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We extend the work of Ryan [1, 2] on mapping the spacetime of the central object of an extreme
mass-ratio inspiral (EMRI) by using gravitational waves (GWs) emitted by the system, which may
be observed in future missions such as LISA. Whether the central object is a black hole or not
can be probed by observing the phasing of these waves, which carry information about its mass
and spin multipole moments. We go beyond the phase terms found by Ryan, which were obtained
in the quadrupolar approximation of the point-particle limit, and derive terms up to the fifth
post-Newtonian (PN) order. Since corrections due to horizon absorption (i.e., if the central object is
a black hole) and tidal heating appear by that order, at 2.5PN and 5PN, respectively, we include
them here. Corrections due to the motion of the central object, which was addressed only partially
by Ryan, are included as well. Additionally, we obtain the contribution of the higher order radiative
multipole moments. For the tidal interaction, our results have been derived in the approximation of
the Newtonian tidal field. Therefore, in the potential for tidal field only the contribution due to the
mass of the central object has been included as well. Using these results we argue that it might be
possible for LISA to probe if the central object in an EMRI has a horizon or not. We also discuss
how our results can be used to test the No-hair theorem from the inspiral phase of such systems.

I. INTRODUCTION

The direct observation of gravitational waves (GWs)[3–
6] has opened up a new vista onto the universe. The
Laser Interferometer Space Antenna (LISA) [7–11], which
is likely to be launched in the early-to-mid 2030s, is ex-
pected to increase the variety of objects that will be
observed in GWs. If the history of science is any indica-
tion, then it is not inconceivable that we will eventually
observe GW systems that we did not think of before.
Characterizing any GW source, however, benefits from
the ability to map its space-time. A formalism that allows
one to do so can, therefore, be useful. By making a few as-
sumptions, Ryan [1, 2] showed that the waves emitted by
a small compact body orbiting a much more massive com-
pact object carry information about the Geroch-Hansen
multipole moments of the latter [12, 13]. These moments
characterize the heavier object’s vacuum spacetime geom-
etry in what is termed as an extreme mass-ratio inspiral
(EMRI) system.

As an example, if the massive body is a black hole then
the “No-hair” theorem [14–18] states that its exterior
metric found by solving the Einstein-Maxwell equations
of gravitation and electromagnetism in general relativity
will be dependent only on mass, electric charge and an-
gular momentum. Owing to this theorem, we expect the
moments of black hole solutions to depend only on these
parameters. For this reason, measuring the multipole
moments from observations will help probe the validity
of the No-hair theorem or constrain it. To pursue this
goal of mapping the spacetime of the heavy object in the
approximate center of EMRIs we will follow the formal-
ism constructed by Ryan [1]. In Sec. II, we will discuss it
briefly since it will be useful in describing the properties
of the central object and, therefore, test the theorem.

Since Ryan’s work in the late 1990s, it was realized that

this formalism has an important limitation in the sense
that the orbits studied there are not realistic for EMRIs.
The orbits studied there were equatorial and circular,
while the realistic orbits are expected to be eccentric
and nonequatorial. Effects of self-force, tidal deformation
and absorption of GW by the central object were also
ignored. These drawbacks were partially addressed in
Refs. [19–31], which helped in the development of better
waveforms. Owing to the system’s extreme mass ratio, a
way to generate realistic EMRI waveforms is to use black
hole perturbation theory, governed by Teukolsky equation.
Such calculations are computationally very expensive [32,
33]. To tackle this issue approximate waveforms, known as
kludge waveforms, have been constructed [34, 35]. These
latter waveforms are not perfect either since they do not
account for self-force. Most accurate EMRI waveforms
can still be produced, however, with numerical evolution
of the orbit. Unfortunately, they are computationally
expensive to produce. This is a major reason why many
such studies have resorted to using the kludges, with the
latest such work being the one in Ref. [36].

In this work, we study the viability of searching for the
existence of horizon and tidal deformablity, and testing
for the No-hair theorem, with LISA. Since the use of
numerical waveforms for this purpose is computationally
prohibitive at this stage, such an analysis should ideally
be carried out at least with kludge waveforms, after ex-
tending them to account for the horizon term, the tidal
deformability parameter, etc. However, before we do so,
in a future work, we first conduct a viability test here for
the measurement of the horizon term, the tidal deforma-
bility parameter, and the leading mass and spin multipole
moments of the central objects in EMRIs, for it is not
clear with any of the aforementioned waveform families
how accurately they will be measurable in LISA. This is
a first step in that regard, which we aim to improve in
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subsequent work with better waveforms.

One of the effects that Ryan’s formalism does not ac-
count for is matter tides. If the central object is not
a black hole, its effect on the GW phasing can be non-
negligible [37, 38]. Li et al. [19] have included this effect
in an extension of Ryan’s formalism. A second effect not
considered in that formalism is the absorption of gravita-
tional waves by the central object if it happens to have
a horizon. We study both these effects here. It will be
shown how these can be used to figure out whether the
central object has a horizon and, consequently, to test the
No-hair theorem.

A third important contribution absent in Ryan’s work
is the effect of radiation reaction. When the two objects in
an EMRI are far apart, the GW luminosity is small, and
this effect is not very prominent. Over time, however, it
has a cumulative effect on the phase of the gravitational
wave emitted by it. In this work, we did not account
for this correction either. This is along the lines of the
other simplifying assumptions we have made, e.g., by
ignoring eccentricity, precession, etc., which we expect to
be present in realistic EMRIs. In that sense, the present
work should be considered as a first step towards the more
complex goal of assessing how precisely parameters of
astrophysically realistic EMRIs can be measured in LISA.
In spite of this assumption, we feel that the current work
serves a useful role since it provides some understanding
for the first time of the observability of each of the first
few multipoles. And the other important aspect is the
formulation of the data analysis framework involving the
horizon parameter, which brings us closer to probe the
existence or absence of a horizon.

In Sec. III we briefly discuss Ryan’s formalism. There
we also describe tidal effects and give the expressions for
the observables related to the vacuum multipole moments.
We calculate the complete luminosity up to tenth power
in the velocity of the orbiting companion v under the
point particle (PP) approximation. This is followed in
Secs. IV-VI by a presentation of the luminosity absorbed
by the horizon in the case where the central object has
one. Next, in Sec. VII we discuss that contribution to the
luminosity that depends only on the masses. In Sec. VIII
we discuss the terms in the luminosity that arise due to
the central object’s motion. Then in Sec. IX after giving
the complete expression of the phase evolution, we discuss
how it can be used to probe for a horizon and also test the
No-hair theorem. In Sec. X, we present estimates of some
parameter errors for a exploratory set of EMRIs. We use
the Fisher information matrix for this purpose. Such a
method has been used in the past for estimating a few
of the parameters of EMRIs in LISA (e.g., sky position,
total mass, mass ratio, eccentricity, and the spin of the
central object [20, 36, 39–42]). We extend that list to
include additional parameters, such as a few of the low-
order mass and spin moments, the horizon term and the
tidal deformability parameter of the central object. We
note that the Fisher estimation method has well known
limitations: Importantly, our error estimates should be

considered only for loud signals and under the simplifying
assumptions listed above. We leave more sophisticated
parameter estimation studies using Bayesian methods
for the future when some of the assumptions about the
system can be dropped in order to make the system more
realistic.

Throughout this work we have used G = 1 = c.

II. EMRI OBSERVABLES

In Ref. [1] Ryan showed how the multipole moments of
the central object can be extracted from the gravitational
waves emitted by an EMRI. He showed that certain func-
tions, discussed below, are “good” observables for this
purpose.

One such quantity is the gravitational-wave spectrum
∆E(f), which is defined as

∆E ≡− Ω
dEsource

dΩ
, (1)

where Esource is the energy of the binary system and Ω is
the orbital frequency defined as,

Ω =
dφ

dt
=
dφ

dτ

dτ

dt
, (2)

where, τ is the proper time along the geodesic.
Another observable quantity is the phase evolution,

which we will define as the rate of change of the primary
wave frequency with time. The following dimensionless
wave observable quantifies it [1]:

∆N(f) ≡ f2

df/dt
=

f∆E(f)

−dETotal/dt
, (3)

where f is the GW frequency, and is related to the orbital
frequency as f = 2Ω. Moreover, −dETotal/dt is the total
emitted luminosity from the system in the form of GWs;
the minus sign represents this loss of energy from the orbit.
In addition to ∆N , we will be interested in studying the
waveform phase (ψ), which is related to the former as
follows [43, 44]:

ψ(f) = 2πftc − 2φc −
π

4
+ 6

∫ v

vi

dv̄(v3 − v̄3)
π∆N

v̄4
, (4)

where v is the orbital velocity of the smaller body, v̄ is an
integral variable for velocity, vi is some initial reference
point for velocity and M is the total mass of the system.
tc = t(vi) and φc = φ(vi) [45].

