . Profiles are labeled

by R̃ = R/RS . These are the same as for the static solution of the same radius. Note that when

R̃ ≤ 9/8, gtt and
√
−g go to 0 at the radius of the infinite pressure surface. Also, as R̃ → 1, the

value of grr at r̃ = 1 goes to infinity.
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singularities in coordinates (arctan r̃, arctan(R̃ − 1)) is depicted in Fig. 3. The first line

of singularities follows the infinite pressure surface. Its endpoints are A = (0, arctan 1
8
),

corresponding to r̃ = 0, R̃ = 9/8, and B = (π/4, 0), corresponding to r̃ = 1, R̃ = 1. The

second line of singularities is at R→∞. Its endpoints are C = (0, π/2) and D = (π/2, π/2).

DC
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Figure 3: Diagram showing the singularities of the Ricci scalar and the pressure anisotropy ∆. The

singularity associated with the infinite pressure surface is the blue line bounded by A and B. The

singularity at R → ∞ is the red line joining C and D. The dotted black line is the surface of the

object on which the anisotropy is set to 0 by our boundary condition.

B. Energy density and radial pressure

The radial pressure pr(t, r) and energy density ρ(t, r) profiles for our dynamical solution

are the same as in the static solution at any R. For completeness we show them in Fig 4.
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The density profile is constant inside the object and zero outside. The radial pressure pr is

small compared to the density ρ at large radii R. At smaller R, pr at the center becomes

larger than ρ, eventually diverging when R̃ = 9/8. For 9/8 > R̃ > 1, the pressure is negative

(pr < −ρ) at the center and has a divergence at the surface of infinite pressure. This pr < −ρ

behavior causes violation of the weak and null energy conditions. In the R̃ → 1 limit, the

pressure everywhere in the interior approaches a constant value −ρs, and the surface of

infinite pressure moves to the surface of the star.
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Figure 4: Density (panels (a) and (b)) and radial pressure (panels (c) and (d)) functions for various

star radii R. Panels (a) and (c) depict R ≤ 1.2RS ; panels (b) and (d) depict R ≥ 1.2RS . Profiles

are labeled by R̃ = R/RS . These are the same as for the static solution of the same radius. Note

the surface of infinite pressure present when R ≤ 9/8RS and the negative pressure region inside of

it.
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C. Pressure anisotropy

A convenient dimensionless quantity related to the pressure anisotropy function ∆(t, r)

is ∆̃ = ∆t2c/(ρsR
2
S). We plot it in Fig. 5.
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Figure 5: Rescaled anisotropy function at the same stellar radii as in Fig. 4. Panel (a) depicts

R ≤ 1.2RS ; panel (b) depicts R ≥ 1.2RS . Profiles are labeled by R̃ = R/RS . For larger R the

anisotropy becomes roughly a quartic polynomial and rapidly decreases with decreasing R. For R

near RS , the anisotropy is heavily localized near the pole in radial pressure.

The function ∆ has two lines of singularities, which are lines AB and CD shown in Fig. 3.

The function ∆̃ assumes the following limiting form near the infinite pressure surface (line

AB)

∆̃ ≈ −6R̃0(R̃0 − 1)9(4R̃0 − 3)(9− 8R̃0)

[3(4R̃0 − 1)δR̃ +
√

9− 8R̃0δr̃]3
, near line AB, (25)

where δR̃ = R̃− R̃0, δr̃ = r̃ − R̃0

√
9− 8R̃0. Thus the line AB is a line of third order poles

1/y3 in ∆̃ except at its endpoints, where the numerator of Eq. (25) goes to 0 and ∆̃ has

essential singularities. Near point A

∆̃ ≈ r̃2

21236(9− 8R̃)3
, near r̃ = 0, R̃ =

9

8
. (26)

This is an essential singularity of type x2/y3. Near point B,

∆̃ ≈ 6(R̃− 1)9

(4− r̃ − 3R̃)3
+

8(R̃− 1)8

(4− r̃ − 3R̃)2
− 2(R̃− 1)7

3(4− r̃ − 3R̃)
+ (R̃− 1)7g(r̃, R̃), near r̃ = 1, R̃ = 1,

(27)
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where g(r̃, R̃) is a nonsingular function well approximated by

g(r̃, R̃) ≈ 2

3(CR̃− r̃ − 1− C)
− A(R̃− 1)3

(BR̃− r̃ + 1−B)4
, (28)

B = 1.8629316, C = 3.5717930, A =
(9 + 55C)(B − 1)4

96(C − 1)
. (29)

The expression for A ensures ∆̃ = 0 at r = R. Here there are essential singularities of the

type x9/y3, x8/y2, and x7/y.

Near the line CD (R→∞) the limiting form of ∆̃ is

∆̃ ≈ 15

8
r̃2(R̃2 − r̃2), R̃� 1. (30)

This diverges with R̃2 except at points C and D which again are essential singularities.

