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Weak lensing of Type Ia supernovae (SNe Ia) is a systematic uncertainty in the use of SNe Ia as standard
candles, as well as an independent cosmological probe, if the corresponding magnification distribution can be
extracted from data. We study the peak brightness distribution of SNe Ia in the Pantheon sample, and find that
the high z sub-sample shows distinct weak lensing signatures compared to the low z subsample: a long tail at
the bright end due to high magnifications and a shift of the peak brightness toward the faint end, consistent
with findings from earlier work. We have developed a technique to reconstruct the weak lensing magnification
distribution of SNe Ia, p(µ), from the measured SN Ia flux distribution, and applied it to the Pantheon sample.
We find that p(µ) can be reconstructed at a significance better than 2σ for the subsample of SNe Ia at z > 0.7
(124 SNe Ia), and at a lower significance for the SNe Ia at z > 0.9 (49 SNe Ia), due to the small number of
SNe Ia at high redshifts. The large number of z > 1 SNe Ia from future surveys will enable the use of p(µ)
reconstructed from SNe Ia as an independent cosmological probe.

I. INTRODUCTION

Type Ia supernovae (SNe Ia) as standard candles play
an important role in modern cosmology. The luminosity
distance-redshift relation obtained through their observation
provides a powerful probe of the expansion of the universe,
and led to the discovery of cosmic acceleration [1, 2]. Over
the past decades, various surveys have collectively observed
thousands of SNe Ia [3–11], and they provide strong con-
straints on the matter-energy components in the universe [12–
14]. In order to achieve accurate and precise cosmological
constraints, accurate modeling of supernovae with compre-
hensive examination of the systematic uncertainties is of crit-
ical importance. The effects induced by weak gravitational
lensing of SNe Ia is one of the main systematic uncertainties,
and its impact increases with redshift [15–18]. On one hand,
the bias in cosmological inference due to weak lensing can
be minimized/removed using flux-averaging [19, 20]. On the
other hand, the weak lensing magnification of SNe Ia contains
important information of the distribution of matter in the uni-
verse [21]. Future surveys will target thousands of SNe Ia at
z > 1 [22, 23]. The accurate modeling of the weak lensing
effect with this high statistics can significantly improve our
understanding of the properties of dark matter and dark en-
ergy.

Due to the inhomogeneous distribution of matter in the uni-
verse, the light emitted from SNe Ia is bent along the line of
sight to the observer. This effect leads to the magnification
of the brightness of the observed SNe Ia and affect the scat-
ter from the mean brightness. Compared with the intrinsic
brightness distribution of SNe Ia, this weak lensing signature
is subdominant. However, for high redshift objects, this effect
is not negligible since the light can experience more bending
before reaching the observer. This weak lensing effect can be
expressed in terms of a probability function of magnification,
see e.g. [17, 18, 24–26] and references therein. The result-
ing distribution of SN Ia brightness is thus a convolution of
this magnification distribution and the intrinsic distribution of

∗ zhai@ipac.caltech.edu

brightness. The latest SNe Ia sample has a compilation of
more than one thousand data points, this enables us to per-
form a thorough analysis to explore the possible signals of
weak lensing in current observation. This extends the earlier
investigation in [27].

The systematic caused by weak lensing can turn into sig-
nal when our modeling and observation are sufficiently im-
proved [28–32]. The weak lensing signature observed in the
SN Ia data contains information of the underlying distribu-
tion of matter which depends on cosmology. A method that
can extract this information can provide useful information
to constrain the matter distribution and cosmological param-
eters. We present a methodology for reconstructing the weak
lensing magnification distribution from the observed peak flux
distribution of SNe Ia, and apply it to the Pantheon sample
compiled by Scolnic et al. (2018) [14], to demonstrate the
feasibility of this approach.

Our paper is organized as follows: we present the modeling
of weak lensing signature in the SNe Ia observation in Section
2, as well as the results from the application to the Pantheon
sample. We measure the scatter of the intrinsic brightness of
SNe Ia in Section 3, and reconstruct the weak lensing magni-
fication distribution of SNe Ia in Section 4. Section 5 presents
our discussion and conclusion.

II. WEAK LENSING SIGNATURE

The derivation of the effect of weak lensing on the mag-
nification of supernovae has been discussed with details in
[17, 18, 33–35]. Here we follow the pioneering work in Wang
(2005) [27] and briefly describe the weak lensing signature in
the type Ia supernova observations.