For orbits that are slightly elliptical and slightly inclined
to the equatorial plane, there are two other observables
in the form of precession frequencies. Owing to the near-
axisymmetry of an EMRI, we employ the cylindrical co-
ordinate system to describe them, with ρ as the radial
co-ordinate and z as the axial co-ordinate. Then one of
the frequencies is related to the rate at which ρ changes
and the other to the rate at which z changes [1]:
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Ωα = Ω−
{
− gαα

2

[
(gtt + Ωgtφ)2

(
gφφ
ρ2

)
,αα

− 2(gtt + Ωgtφ)(gtφ + Ωgφφ)(
gtφ
ρ2

),αα + (gtφ + Ωgφφ)2(
gtt
ρ2

),αα
]} 1

2

, (5)

where α = ρ and z, respectively, for the two cases, and
there is no sum over α on the right-hand side (RHS).

Since we will include the effect of tidal interaction, we
will examine, in particular, how any of these observables
gets modified by its presence and how one can extract
multipole information from them.

The precession frequencies depend on the possibly com-
plex orbit and its orientation. Tides are related to the
deformation of the inspiraling bodies and, thus, to first
order will not affect the precession frequencies [19]. Then
remains the phase evolution. As there are tidal correc-
tions to the luminosity, we can anticipate that ∆N will
be affected by tidal deformation, when present, even if at
higher orders of v.

III. RYAN’S FORMALISM

Since our aim is to generalize the multipole formalism
for EMRIs in Ref. [1], we begin by briefly summarizing it.

A. Assumptions

The assumptions of the formalism are:
(i) The central body of the system has a vacuum, ex-

ternal gravitational field that is stationary, axisymmetric,
reflection symmetric across the equatorial plane of the
central object, and asymptotically flat (SAVAR). In the
(t, ρ, φ, z) co-ordinate system the metric takes the form [1],

ds2 = −F (dt− ωdφ)2 +
1

F
[e2γ(dρ2 + dz2) + ρ2dφ2] ,

(6)

where F and ω can, in general, depend on ρ and z.
(ii) The companion compact object of mass m inspirals

around the central much heavier compact object of
mass M � m. Consequently, small perturbations of
the central object’s vacuum metric will not induce
any significant change. Owing to this assumption it is
possible to treat the inspiraling object as a “test particle”,
which has an orbit evolving slowly and adiabatically
from one geodesic orbit to another. So, on the time scale
of the orbital period it can be approximated as a geodesic.

(iii) The geodesic orbits through which the inspiral
evolves are almost circular. In general, they can be
slightly elliptical and will lie mostly in the equatorial
plane.

(iv) The central object does not absorb any energy
so all the energy is emitted to infinity. (Ryan did not

account for the absorption by a horizon that the central
object may have.) Also, tidal effect has been neglected
completely.

We will try to relax these assumptions as much as
possible in later sections.

The parameter space of EMRIs, however, contains ad-
ditional parameters that we will neglect for simplicity
[20]. Another crucial point to note is that the event rate
of high-eccentricity EMRIs is much larger than that of
low-eccentricity ones [21–24]. High eccentricity EMRIs
spend enough cycles inside the band of eLISA to be de-
tectable [21, 24]. Therefore circular orbit EMRIs are not
realistic. Since the velocity of the small mass can be
highly relativistic, PN expansion is not adequate either.
We hope to return to those aspects in a later work, and
limit our scope here to discuss for the simple EMRI sys-
tems absorption by the horizon and the signature of the
multipole moments in GWs. For this reason, the results
on parameter estimates obtained in the present work can
be considered as “indicative”.

B. Procedure and results

Owing to the assumptions described in the previous
section, the space-time mapping problem becomes easier
to address. Assumption (i) limits the metric around
the massive body to be a SAVAR metric. Due to the
symmetries, the metric is independent of t and φ, thereby,
implying the existence of two conserved quantities, namely,
energy E and angular momentum Lz [1]:

E

m
= −gtt

(
dt

dτ

)
− gtφ

(
dφ

dτ

)
, (7)

Lz
m

= gtφ

(
dt

dτ

)
+ gφφ

(
dφ

dτ

)
, (8)

where m is the mass of the lighter orbiting object, and τ
is the proper time along its geodesic. M will denote the
mass of the heavy central object, The rotational frequency
Ω of a circular orbit can be expressed as,

Ω =
dφ

dt
=
−gtφ,ρ +

√
(gtφ,ρ)2 − gtt,ρgφφ,ρ
gφφ,ρ

. (9)

From the normalization equation of the four velocity, and
using Eqs. (8) and (7) one finds,

dt

dτ
=

1√
−gtt − Ω2gφφ − 2Ωgtφ

. (10)
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Substituting the last two expressions in the energy and an-
gular momentum equations, Eqs. (7) and (8), respectively,

one obtains

E

m
=

−gtt − Ωgtφ√
−gtt − 2gtφΩ− gφφΩ2

, (11)

Lz
m

=
gtφ + Ωgφφ√

−gtt − 2gtφΩ− gφφΩ2
. (12)

Using the above equations, the Ernst potential formalism
and the results from Ref. [46], Ryan found the expressions
of the aforementioned wave observables to be [1]

∆E

m
=
v2

3
− v4

2
+

20S1v
5

9M2
+

(
M2

M3
− 27

8

)
v6 +

28S1v
7

3M2
+ v8

(
80S2

1

27M4
+

70M2

9M3
− 225

16

)
+ ... , (13)

Ωρ
Ω

= 3v2 − 4
S1

M2
v3 +

(
9

2
− 3

2

M2

M3

)
v4 − 10

S1

M2
v5 +

(
27

2
− 2

S2
1

M4
− 21

2

M2

M3

)
v6 + ... , (14)

Ωz
Ω

= 2
S1

M2
v3 +

3

2

M2

M3
v4 +

(
7
S2

1

M4
+ 3

M2

M3

)
v6 +

(
11
S1M2

M5
− 6

S3

M4

)
v7 + ... , (15)

where v is the orbital velocity of the lighter companion
about the center of mass and Sl and Ml are respectively
the current and the mass multipole moments defined by
Hansen [12] and Geroch [13]. The symbol M denotes a
mass parameter. However, confusion with mass multipole
moment Ml can be avoided by noting that the latter has
a subscript but the former does not.

This is how Ryan achieved the goal of expressing the
observables in terms of the central object’s multipole
moments. To calculate the phase evolution it is important
to know the luminosity of the system, which we discuss
later.

IV. MATTER TIDES

A. Result of tidal effect on a compact star

In the last section we discussed how Ryan derived the
expressions for certain GW observables, under a set of
assumptions. But due to assumption (iv), tidal interaction
was neglected in his formalism. In this section we discuss
how it can be included and what changes it brings about
in the observables.

Let us take m1 and m2 to be the masses of the inspi-
raling compact objects. Also, let Ω be the orbital angular

frequency and µr the reduced mass of the system. Then

η =
m1m2

M2
T

=
µr
MT

, MT = m1 +m2, (16)

are the symmetrized mass-ratio and the total mass of the
binary, respectively.

Flanagan and Hinderer [43] calculated the energy in
gravitational waves associated with tidal effects and the
contribution to the rate of change of energy due to them.
To set the stage for our calculations, we begin by dis-
cussing their results first. They took the effective action
of the inspiraling system and an associated quadrupole
moment coupled with orbits through a tidal field. From
its solution, they calculated the induced quadrupole mo-
ment. To more precisely point out the physical argu-
ments it is useful to start with the action they consid-
ered. Suppose the relative separation of the two objects is

xi = (ρ cos Φ, ρ sin Φ, 0) = ρni. Let Q
(n)
1ij be the quadrupo-

lar deformation of the first object caused by the tidal field
E2ij = −m2∂i∂j(1/ρ) of the second object. Here we limit
ourselves to the l = 2 order, and with n radial nodes.

