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The Standard-Model Extension provides a framework to systematically investigate possible violation of the
Lorentz symmetry. Concerning gravity, the linearized version was extensively examined. We here cast the first
set of experimental bounds on the nonlinear terms in the field equation from the anisotropic cubic curvature
couplings. These terms introduce body-dependent accelerations for self-gravitating objects, thus violating the
gravitational weak equivalence principle (GWEP). Novel phenomena, that are absent in the linearized gravity,
remain experimentally unexplored. We constrain them with precise binary-orbit measurements from pulsar
timing, wherein the high density and large compactness of neutron stars are crucial for the test. It is the first
study that seeks GWEP-violating signals in a fully anisotropic framework with Lorentz violation.

I. INTRODUCTION

Einstein’s general relativity (GR) is considered as four
de force in describing gravity [l, 2]. For the past more
than 100 years, GR has passed numerous experimental tests
with flying colors [3—8]. The wisdom in GR is concisely
condensed into the Einstein-Hilbert Lagrangian, Lgy =
V=g (R — 2A) /162G, where g is the determinant of the metric
duv> R 1s the Ricci scalar, and A is the cosmological constant.
Einstein’s field equations are derived through a variation of
Ly with respect to g,,,. The inherent local Lorentz invariance
(LLI) and diffeomorphism symmetry are essential properties
for GR from a theoretical viewpoint [2, 9].

Open questions in the contemporary modern physics, like
the very nature of dark matter and dark energy, encourage us
to test the underlying fundamental principles in GR. LLI is
one of the most important. In a flat spacetime, it links the in-
ertial frames that are relatively moving with respect to each
other, while in the curved space, it addresses the property of
the tangent space at every single point [2]. However, from a
deeper understanding LLI may not be “god-given” [10], as in
string theory [11, 12] and loop quantum gravity [13]. Exper-
imental examination, that might either strengthen further our
confidence in GR or lead to discoveries beyond the current
paradigm, is vital.

The Standard-Model Extension (SME) provides an effec-
tive field theory (EFT) that extends our currently well adopted
field theories of GR and particle physics. It incorporates all
Lorentz-violating (LV) operators which are made out of mat-
ter fields and the metric field g,,, [14—16]. We call the covari-
ant coupling coeflicients the coefficient fields. In this Letter,
we focus on the gravity sector of the SME [16-20], and leave
LV matter-gravity couplings [21, 22] for a future study.

In the SME, conventionally LV operators are sorted ac-
cording to their mass dimensions as per EFT [23, 24]. In
general, operators with higher mass dimensions are believed
to be suppressed. At mass dimension 4, extra coefficient
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fields in the gravity sector have in total 20 degrees of free-
dom. Only 9 of them enter the leading-order post-Newtonian
(PN) dynamics [17]. They are well constrained by various
experiments, including lunar laser ranging [25, 26], atom in-
terferometers [27], cosmic rays [28], pulsar timing [29, 30],
planetary orbital dynamics [31], super-conducting gravime-
ters [32, 33], and gravitational waves [34] (see Hees et al.
[35] for review). Then at mass dimension 5, new opera-
tors introduce a CPT-violating gravitational force. Gravita-
tional waves [36] and binary pulsars [37] were used to put
bounds. At mass dimension 6 and higher, short-range exper-
iments in laboratories are extremely powerful to cast useful
limits [18, 38—40]. We refer the reader to the updated data
tables [4] for details.

Nevertheless, all limits mentioned above are based on the
linearized version of gravity [9], where terms are only kept up
to the quadratic order of the metric perturbation A, = g,,—1,y
in the Lagrangian with 7,, being the flat-spacetime metric.
After variation with respect to 4, only linear terms appear
in the field equations. The linearized gravity limit unavoid-
ably misses interesting features that only come from nonlin-
ear terms. Bailey [19] has analyzed an interesting example
where the Lagrangian contains a term proportional to the cu-
bic power of the Riemannian tensor R,,,,;. When restricting to
the cubic order of 4, in the Lagrangian (hence, quadratic or-
der in the field equations), body-dependent effects appear for
self-gravitating objects. This is a novel effect for the grav-
ity sector, and it reminds us the well-known Nordtvedt ef-
Sect [41, 42] that is closely related to the gravitational weak
equivalence principle (GWEP) [3, 7, 42]. In this Letter we an-
alyze this phenomenon in detail with precision binary orbits
from pulsar timing [5, 43, 44], and put the first set of observa-
tional bounds.

