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We study the solution space of general relativistic, axisymmetric, equilibria of differentially ro-
tating neutron stars with realistic, nuclear equations of state. We find that different types of stars,
which were identified by earlier works for polytropic equations of state, arise for realistic equations
of state, too. Scanning the solution space for the sample of realistic equations of state we treat, we
find lower limits on the maximum rest masses supported by cold, differentially rotating stars for each
type of stars. We often discover equilibrium configurations that can support more than 2 times the
mass of a static star. We call these equilibria “ubermassive”, and in our survey we find ubermassive
stars that can support up to 2.5 times the maximum rest mass that can be supported by a cold,
non-rotating star with the same equation of state. This is nearly two times larger than what previ-
ous studies employing realistic equations of state had found, and which did not uncover ubermassive
neutron stars. Moreover, we find that the increase in the maximum rest mass with respect to the
non-spinning stellar counterpart is larger for moderately stiff equations of state. These results may
have implications for the lifetime and the gravitational wave and electromagnetic counterparts of
hypermassive neutron stars formed following binary neutron star mergers.

I. INTRODUCTION

Hypermassive Neutron Stars (HMNSs) [1] are tran-
sient configurations that are supported against gravi-
tational collapse by the additional centrifugal support
provided by differential rotation, and possibly also by
thermal pressure [2, 3]. HMNSs may be ubiquitous rem-
nants of binary neutron star (BNS) mergers (see e.g. [4–
7] for reviews and references therein). An HMNS was
also a likely outcome [8–11] of the LIGO/Virgo event
GW170817 [12, 13].

The study of differentially rotating relativistic stars
is useful for understanding the types of BNS merger
remnants that are possible, and their properties. Mod-
est to high degrees of differential rotation may sup-
port an HMNS against collapse on dynamical timescales,
but such objects are unstable on secular timescales (see
e.g. [3, 14, 15] and references therein). An impor-
tant quantity that determines whether following a BNS
merger there will be prompt, delayed or no collapse at
all, is the maximum mass that can be supported given
an equation of state. Studying general relativistic, equi-
librium models of differentially rotating stars provides
a straightforward approach to determine this maximum
mass.

In [16, 17] it was shown that cold, axisymmetric, dif-
ferentially rotating stars described by either polytropic
or realistic equations of state (EOSs) can support up to
approximately 70% more mass when compared to the
maximum rest mass that can be supported by a non-
rotating star – the Tolman-Oppenheimer-Volkoff (TOV)
limit. This result holds for the differential rotation law
of [18] which we refer to as the KEH law. However, in [19]
it was pointed out that early efforts to find the maximum
rest mass of differentially rotating, axisymmetric configu-
rations did not account for the full solution space with the

KEH law. Subsequently, it was found in [20] that differ-
entially rotating, axisymmetric, Γ = 2 polytropic models
of neutron stars built with the KEH law can support up
to ∼ 4 times the TOV limit at even modest degrees of
differential rotation.

The solution space for relativistic, differentially ro-
tating, axisymmetric stars with the KEH law has been
shown to exhibit four types of equilibrium solutions [19]
labeled A, B, C, and D. A careful scan among these types
reveals that stars with quasi-toroidal topology are those
that tend to be the most massive. Each stellar configu-
ration belonging to a solution type falls along a sequence
characterized by a quadruplet of parameters consisting of
the maximum energy density εmax, the degree of differen-
tial rotation Â−1, the ratio of polar to equatorial radius

rp/re, and the parameter β̂ describing how close to the
mass-shedding limit the configuration is. Note that the
first three of the above parameters are needed to com-
pletely specify a configuration, yet the solution space re-
quires four parameters to be described. The full solution
space with the KEH law has been studied in great de-
tail for polytropic EOSs of varying stiffness [21]. In [21]
it was further shown that the existence of four types of
solutions is a Universal feature for a range of polytropic
indices n ∈ [2/3, 2]. Nevertheless, for n = 1.5 the authors
did not report stars of type B, C, or D. These results im-
ply that the possible types of solutions may depend on
the equation of state. This is important because neutron
star EOSs are not described by a single polytropic in-
dex and different realistic nuclear equations of state have
varying degrees of stiffness. While n = 1.5 does not cor-
respond to models of neutron stars, a natural question
arises by the work of [20, 21]: do the different types of
differentially rotating, axisymmetric stars arise for realis-
tic nuclear EOSs? If they do arise, what is the maximum
rest mass that can be be supported by the different types
of solutions when realistic nuclear EOSs are considered?
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In this paper, we address these questions by consid-
ering the solution space for differentially rotating, ax-
isymmetric stars built with the KEH law with realistic
nuclear EOSs. We find that the different types of so-
lutions identified in [19] arise even for realistic neutron
star matter. As in [20, 21] we find that many configu-
rations can support a mass more than 2 times the TOV
limit. Moreover, we find configurations that can support
a rest-mass more than 2 times the supramassive limit
(the maximum mass that can be supported when allow-
ing for maximal uniform rotation). We term configura-
tions which can support a rest mass more than 2 times the
TOV limit, “ubermassive”. We propose a different name
for these because ubermassive neutron stars (UMNS) are
not likely to arise in Nature through quasicircular merg-
ers of binary neutron stars, as neutron stars in binaries
are not observed to have high enough spins to support
much more mass than the TOV limit. For instance, even
for the fastest spinning known neutron star with a period
of 1.5ms the enhancement on the maximum supportable
mass over the TOV limit is O(1%). Thus, if UMNSs
form through astrophysical processes, in all likelihood it
would have to be through some more exotic channel other
than binary mergers. While one could define ubermas-
sive stars as those that can support more than 2 times
the supramassive limit mass, our current definition takes
into consideration prior knowledge on neutron star prop-
erties based on decades of neutron star observations. For
the sample of realistic EOSs we explore, in our scan of
the solution space we find UMNSs that can support up
to 2.5 times (150 % more mass than) the corresponding
TOV limit.

The remainder of this paper is organized as follows. In
Section II we review basic equations and details pertain-
ing to the solution space of differentially rotating stars
built with the KEH law. In Section III we present the
EOSs we treat here and their basic properties. In Section
IV we describe our methods and reproduce some of the
results presented in [20] for a Γ = 2 polytrope. Section V
details our results, showing the solution space of differ-
entially rotating stars with realistic nuclear EOSs along
with the maximum rest mass models we found for each
EOS we considered. We conclude in Section VI with a
summary of our findings and a discussion of future direc-
tions. Geometrized units, where G = c = 1, are adopted
throughout, unless otherwise specified.