Then, Q1ij =
∑
nQ

(n)
1ij and the tidal deformability of the

first object, λ1 =
∑
n λ1,n. Under these conditions the

action for the system is [43]

S =

∫
dt

[
1

2
µrρ̇

2 +
1

2
µrρ

2Φ̇2 +
MTµr
ρ

]
− {1

2

∫
dtQ1ij E2ij −

∑
n

∫
dt

1

4λ1,nω2
n

[
Q̇

(n)
1ij Q̇

(n)
1ij − ω

2
nQ

(n)
1ijQ

(n)
1ij

]
+ 1↔ 2 }.

(17)
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If the Burke-Thorne GW dissipation contribution [47] is
ignored then the ensuing equations of motion for the first
object are

ẍi +
MT

ρ2
ni =

m2

2µr
Q1jk∂i∂j∂k

1

ρ
, (18)

Q̈
(n)
1ij + ω2

nQ
(n)
1ij = m2λ1,n ω

2
n∂i∂j

1

ρ
, (19)

where xi are its spatial coordinates. These equations have
equilibrium solutions with ρ as constant and Φ = Φ0 +ωt.
The second object’s equations of motion can be calculated
similarly.

By accounting for the contributions from both of the
bodies, Flanagan et al. obtained the expression for the
orbital radius, the energy of the binary and the GW
luminosity. The results we will use for the energy and
luminosity are [48]:

ETidal(v) =
9

2

ηv12

M4
T

[
m1

m2
λ2 + 1↔ 2

]
(20)

dE

dt

∣∣∣∣
Tidal

(v) = −32

5
η2 v

20

M5
T

6

[
m1 + 3m2

m1
λ1 + 1↔ 2

]
,

(21)

where v2 = {Ω(m1 +m2)}2/3.
For our purpose we will denote the parameters of the

more massive, central object with the index M and those
of the second object with the index m. In other words,
replacing the indices 1 and 2 with M and m, respectively,
the above equations become:

ETidal(v) =
9

2

ηv12

M4
T

[
M

m
λm +

m

M
λM

]
, (22)

dE

dt

∣∣∣∣
Tidal

(v) = −32

5
η2 v

20

M5
T

6

[
m+ 3M

m
λm

+
M + 3m

M
λM

]
= −32

5

m2

M2
Av20,

(23)

where in the limit of the extreme-mass ratio, v2 = (MΩ)
2
3 ,

A = M2

m2
6η2

M5
T

{
m+3M
m λm + M+3m

M λM
}

and MT = M . It

straightforwardly follows from the above that

∆E = −18
ηv12

M4

[
M

m
λm +

m

M
λM

]
= Xv12,

(24)

where, X = −18 η
M4

{
M
m λm + m

M λM
}

. When applying the
above result, one must note that the tidal Love number
of a black hole is zero [49–54]. We replace λM and λm
with λM/M

5 = ΛM and λm/m
5 = Λm, where Λm and

ΛM are the dimensionless tidal deformability.

Higher order contributions due to tidal interactions,
including those beyond Ref. [43], have been calculated by
Damour et al. [55], but for the mass-dependent tidal field
alone. However, the tidal field depends on the multipolar
structure of the source. Contributions from higher order
multipoles were not considered in their work. Since the
tidal corrections obtained in Flanagan et al. [43] are at
the lowest order, it is consistent to use their results for
our multipolar study.

B. Black hole as central massive object

In the previous section we discussed how the tidal
perturbation of a compact star contributes to the GW
emission of a binary. Since a black hole has a vanishing
tidal Love number the tidal terms there will not contribute
to GWs emitted by an EMRI constituted of black holes.
But there could still be induced quadrupole moment in
the case of a black hole [51]. We expect that the tidal
distortion of the central black hole, due to its companion,
will contribute at very high orders in the GWs. To justify
our point, here we look into the tidal contribution if the
central object is a Schwarzschild black hole. For this only
the Newtonian tidal interaction has been considered. The
result has been derived by Li et al. [51], [19]:

I induced
ij =

32

45
M6Ė external

ij , (25)

E external
ij =

m

ρ3
(δij − ninj), where (26)

n1 = cos(Ωt), n2 = sin(Ωt), n3 = 0. (27)

Using this induced quadrupole moment (I induced
ij ) in the

multipole formula of radiation luminosity, Eq. (30), we
find

−dE
dt

=
131072

10125

m2M4

ρ6
v24. (28)

Since 1
ρ6 = v12

M6 , the luminosity simplifies to

−dE
dt

=
131072

10125

m2

M2
v36. (29)

So, we can see that the tidal distortion of a black hole
due to the Newtonian potential of the companion occurs
at higher order. For that reason we do not consider this
tidal distortion any further in this paper.

V. COMPLETE POINT PARTICLE RESULT
THROUGH v10

In Sec. IV we discussed the tidal contribution and how
it can be included in Ryan’s formalism. Here we will
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discuss how we can find the expression for the phase
evolution ∆N . From Eq. (3) we can see that to find
∆N we first obtain the GW luminosity emitted by the
inspiraling system. The gravitational wave luminosity
can be determined by calculating symmetric trace free
(STF) moments [56] of the system. For the central body’s

Geroch-Hansen moments we use Ml and Sl, and for the
radiative moments of the complete system we use IL and
JL. Here L is a shorthand for b1...bl, where bk is a spatial
index, and k and l are positive integers.

In terms of these moments the radiated luminosity
becomes [56],

−dE
dt

=

∞∑
l=2

(l + 1)(l + 2)

l(l − 1)

1

l!(2l + 1)!!
〈I(l+1)
L I

(l+1)
L 〉+

∞∑
l=2

4l(l + 2)

(l − 1)

1

(l + 1)!(2l + 1)!!
〈J (l+1)
L J

(l+1)
L 〉 , (30)

where the angular brackets indicate average over time and
the parenthetic number in the superscript of a quantity
denotes the number of times its time-derivative is taken,
before the averaging. In this notation the moments of the
whole system are [56],

IL(t) =

[ ∫
d3yρ̃(y, t)yL

]STF

(31)

JL(t) =

[ ∫
d3yρ̃(y, t)yL−1εblkmykum

]STF

, (32)

where ρ̃ is the mass density of the system and yL =
yb1yb2 ...ybl , with ybl being spatial coordinate. The leading
order contribution comes from mass quadrupole radiative
moment Iij . This loss of luminosity can be written as,

−dE
dt

∣∣∣∣
Iij

=
32

5
m2ρ4Ω6 . (33)

We consider the contribution in luminosity due to higher
order radiative moments too. The results are:

−dE
dt

∣∣∣∣
Iijk

=
2734

315
m2ρ6Ω8 , (34)

−dE
dt

∣∣∣∣
Jij

=
8

45
m2ρ6Ω8 , (35)

−dE
dt

∣∣∣∣
Iijkl

=
57376

3969
m2ρ8Ω10 , (36)

−dE
dt

∣∣∣∣
Iijklm

=
4010276

155925
m2ρ10Ω12 , (37)

−dE
dt

∣∣∣∣
Jijk

=
32

63
m2ρ8Ω10 , (38)

−dE
dt

∣∣∣∣
Jijkl

=
11482

11025
m2ρ10Ω12 . (39)

We know that as time evolves the system spirals in and its
rotation frequency changes. Therefore, the change in that
frequency should be related to the change in the orbital
radius. The expression for the evolving radius, after
accounting for each Geroch-Hansen multipole moment,
was obtained by Ryan [1]:

ρ =Mv−2

(
1 +

∑
l=2,4...

(−1)l/2(l + 1)!! Ml v
2l

3 l!! M l+1
−

∑
l=1,3,...

2(−1)(l−1)/2 l!! Sl v
2l+1

3 (l − 1)!! M l+1

)
. (40)

Using it in Eq. (33) Ryan [1] found,

−dE
dt

∣∣∣∣
Iij

=
32

5

(
m

M

)2

v10

(
1 +

∑
l=2,4...

(−1)l/2 (l + 1)!! Ml v
2l

3 l!! M l+1
−

∑
l=1,3,...