Unless otherwise stated, we use units where ¢ = 1.

II. ANISOTROPIC CUBIC CURVATURE COUPLINGS

The gravity sector of the SME was built to extend GR by
including coefficient fields that couple to the metric and its
derivatives [16]. LLI is broken by the cosmological conden-
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sation of these coefficient fields. In the 4-dimensional (4d)
Riemann-Cartan spacetime, to be compatible with geometri-
cal identities, the breaking should be spontaneous, instead of
explicit [16, 45]. It is set by minimizing the energy of co-
efficient fields through a Higgs-like mechanism. Neverthe-
less, unlike the Higgs, coefficient fields can take spacetime in-
dices, thus their nonzero vacuum expectation values (VEVs)
break the Lorentz symmetry. In other words, while physical
states are LV, the underlying fundamental theory is Lorentz-
invariant [46].

Being general, the Lagrangian in the SME [16] reads £ =
Len + Liv + Ly + L, where (1) L, is the matter sector; (ii)
L describes the dynamics (including the symmetry breaking)
of the coeflicient fields, whose details are not crucial here;
(iii) Ly contains the couplings between the LV coefficient
fields with the gravitational field. The terms in Ly can be
organized using the mass dimension of the curvature operator
they contain [16, 18, 23]. As an interesting case study, we
focus on operators of mass dimension 8 [19],
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Here kffgy Skdyverny AT€ the coeflicient fields, and they have phys-
ical dimensions of quartic length. Like other coefficients,
they can be composite of lower-order tensors, as was shown,

for example, in Sec. IV of Ref. [17] with bumblebee mod-

els. We use the compact grouping notation [19], as kg)sc =
(®8) = i
Kepysraverns: RAR7 = R*®°R,p,s, and so on. By design,

when |l < 1, R ~ O(h), and L) ~ O(h®). There-
fore, the field equations have no O (h) contributions from
Eq. (1). Other possible 8d terms proportional to D*DPRAR?
and D*DPD? D°R™ introduce lower-order contributions of h.
Therefore, in the sense of solely studying nonlinear terms and
body-dependent effects in the gravity sector of the SME, Lg
is complete at leading order, saving for possible contributions
from the dynamical terms in L.

Through symmetry breaking, k(;(;sc obtains its VEV, I_c(;()BC.
In principle we still need to account for the dynamics of the

fluctuation k¥, . = k¥ — k¥ to be fully compatible with

ABCc = “ABC T “ABC
the geometry. However if we restrict to O(hZ) terms in the

field equation, 7{;8{)230 does not enter [17, 18, 21]. Then, af-
ter imposing Bﬂl_cg)gc = 0 in an asymptotically flat Cartesian

coordinate, the field equation simply reads [19],

Gy = 871G (T + T},) + 6k

ayvﬁ&’(Baa&B (RﬂRB) +0 (h3) ’
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where T}, and T}jv are the energy-momentum tensors from L,
and Ly respectively. Under mild assumptions on the nature of
the dynamical terms for the coefficients 12;8{230, we hereafter
neglect the contributions from the stress-energy tensor Tl‘fy.
For details on this assumption see section II in Ref. [19] and
Refs. [47, 48].

III. BINARY PULSARS

Using the technique of PN calculations [17, 42], it was
shown that [19], from Eq. (2), the only correction to the PN
metric in GR is 6hqg in hgg at O (04 / c4). It satisfies a Poisson-
like equation [19],

V2ohoo = 96 (K)o 010k (010U ,0,U) . (3)
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where U is the Newtonian potential, and I_cff), with 56 inde-

pendent components, are linear combinations of I}(;)BC; see
Eq. (17) in Ref. [19].