Due to the intervening matter and structure, the light re-
ceived by the observer is bent and this can modify the ob-
served brightness of SNe Ia. The observed flux from a SNe Ia
can be written as

f = µLint, (1)

where Lint is the intrinsic brightness of the SNe Ia, and µ is
the magnification due to lensing, which can be modeled by a
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universal probability distribution function based on the mea-
sured matter power spectrum [18]. The two variables Lint and
µ are statistically independent, therefore the distribution of
their product f can be modeled explicitly with the probability
distribution function (PDF) of each variables. The resulting
distribution can be written as

p( f ) =
∫ Lmax

int

0

dLint

Lint
g(Lint)p

(
f

Lint

)
, (2)

where p(µ) is the PDF of the magnification of SNe Ia, and
g(Lint) is the PDF of the intrinsic brightness of SNe. The up-
per limit of the integration Lmax

int = f/µmin, resulting from the
requirement µ = f/Lint ≥ µmin, where µmin is the minimum
value of the magnification due to lensing and can be com-
puted for a given cosmological model. Without prior knowl-
edge for the distribution of the intrinsic brightness of SNe Ia,
we follow [27] and assume that g(Lint) is a Gaussian distribu-
tion with unit mean and dispersion σ. The value of σ can be
well estimated with a large sample of SNe Ia at low redshift,
however we will show that this quantity can also be measured
as a byproduct in our weak lensing analysis.

In this paper, we measure p(µ) by using the universal proba-
bility distribution function (UPDF) of weak lensing amplifica-
tion as presented in [21, 27]. Note that p(µ) can also be com-
puted with analytic method or using cosmological N-body
simulations, see e.g. [15, 17, 24, 25, 36–38] and references
therein. In this UPDF based framework, we first calculate the
minimum convergence as [39]

κ̂min(z) = −
3
2

Ωm(1 + z)
cH−1

0

∫ z

0
dz′

(1 + z′)2

E(z′)
r(z′)
r(z)

[λ(z) −λ(z′)], (3)

where r(z) is the comoving distance in a smooth universe,

E(z)≡
√

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2 (4)

is the dimensionless Hubble parameter in a ΛCDM cosmol-
ogy with Ωx denoting the matter-energy fraction of the corre-
sponding component x (here ‘m’ refers to matter, ‘Λ’ refers
to cosmological constant, and ‘k’ refers to curvature contribu-
tion). The affine parameter

λ(z) = cH−1
0

∫ z

0

dz′

(1 + z′)2E(z′)
. (5)

The minimum of magnification µmin is related to the minimum
of convergence through µmin = 1/(1− κ̂min)2. This relation can
be derived in terms of angular diameter distances as detailed
in Chapter 4 of [40]. Based on the numerical simulation, the
data of p(µ) is converted to a modified UPDF of the reduced
convergence η [27],

P(η) =
1

1 +η2 exp

[
−

(
η −ηpeak

ωηq

)2
]
, (6)

where

η = 1 +
µ− 1
|µmin − 1|

. (7)

The parameters in this formula ηpeak,ω,q are functions of ξη ,
which is the variance of η and absorbs all the cosmological
dependence. For an arbitrary cosmological model, one can
compute ξη as [17]

ξη =
∫ χs

0
dχ
(

w
Fs

)
Iµ(χ), (8)

with

Fs =
∫ χs

0
dχw(χ,χs), Iµ = π

∫ ∞
0

dk
k

∆2(k,z)
k

W 2(Dkθ0),

∆2(k,z) = 4πk3Pm(k,z), W (Dkθ0) =
2J1(Dkθ0)

Dkθ0
(9)

(10)

where Pm(k,z) is the matter power spectrum at redshift z with
wavenumber k, θ0 is the smoothing angle [35], and J1 is the
Bessel function of order 1. The other quantities depending on
the distance measure in the universe can be calculated as

w(χ,χs) =
H2

0

c2

D(χ)D(χs −χ)
D(χs)

(1 + z)

D(χ) =
cH−1

0√
|Ωk|

sinn
(√
|Ωk|χ

)
,

χ =
∫ z

0

cH−1
0 dz′

E(z′)
, (11)

where “sinn" is defined as sinh if Ωk > 0, sin if Ωk < 0. If
Ωk = 0, both sinn and Ωk disappear.