2(−1)(l−1)/2 l!! Sl v
2l+1

3 (l − 1)!! M l+1

)4

. (41)

He further mentioned that to test the No-hair theorem it is enough to know the series up to v4, while retaining only
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the dominant contribution from each multipole moment.
But in our case, unlike Ryan, we are considering the effect
of tidal distortion as well as absorption by the central
object. As we have seen, the tidal contribution comes

in at an order as high as v10. Thus, to separate out the
tidal effect completely and still test the No-hair theorem,
one needs knowledge of terms completely up to v10. The
result we find is:

−dE
dt

∣∣∣∣
Iij

=
32

5

(
m

M

)2

v10

(
1 +

∑
l=2,4...

4(−1)l/2 (l + 1)!! Ml v
2l

3 l!! M l+1
−

∑
l=1,3,...

8(−1)(l−1)/2 l!! Sl v
2l+1

3 (l − 1)!! M l+1
+ H.O.

)
, (42)

where H.O. represents higher order terms of the binomial
expansion of ρ in Eq. (42). As we only need terms up to

the tenth power in v, we will only take those pieces of
H.O. that contribute up to that order; to that extent we
find:

H.O. = +
8S2

1v
6

3M4
+

4M2S1v
7

M5
+

3M2
2 v

8

2M6
− 32S3

1v
9

27M6
− v10

(
8M2S

2
1

3M7
+

8S3S1

M6

)
. (43)

We also calculated the contributions from Iijk, Jij , Iijkl, Jijk, Iijklm and Jijkl. The ones from Iijk and Jij are

−dE
dt

∣∣∣∣
Iijk&Jij

=
62

7

(
m

M

)2

v12

(
1 +

∑
l=2,4...

(−1)l/2(l + 1)!!Mlv
2l

3 l!!M l+1
−

∑
l=1,3,...

2(−1)(l−1)/2l!!Slv
2l+1

3 (l − 1)!!M l+1

)6

=
62

7

(
m

M

)2

v12

[
1− 4S1v

3

M2
− 3M2v

4

M3
+

20S2
1v

6

3M4
+ v7

(
10M2S1

M5
+

6S3

M4

)
+

(
15M2

2

4M6
+

15M4

4M5

)
v8

]
.

(44)

Those from Iijkl and Jijk are

− dE

dt

∣∣∣∣
Iijkl&Jijk

=
59392

3969

(
m

M

)2

v14

(
112S2

1v
6

9M4
− 4M2v

4

M3
− 16S1v

3

3M2
+ 1

)
. (45)

Finally, the ones from Ijklmn and Jijkl are:

−dE
dt

∣∣∣∣
Iijklm&Jijkl

=
1168346

43659

(
m

M

)2

v16

(
1− 20S1v

3

3M2
− 5M2v

4

M3
+

20S2
1v

6

M4
+

10v7 (3M2S1 +MS3)

M5

)
. (46)

Since we are considering only the first-order contribution
of tidal deformability, we limit the expansion of ∆N to
the fifth power of v. This is why we need to know the
expression of luminosity only up to the twentieth power
of v, as can be inferred from its relation with ∆N , as
given in Eq. (3). But in some cases, as we have calculated
the expressions beyond that order, we are showing those
expansions here.

In Sec. IX, these luminosity contributions will be used
to find higher order corrections in the expression of phase
evolution, beyond what was found by Ryan [1].

VI. LUMINOSITY ABSORBED BY THE
HORIZON

A complex situation arises when we focus our attention
on the GW energy absorbed by the central object when
it has a horizon. It is well known that the Teukolsky
equation [57, 58] can be used to understand the pertur-
bative solutions of the metric. For absorption we study
the ingoing solution. The absorbed luminosity can be
calculated from there. But the whole problem depends on
two things: (a) the central object’s vacuum spacetime and
(b) the perturbation equation and its solution for that
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metric. If we knew all possible SAVAR metric solutions,
then by solving for the absorption in each one we can
identify the effect in those spacetimes. So, in principle,
we have to know all such metrics and their contributions.
But we can not do that at present because (a) we can
not claim that we know all the metric solutions at the
present time and (b) for the solutions that are known
these results have not been completely worked out.

Here we will address the problem in a different manner.
The approach we take is heuristic, which needs further
and detailed investigation. But as a first step, this is

the best we can do. Tagoshi et al. [29] have calculated
the luminosity absorbed by the Kerr black hole. We
know that all Geroch-Hansen multipole moments that are
non-zero for a general axisymmetric solution are non-zero
for Kerr [12]. We also know that the moments of Kerr
depend only on mass and the rotation parameter through
Ml + iSl = M(ia)l [12]. With this result in hand we
can express the luminosity absorbed by a Kerr black hole
completely in terms of its multipole moments.

To implement this idea we introduce a contribution
−(dE/dt)H to the total luminosity lost from the orbit [29,
30]:

−

(
dE

dt

)
H

=
32

5

(
m

M

)2

v15H

[
− χ

4
− 3χ3

4
−
(
χ+

33

16
χ3

)
v2 +

(
2χB2 +

1

2
+

13

2
κχ2 +

35

6
χ2 − χ4

4
+
κ

2
+ 3χ4κ+ 6χ3B2

)
v3

+

(
− 43

7
χ− 17

56
χ5 − 4651

336
χ3

)
v4 +

(
433

24
χ2 − 95

24
χ4 + 2− 3

4
χ3B1 + 2κ+

33

4
χ4κ+ 6χB2 + 18χ3B2 +

163

8
χ2κ

+ χB1

)
v5 +O(v6)

]
,

(47)

Bn =
1

2i

[
ψ(0)

(
3 +

niχ√
1− χ2

)
− ψ(0)

(
3− niχ√

1− χ2

)]
,

(48)

where H is a “horizon” parameter, χ = a
M , κ =

√
1− χ2

and ψ(n)(z) is the polygamma function. The above lumi-
nosity term contributes to the total luminosity when the
central object has a horizon; in that case H = 1. When
there is no horizon and zero energy absorption by the
object, one has H = 0 and this term does not contribute.
In case of partial absorption, which is possible for certain
ultracompact objects [59–61], one has 0 < H < 1.

χ = a
M reveals that χ2s =

(
a
M

)2s
. Note that the

a2s term can arise only from a very few places. One is
from M2s and another is from the multiplication of lower
multipole moments. And the same goes for the χ2s+1,
which has the main contribution from S2s+1. Considering
all such aspects we can write χm in terms of the multipole
moments as follows:

χ =
S1

M2
, (49)

χ2 = −a2
M2

M3
+ a1

S2
1

M4
, (50)

χ3 = a3

(
S1

M2

)3

+ a4
S1

M2

{
− a2

M2

M3
+ a1

S2
1

M4

}
− a5

S3

M4
,

(51)

χ4 = a6

(
S1

M2

)4

+ a7

(
S1

M2

)2{
− a2

M2

M3
+ a1

S2
1

M4

}
+ a8

S1

M2

[
a3

(
S1

M2

)3

+ a4
S1

M2

{
− a2

M2

M3
+ a1

S2
1

M4

}
− a5

S3

M4

]
+ a9

[
− a2

M2

M3
+ a1

S2
1

M4

]2

+ a10
M4

M5
,

(52)
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χ5 =
S1

M2

[
a11

(
S1

M2

)4

+

{
− a2

M2

M3
+ a1

S2
1

M4

}{
a12

(
S1

M2

)2

+ a13

(
− a2

M2

M3
+ a1

S2
1

M4

)}
+ a15

{
a6

(
S1

M2

)4

+ a7

(
S1

M2

)2{
− a2

M2

M3
+ a1

S2
1

M4

}
+ a8

S1

M2

[
a3

(
S1

M2

)3

+ a4
S1

M2

{
− a2

M2

M3
+ a1

S2
1

M4

}
− a5

S3

M4

]
+ a9

{
− a2

M2

M3
+ a1

S2
1

M4

}2

+ a10
M4

M5

}]
+

[
a3(

S1

M2
)3 + a4

S1

M2
{−a2

M2

M3
+ a1

S2
1

M4
} − a5

S3

M4

][
a14(

S1

M2
)2 + a16{−a2

M2

M3
+ a1

S2
1

M4
}
]

+ a17
S5

M6
,

(53)

where the ais are 17 undetermined parameters, and are
to be distinguished from a, which is the spin parameter
and, contrastingly, does not have an index. The afore-
mentioned equations have been formed by finding in how
many ways χl can be constructed from the ML and SL.
While doing that we only focused on how they can be
constructed by multiplying different moments. After that
those contributions have been added with the introduc-
tion of the ais. However, as both the RHS and the LHS of
the corresponding equations should be equal to χl, these
ais are not all independent. They satisfy four consistency
equations, so there are 13 undetermined parameters. The
equations satisfied by them are,

a1 + a2 =1, (54)

a3 + a4 + a5 =1, (55)

a6 + a7 + a8 + a9 + a10 =1, (56)

a11 + a12 + a13 + a14 + a15 + a16 + a17 =1. (57)

A measurement of the absorbed luminosity for an SAVAR
metric that is not Kerr can help constrain these parame-
ters for that space-time especially, if the moments from
the precession frequencies can also be found.