Consider a binary is composed of bodies a and b with
masses m, and mj;. The acceleration for body a is, a, =
d&’r,/df* = -Gmyn/r? + afN + da,, where = T, — 1} is
the separation vector, and r = |r|, 7 = r/r. Interchanging
indices a < b gives the acceleration for b. The first two terms
give the Newtonian and PN accelerations in GR, while the last
term is the abnormal acceleration from Eq. (1).

The novel aspect of the abnormal acceleration comes from
the dependence on quantities P,, P, and P/, [19],

P, = — | &rp?, “4)
Mg Ja

~ ! ., O,

P, = r | d’rpr-+46—|, %)
35ma \ Ja G
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P = lon | d>rp,r- — 48—, (6)
35m, Ja G

where p, and Q, are the density and the (Newtonian) grav-
itational self-energy of body a, respectively.  The depen-
dence on the internal structure of objects is a distinct feature
due to the nonlinear terms coupled to I_{.(;()BC’S VEVs [19]. It
is independent of the multipole structure, persisting even in
the limit of vanishing multipole moments and tidal forces for
perfectly spherical objects. Therefore such a dependence vio-
lates the GWEP and generalizes the well-known Nordtvedt ef-
fect[7,41,42,49]. Itis absent in the linearized gravity [9, 17].
This interesting feature is our major motivation to study the
Lagrangian (1).

Roughly speaking, with a uniform density one has P, ~ p,
and P, ~ P, ~ m,/R, where R, is the radius of body a.
The denser of the body (or, the more compact of the body),
the larger of these quantities. Pulsars, with their extremely
dense nuclear matters and significant compactnesses, fit into
this scenario ideally. It is easy to verify that, in a binary sys-
tem, the denser object dominates the abnormal acceleration.
For example, for neutron star—white dwarf (NS-WD) binaries,
we only need to consider the GWEP-violating contribution
from NSs since WDs are weak-field objects with pwp < pNs-

For NSs, the P, contribution is dominant over P, (and 13;),
by ~ <G2mbPa/r4) / (szbpa/rﬁ) ~ r2/RZ > 1. Thus we
only need to consider the anomalous acceleration o« P,/r™*.
This simplification is not valid for laboratory short-range
gravity tests where the separation of bodies is comparable to
the size of the objects, and the full Eq. (3) is needed [19, 40].



At the first-order approximation, we assume that the bodies
have a uniform density, which introduces a difference < 20%
in P, with respect to a more realistic density profile. We define
an effective radius R via, M/R® = m,/R; + m;/R; where M =
mg, + mp. Thus, we have R ~ Rng for NS-NS binaries, and
R ~ (M/mns)""® Rxs for NS-WD binaries. Then the abnormal
relative acceleration reads,

Akalsg 2 ~k

sal = 6al — al ~ —432(GM)2 Kl i — 5K
= 6a) - 6a) _
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where K j are linear combinations of I_cgf) given in Eq. (37) in
Ref. [19]. Itis a symmetric traceless tensor with 5 independent
degrees of freedom. da’ resembles an effective anisotropic
quadrupole moment. However, the Newtonian quadrupole
moment decreases when the body gets more compact, while
the GWEP-violating effect has the opposite behavior [19].

With osculating elements from celestial mechanics [49],
Bailey [19] obtained from Eq. (7) the secular changes of or-
bital elements averaging over a Keplerian orbital period Pp,
(da/dt) = (de/dt) = 0, and,

(di/dt) = 2F (Kze cosw — Kj, sinw) , 8)
(dw/dty = F [K —2coti(Kz sinw + Ky cosw)],  (9)
(dQ/dt) = 2F csci(Kze sinw + K, cos w) (10)

where we have defined,

K = Koa + Kjj — 2Kz 11
216  ma

F=—r—"—. (12)
O R3(1-e€?)

In the above equations, a is the relative semimajor axis, e is
the eccentricity, i is the orbital inclination, w is the longitude
of periastron, Q is the longitude of ascending node, and n;, =
2r/Py [42, 49]. Kj is projected onto the coordinate frame
(&, 13, é) attached to the pulsar orbit (see Figure 1 in Ref. [30]).
The formulae for projections can be found in Eqs. (18-24) in
Ref. [30].