In our analysis, we adopt the fitting formula provided by
[18] and further improved in [40] to calculate p(µ) and con-
volve it with the intrinsic brightness distribution to obtain the
observed flux distribution (see Eq[2]). Figure 1 presents the
prediction of the observed flux distributions of SNe Ia for
magnification distribution p(µ) at various redshifts and with
different widths of the intrinsic brightness distribution g(Lint).
The cosmological model adopted is obtained through flux-
averaging method with the latest Pantheon SNe Ia sample
[41]. The result presents clear signatures of the weak lensing
effect of SNe Ia data which are consistent with earlier inves-
tigations: a non-Gaussian tail at the bright end due to high
magnifications, and a shift of the peak towards the faint end
due to de-magnification since the Universe is mostly empty.
We also find that these signatures become more significant at
high redshift and with narrower intrinsic brightness distribu-
tion. This is due to the fact that the light emitted from high
redshift SNe Ia can experience more bending before reaching
the observer and thus result in stronger lensing effects.

Next we explore this weak lensing effect in the current
SNe Ia data. We use the Pantheon sample compiled from the
full set of spectroscopically confirmed Pan-STARRS1 (PS1)
SNe Ia with the observation from CfA1-4, CSP, PS1, SDSS,
SNLS and Hubble Space Telescope (HST) SN surveys [14].
This dataset consists of 1048 SNe Ia in the redshift range
0.01<z<2.3. Figure 2 displays the redshift distribution of this
sample, with our redshift cuts used in the analysis shown as



3

0.0

0.5

1.0

z = 0.1, =0.1

Gaussian convolved with p( )
Gaussian distribution
p( )[ CDM]

z = 0.1, =0.2 z = 0.1, =0.3

0.0

0.5

1.0

p(
f)

z = 0.7, =0.1 z = 0.7, =0.2 z = 0.7, =0.3

0 1 2
0.0

0.5

1.0

z = 1.5, =0.1

0 1 2
f/ f

z = 1.5, =0.2

0 1 2

z = 1.5, =0.3

FIG. 1. Prediction of the observed flux distributions of SNe Ia for magnification distribution p(µ) and intrinsic brightness distribution g(Lint)
with different widths and redshifts. The cosmological model is obtained through flux-averaging method and the width of g(Lint) is expressed
in unit of the mean flux. The distributions are normalized to have peak value equal to 1.
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FIG. 2. The redshift distribution of the Pantheon SNe Ia sample.
The vertical red lines correspond to the redshift cuts we use in the
analysis: z=0.1, 0.3, 0.7, 0.9.

vertical lines. Compared with the datasets analyzed in ear-
lier investigations [27], this enlarged catalog can have signif-
icantly improved statistics. In order to isolate the weak lens-
ing signal in the SNe Ia data, we first separate the data into
several redshift bins. The low redshift data with z<0.1 are
not considered in the analysis since they are significantly af-

fected by the peculiar velocities. As we present in Figure 1,
the low redshift SNe Ia do not have detectable weak lensing
signature, therefore we isolate the data with 0.1 < z < 0.3 to
calculate the mean flux and use this value to normalize the
SNe Ia at higher redshift. This can enable a meaningful and
self-consistent comparison of the high-z and low-z samples.

We present the resulting distribution of the SNe Ia flux in
Figure 3. The top panel shows that the low-z sample is con-
sistent with a Gaussian distribution with σ = 0.13 as we may
expect. For comparison, the Gaussian distribution and the pre-
dicted distribution of SNe Ia flux from convolution of a Gaus-
sian distribution and p(µ) are also shown. Here p(µ) is calcu-
lated by Eq.(6) and (7) at the effective redshift of the sample.
The middle panel and the bottom panel show the results for
high-z samples with two redshift cuts z > 0.7 and z > 0.9 re-
spectively. We have limited our analysis of the weak lensing
effect for SNe Ia at z > 0.7, since the weak lensing effect in-
creases with redshift, and is not detectable at z< 0.7. We note
that the high-z sample with z > 0.7 shows clear signatures of
weak lensing: a high magnification at the bright end and a
demagnification shift of the peak toward the faint end. This
finding is consistent with the earlier study in [27] but with
better statistics due to the fact that the size of this high-z sam-
ple is improved by a factor of two. We also presents result
with even higher redshift cut z > 0.9 in the bottom panel. It
implies similar pattern as the z> 0.7 sample (124 SNe Ia), but
with more noise. Therefore we will focus on the z> 0.7 sam-
ple in the following analysis and just briefly present the result
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FIG. 3. The flux distribution of the low-z and high-z SNe Ia samples.
The redshift ranges and number of SNe Ia are shown in the legend for
each panel. The solid curves in each panel are calculated assuming
σ = 0.13 in the Gaussian distribution of the intrinsic brightness distri-
bution, which can be estimated by a simple likelihood analysis. The
vertical grey line shows the unity of the mean flux. p(µ) is calculated
at the effective redshift of each sample. The low-z sample has a dis-
tribution consistent with Gaussian which can be used to anchor the
mean flux for both low-z and the high-z samples. The z> 0.7 sample
has a better statistics than the z > 0.9 sample, due to the larger size.
It presents characteristic signatures of weak lensing on the SNe Ia
observations as explained in the text.