The expression is very complicated, but if we only
consider the dominant contribution from each moment,
as Ryan did, then it becomes much simpler. We now,
however, opt to be as rigorous as possible.

For future purpose reexpress Eq.(47) in terms of five

new parameters:

−

(
dE

dt

)
H

=
32

5

(
m

M

)2

v15H

[
A′ +B′v2 + C ′v3 +D′v4

+ E′v5

]
.

(58)

where A′,...,E′ are newly defined expansion coefficients.
Though the above expression depends on terms that are
multiples of the different multipole moments, it is under-
standable that in case of Kerr it becomes much simpler.
If the only involved parameters related to the central
object are mass and angular momentum, then due to the
uniqueness theorem the external metric will be Kerr if it
is a black hole. In that case the absorption will depend
only on a and M . But for the Kerr family, dependen-
cies of the moments on mass and angular momentum are
very simple. Owing to that these multipole moments are
directly related to each other, and it does not matter if
we side-step the ambiguity of the values of different ais.
Therefore, we can choose:

a2 = a5 = a10 = a17 = 1. (59)

And all other ai = 0. For the Kerr metric this will not
change the result at all. Therefore, when there are no
free parameters other than M and a, one can take this
simple form. So, the luminosity absorbed by the horizon
becomes,

−

(
dE

dt

)
H

=
32

5

(
m

M

)2

v15H

[
− S1

4M2
+

3S3

4M4
−
(
S1

M2
− 33S3

16M4

)
v2 +

(
2
S1

M2
B2 +

1

2
− 13M2

2M3
κ− 35M2

6M3
− M4

4M5
+
κ

2

+ 3
M4

M5
κ− 6

S3

M4
B2

)
v3 +

(
− 43S1

7M2
− 17S5

56M6
+

4651S3

336M4

)
v4 +

(
− 433M2

24M3
− 95M4

24M5
+ 2 +

3S3

4M4
B1

+ 2κ+
33M4

4M5
κ+ 6

S1

M2
B2 − 18

S3

M4
B2 −

163M2

8M3
κ+

S1

M2
B1

)
v5 +O(v6)

]
,

Bn =
1

2i

[
ψ(0)

(
3 +

niS1√
M4 +M2M

)
− ψ(0)

(
3− niS1√

M4 +M2M

)]
,

(60)
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where, κ =
√

1 + M2

M3 . This simplification happens be-

cause the relation between various multipole moments
and the powers of χ become simple for the Kerr metric.
Their expressions are,

χ =
S1

M2
, (61)

χ2 = −M2

M3
, (62)

χ3 = − S3

M4
, (63)

χ4 =
M4

M5
, (64)

χ5 =
S5

M6
. (65)

The basic idea employed here is to use horizon absorption
as evidence that the central object has a horizon. Recently,
Maselli et al. [62] have used this idea for the same purpose.
They too introduced an absorption coefficient (γ), which

is identical to our H. The significance of this term was
arrived at independently [63].

VII. COMPLETE MASS-ONLY DEPENDENT
PART THROUGH v10

Ryan had included mass-dependent terms in the lu-
minosity that resulted from the perturbation of the
Schwarzschild black hole. As the only intention of that
work was to look into the observational aspects of the
No-hair theorem, it was good enough to consider them
up to fourth power of v. But the main purpose of the
present work is to include tidal effect and absorption by
the central object. Since the tidal contribution occurs at
much higher order of v we need to know the luminosity
up to that power of v beyond lowest order. For that
reason we are including this correction up to tenth power
of v [30]:

−

(
dE

dt

)
M

=
32

5

(
m

M

)2

v10

[
1− 1247

336
v2 + 4πv3 − 44711

9072
v4 − 1712

105
ln v v6 +

232597

4410
ln v v8 − 6848

105
π ln v v9

+
916628467

7858620
ln v v10 + αv5 + βv6 + νv7 + δv8 + εv9 + φv10

]
.

(66)

For future purpose we have expressed the expansion with
some newly introduced parameters. The original expres-

sion is given below; comparing it with the above we can
easily find those parameters. The full expression for the
luminosity is [30],

−

(
dE

dt

)
M

=
32

5

(
m

M

)2

v10

[
1− 1247

336
v2 + 4πv3 − 44711

9072
v4 − 8191

672
π︸ ︷︷ ︸

=−α

v5 +

(
6643739519

69854400
− 1712

105
γ +

16

3
π2 − 3424

105
ln 2︸ ︷︷ ︸

=β

−1712

105
ln v

)
v6

− 16285

504
π︸ ︷︷ ︸

=−ν

v7 +

(
−323105549467

3178375200
+

232597

4410
γ − 1369

126
π2 +

39931

294
ln 2− 47385

1568
ln 3︸ ︷︷ ︸

=δ

+
232597

4410
ln v

)
v8

+

(
265978667519

745113600
π − 6848

105
πγ − 13696

105
π ln 2︸ ︷︷ ︸

=ε

−6848

105
π ln v

)
v9

+

(
−2500861660823683

2831932303200
+

916628467

7858620
γ − 424223

6804
π2 − 83217611

1122660
ln 2 +

47385

196
ln 3︸ ︷︷ ︸

=φ

+
916628467

7858620
ln v

)
v10

]
,

(67)

where γ is the Euler constant. Since this expression is independent of all the other multipole moments, apart
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from the mass, this contribution will be present in all
SAVAR metrics.

VIII. MOTION OF THE CENTRAL OBJECT

Another contribution that becomes important in this
calculation is the effect due to the motion of the central
object. This was mentioned by Ryan [1], and the results
necessary for his calculation were presented there. We
will take those basic results and identify the terms that
will be important for our purpose.

Let the axis of symmetry of the SAVAR metric be
denoted by the vector z̃, which can be defined in terms
of the Killing vector corresponding to this symmetry [12].
If Λ represents the spatial infinity then we have [12],

z̃bz̃
b|Λ = 1 . (68)

Since the metric is asymptotically flat, the axial Killing
vector generates rotation on tensors at Λ. The moments
should be rotationally invariant. But the only tensors at
Λ that are invariant under the action of the axial Killing
vector are the ones that are outer products of the metric
and z̃; so, the 2s moments have to be multiples of the
symmetric, trace-free (STF) outer product of z̃ with itself([
z̃b1 ...z̃bs

]STF∣∣
Λ

)
.

The definition of a STF tensor can be generalized fol-
lowing Thorne’s expression [56],

Asym
b1...bs

= [Ab1...bs ]
S =

1

l!

∑
π

Abπ(1)...bπ(s)
, (69)

where Asym
b1...bs

is the completely symmetrized part of
Ab1...bs and π represents all possible permutations of its
indices. Now the symmetric, trace-free part can easily be
found from Thorne’s expression [56],

[Ab1...bs ]
STF =

Floor( s2 )∑
n=0

(−1)ns!(−2n+ 2s− 1)!!

(2n)!!(2s− 1)!!(s− 2n)!