As in previous work, the change in the orbital inclination is
converted to the time derivative of a timing parameter x,,,

<)'cp/xp> = 2F coti (Kz: cosw — Kj, sinw) , (13)

where x, = a, sini/c is the projected semimajor axis for the
pulsar orbit with a, =~ mya/M. We in general do not measure
the longitude of ascending node € in pulsar timing unless the
pulsar is very nearby [43], therefore, we will use the “@w-test”
in Eq. (9) and the “x,-test” in Eq. (13) for gravity tests.

From the definition of ¥, relativistic binaries with tight
orbits (larger nza) are preferred to the tests; eccentricity in-
creases # mildly. We have used a handful of well-timed rel-
ativistic binary pulsars to test the CPT-violating gravity [37].
Details for these pulsars are provided collectively in Tables
I-IIT in Ref. [37]. This collection serves the study here very
well. We divide them into 2 groups: (1) the NS-NS group
including 4 systems with P, < 1day: PSRs B1913+16 [50],
B1534+12 [51], B2127+11C [52], and JO737-3039A [53];

TABLE I. Constraints on the GWEP violation from binary pulsars.

Pulsar Test Expression 1o limit [km*]
J0348+0432 %,  [0.59K; — 0.81K, <82x10'
J0737-3039A %,  |0.13K; — 0.99Kj, <48x10°
@ |K-0.07K; - 0.01K;,| <1.2x10°
J0751+1807 %,  |0.11Kz — 0.99K, <33x10?
7101245307 %,  |0.39Kz: +0.92K;| <74x10?
B1534+12 &,  |0.24K; +0.97K;, <4.8x 102
@ |K+042K; - 0.11K;,| < 1.7x10°
J1738+0333 &,  [0.91K; + 041K, <13x10?
J1802-2124 %,  |0.94K; — 0.35K;| <15x%10*
11909-3744 %,  |Kzl <52x10°
B1913+16 %, ]0.16Kz — 0.99K;| <13x10?
@ K +18K:+030K;,|  <1.0x10°
12043+1711 %,  |0.55K; — 0.84K;,| <6.7x%10*
B2127+11C %,  |0.96K;: + 0.29Kj; <6.7x10°
@  |K+050K; - 1.6K;| < 1.7x10°

(2) the NS-WD group including 7 systems with P, < 2day:
PSRs J0348+0432 [54], J1738+0333 [55], J1012+5307 [56],
JO751+1807 [57], J1802—-2124 [58], J1909-3744 [57], and
J2043+1711 [59]. The two groups are handled accordingly.
The spread in sky location is important to break the parameter
degeneracy in the tests, as in the earlier work [29, 30, 37].

In order to successfully implement the proposed w/x,, tests,
there are some concerns to address. Here we briefly recapit-
ulate a few key points [29, 30, 37]. (i) For pulsars whose %,
was not reported in literature, we conservatively estimate from
the measured uncertainty of x,; the estimation was checked
independently to be rather good with PSRs B1534+12 and
B1913+16 [37]. (ii) The unknown ) is treated as a nui-
sance parameter in the Bayesian sense, and a randomization
Q € [0,360°) renders our tests as probabilistic tests [60]. (iii)
For binaries whose component masses were derived from the
accurately measured @ using GR, we recalculate them with-
out using w (see Ref. [37] for discussions); therefore, we con-
struct “clean” w-tests albeit with a much worse precision. (iv)
We take care of the caution that a large @ renders the secular
changes nonconstant [61]. (v) We handle the fact that a large
proper motion for nearby binary pulsars introduces a nonzero
X, [62]. (vi) A fiducial radius Rys = 12km is used, regardless
of the complication from the equation of state.

IV. RESULTS

After taking the above into account, we have derived 15
independent constraints in Table I on various linear combina-
tions of LV coefficients. The pulsars from the NS-WD group
provide one x,-test per system, and those from the NS-NS
group provide one x,-test and one w-test per system. The lim-

its are in the range of ()(101 km4) to O (106 km4), in a broad

agreement with the estimated sensitivity [19]. In general, the
limits from the w-test are worse than those from the X,-test,
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FIG. 1. Constraints on K j in the (X, SA(, Z) frame. Contours show the
68%, 90%, and 95% CLs. The unit for K is 103 km*.