II. BASIC EQUATIONS AND TYPES OF
DIFFERENTIALLY ROTATING STARS

The spacetime of stationary, axisymmetric, equilib-
rium rotating stars is described by the following line ele-
ment in spherical polar coordinates (see e.g. [22])

ds2 = −eγ+ρdt2+e2α(dr2+r2dθ2)+eγ−ρr2 sin2 θ(dφ−ωdt)2,
(1)

where the metric potentials γ, ρ, α and ω are functions
of r and θ only, and are determined by the solution of

the Einstein equations coupled to the hydrostationary
equilibrium equation for perfect fluids (see e.g. [7] for a
review and other forms of the line element used in the
literature). To close the system of equations an EOS and
a differential rotation law are required.

Most studies of differentially rotating stars adopt the
KEH rotation law [18], which is also called j-constant
rotation law (see [7] for a summary of other differential
rotation laws.). In this law the specific angular momen-
tum is a function of the angular velocity as follows

utuφ = A2(Ωc − Ω), (2)

where ut and uφ are the temporal and azimuthal compo-
nents of the fluid four velocity, respectively, Ω = uφ/ut

is the local angular velocity of the fluid as seen by an
observer at infinity, and Ωc is the angular velocity on the
rotation axis. It is common and convenient to param-
eterize the angular velocity by considering the ratio of
polar (rp) to equatorial (re) radius of the star,

rp
re

. Stars
with larger values of Ωc tend to have a smaller value of
rp
re

, indicative of a “flatter” stellar shape. The parameter

A in Eq. (2) has units of length and is a measure of the
degree of differential rotation in the star, i.e, the length
scale over which the fluid angular velocity changes in the
star. It is also common to use a rescaled A parameter

Â−1 =
re
A
. (3)

A general relativistic stellar configuration is then com-
pletely determined by the values of Â−1,

rp
re

, and the

central or maximum energy density (εmax). In the case
of uniform rotation or cases with low degrees of differen-
tial rotation the central energy density and εmax coincide,
since εmax occurs at the center of the star. However, when
considering differentially rotating stars a quasi-toroidal
topology may arise in which case εmax is not at the ge-
ometric center of the configuration. In these cases it is
more convenient to specify εmax instead of the value of
the energy density at the center of the star. Models with
extreme quasi-toroidal shapes tend to have very small
(but non-zero) densities near the center.

The parameter Â−1 is important for identifying the
different types of solutions that arise for rotating stars.
When Â−1 = 0 the stars are uniformly rotating, while
stars with Â−1 6= 0 are differentially rotating. Models
with relatively high values of Â−1 (typically Â−1 & 1.0)
tend to show a smooth transition from spheroidal to
quasi-toroidal topologies, depending on the values of

rp
re

and εmax. Models with lower values of Â−1 (typically

Â−1 . 0.7 for the values of εmax considered here) show a
richer solution space, as we discuss below.

Another important parameter in describing differen-
tially rotating stars is β, which parametrizes how close
to mass-shedding the stellar model is. The parameter β
was introduced in [19] and is defined as

β = −
(
re
rp

)2
d(z2)

d($2)

∣∣∣∣
ρ=re

, (4)
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where $ = r sin(θ) and z = r cos(θ) are cylindrical co-
ordinates, and the derivative is evaluated on the surface
of the star at the equator. On the surface of the star
r = r(θ), thus the function z2($2) describes the surface
shape, whose slope at the stellar equator determines how
close to mass-shedding the configuration is. The “mass-
shedding parameter” is defined in terms of β as [19]

β̂ =
β

1 + β
. (5)

While β̂ is not a gauge-invariant quantity, it is useful
in describing models in coordinates such as those defined
by Eq. 1. Depending on the surface slope at the equa-

tor, β̂ will approach different values. We are generally

interested in three limiting values of β̂:

1. Non-rotating, spherical limit: For a spherical

TOV star,
rp
re

= 1, and the derivative
d(z2)

d($2)
= −1

everywhere on the surface. Thus, in this limit β̂ −→ 1
2 .

2. Mass-shedding limit: At the mass-shedding limit, the
stellar configuration begins to lose mass at the equa-
tor. The surface derivative at the equator vanishes
d(z2)

d($2)
= 0. Hence, β̂ −→ 0 at the mass-shedding

limit.

3. Toroidal limit: As the stellar topology approaches that
of a toroid, rp −→ 0, and β becomes large. This

implies that β̂ −→ 1 as a sequence approaches the
toroidal limit.

The above discussion suggests that the complete set
of parameters describing general relativistic equilibria of
stationary and axisymmetric, differentially rotating stars

with the KEH law is the quadruplet (εmax,
rp
re
, Â−1, β̂).

The solution types can be distinguished by spec-

ifying εmax and considering the limiting values of β̂

for sequences of constant Â−1 in the (
rp
re
, β̂) plane.

This requires that one slowly vary the quadruplet

(εmax,
rp
re
, Â−1, β̂) to carefully scan the space of solu-

tions. We use the convention introduced in [19] to
distinguish the types of differentially rotating stars at
fixed εmax for sequences of constant Â−1. Given that in
the numerical construction of rotating stars we always
start with an initial guess solution corresponding to a
static star, and then slowly vary the stellar parameters
to reach a particular type of solution at fixed εmax,
below we list the general trajectory of solutions used in
building the corresponding sequences:

• Type A: This sequence of solutions consists strictly
of spheroids. For low degrees of differential rotation
(i.e, close to rigid rotation), stars are spheroidal.
Spinning these stars up (i.e, decreasing

rp
re

) results

in mass-shedding, so that the Type A sequence
goes from the limiting solution of spherical stars

(
rp
re

= 1, β̂ = 0.5) to mass-shedding (β̂ = 0). Starting
from a spherical solution, these models are obtained
by simply spinning up the initial model. A potential
path in the parameter space is as follows

Spheroid (low Â−1)
decrease

rp
re−−−−−−−→ Mass-shedding

• Type B: This type of star often exits for the same
values of Â−1 as Type A stars, but at lower values of
rp
re

. Spinning these stars down (increasing
rp
re

) results
eventually in mass-shedding. Therefore, the Type B
sequence goes from the limiting solution of toroids

(β̂ −→ 1.0) to mass-shedding (β̂ = 0). These models
can be reached numerically by spinning up an initial
spherical model (decreasing

rp
re

) with high Â−1 to ob-

tain quasi-toroidal solutions, then decreasing Â−1, and
finally increasing

rp
re

to approach the mass-shedding
limit. A potential path in the parameter space is as
follows

Spheroid (low Â−1)
increase Â−1, decrease

rp
re−−−−−−−−−−−−−−−−→ Quasi-

toroid (high Â−1)
decrease Â−1

−−−−−−−−→ Quasi-toroid (low Â−1)
increase

rp
re−−−−−−−→ Mass-shedding

The Type B stars near the mass-shedding limit are
difficult to reach and we were not able to construct
such extreme configurations.