× δ(b1b2 ...δb2n−1b2nA
sym
b2n+1...bs)j1j1...jnjn

,

(70)

where the repeated indices jk are contracted over and
index symmetrization is defined as, B(iCj) ≡ 1

2 (BiCj +
BjCi). The definitions of the 2s moments (ML and SL)
can be found in [12]. Since only the axis vector and the
metric remain invariant under rotation, the 2s moments
are determined by the numbers Ms and Ss defined as [12]:

Ms =
1

s!
Mb1...bs z̃

b1 ...z̃bs |Λ, (71)

Ss =
1

s!
Sb1...bs z̃

b1 ...z̃bs |Λ , (72)

where s belongs to the set of positive integer numbers. But
for this work we need to know the 2s moments in terms

of Ms and Ss. Since the moments will be combinations
of the outer products of the axis vector, the 2s moments
will be,

Mb1...bs =αMs

[
z̃b1 ...z̃bs

]STF∣∣
Λ
, (73)

Sb1...bs =αSs
[
z̃b1 ...z̃bs

]STF∣∣
Λ
, (74)

where αMs
and αSs are some numbers yet to be deter-

mined. We can put Eqs. (73) and (74) into Eqs. (71) and
(72) in order to find these numbers in terms of Ms and
Ss:

Ms =
αMs

s!
Ts, (75)

Ss =
αSs
s!
Ts , (76)

where

Ts ≡ [z̃b1 ...z̃bs ]
STFz̃b1 ...z̃bs

=

Floor( s2 )∑
n=0

(−1)ns!(−2n+ 2s− 1)!!

(2n)!!(2s− 1)!!(s− 2n)!
.

(77)

Hence,

S1 =αS1 (78)

Sb1 =S1z̃b1 (79)

M2 =
αM2

2!

2

3
, (80)

Mb1b2 =3M2

[
z̃b1 z̃b2

]STF∣∣
Λ
. (81)

If the orbiting companion were absent, then the moment
of the system would have been determined by the sta-
tionary moment of the central body alone. So, there
would have been no radiation. In reality, due to the
orbiting companion the larger object will move along a
path ∼ −

(
m/M

)
xk in the center of mass frame, where

xk is the smaller companion’s position. Therefore, the
multipolar contribution due to the “moving” large mass
would be the stationary moment displaced by

(
m/M

)
xk.

Ryan already had included the contribution of S1 due to
this effect [1].

It is now simple to see that the only other contribution
through the tenth power of v will arise from M2. This is
because of the number of time-derivatives on the radiative
moment and the number of position vectors present in
each term. Since we are assuming a circular orbit, we can
write the smaller companion’s position as,

x1 = ρ cos(Ωt), x2 = ρ sin(Ωt), x3 = 0 , (82)

where ρ is the separation between the two bodies. Because
of the motion of the central object the radiative moments
get corrected by [1],

δIL+1 = [−(l + 1)IL
(
m/M

)
xbl+1

]STF, (83)

δJL+1 = [− l(l + 2)

l + 1
JL
(
m/M

)
xbl+1

]STF. (84)
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Therefore, we find

Iijk =
[
mxixjxk − 9M2

[
z̃iz̃j

]STF m

M
xk
]STF

, (85)

Jij =
[
mxiεjklxk

dxl
dt
− 3m

2M
xjS1z̃iδj3

]STF
. (86)

Substituting Eq. (82) into Eq. (85) and inserting the
resulting expression in Eq. (30), followed by a separation
of the contribution of the small mass calculated above,

we find the extra contribution to be:

−dE
dt

∣∣∣∣
Iijk,C.M.

=
32

5

(
m

M

)2

v10

[
M2v

6

336M3
− v9 (M2S1)

126M5

+
M2

2 v
10

84M6
+O

(
v11
) ]

,

(87)

where C.M. is the short-hand for central body’s motion.
Similarly, putting Eq. (82) into Eq. (86) and using the
result in Eq. (30) and separating the small mass’ contri-
bution calculated earlier we deduce the extra contribution
of Jij , complete through tenth power beyond the lowest
order, as

−dE
dt

∣∣∣∣
Jij ,C.M.

=
32

5

(
m

M

)2

v10

[
− S1v

3

12M2
+

S2
1v

4

16M4
+

2S2
1v

6

9M4
−
v7
(
S3

1 − 2MM2S1

)
12M6

−
v8
(
M2S

2
1

)
16M7

− 2S3
1v

9

9M6
+
S1v

10
(
−12M2S3 − 12MM2S1 + S3

1

)
36M8

]
.

(88)

The first two terms inside the square brackets of the RHS
were calculated in Refs. [64] and [1].

With Eq.(88), we have now finished calculating all the
terms arising from the relevant effects, up to the order we
need. This sets the stage for calculating how much the
phasing will get modified owing to the aforementioned
contributions.

IX. CORRECTIONS BEYOND RYAN AND
THEIR MEASURABILITY

A. Corrections

In previous sections we gave the expressions of all possi-
ble contributions to the luminosity of an EMRI, namely:

−dE
dt

∣∣∣∣
Total

=− dE

dt

∣∣∣∣
Iijk,Jij

− dE

dt

∣∣∣∣
Iij

− dE

dt

∣∣∣∣
M

− dE

dt

∣∣∣∣
H

− dE

dt

∣∣∣∣
Tidal

− dE

dt

∣∣∣∣
Iijkl,Jijk

− dE

dt

∣∣∣∣
Iijklm,Jijkl

− dE

dt

∣∣∣∣
Iijk,C.M.

− dE

dt

∣∣∣∣
Jij ,C.M.

.

(89)

The expression for ∆E needed for our calculation was
obtained nearly completely by Ryan [1]. The net result

below is the combination of Ryan’s result and the contri-
bution due to the tidal interaction, which we calculated
in Eq. (24). Thus,
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∆E

m
=
v2

3
− v4

2
+

20S1v
5

9M2
+

(
M2

M3
− 27

8

)
v6 +

28S1v
7

3M2
+ v8

(
80S2

1

27M4
+

70M2

9M3
− 225

16

)
+ v9

(
6M2S1

M5
− 6S3

M4
+

81S1

2M2

)
+ v10

(
35M2

2

12M6
− 35M4

12M5
+

115S2
1

18M4
+

935M2

24M3
− 6615

128

)
+ v11

(
1408S3

1

243M6
+

968M2S1

27M5
− 352S3

9M4
+

165S1

M2

)
+ v12

(
24M2S

2
1

M7
− 24S1S3

M6
+

93M2
2

4M6
− 99M4

4M5
− 123S2

1

14M4
+

9147M2

56M3
− 45927

256
+
X

m

)
+ ...,

(90)

which includes all the terms we set out to find.
To make the expression of ∆N simple, it helps to define

the following variables:

A1 =α+A′H,

B1 =ν +B′H,

C1 =δ + C ′H,

D1 =ε+D′H,

E1 =φ+ E′H,

(91)

as well as,

A =
M2

m2

6η2

M5
T

{m+ 3M

m
λm +

M + 3m

M
λM
}
,

X =− 18
η

M4
T

{M
m
λm +

m

M
λM
}
,

(92)

where A′, B′, C ′, D′, and E′ have been defined in Sec. VI
and A and X have been defined in Sec. IV. The Greek
parameters (except λ and parameters depending on it)
depend only on mass. Terms containing H are present
when the central object has a horizon.

Now we have the full expression for ∆E and the total
luminosity. Therefore, from these quantities we can find
the phase evolution. Putting Eq. (90) and the total rate
of energy contribution in Eq. (3), the result we obtain is
as follows:

∆N =
5

96πqv5

10∑
n=0

Nnv
n, (93)

where q = m/M . The expressions for Nn can be found
in A.

With the deviation of the expression of the phase evo-
lution we have achieved the goal we had set out for.
Usefulness of this result is manyfold, as will be discussed
in the later sections.

The phase can be calculated as [44],

ψ(f) = 2πftc − 2φc −
π

4
+ I(v)− I(vi) (94)

I(v)− I(vi) =

∫ v

vi

dv̄(v3 − v̄3)
6π∆N

v̄4
(95)

I(v) =

5∑
n=−5

In(v)vn, (96)

where the form of In(v) can be found in A.

B. Finding the Horizon

We now utilize the above results to analyze the chal-
lenges involved in deducing from future observations of
GWs emitted by EMRIs whether their central object has
a horizon or not.