TABLE II. 1o constraints on K j in the (X, SA(, Z) frame.

K Scheme A [km*] Scheme B [km*]
|Kxx| < 1.6 x10* <12x10°
IKyyl <24 %10 <17x10°
|Kxy| < 1.8%x10* <1.0x10°
|Kyz < 1.4 x 10? < 8.6 x 10?
|Kzx| < 1.6 x10?* < 8.8 x 10?

due to the large uncertainties in the recalculated masses for
the sake of a clean w-test. The tightest limit, < 102 km®*,
comes from the %, test of PSR J0348+0432.

However, the limits in Table I are not expressed in a com-
mon coordinate system. They depend on the geometry of bi-
nary pulsars through the projections onto the (&, b, é) frame.
Different binaries carry different frames due to their different
sky locations and orbital orientations. To simplify compar-
isons with other experiments, it is standard to work in the Sun-
centered celestial-equatorial coordinate system (X, Y, Z) [4,

]. As mentioned before, (d, B, é) and (X, SA(, Z) frames are
linked by a rotation that composes of 5 simple parts related
to the sky location and orbital orientation; see Refs. [30, 37]
for details. We can relate the components of K in these two
frames [17] with e.g., K5 = Kpa/b* (j,k = X,Y,Z). It al-
lows us to express all limits in Table I in terms of K in the

(X, SA{, Z) frame and 5 rotation angles w, i, Q, a (right ascen-
sion), and ¢ (declination).

To proceed practically, for a 1o limit “a” in Table I, de-

noted as

Xa (Kjkv Qa)

< C4 (e.g., |0.59K; — 0.81Kj,

<

8.2 x 10" km®* from PSR J0348+0432), we use the following

TABLE III. 10 constraints on the absolute values of l_ch) components
in Scheme C (unit: km*). Unconstrained ones are marked with dots.

(E9) | <23 %102 (E)enss| < 18107
(F9) ] < 16% 107 (FDcrn] <51 %107
(B9) g < 14102 (B )] <41 %102
(K% grna] < 17 % 10° (B v

(K2 grys] <27 % 10° (N

(D) ] <27 %107 (KR rnc| < 175102
(K9) | <24 102 (K)o

(D) rggs| < 24102 (BR )y <36 %107
(), ‘ <2.1%10? (’Eifr))xxyyzz|

(,-CQ?)XXYZYJ < 1.7 % 10 (_Slz)xxYZZZ| <2Ix10°
(D) pap] <28%10° (B )yxons| < 14107
(F9) g < 12107 (B vxors| <2210
(KS) ypyg] < 11 % 107 (K)o <30 10°
(l_(g)xvxzxz| <14x10? (l_(g)xyszY’

B (e

(), e | < 1.8x 10 (’Eifr))xymz'

(D), ] <27 %107 (R erons] < 14107
o (@] <1510
(F) | < 12107 (o] < 22107
()| < 11 10° (K pnzra| <3010
(D), oor ‘ < 1.6 x 102 (’_Cgf))xzywz|

()] <24 102 (Ezvn| < 12107
N Eidr <1717
(,-Cg)www‘ <29x% 10 (_ST?)\NYYYZ' < L4x10°
(’_(Sr))wwzz| <2.9x% 102 (];L?r))yszYZ| <22x10°
(D), | <21 102 (B)vzzzr| <25%10°
() vy < 11 10° (B v720| <30 107
(D), pps| < 14107 () 22| <40x10°

probabilistic density function (PDF) [37],

1 Xu (Kjk»Qu) ’

21
P(Kjk)ocnfo exp ) .

where we have made assumptions on the Gaussianity of mea-
surements and the independence of the limits in Table I.
We use three schemes to obtain sensible limits on K. In

dQ,, (14)