• Type C: This sequence exhibits a smooth transition

from a spherical solution (β̂ = 0.5) to a quasi-toroidal

solution (β̂ = 1.0). As such, starting at a spheroid

with high Â−1, and spinning Type C stars up by
decreasing

rp
re

would not result in mass-shedding,
but would shape the models into a quasi-toroid. A
potential path in the parameter space is as follows

Spheroid (low Â−1)
increase Â−1

−−−−−−−−→
decrease

rp
re

Quasi-toroid (high

Â−1)

• Type D: This type typically covers the smallest part of
the parameter space. The models of this type are non-
trivial to build directly from a spherical solution. This
is because Type D sequences start and end at the mass-

shedding limit (β̂ = 0). Spinning these stars either
up or down would result in mass-shedding. We were
unable to build Type D sequences at fixed values of
Â−1 for any of the cases considered. However, we were
able to construct individual candidate Type D models

at specific values of the quadruplet (εmax,
rp
re
, Â−1, β̂).
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III. EQUATIONS OF STATE

We consider a set of four realistic EOSs, all of which
can be found on the Compstar Online Supernovae Equa-
tions of State (ComPOSE) [23] database. We chose
two zero-temperature EOSs and two finite tempera-
ture EOSs (in their “cold” limit) to study. The zero-
temperature, nuclear EOSs we considered are APR [24]
and FPS [25]. These zero-temperature EOSs were also
considered in [17] and were chosen for a suitable compar-
ison to the maximum rest mass models found therein.
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FIG. 1. Pressure as a function of energy density for the EOSs
in our sample. The red dashed, blue dotted, green dash-
dotted, and black dash-double-dotted lines correspond to the
FPS, HFO, NL3, and APR EOSs, respectively. The solid lines
of the same color scheme correspond to representations of each
EOS using a single polytrope as described by Equations (A3)
and (A4).

The first finite temperature EOS we consider is a vari-
ant of the EOS of [26] which includes electrons, protons,
neutrons and will hereafter be referred to as NL3. We
also consider the EOS of [27], which will hereafter be re-
ferred to as HFO (a common name for the HFO EOS in
the existing literature is SFHO). The finite temperature
EOS tables include values of the rest mass density ρ0 at
different values of the temperature T and the electron
fraction Ye. Since our focus is on cold, equilibrium mod-
els of differentially rotating stars we set T = 0.01 MeV,
and enforce neutrinoless beta equilibrium as is common
in the case of finite temperature EOSs. In particular we
numerically solve for the value of Ye at which chemical
equilibrium is established between neutrons, protons, and
electrons,

µn − µp − µe = 0, (6)

where µi is the chemical potential of species i. Once ρ0

and T are specified for the EOS tables, we scan through
values of Ye until the condition in Equation (6) is met.
We then change the value of ρ0 and repeat, building a
tabulated EOS of pressure, rest mass density and energy
density for the set of electron fractions corresponding to
beta equilibrium. Figure 1 shows a plot of pressure as a
function of energy density for the set of EOSs we treat in
this work. We discuss the relevant astrophysical bounds
for these EOSs in Appendix C.

TABLE I. Ratio of average energy density to maximum en-
ergy density C1.4

ε (for models of rest mass M0 = 1.4M�) and
effective adiabatic index Γnuceff as measures of EOS stiffness for

each EOS in our study. MTOV
0,max, Msup

0,max are the rest masses
of the TOV limit and the supramassive limit, respectively,
and MTOV

ADM,max, Msup
ADM,max are the gravitational masses of

the TOV limit and the supramassive limit, respectively. All
masses are in units of M�.

EOS C1.4
ε Γnuceff MTOV

0,max Msup
0,max MTOV

ADM,max Msup
ADM,max

FPS 0.40 2.55 2.10 2.45 1.80 2.12
HFO 0.42 2.66 2.41 2.83 2.06 2.44
NL3 0.43 2.84 3.27 3.88 2.75 3.30
APR 0.44 3.07 2.66 3.09 2.19 2.60

We compare the EOSs in terms of their stiffness, which
we characterize by the ratio of average energy density ε̄
to maximum energy density εmax in models of equal rest
mass M0 for each EOS. The average density is defined
as [17]

ε̄ ≡ 3M

4πR3
c

, (7)

where M is the gravitational mass and Rc the circum-
ferential radius. We build M0 = 1.4M� TOV models for
each EOS, and look at the ratio of average to maximum
energy density Cε

Cε =
ε̄

εmax
. (8)

A maximally stiff EOS would have Cε = 1, correspond-
ing to a uniform energy density configuration. We list
C1.4
ε (Equation (8) for a 1.4M� star) for each EOS in

Table I. Using Cε as a measure for stiffness is accurate for
polytropic equations of state, because a larger adiabatic
index yields larger Cε for fixed mass. However, since Cε
varies with rest mass (see Appendix B), it is important
to use additional measures of stiffness for realistic EOSs.

As an alternative measure of EOS stiffness, and to com-
pare with the polytropic models in [20], we also consider
the effective adiabatic index Γnuceff for each model, calcu-

lated as in [17]. In particular, to find Γnuceff for each real-
istic EOSs we first calculate Cnucε for the maximum rest
mass TOV model. Next, we calculate the ratio Cpolyε for
the maximum rest mass TOV models of polytropes with
a wide range of adiabatic indices Γpoly, and construct
a function Γpoly(Cpolyε ) that we interpolate at values of
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Cpolyε that are not in our table. The effective adiabatic
index of a nuclear EOS is then defined through

Γnuceff = Γpoly(Cnucε ). (9)

Γnuceff is an “average” rate of change of pressure with
rest-mass density by approximating the EOS as a single
polytrope in the high density regime which primarily de-
termines the bulk structure of the star. Γnuceff is useful
when comparing features in the solution space of realis-
tic EOSs to those of polytropes. All of the EOSs in our
set have 2.5 < Γnuceff < 3.1, and it turns out that certain
features of the solution space for these realistic EOSs are
consistent with the Γ ≥ 2.5 polytropes [21], as further
discussed in Sec. V.