from the z > 0.9 sample (49 SNe Ia) as it is more strongly
dominated by shot noise. The curves in Figure 3 are obtained
assuming σ = 0.13 in the Gaussian distribution of the intrinsic
brightness. We will show that this parameter can be estimated
from a simple likelihood anlaysis in the next section.

In order to evaluate the statistical significance of the result,
we compare the flux distribution with the Gaussian and con-
volved Gaussian distribution through a χ2 calculation as in
Eq. (12). In this test, we assume ξη in the fitting formula
of the UPDF is a free parameter in the weak lensing scenario
[18, 40]. For the z> 0.7 subsample, we find χ2 = 5.49 for the
Gaussian distribution and χ2 = 2.95 for convolved Gaussian
respectively. The interpretation from the weak lensing effect
has a ∆χ2 = 2.54 improvement. Given one extra parameter,
the weak lensing model has ∆AIC = 0.54 improvement un-

der an Akaike information criterion (AIC). The z > 0.9 sub-
sample has similar result with χ2 = 8.53 and χ2 = 6.39 for
Gaussian and convolved Gaussian respectively, a ∆χ2 = 2.14
(∆AIC = 0.14) improvement. Note that the improvement in
model-fitting by convolving the Gaussian distribution with
p(µ) is not significant for either sample as measured by AIC,
because the z > 0.7 sample has small lensing effect on aver-
age, while the z > 0.9 sample is shot-noise dominated in the
flux bins most sensitive to the lensing effect (see Fig.3, bot-
tom panel). We expect that the Gaussian convolved with p(µ)
model will improve model-fittting significantly compared to a
Gaussian for future SN Ia data at redshifts 1 to 2.

We have also performed a Kolmogorov-Smirnov test to fur-
ther access our results as in [27]. This test gives a measure
D, the maximum value of the absolute difference between
two cumulative distributions, i.e. smaller D reveals better
agreement. For the z > 0.7 subsample, we find D = 0.058
and D = 0.051 for Gaussian and convolved Gaussian respec-
tively. For the z > 0.9 subsample, the result is D = 0.123 and
D = 0.072 respectively. Therefore the Kolmogorov-Smirnov
shows that the flux distribution of both subsamples are more
consistent with the convolved Gaussian than the pure Gaus-
sian distribution, which supports the interpretation of the weak
lensing effect in the SNe Ia observations.

III. CONSTRAINT ON THE DISPERSION OF THE
INTRINSIC BRIGHTNESS
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FIG. 4. Constraints on σ: the dispersion of the intrinsic bright-
ness distribution of SNe Ia, for two different Pantheon subsamples:
z > 0.7 (red) and z > 0.9 (blue). The stars denote the best fit value
with χ2

min, and the horizontal dotted line for the z > 0.7 sample cor-
responds to χ2 = χ2

min +∆χ2 with ∆χ2 = 1. The results of these two
constraints are consistent with each other at 1σ level, both indicat-
ing that the intrinsic brightness of SNe Ia has a dispersion of about
13±1% in unit of the mean value.

The observed flux distribution shown in Figure 3 can be
used to compare with the theoretical predictions in Eq (2). In
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this comparison, we assume a cosmological model from flux
averaging method [20] and the remaining unknown parameter
is σ in the intrinsic brightness distribution g(Lint) of SNe Ia.
Therefore we can construct a naive likelihood function

χ2 =
Nbin∑
i=0

Di,obs − Di,pre

σD,i
, (12)

where Nbin is the number of bins in f as in Figure 3, Di is the
number of SNe Ia in the i − th bin, the subscripts “obs" and
“pre" refer to observation and prediction respectively. Since
the observable is the number count of SNe Ia in flux, we as-
sume the uncertainty follows a simple Poisson distribution
which gives σD,i =