scheme A, we make an assumption that only one component
of Kj in the (X, Y, Z) frame is nonzero. We obtain PDF for
each component, and extract the limits at 68% CL (see Ta-
ble II). The limits are dominated by the tightest limit in Ta-
ble I. In scheme B, we allow all components of K to be
nonzero. We use the EMceE package [64] to investigate their
joint PDF with Markov-chain Monte Carlo (MCMC) simula-
tions. We use 20 walkers to accumulate 107 samples in to-
tal, of which the first half is discarded as the BURN-IN phase.
The 2d pairwise distributions for K are shown in Figure 1,
together with 1d marginalized distributions. We extract the
limits for each component at 68% CL, tabulated in Table II.
We can see that the limits are only worse than those from
scheme A by a factor of a few. We have 5 degrees of free-
dom and 15 constraints. The overconstraining system bounds
the values of these 5 components very efficiently [29]. In
scheme C, we assume only one component of 1232 in the

(X, SA(, Z) frame is nonzero; results are given in Table III. In

this case, we can constrain 45 components of I_ci?; the other
11 components do not appear in K j.

The limits in Tables IT and III are the first sets of this kind on
the nonlinear terms and body-dependent effects in the gravity
sector of the SME. We suggest that other groups can perform
similar analysis on their experiments and compare the results
with ours. In short-range experiments, a different treatment
is needed, and they might probe unconstrained components in
this study. We do not make efforts to translate from K and
l_cgf) to 7{}8‘;30, because K j; and l_cgf) have the actual parameters
which appear in the relative acceleration (7) and the Poisson-
like equation (3) respectively. It is universal for a variety of
experiments, and easy for future comparisons.

V. DISCUSSIONS

In this Letter we follow the theoretical work by Bailey [19]
and investigate in detail the GWEP-violating signals in the
gravity sector of the SME with binary pulsars. Nonlinear
terms from the anisotropic cubic curvature couplings (1) in-
troduce novel effects that are absent in the linearized gravity.
Most notably, the relative accleration between two objects de-
pends on the internal structure of the bodies. The denser the
object (or, the more compact the object), the larger the abnor-
mal acceleration. NSs are among the densest objects, hence
they are intrinsically privileged in testing this kind of GWEP-
violating phenomenon. We use multiple pulsars that were pre-
pared to test the CPT-violating gravity in the SME [37], and
put the first sets of bounds on relevant parameters. Our bounds
on the GWEP-violating parameters are listed in Tables IT and

III. We hope other experiments will provide complementary
bounds, probably on different degrees of freedom.

The violation of GWEP reminds us the famous “Nordtvedt
effect” [41]. It is one of the main ingredients for the strong
equivalence principle (SEP) [3, 42]. For all the valid alterna-
tive gravity theories, SEP basically implies the uniqueness of
GR [3]. Therefore, the tests of the GWEP in this work are im-
portant. It provides complementary information to the exist-
ing tests of the GWEP in specific alternative gravity theories,
like the scalar-tensor gravity [65].

It is worthy to mention that, in the theoretical treat-
ment [19], we have only used the quadratic O(hz) modifi-
cations in the field equation, neglecting all the other higher-
order terms. In this sense, our limits should be treated as
the strong-field effective limits to their weak-field counter-
parts; see Refs. [66-68] for more details.  Already at this
approximation, we begin to obtain body-dependent GWEP-
violating effects. By fully incorporating all the nonlinear
terms might provide even more interesting phenomenona. In a
class of scalar-tensor gravity, nonperturbative strong-field ef-
fects were discovered with fully nonlinear equations [69-72],
that provided important tests for gravitation in the strong-field
regime [3, 5]. Possible extension of the gravity sector in the
SME to higher orders is beyond the scope of this work.

From the perspective of pulsar timing, continuous obser-
vations will improve the & and i, accuracy as 7—3/%, where
T is the observational time span. Thus the 773/ improve-
ment for w/x, tests is guaranteed. The upcoming large radio
telescopes and arrays will further tighten the bounds. For ex-
ample, the Five-hundred-meter Aperture Spherical Telescope
(FAST) [73] and the MeerKAT array [74] are starting to op-
erate, and will provide a big improvement in the timing pre-
cision. Ultimately for the next decades, the Square Kilometre
Array [44, 75, 76], is going to test gravity in an unparalleled
way with its remarkable sensitivity.
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