The effective adiabatic indices for the EOSs we treat
are listed in Tab. I, where we also show the TOV limit
mass and the supramassive limit mass for each of these
EOSs. Compared to the values of Γnuceff reported in [17]

for the FPS and APR EOSs, our results differ by 0.04%
and 1.56%, respectively. Note that we have ranked the
EOSs in Tab. I in order of increasing C1.4

ε and Γnuceff . By
both metrics of the stiffness APR is the stiffest, and FPS
is the softest.

In order to see how well approximated the realistic
EOSs are by single polytropes, we also include a poly-
tropic representation of each nuclear EOS. Along with
the effective adiabatic index Γnuceff , we calculate an effec-
tive polytropic constant κnuceff for each EOS as detailed in
Appendix A.

The polytropic representations of the nuclear EOSs
are presented in Fig. 1. Although not perfect, using
a single polytrope to represent the nuclear EOS is rea-
sonable at higher densities, and the qualitative results
of [21] for polytropes of varying polytropic indices may
be suitably compared to those presented in this work for
nuclear EOSs.

IV. METHODS

We adopt the code detailed in [22] and [28] (here-
after referred to as the Cook code) to solve the cou-
pled Einstein-hydrostationary equilibrium equations in
axisymmetry. This code was also used in [16, 17]. In this
section we describe the numerical grid and tests we per-
formed to validate the code in the case of differentially
rotating stars found by [19–21].

A. Numerical grid and determination of stellar
surface

The stellar models are constructed on a numerical grid
where the computational domain in spherical polar coor-
dinates covers the regions 0 ≤ r ≤ ∞ and 0 ≤ θ ≤ 2π.
Instead of the coordinates (r, θ) in Equation (1), the

code solves the coupled Einstein-hydrostationary equa-
tions in coordinates defined by u = cos θ, and a com-
pactified radial coordinate s that maps spatial infinity
onto the computational domain as

r ≡ re
(

s

1− s

)
. (10)

By construction, the surface of the star on the equator
corresponds to r −→ re and s −→ 1

2 .
Adopting the coordinates (u, s) results in the radial

grid points being concentrated closer to the origin. This
is not very convenient, because it does not allow an ac-
curate determination of the stellar surface, which is nec-

essary to compute β̂ through the surface derivative ap-
pearing in Equation (4). To resolve this problem we
adopt very high radial resolution. We use linear interpo-
lation along r of the pressure (p) to determine the loca-
tion where the pressure drops to 1010dyn/cm2, which is
more than 20 orders of magnitude below the maximum
pressure in the neutron star models. We call that loca-
tion the surface of the star. We have experimented with
higher order interpolation, too, but found that linear in-
terpolation exhibits convergence to within 1% in most
cases, and within 3% at most in some cases, in finding
the surface at the adopted radial resolutions. This is
not the case with higher order interpolation because it is
oscillatory. This procedure determines the surface of the
star as rsurf(u), which we use to compute numerically the

derivative needed for β̂ in Eq. (4), which we re-express
as

β̂ = −
(
re
rp

)2
(

dz2

du2

d$2

du2

)

re

, (11)

where

z2 = [rsurf(u)]2u2 (12)

and

$2 = [rsurf(u)]2(1− u2). (13)

We use a 3-point one-sided stencil for finite differencing
combined with high radial resolution on the solution grid
to determine the numerical derivatives in Equation (11).
We determine the necessary grid resolution by calcu-

lating β̂ for benchmark sequences including spheroidal,
quasi-toroidal, and near mass-shedding models at in-
creasing resolution until the results converge to within
1% accuracy in most cases, but within 3% at most in
some cases. A typical configuration is constructed with
500 grid points covering the equatorial radius for poly-
tropes, 1250 points covering the equatorial radius for nu-
clear EOSs, and 500 grid points covering the angular di-
rection in all cases. All parameters in the quadruplet

(εmax,
rp
re
, Â−1, β̂) besides β̂ are specified as inputs to the

Cook code.
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B. Solution Space of a Γ = 2 Polytrope
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FIG. 2. Mass-shedding parameter β̂ as a function of
rp
re

at
fixed maximum energy density εmax = 0.12 for a Γ = 2 poly-
trope at varying degrees of differential rotation. The solid
black line shows the separatrix at the critical value of differ-
ential rotation Â−1

crit = 0.75904 found in [19], which divides the
solution space into the three regions wherein we are able to
build equilibrium models. The colored lines show the charac-
teristic sequences of equilibrium models for spheroids (Type
A, right of the separatrix), quasi-toroids (Type B, left of the
separatrix), and spheroids/quasi-toroids (Type C, above the
separatrix).

A polytropic EOS is described by

p = κρΓ
0 , (14)

where p is the pressure, ρ0 is the rest mass energy den-
sity, κ is the polytropic constant, and Γ is the adiabatic
index. When treating polytropes, we employ polytropic
units, such that κ = G = c = 1. For a Γ = 2 poly-
trope, [19] and [20] showed that there exist four types of
solutions, as we discussed in Sec. II, and focused on the
maximum rest mass models obtainable for each type of
solution. In [20] it was speculated that [16] was unable to
discover the different types of solutions of differentially
rotating stars due to limitations of the Cook code. Here
we demonstrate that the Cook code can reproduce many
of the Γ = 2 results reported in [20]. We find that how
one searches the parameter space is the greatest limita-
tion in constructing different types of differentially rotat-
ing stars. Given that the code of [20] is spectral, we use
the results reported in that work to gauge the accuracy
of the Cook code.

Unlike the code of [20] which employs surface fitted
grids and also appears to be able to control the param-

eter β̂, the Cook code builds rotating stars by specify-
ing the triplet (εmax,

rp
re
, Â−1). Once a configuration has

been built, β̂ is determined by use of Eq. (11). This

TABLE II. Critical degree of differential rotation Â−1
crit at sev-

eral values of the maximum energy density εmax (and log of
specific enthalpy Hmax ≡ log(hmax)) in polytropic units for
polytropes of four different polytropic indices Γ. Also shown
is the percent error (calculated using (17)) for each value of

Â−1
crit compared with those of Table A1 in [21].