Among all the parameters in the expression of ∆N , the
ones denoted by Greek letters (except λ) arise from the
mass-dependent terms alone, as defined earlier. Terms
containing H arise due to absorption by the central object
if it has a horizon. Other multipole-dependent terms arise
from the higher order corrections and the motion of the
central object. From the expressions of A1, B1, C1, D1,
and E1, it is noticeable that these parameters depend on
the horizon parameter H. Therefore, the expression of the
phase evolution, in general, depends on a set of multipole
moments of the central body, the Horizon parameter, mass
of the small compact object and the tidal deformabilities
of the two bodies.

Effect of self-force is of order ε ≡ (mM ). Therefore, in
case of EMRIs this effect is small. But most of the orbits
in EMRI survive long enough without merging; building
a cumulative effect of self-force. To have a significant
amount of accumulation, the particle should stay in orbit
long enough before merging, i.e. of the order of 1

ε or
longer [33]. But if we consider an event where a compact
object comes in from a very large distance, stays on an
almost circular orbit for a very short period of time and
goes back out to a large distance [65], the accumulation
of self-force correction terms would be small. In these
scenarios, one can ignore the contribution of self-force
while calculating the expression of ∆N , and use the results
derived here.

To determine the values of these variables from observa-
tions, it will be essential to use the precession frequencies
mentioned earlier (see Eqs. (14) and (15)) [19]. In prin-
ciple, by using the precession frequencies it is possible
to deduce the values of the multipole moments of the
central body and the mass of the small companion. These
values can be used to separate out the influence of these
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moments on the phase evolution from that of the horizon
parameter and the tidal deformabilities of the two bodies.

But the situation can be somewhat simpler. To wit,
for a black hole the tidal Love number is zero but H = 1;
therefore, only two of the three aforementioned influences
will be present when the central object is a black hole.
(Note that we are ignoring the effect of a possible horizon
that the smaller object may have on the waveform.) For
a general EMRI, whenever H is nonzero for the central
object, its tidal Love number will be zero, and vice versa.
If both components are black holes, then the situation
will become even simpler as there will be no degeneracy
left. In this case H is non-zero but tidal deformabilities
are zero.

In general, confirming the presence or absence of a
horizon will not be simple, owing to possibly competing
influences of the aforementioned terms on the waveform
phase. When the central object is not a black hole the
degeneracy is between the two deformabilities. If there
is a black hole then there is the degeneracy between H

and the tidal deformability of the small body. But in
GW observations a priori we will not know what type of
components make up the system. Potentially, the signal
from one type of system may mimic that from another.
For this reason a detailed analysis is needed, which is
beyond the scope of this paper and will be reserved for a
future work.

X. PARAMETER ESTIMATION

To obtain some quantitative sense of how accurately
some of the crucial central object parameters will be
measurable, we performed a set of Fisher information
matrix [36, 67] studies. As we show below, these esti-
mates provide cautious optimism for the possibility that
certain tests of the No-hair theorem can be performed
with EMRIs in LISA. A more conclusive statement in this
regard will have to wait for more accurate modeling of
EMRI waveforms, as we have already clarified above.

We consider two kinds of central objects below, namely,
supermassive black holes and supermassive boson stars.
The lighter companion is always taken to be a black hole
here. When the central object is a black hole, its spin (χ)
is defined in terms of the Kerr rotation parameter a = Mχ.
In the case of a boson star (BS), its spin is defined in
terms of its first spin moment S1, namely, χ = S1/M

2. It
is well known that the multipole moments of a Kerr BH
are completely determined by its mass and spin as

Ml + iSl = M(ia)l. (97)

In the case of a boson star this relation gets modified
to [66, 68]

Ml + iSl = αlM(ia)l , (98)

where αl depends on χ and Mµ2
B/
√
λboson, with λboson

and µB being the interaction strength of the quartic
potential and the mass of the boson field, respectively, in
the massive boson star model [66]. From the definition
of the mass and spin, it follows that α0 = α1 = 1. A
nice discussion regarding the three-hair relation for boson
stars can be found in Ref. [68].

In the Fisher analysis we used Eq. (98) for the multipole
moments in the expression of signal phase for all EMRIs.
When the central object is a black hole, we take αl = 1,
for all l. Values of the αl for boson stars are taken from
Ref. [66]. We were unable to do a similar analysis for
solitonic BS since multipole moments for such systems
are not available in the literature. All the boson stars
considered in the current work are massive BS.

In Figs. 1 and 2 by second mass moment and third spin
moment we mean α2 and α3, respectively. For computing
the errors presented in those figures, we set α4 = 0 = α5.
This is because we found that the errors in α4 and α5 are
quite high (i.e., mostly more than 100% for signal-to-noise
ratio (SNR) of 20). This implies that the signal is not very
sensitive to variations in the values of these parameters.
Whether more accurate waveform models will allow their
determination at similar SNRs can be explored in the
future.

In tables I and II, we highlight parameter errors for
some EMRIs not all of which are shown in Figs. 1 and
2. (Specifically, the χ = 0.5 systems are not shown in
the figures.) We notice that the errors generally reduce
substantially with increasing spin. Since the spins of
supermassive BHs may be quite high [69], we can expect
the errors in the parameters of such systems to be smaller
based on our analysis.

Broadly, we study the measurement precision of param-
eters for two kinds of system, namely, one binary where
the central object is a super-massive black hole and an-
other binary where that object is a boson star. We always
take the smaller companion to be a black hole. While
our formalism allows for non-black hole companions, we
limit our scope here to the aforementioned systems for
ease of interpreting and communicating our results. We
use the LISA noise curve given in Ref. [70]. We have
not accounted for the source confusion noise that is ex-
pected at frequencies a few times below 1 mHz to several
times above that frequency, and will affect the parameter
estimates of high-mass sources studied here.
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FIG. 1. Parameter estimation errors (in percentages) from a Fisher analysis are presented for EMRIs where both binary
components are taken to be black holes. The spin of the supermassive black hole is χBH = 0.9 and that of the smaller companion
is zero. In the left set of plots, it is assumed that the central object is a black hole and, hence, its mass and spin moments are
all taken to be completely determined by its mass and spin. As shown above, in such a case, the errors in the estimation of
the central object’s mass, mass-ratio, and spin are quite small for a signal with an SNR of 20. We also consider a case in the
bottom-left plot where the horizon parameter H for the aforementioned system is taken to be unknown. In such a case, the
horizon term can be determined to within a few percent of unity for central objects with mass & 2.5 × 104 M�. In the right set
of plots errors in α2, α3, χBH and H are shown for the same BBH EMRIs, except that for the measurement problem α2 and α3

are taken to be parameters independent of the mass and spin of the central object. Unsurprisingly, the inclusion of these two
parameters among unknowns increases the errors for all parameters. The horizon term (bottom-right plot) is most adversely
affected. Still, there are wide ranges of the central object mass value for which the errors are a few to several percent. Even the
errors in the total mass and mass-ratio (not shown) are within a few percent.
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FIG. 2. Parameter estimation errors (in percentages) from a Fisher analysis are presented for EMRIs where the more massive
component is a boson star (with H = 0) whereas the lighter one is a black hole. The spin of the central object is χ = 0.9 and
that of the smaller companion is zero. In the left set of plots the spin and the dimensionless tidal deformability parameter ΛM of
the central object and the component masses are being measured. As shown above, in such a case, the errors in the estimation
of the total mass, mass-ratio, and spin are quite small for a signal with an SNR of 20. In the right set of plots errors in α2, α3,
χ, ΛM and H are shown for the same EMRIs. Here too the erros are within a few percent for the most part, except for ΛM ,
which suffers large measurement erros. This suggests that the ability to measure ΛM is adversely affected by the absence of any
prior knowledge of α2 and α3. Nevertheless, constraining H to be close to zero in these cases is very much possible.
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1. Central object as a black hole

For our error analysis, the distance of the source is
normalized such that the signal SNR remains fixed at 20.
Moreover, we integrated all signals for the duration of
1 year. This means that when the total mass is small,
most of the signal lies at higher frequencies where LISA
sensitivity starts deteriorating. This is why the error
increases as one reduces the mass of the heavier (or central)
object, which dominates the contribution to the total mass.
For heavier EMRIs too the parameter errors can worsen
because most of the signal lies at frequencies below the
most sensitive part of the LISA band, which is around
8-9 mHz. This aspect of the error distribution should be
revisited for more accurate signal models.