D. Momentum Density

A convenient dimensionless quantity related to Sr is S̃r = Srtc/(ρsRS). Figure 6 shows

plots of −S̃r.
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Figure 6: Rescaled momentum function at various star radii R. Panel (a) depicts R ≤ 1.2RS ;

panel (b) depicts R ≥ 1.2RS . Profiles are labeled by R̃ = R/RS . For R near RS , the momentum

is heavily localized near the infinite pressure surface.

The function Sr can also be examined at the points on Fig. 3. The limiting forms are

S̃r ≈ −
2
√

9− 8R̃0(R̃0 − 1)9/2

R̃
3/2
0 |
√

9− 8R̃0δr̃ + 3(4R̃0 − 3)δR̃|
(near line AB) (31)
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again using δR̃ = R̃− R̃0, δr̃ = r̃ − R̃0

√
9− 8R̃0.

S̃r ≈
−r̃

2137|8R̃− 9|
R̃ = 9/8, r̃ = 0 (near point A); (32)

S̃r ≈
2(R̃− 1)9/2

|4− 3R̃− r̃|
+ h(r̃, R̃), R̃ = 1, r̃ = 1 (near point B); (33)

S̃r ≈ −r̃, R̃� 1 (near line CD). (34)

Here h(r̃, R̃) is a nonsingular function. We see from Eq. (31) that the line AB is a line of

singularities of type 1/|y| in Sr. From Eq. (32), Sr has a singularity of type x/|y| at point

A, and from Eq. (33), Sr has a singularity of type x9/2/|y| at point B. The line CD is not

singular except at point D where S̃r diverges as −R̃.

E. Force analysis

In [8] we found that general time dependent spherically symmetric systems satisfy a force

equation

−∂pr
∂r
− G (m+ 4πr3pr) (ρ+ pr)

r2
(
1− 2Gm

r

) +
2∆

r
=

√
1− 2Gm

r

1√
−gtt

∂

∂t

(
Sr

1− 2Gm
r

)
. (35)

This is a dynamical anisotropic generalization of the Tolman–Oppenheimer–Volkoff equa-

tion. The right hand side of Eq. (35) must be 0 for static systems. Here m is the mass inside

radius r. For our solution,

m =

M
r3

R3 , r < R,

M, r ≥ R.
(36)

The static Schwarzschild interior solution satisfies the standard isotropic Tolman–

Oppenheimer–Volkoff equation at all points with finite pressure1. This means that the

only terms that survive in the time-dependent force equation are the anisotropy force and

the changing momentum terms. Hence Eq. (35) reduces to Eq. (12).

For the collapsing solution (tc > 0) the anisotropy force acts as a force to slow down the

initially rapid collapse. As the center pressure is diverging, the anisotropy force pulls inward,

1 It is argued in [2] that the dpr/dr term produces a Dirac delta function at the infinite pressure surface,

which is compensated for by another Dirac delta function in the anisotropy term.
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see the R̃ = 1.13 and R̃ = 1.125 curves in Fig. 5. At late times, the anisotropy is positive

inside the pressure divergence and negative outside; this indicates that the anisotropy force

is pulling into the divergence rather than pushing away.

For the expanding solution (tc < 0), the anisotropy force is the same at the same values

of R, but the momentum term Sr has opposite sign and increases, rather than decreases,

and the object expands rather than contracts.

F. Energy-momentum tensor type

As mentioned in section II, the energy-momentum tensor Tµν is type I when (ρ+ pr)
2 −

4S2
r ≥ 0 and is type IV otherwise. Using the expressions from Eqs. (9) and (20) we can

obtain a condition for where in the (r, R) plane Tµν is type I and where it is type IV. It is

type I when

r ≤ rIV =
tcR̃

3/2√
t2c/R

2
S + (R̃− 1)8R̃

, (37)

and type IV otherwise. Energy-momentum tensors of type IV cannot satisfy the weak energy

condition [9]. Note that Tµν is type I at r = 0 for all times, but the outer region of the

object where there is more momentum is type IV if rIV ≤ r < R. The type IV outer region

shrinks or grows with R and disappears when R ≤ rIV , i.e.,

4R̃(1− R̃)7 ≤ t2c
R2
S

. (38)

V. CONCLUSION

The interior Schwarzschild solution, despite its perhaps unnatural uniform density, still

has interesting properties such as the Buchdahl limit, the gravastar limit, and the extended

Kerr source. In this paper, we generalize the interior Schwarzschild solution to include col-

lapse or expansion. Our solution to the Einstein field equations is interesting mathematically

since it is exact and fairly simple, allowing for a detailed analysis of its features. Our ex-

panding solution starts as a sphere of dark energy in the infinite past and reaches an infinite

size at t0. Our collapsing system starts at an infinite size and asymptotically approaches a

sphere of dark energy at large times. Therefore our collapsing solution may be thought of

as a kind of formation process for gravastars or dark energy stars, which in the terminology

14



of [8] are astrophysical objects with a dark energy core. However, our collapsing solution

involves spacetime singularities and violations of the weak and null energy conditions. Other

formation processes that are nonsingular and do not violate those energy conditions exist

[8]. It would be interesting to see if other static or stationary dark energy stars [5, 10–22]

can be generalized to include a nontrivial time dependence in a simple way.
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