Γ εmax Hmax Â−1
crit δ

(
Â−1

crit

)
1.8 0.023 0.1 1.016 0.294
2.0 0.123 0.2 0.758 0.132
2.5 0.402 0.3 0.480 0.629
3.0 0.667 0.4 0.340 0.295

makes scanning the full parameter space challenging, and
is probably the reason why we were not able to build se-

quences of Type D and lower-β̂ Type B stars.
At a given value of εmax, there exists a critical degree of

differential rotation at which the solution space exhibits
equilibrium solutions of all types (A, B, C, and D). Three
out of the four solution types we were able to construct
with the Cook code for εmax = 0.12 are shown in Figure
2. The solid black curve in the plot is the separatrix in the
solution space which corresponds to the critical degree of
differential rotation, and separates the space into four
regions, each corresponding to a solution type (although
here we have only three regions because we could not
generate Type D sequences). Type A solutions are found
on the lower right part of the plot, e.g., with values of
Â−1 ∈ {0.0, 0.4, 0.7}; Type B solutions are found on the

left side of the plot, e.g., with values of Â−1∈{0.4, 0.7};
the Type C solutions are found along the top part of the
plot, e.g., with values of Â−1 ∈ {0.8, 1.0}.

C. Solution space

It was shown in [19] that for a fixed value of εmax, Â−1

as a function of
rp
re

and β̂ exhibits a saddle point at the

value Â−1 = Â−1
crit, so that the solution to the equations

(
∂Â−1

∂(rp/re)

)

εmax

= 0 =

(
∂Â−1

∂β̂

)

εmax

(15)

defines the value Â−1
crit. Instead of solving these equations

we use a different method to find the critical degree of
differential rotation. For each

rp
re

and at fixed εmax, there

exists a minimum value of Â−1 for which equilibrium so-
lutions exist. We denote this minimum value Â−1

min. The

function Â−1
min(

rp
re

) exhibits a maximum, and the maxi-

mum value is Â−1
crit. We effectively solve Equation (15)

by locating the maximum in the
(
rp
re
, Â−1

min

)
plane. We

find that this extremum is a global maximum, so that it
is possible to accurately locate the value of Â−1

crit with our
method instead of actually solving Eq. (15) as was done
in [20]. The critical value we find for Γ = 2 polytropes
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TABLE III. Listed are the degree of differential rotation Â−1, ratio of polar to equatorial radius
rp
re

, and maximum energy
density εmax for the maximum rest mass models of a Γ = 2 polytrope. Also shown for each model are the ratio of central to
equatorial angular velocity Ωc

Ωe
, the rest mass M0, the ratio of kinetic to potential energy T

|W | , angular momentum J , and ratio

of ADM mass to circumferential radius M
Rc

. For each quantity of interest we also report the percent error [δ()] as defined in

Equation (17).

Type Â−1 rp
re

εmax
Ωc
Ωe

δ

(
Ωc
Ωe

)
M0 δM0

T

|W | δ
(

T

|W |

)
J δJ

M

Rc
δ

(
M

Rc

)
A 0.0 0.585 0.350 1.000 0.000 0.207 0.029 0.083 0.240 0.020 0.843 0.174 0.155

0.1 0.580 0.349 1.027 0.000 0.208 0.037 0.086 0.467 0.021 1.597 0.174 0.040
0.2 0.565 0.347 1.108 0.000 0.211 0.037 0.093 0.432 0.022 0.677 0.174 0.275
0.3 0.541 0.343 1.240 0.000 0.216 0.055 0.104 0.192 0.025 1.215 0.176 0.245
0.4 0.511 0.335 1.422 0.000 0.224 0.011 0.120 0.332 0.028 1.720 0.178 0.231
0.5 0.473 0.323 1.657 0.000 0.236 0.183 0.142 0.070 0.034 0.176 0.181 0.121
0.6 0.427 0.304 1.959 0.000 0.254 0.079 0.171 0.117 0.043 0.327 0.188 0.181
0.7 0.352 0.306 2.518 0.439 0.294 0.396 0.222 0.090 0.062 0.689 0.221 3.107

B 0.4 0.035 0.089 1.774 0.616 0.682 5.409 0.331 1.488 0.381 9.716 0.280 3.704
0.5 0.114 0.084 1.976 1.496 0.586 8.294 0.324 3.284 0.289 15.000 0.259 5.285
0.6 0.144 0.081 2.196 1.215 0.516 9.632 0.313 5.438 0.227 18.051 0.242 9.009
0.7 0.164 0.081 2.458 0.614 0.463 9.216 0.302 6.790 0.184 18.222 0.231 14.925

C 0.8 0.005 0.097 2.997 0.067 0.463 0.041 0.294 0.102 0.176 0.114 0.250 0.160
0.9 0.002 0.100 3.388 0.177 0.434 0.099 0.285 0.140 0.152 0.393 0.246 0.408
1.0 0.005 0.103 3.809 0.105 0.409 0.120 0.277 0.036 0.134 0.149 0.241 0.207
1.5 0.010 0.121 6.431 0.171 0.326 0.031 0.238 0.042 0.079 0.894 0.228 0.220

at εmax = 0.12 is Â−1
crit = 0.7612, which is only ∼ 0.284%

greater than the critical value of Â−1
crit = 0.75904 found

in [20]. To more accurately determine the value of Â−1
crit

we slowly lower the value of Â−1 until we reach a value
that exhibits solutions of all types (except for type D
which we cannot build), which are continuously joined
(the defining feature of the separatrix). This procedure

allows for the determination of Â−1
crit to better than 1%

accuracy. In Table II we show the value of Â−1
crit found

using our method for polytropes across several polytropic
indices and values of the maximum energy density. Val-
ues of Â−1

crit at the same maximum energy densities and
for the same polytropic indices can be found in Table A1
in [21]. All of the values of Â−1

crit presented in Tab. II
agree with those in Table A1 in [21] to within 1%. Note
that we also list the logarithm of the specific enthalpy
Hmax ≡ log(hmax), where

h =
ε+ p

ρ0
, (16)

to offer easier comparison to the results of [21].
In Table III we show properties of the maximum rest

mass models obtained for a Γ = 2 polytrope. For each
quantity also computed in [20], we show the percent error
between our models and the corresponding ones in [20],
computed as

δx ≡ |x− xref |
xref

× 100, (17)

where x represents the values obtained using the Cook
code, and xref represents the values presented in [20].
Given that the code of [20] is spectral, δx is an estimate of

the error in our calculations for the resolution we adopt.
Note that we also show δx for the values of Â−1

crit in Table
II.