√
Di,obs. We present the constraints on

σ with two different redshift cuts (as shown in Figure 2) of
the Pantheon sample in Figure 4 by calculating the value of
χ2 in a range of σ. The result shows that the two redshift
cuts give best-fit values of σ consistent with each other. Both
samples show a dispersion of 13% in unit of the mean flux of
SNe Ia. We also repeat this test for the low redshift subsam-
ple with 0.1 < z < 0.3, the constraint on σ is around 11.5%,
consistent with the high redshift subsample at a confidence
level of 90%. It could indicate that a redshift-independent in-
trinsic scatter is a reasonable assumption, but we should note
that this result needs to be verified using much larger future
samples with much better statistics. The dispersion of intrin-
sic brightness of SNe Ia can reflect the underlying physical
mechanism. Its accurate measurement can provide informa-
tion of the physics related to explosion model and galaxy en-
vironment, and improve the constraints on the cosmological
parameters [31, 42, 43].

IV. RECONSTRUCTION OF p(µ)

The observed flux distribution of SNe Ia as presented in
Figure 3 is a convolution of the intrinsic distribution and weak
lensing magnification. The latter contains important informa-
tion about the spatial distribution of dark matter and the late
time evolution of the universe. Therefore its direct or indirect
measurement can be important and challenging, and serves
as a new probe to constrain cosmology. In this section, we
present a methodology for extracting the measurement of p(µ)
from the observed SN Ia flux distribution, and apply it to cur-
rent SNe Ia observations.

Our approach is to numerically deconvolve Eq.(2) by
parametrizing the weak lensing magnification distribution
p(µ) and assuming a model for the SN Ia peak brightness in-
trinsic scatter g(Lint). Here are the steps in our method:
(1) Flux-average the SNe Ia to remove/minimize weak lensing
effect.
(2) Derive the bestfit cosmological model using the flux-
averaged SNe Ia.
(3) Derive the SN Ia flux distribution for the high z sub-sample
by removing the distance dependence of the SN Ia apparent
peak brightness assuming the bestfit cosmological model.
(4) Parametrize p(µ) with a set of parameters, {p(µi)}, for
µmin < µi < µmax, where µmin is calculated from the mini-
mum of convergence in Eq (3), and µmax is chosen to be large
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FIG. 5. Reconstruction of p(µ) from samples with two different red-
shift cuts: Top panel : z > 0.7; Bottom panel : z > 0.9. The blue
dot-dashed line is the reconstructed p(µ) from observation and the
shaded area from inner to outer is 1 and 2 σ uncertainties. The red
lines correspond to the theoretical prediction of p(µ) from UPDF at
various redshifts.

enough such that further increasing its value has negligible
effect on the results. Note that p(µ) is assumed to be zero
elsewhere.
(5) Model the SN Ia peak brightness intrinsic scatter g(Lint) as
a Gaussian with dispersion σ.
(6) Interpolate {p(µi)} to obtain a model p(µ), integrate Eq.(2)
to obtain predicted flux distribution for the high z sub-sample,
and normalize it by the number of SNe Ia in the sub-sample.
(7) Compute the likelihood function in Eq.(12).
(8) Run a Monte Carlo Markov Chain (MCMC) test with the
emcee toolkit [44] to obtain constraints on the parameters
{p(µi),σ}.

The current SN Ia data do not allow a detailed recon-
struction of p(µ). For measuring p(µi) > 0, we have cho-
sen µi = (0.92,0.96,1.04,1.1) for the z > 0.7 sample, and
µi = (0.90,0.94,1.02,1.1) for the z> 0.9 sample respectively.
We used the same number of parameters for the two samples,
but a wider range in µi for the higher z sample as its p(µ) is
expected to have a broader distribution.

To demonstrate the feasibility of our approach and verify
consistency, we have derived the intrinsic scatter in SN Ia
peak luminosity separately (see the previous section), instead
of estimating it in a joint analysis with {p(µi)} as in Step (8)
above. We use linear interpolation in this demonstration for
simplicity. We will explore the joint estimation of {p(µi),σ}
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and more sophisticated interpolation schemes in future work.
We present this reconstructed p(µ) in Figure 5 for sub-