In Fig. 1 parameter estimation errors (in percentages)
from a Fisher analysis are presented for EMRIs where
both binary components are taken to be black holes. The
spin of the supermassive black hole is χBH = 0.9 and that
of the smaller companion is zero. In the left set of plots,
the mass and spin moments are all taken to be completely
determined by the mass and spin of the central object as
if it were a black hole. In such a case, the errors in the
estimation of the central object’s mass, mass-ratio, and
spin are quite small for a signal with an SNR of 20. Our
errors for this case are consistent with those presented
in Ref. [36], even if on the higher side. Our larger errors
can be attributed partly to our different waveform model
but mostly to the fact that we are estimating a larger
number of parameters here. We also consider a case in the
bottom-left plot of Fig. 1 where the horizon parameter
H for the aforementioned system is taken to be unknown.
In such a case, the horizon term can be determined to
within a few percent of unity for central objects with
mass & 2.5× 104 M�. In the right set of plots of Fig. 1,
the errors in α2, α3, χBH and H are shown for the same
BBH EMRIs, except that for the measurement problem
α2 and α3 are taken to be parameters independent of
the mass and spin of the central object. Unsurprisingly,
the inclusion of these two parameters among unknowns
increases the errors for all parameters. The horizon term
(bottom-right plot) is most adversely affected. Still, there
are wide ranges of the central object mass value for which
the errors are a few to several percent. Even the errors
in the total mass and mass-ratio (not shown) are within
a few percent.

We also computed the errors for the case where the
spin of the central object is smaller – at χ = 0.5. Table I
(table II) compares them with the errors for the χ = 0.9
case when the central object is a black hole (boson star)
and we are only measuring its spin, the binary’s total
mass, mass-ratio, and H (as well as ΛM for the BS). As
seen there, the errors tend to increase when χ decreases
from 0.9 to 0.5.

MCen (M�) χBH
∆χBH
χBH

∆H
H

∆Mtot
Mtot

∆q
q

105 .9 .005 1 .0025 .004

4×104 .9 .02 4 .005 .01

105 .5 0.01 2.5 .003 .005

4 × 104 .5 0.08 28 .025 .04

TABLE I. Effect of central object’s spin on parameter errors: A
selection of parameter errors (in percentage) from the plots in
the left column in Fig. 1 are listed in the last four columns for a
black hole as the central object, with spin of 0.9. Additionally,
for comparison, we present errors when the central object spin
is 0.5.

MCen (M�) χBS
∆ΛM
ΛM

∆H
H

∆Mtot
Mtot

∆q
q

105 .9 10 .01 10−3 10−3

4×104 .9 15 .025 1.5×10−3 .002

105 .5 10 0.1 5 × 10−3 10−2

4 × 104 .5 20 .2 10−2 1.5×10−2

TABLE II. Effect of central object’s spin on parameter errors:
A selection of parameter errors (in percentage) from the plots in
the left column in Fig. 2 are listed in the last four columns for a
boson star as the central object, with spin of 0.9. Additionally,
for comparison, we present errors when the central object spin
is 0.5.

2. Central object as a boson star

Depending on the bare mass (µB) of the boson field and
the nature of the interaction, the mass of a BS can take a
range of values. These values can even be > 106M� [72].
For this study, the values of λM/M

5 (≡ ΛM ) have been
taken from the work by Senett et al. [73]. There ΛM has

been expressed in terms of MµB
m2
p

, where mp is the Planck

mass. Therefore, for a given value of M , the value of ΛM
depends on how light the boson field is.

In Fig. 2 parameter estimation errors (in percentages)
from a Fisher analysis are presented for EMRIs where the
more massive component is a boson star (with H = 0)
whereas the lighter one is a black hole. The spin of
the central object is χ = 0.9 and that of the smaller
companion is zero. In the left set of plots the spin and
the dimensionless tidal deformability parameter ΛM of
the central object and the component masses are being
measured. As shown there, in such a case, the errors in
the estimation of the total mass, mass-ratio, and spin are
quite small for a signal with an SNR of 20. In the right
set of plots errors in α2, α3, χ, ΛM and H are shown for
the same EMRIs. Here too the errors are within a few
percent for the most part, except for ΛM , which suffers
large measurement errors. This suggests that the ability
to measure ΛM is adversely affected by the absence of any
prior knowledge of α2 and α3. Nevertheless, constraining
H to be close to zero in these cases remains a possibility.
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XI. DISCUSSION

It is already understood that the multipole moments of
the central body provide information about its vacuum
space time. Therefore, we can deduce from those moments
the nature of the central object. Owing to that we can
test the No-hair theorem, and check whether the black
hole uniqueness theorem holds or not [14–18].

To test the No-hair theorem we need two pieces of
information. One of them is whether the central object
has a horizon (i.e., is a black hole), with the value of H
observationally consistent with unity. The other one is the
knowledge of the multipole moments, from the observed
GW emission; these moments will reveal if the central
object has any hairs.

From Fig. 1 we notice that the error in H is less than
50% if the mass of the central BH is ≤ 5 × 105 M�.
This implies that for such a case the value of H can be
determined more precisely than ∼ 1± .5 (at the 1σ level).
(If the SNR is 50 [36], this error reduces to 30%, which is a
possibility.) When the central object is a BS the situation
is much better: From Fig. 2 we infer that the error in H
is less than 4% for the entire range of masses of the BS.
Therefore, the value of H can be determined to be more
precisely than 0.00 ± .04. This suggests that these two
systems can be distinguished from each other, at the 1σ
level. For this reason, it is important that one revisits
this estimation problem with more accurate waveform
models.

Owing to the aforementioned results, testing the No-
hair theorem in EMRIs remains a viable pursuit. In the
figures here we have shown how precisely the first few mass
and spin moments are measurable. From Fig. 1 we notice
that for central BH masses greater than 104 M�, α2 and
α3 can be measured with better precision than 1.0± 0.4
and 1.0± 0.8, respectively. These errors reduce when the

central object is a BS (for the same SNR). The injected
value of α2 and α3 are 34 and 47, respectively. From Fig. 2
we notice that for the entire mass range of BS, α2 and
α3 can be measured more precisely than 34.00± 0.68 and
47.00± 2.82, respectively. With an accurate measurement
of H we will be able to distinguish between black holes
and boson stars as central objects in EMRIs. This implies
that it is likely that the No-hair theorem for BHs will
be testable by measuring the multipole moments with
required precision.
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Appendix A: Expressions

It was discussed in Eq. (93) that ∆N can be expressed
as follows,

∆N =
5

96πqv5

10∑
n=0

Nnv
n, (A1)

The expressions for Nn are listed below:
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N0 =1

N2 =
743

336

N3 =

(
113S1

12M2
− 4π

)
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(
− S2

1

16M4
+

5M2

M3
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3058673

1016064

)
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−A1 +

150323S1

2016M2
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42

)
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−130816πM2S1 + 135640M2M + 84741S2
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2688M4
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168
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πS2

1

2M4
− 22S3
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1

16257024M8
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)
MS2

1
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(
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2
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1
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9203 log(v)
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− 221821577506343

1032386052096
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N9 =

(
A1

(
S2

1 − 56MM2

8M4
− 30400075

1016064
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M2
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S1
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(A2)

The expression for phase ψ(f) is given in Eq. (94),

ψ(f) = 2πftc − 2φc −
π

4
+ I(v)− I(vi) (A3)

I(v)− I(vi) =

∫ v

vi

dv̄(v3 − v̄3)
6π∆N

v̄4
(A4)

I(v) =

5∑
n=−5

In(v)vn, (A5)

The expression for In(v) are given below:
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2 − 565947648M2S1M + 8255520S3

1

)
I1 =

1

3641573376M4q

((
1706987520β − 27832025088 log(v)− 27311800320π2 + 48255369509

)
M4 + 635040

((
130816M2π

− 84741S1

)
S1 − 135640MM2

))
I0 =

5(3 log(v) + 1)
(
48M2 (42A1 + 995π)− 150323S1

)
96768M2q

I−1 =
5
(
3058673M4 + 5080320M2M − 63504S2

1

)
21676032M4q

I−2 =
113S1

M2 − 48π

128q

I−3 =
3715

32256q

I−5 =
3

128q
.
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