The highest fractional differences are seen in the Type
B models, going as high as O(10%) in the rest mass and
angular momentum for the most massive configuration
and less than 10% in other quantities; in all other cases
the errors are sub-percent. We suspect that the relatively
high residuals in some of the Type B models we built are
due to the fact that the solutions presented in [20] are
near the mass-shedding limit (highly pinched and quasi-

toroidal at low β̂), whereas the corresponding models pre-
sented here belong to the part of the Type B sequence

at higher values of β̂. Close inspection of the Type B
sequences in [20] shows that they are not always single-
valued in

rp
re

, so that without the full solution space co-

ordinates (i.e, the full quadruplet (εmax,
rp
re
, Â−1, β̂)) two

distinct models may be misidentified as the same equi-
librium solution. Because only the triplet (εmax,

rp
re
, Â−1)

is presented in [20] for these maximum mass models, we
cannot be sure that we are comparing the same two mod-
els. However, the confidence in our solutions is supported
by the fact that the majority of other cases show sub-
percent residuals in all of the model properties.

The highest mass models built in [20] and [21] were of

Type B with the lowest value of Â−1 among those con-
sidered. We note that the maximum rest mass Type D
models presented in [20] and [21] neither exceed the max-
imum rest mass Type B models nor Type C models in the
rest mass in all cases where they could be built. We an-
ticipate that this result holds true for realistic EOSs, too.
Although we were unable to construct a suitable sequence
of Type D models with the Cook code, Type D models
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APR Â−1 = 1.0
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FIG. 3. Solution space for the FPS, HFO, NL3 and APR EOSs. These plots correspond to fixed energy densities, the values
of which, along with Â−1

crit, are displayed in Table IV for each EOS.

are likely unphysical as pointed out in [21]. Despite the
limitations of non-spectral codes, here we showed that
the Cook code can generate Type A, B, and C models,
and closely match the maximum-mass configurations for
a Γ = 2 polytrope obtained with a spectral code. This
result gives us confidence that the maximum-mass mod-
els we report for realistic EOSs in the next section are
the true maximum-mass type A and C modes, and very
close to the true maximum-mass Type B models.

V. RESULTS WITH REALISTIC EQUATIONS
OF STATE

In this section we discuss the solution space of differen-
tially rotating, relativistic stars with realistic equations
of state and the maximum rest mass they can support.

The solution space depends on the value of εmax. To
reveal as large a fraction of the space of solutions as pos-

TABLE IV. Maximum energy density εmax and corresponding
critical degree of differential rotation Â−1

crit used in generating
the solution spaces shown in Fig. 3 for realistic EOSs.

EOS
εmax

1015g/cm3
Â−1

crit

FPS 0.77 0.7161
HFO 0.6 0.753
NL3 0.35 0.717
APR 0.7 0.7376

sible, for each EOS we obtain the critical degree of dif-
ferential rotation Â−1

crit for different values of εmax. Then

we choose the values of εmax for which 0.7 ≤ Â−1
crit ≤ 0.8.

With this choice of εmax, three out of four types of se-
quences we are able to construct are present for each
of the EOSs considered. Moreover, models with Â−1 ∈
[0.0, 0.4, 0.7] belong to sequences of Type A and B, and

models with Â−1 ∈ [0.8, 1.0] belong to sequences of Type
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FIG. 4. Examples of meridional energy density contours for the HFO EOS. Top left: the maximum rest mass uniformly rotating
(Â−1 = 0.0). Top right: The maximum rest mass Type A model. Bottom left: the maximum rest mass Type B model. Bottom
right: the maximum rest mass Type C model.

C. As in the Γ = 2 polytrope in the previous section, to
scan the parameter space we fix the value of εmax, modify
the parameters (Â−1,

rp
re

) to construct stellar models and

compute β̂. Our results for the solution space of realistic
EOSs with differential rotation at fixed εmax are shown
in Figure 3. The values of εmax and Â−1

crit for each EOS
that correspond to Fig. 3 are given in Table IV. Fig. 3
demonstrates that the existence of different types of dif-
ferentially rotating stars are not a property of polytropic
EOSs only. The different types exist for realistic EOSs,
too.

In Figure 4, we show meridional contours of the en-
ergy density ε normalized to εmax for different types of
differentially rotating stars constructed with the HFO
EOS. The top left and right panels of Fig. 4 depict the
maximum rest mass Type A models for Â−1 = 0.0 (uni-

form rotation) and Â−1 = 0.4 (largest rest mass Type A
model), respectively. The bottom left and bottom right
panels depict the largest rest mass Type B and Type C
models, respectively.

Although we were not able to build complete sequences
of Type D equilibria, we were able to construct indi-
vidual candidate configurations near the mass-shedding
limit, and for values of Â−1 > Â−1

crit, all of which are
properties of Type D models. For example, one candi-
date Type D configuration for the HFO EOS corresponds
to εmax = 6 × 1014g/cm3,

rp
re

= 0.375, Â−1 = 0.757,

and β̂ = 0.064. This candidate Type D model has
M0

MTOV
0,max

= 0.574 and
M0

Msup
0,max

= 0.464, meaning that they

are less massive than the maximum rest mass TOV model
of HFO. We were able to construct this model by find-
ing a model close to mass-shedding along the separatrix
for the panel corresponding to HFO in Fig. 3 (i.e, us-

ing the values of εmax and Â−1 from Table VI for HFO).
Once the closest model to mass-shedding for the sepa-
ratrix was built, we decreased the value of

rp
re

while in-

creasing the value of Â−1 and searched for models near
mass-shedding.



10

A. Maximum rest mass

We search for the maximum rest mass models for
Â−1 ∈ [0.0, 1.0] in increments of 0.1, as well as for Â−1 =
1.5. We also build the benchmark TOV limit model
(MTOV

0,max), and the supramassive limit model (Msup
0,max)

against which we compare the increase in rest mass when
considering differential rotation. For these same models,
we also consider the increase in the gravitational mass
compared to the gravitational mass of the TOV limit
(MTOV

ADM,max) and the supramassive limit (Msup
ADM,max). As

a reminder, the values for MTOV
0,max, Msup

0,max, MTOV
ADM,max,

and Msup
ADM,max for each EOS in our sample are shown in

Tab. I. To find the maximum rest mass Type A and C
models presented here we built sequences of constant Â−1

and εmax while varying
rp
re

from 1.0 to 0.01 and found the
model with the largest rest mass. To find the maximum
rest mass Type B models presented here we first built
models at Â−1 = 1.5 and

rp
re

= 0.01 (Type C models),

then decreased Â−1 to the target value, and finally in-
creased

rp
re

to as high as possible. For each model type we

then change the value of εmax while holding Â−1 fixed,
and repeat the aforementioned scans, resulting in a set
of maximum rest mass models for each value of εmax at
a given value of Â−1. The model with the largest rest
mass among these is taken to be the maximum rest mass
model for a given value of Â−1 and of a given type (A,
B or C). We note that since we are not able to build

complete Â−1-constant sequences for Type B stars, the
values we report for the Type B stars correspond to the
maximum rest mass configurations found in our search.