samples with two different redshift cuts, z > 0.7 (124 SNe
Ia), and z > 0.9 (49 SNe Ia). The red lines show the predic-
tion of p(µ) based on UPDF (Section II) at various redshifts.
The reconstruction from the Pantheon sample is shown as dot-
dashed blue line with shaded area. There are two noticeable
features in the result: first, the resulting p(µ) has a peak shape
around µ <∼ 1.0, consistent with the UPDF prediction. The
significance of the reconstructed p(µ) is higher than 2σ for
the z > 0.7 sub-sample, indicating a positive detection of the
weak lensing magnification in SNe Ia observations. Second,
the reconstructed p(µ) is broader than the theoretical predic-
tion at the mean redshift of the sample. This is partly due to
the fact that the light from the highest redshift supernovae in
the sample can experience more bending and result in signif-
icant weak lensing magnification. Compared with the limited
number of SNe Ia with z > 0.7 or z > 0.9, their contribution
to the flux distribution is not negligible. The predictions of
p(µ) based on UPDF at higher redshifts show that the high-z
SNe Ia can dramatically change the overall shape of p(µ). The
higher redshift subsample has enhanced weak lensing signa-
tures but degraded detectability due to the reduced statistics
(see bottom panel of Fig.5). Note that the reconstructed p(µ)
for z > 0.9 SNe Ia is broader than the reconstructed p(µ) for
SNe Ia z> 0.7, since the weak lensing effect increases with z;
in the absence of lensing, p(µ) is a delta function at µ = 1.

Fig.5 demonstrates that the methodology presented in this
section can be used to extract p(µ) from SN Ia data. We expect
that it will lead to detailed measurement of p(µ) for high z
SNe Ia when applied to sufficiently large samples of SNe Ia at
z> 1.

V. DISCUSSION AND CONCLUSION

We have presented a detection of the weak lensing magni-
fication in the SNe Ia observations. It extends the pioneering
work in [27] to derive the the distribution of SNe Ia bright-
ness. By the use of the latest Pantheon SNe Ia sample, we
find consistent weak lensing signatures in the flux distribu-
tion but with better statistics: a high magnification tail at the
bright end and a shift of peak magnification to µ < 1 toward
the faint end. Our analysis uses the low redshift sample to find
the mean flux and the results for two high redshift samples are
shown for comparison.

The observed flux distribution of SNe Ia is a result of con-
volution between an intrinsic brightness distribution and weak
lensing magnification. We assume the intrinsic distribution is

Gaussian distributed with unit mean and unknown dispersion
σ. With measurement for the observed flux distribution, we
construct and perform a simple likelihood analysis and obtain
the constraint on the dispersion. For two samples with differ-
ent redshift cuts, we find σ = 0.13 in unit of the mean flux.
The results of the two samples are consistent with each other
and doesn’t present significant redshift dependence. This type
of measurement could reveal the physical mechanism of SNe
Ia explosion and may contain information about the galaxies
that host SNe Ia.

We have developed a methodology to reconstruct the weak
lensing magnification of SNe Ia p(µ) from their observed peak
flux distribution (see Sec.IV). Our method is straightforward
and assumes that p(µ) is an interpolation at certain values of
µ and the measurements are determined from a MCMC anal-
ysis. We applied our approach to the Pantheon sample of SNe
Ia, and reconstructed p(µ) for two sub-samples: z > 0.7 (124
SNe Ia), and z > 0.9 (49 SNe Ia). The significance of the re-
constructed p(µ) is higher than 2σ for the z> 0.7 sub-sample,
and lower for the z> 0.9 sub-sample due to its smaller size.

We have assumed that selection effects have been accu-
rately modeled and corrected in the Pantheon sample by Scol-
nic et al. (2018) [14]. Since this is a complex and challenging
issue, we will examine it in detail using realistically simulated
data in future work.

As a direct probe of dark matter and dark matter halos,
weak lensing provides an important means to study their prop-
erties. The reconstruction of p(µ) from the SNe Ia observation
is an independent measure of the underlying distribution of
matter. This in turn implies that we can use this measurement
to constrain cosmology [19, 28, 45–48]. In this case, the SNe
Ia will not only be a geometrical probe, but also provide con-
straint on the matter distribution in the universe. Even though
the measurement of p(µ) can be noisy, it provides an inde-
pendent cross-check in cosmological constraints and can help
break the degeneracy of the cosmological parameters. The
methodology presented in this paper can be applied to the
thousands of SNe Ia at z > 1 that WFIRST will observe [22],
and yield unique information to improve our understanding of
the universe. We are currently investigating the accuracy and
precision of p(µ) reconstruction from future survey data. Our
results will be presented as a follow-up to the current paper.
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