Properties of the maximum rest mass models are
shown in Tabs. V-VIII. We also list whether a given max-
imum rest mass model is supramassive, hypermassive,
or ubermassive. We remind the reader that supramas-
sive stars are uniformly rotating stars which can support
more mass than the TOV limit. Hypermassive stars are
those with masses that exceed the maximum mass that
can be supported by supramassive stars (the supramas-
sive limit). As such, hypermassive stars can only exist
in cases with differential rotation. Ubermassive stars are
those with masses exceeding twice the TOV limit. We
find that for the four EOSs considered here, the maxi-
mum rest mass model is the configuration with Â−1 = 0.4
(the lowest value of Â−1 for which Type B models exist
that we considered) and is always an ubermassive Type B
model. For polytropes, [20] showed that Type B models

at the lowest possible value of Â−1 are the most mas-
sive ones, too. As shown in Tabs. V-VIII, depending on
the EOS ubermassive configurations arise not only for
Type B, but also for Type C stars. Our search results
suggest that UMNSs are, in general, more common for
softer EOSs, which is consistent with our finding that
softer EOSs lead to larger increases in the rest mass.

We now compare our results for the APR and FPS
EOSs with those of [17]. In [17] models of differentially
rotating stars were constructed that exceeded the TOV

limit rest mass by at most 31% for APR and 46% for
FPS. Given that the maximum rest mass models for APR
and FPS reported in [17] correspond to Â−1 = 0.3, and

Â−1 = 0.5, respectively, it suggests that these models
were of Type A. However, maximum rest mass Type B
models (quasi-toroidal models at low degree of differen-
tial rotation) are in all cases more massive than maximum
rest mass Type A and C models. When considering Type
B models, we find that the maximum rest mass can in-
crease by as much as approximately 100% and 150% in
the cases of APR and FPS, respectively. The largest in-
crease in rest mass for NL3 and HFO is approximately
120% and 130%, respectively. These maximum rest mass
configurations are all UMNSs. We emphasize the fact
that generally Type B models tend to be the most mas-
sive, and that they show the largest increase in rest mass
when compared to the TOV limit, as depicted in Fig-
ure 5.

We find that among Type A models, those with larger
values of Â−1 tend to have larger rest mass. However, the
relationship between Â−1 and M0 for Type A models is
not monotonic. There appears to be a value of Â−1 above
which the maximum rest mass begins to decrease as seen
from the curves in the lower left corner of Fig. 5. This
feature of the solution space was also observed in [21] for a
Γ = 2.5 polytrope, suggesting that it may arise for stiffer
EOSs. We note that this feature is observed for all EOSs
we study here, which have effective polytropic exponents
of Γnuceff & 2.5. For Type A the largest rest mass models

were found for values of Â−1 of 0.35 for both APR and
NL3, 0.4 for HFO, and 0.45 for FPS, suggesting that the
value of Â−1 at which the maximum rest mass begins
to decrease is smaller for stiffer EOSs (note that we also
built maximum rest mass Type A models in increments
of Â−1 = 0.05 for finer resolution in Fig. 5).

For Type B and C models, we observe the same mono-
tonic behavior between the increase in rest mass relative
to the TOV limit and Â−1 as seen for stiffer EOSs in
[21], i.e., the maximum rest mass increases with decreas-

ing Â−1. We also find the same general ordering of EOS
by stiffness whereby softer EOSs (FPS and HFO) tend
to exhibit larger increases of the rest mass compared to
the TOV limit (see Fig. 5).

It is noteworthy that the largest increase in rest mass
is seen in the FPS EOS, the softest EOS in our set. In
[21] the maximal increase in rest mass was observed for
a moderately stiff EOS which was neither the softest nor
the stiffest considered. There it was argued that, gen-
erally, the increase in rest mass compared to the TOV
limit due to differential rotation decreases with increas-
ing stiffness. We observe the same trend with realistic
EOSs for Type B and C models, which indicates that the
largest increase in rest mass due to differential rotation
is possible for quasi-toroidal configurations described by
softer EOSs. For the polytropes considered in [21], it
was found that stiffer EOSs show larger increases in the
rest mass for Type A models of low Â−1 (0.0 to 0.4) We
find a similar general trend for the Type A models at low
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TABLE V. Maximum rest mass models for the FPS EOS. Shown are the values of the degree of differential rotation Â−1, the

maximum energy density εmax in units of 1015 g

cm3
, the ratio of polar to equatorial radius

rp
re

, the mass-shedding parameter β̂,

the circumferential radius Rc in units of km, the ratio of kinetic to gravitational potential energy T
|W | , the ratio of central to

equatorial angular velocity Ωc
Ωe

, the dimensionless spin J
M2 , the compactness C = MADM

Rc
, the rest mass M0, the ratio of rest

mass to the TOV limit rest mass MTOV
0,max, the ratio of rest mass to the supramassive limit rest mass Msup

0,max, and the ADM

mass MADM along with the ratio of ADM mass to TOV limit ADM mass MTOV
ADM,max and the supramassive limit ADM mass

Msup
ADM,max. Also shown is the classification of each star as supramassive (SUP), hypermassive (HYP) or ubermassive (UBE).

Type Â−1 εmax
rp
re

β̂ Rc
T
|W |

Ωc
Ωe

J
M2 C M0

M�
M0

MTOV
0,max

M0

M
sup
0,max

MADM
M�

MADM

MTOV
ADM,max

MADM

M
sup
ADM,max

CLASS

A 0.0 2.92 0.568 0.060 12.44 0.117 1.000 0.658 0.170 2.452 1.167 1.000 2.120 1.178 1.000 SUP
0.1 2.92 0.557 0.097 12.50 0.123 1.049 0.674 0.171 2.478 1.179 1.010 2.143 1.190 1.011 HYP
0.2 2.90 0.526 0.202 12.69 0.141 1.194 0.719 0.174 2.557 1.217 1.043 2.213 1.230 1.044 HYP
0.3 2.87 0.470 0.305 13.05 0.173 1.442 0.786 0.180 2.713 1.291 1.106 2.350 1.305 1.108 HYP
0.4 2.47 0.387 0.480 13.73 0.226 1.839 0.874 0.193 3.059 1.455 1.247 2.648 1.471 1.249 HYP
0.5 1.34 0.361 0.547 16.43 0.241 1.888 0.923 0.159 2.983 1.419 1.217 2.619 1.455 1.236 HYP

B 0.4 0.94 0.010 1.000 20.65 0.327 1.988 1.026 0.217 5.238 2.492 2.136 4.490 2.494 2.118 UBE
0.5 0.98 0.010 1.000 19.10 0.317 2.335 1.009 0.212 4.699 2.235 1.916 4.054 2.252 1.912 UBE

C 0.6 1.01 0.010 1.000 18.010 0.306 2.705 0.991 0.207 4.297 2.044 1.752 3.728 2.071 1.758 UBE
0.7 1.05 0.010 1.000 17.040 0.295 3.132 0.970 0.203 3.983 1.895 1.624 3.467 1.926 1.636 HYP
0.8 1.09 0.010 1.000 16.230 0.284 3.598 0.949 0.201 3.732 1.775 1.522 3.257 1.809 1.536 HYP
0.9 1.14 0.010 1.000 15.490 0.273 4.127 0.926 0.199 3.526 1.678 1.438 3.083 1.712 1.454 HYP
1.0 1.19 0.010 1.000 14.870 0.262 4.699 0.902 0.198 3.356 1.597 1.369 2.937 1.632 1.386 HYP
1.5 1.47 0.010 0.990 12.720 0.210 8.329 0.788 0.195 2.828 1.345 1.153 2.478 1.377 1.169 HYP

TABLE VI. The columns list the same quantities as in Tab. V but for the HFO EOS.

Type Â−1 εmax
rp
re

β̂ Rc
T
|W |

Ωc
Ωe

J
M2 C M0

M�
M0

MTOV
0,max

M0

M
sup
0,max

MADM
M�

MADM

MTOV
ADM,max

MADM

M
sup
ADM,max

CLASS

A 0.0 2.32 0.564 0.078 13.710 0.125 1.000 0.677 0.178 2.829 1.174 1.000 2.440 1.187 1.000 SUP
0.1 2.32 0.550 0.089 13.810 0.132 1.054 0.695 0.179 2.863 1.188 1.012 2.470 1.202 1.012 HYP
0.2 2.30 0.515 0.207 14.040 0.153 1.214 0.746 0.183 2.972 1.234 1.051 2.567 1.249 1.052 HYP
0.3 2.24 0.450 0.334 14.470 0.192 1.496 0.820 0.191 3.199 1.328 1.131 2.767 1.346 1.134 HYP
0.4 1.54 0.376 0.565 15.690 0.245 1.869 0.900 0.200 3.624 1.504 1.281 3.134 1.525 1.284 HYP
0.5 0.99 0.360 0.544 18.320 0.242 1.841 0.935 0.154 3.177 1.319 1.123 2.817 1.370 1.154 HYP

B 0.4 0.80 0.011 0.999 21.960 0.327 2.025 1.020 0.221 5.642 2.342 1.994 4.854 2.362 1.989 UBE
0.5 0.83 0.010 1.000 20.380 0.316 2.378 1.002 0.215 5.070 2.105 1.792 4.391 2.136 1.800 UBE

C 0.6 0.86 0.010 1.000 19.150 0.305 2.772 0.983 0.211 4.644 1.928 1.642 4.041 1.966 1.656 HYP
0.7 0.90 0.010 1.000 18.060 0.293 3.231 0.960 0.208 4.312 1.790 1.524 3.763 1.831 1.542 HYP
0.8 0.94 0.010 1.000 17.160 0.282 3.734 0.937 0.206 4.048 1.680 1.431 3.539 1.722 1.450 HYP
0.9 0.99 0.010 1.000 16.330 0.270 4.314 0.911 0.205 3.833 1.591 1.355 3.355 1.632 1.375 HYP
1.0 1.03 0.010 1.000 15.710 0.258 4.913 0.887 0.204 3.657 1.518 1.293 3.204 1.559 1.313 HYP
1.5 1.29 0.010 1.000 13.440 0.203 8.863 0.769 0.203 3.120 1.295 1.103 2.732 1.329 1.120 HYP

TABLE VII. The columns list the same quantities as in Tab. V but for the NL3 EOS.

Type Â−1 εmax
rp
re

β̂ Rc
T
|W |

Ωc
Ωe

J
M2 C M0

M�
M0

MTOV
0,max

M0

M
sup
0,max

MADM
M�

MADM

MTOV
ADM,max

MADM

M
sup
ADM,max

CLASS

A 0.0 1.36 0.559 0.064 17.490 0.136 1.000 0.704 0.189 3.881 1.185 1.000 3.301 1.202 1.000 SUP
0.1 1.36 0.540 0.080 17.690 0.145 1.062 0.726 0.190 3.940 1.203 1.015 3.353 1.221 1.016 HYP
0.2 1.34 0.498 0.226 18.020 0.172 1.248 0.784 0.196 4.134 1.263 1.065 3.524 1.283 1.067 HYP
0.3 1.24 0.411 0.395 18.780 0.225 1.603 0.872 0.209 4.598 1.405 1.185 3.925 1.429 1.189 HYP
0.4 0.72 0.365 0.502 21.920 0.248 1.736 0.921 0.182 4.609 1.408 1.188 3.984 1.450 1.207 HYP
0.5 0.54 0.359 0.521 23.820 0.242 1.754 0.957 0.141 3.777 1.154 0.973 3.367 1.226 1.020 HYP

B 0.4 0.50 0.010 1.000 27.180 0.326 2.050 1.016 0.224 7.114 2.173 1.833 6.082 2.214 1.842 UBE
0.5 0.52 0.010 1.000 25.180 0.315 2.419 0.996 0.219 6.403 1.956 1.650 5.508 2.005 1.668 HYP

C 0.6 0.54 0.010 1.000 23.630 0.303 2.833 0.975 0.215 5.875 1.795 1.514 5.075 1.847 1.537 HYP
0.7 0.57 0.010 1.000 22.140 0.290 3.342 0.948 0.214 5.468 1.670 1.409 4.731 1.722 1.433 HYP
0.8 0.60 0.010 1.000 20.960 0.278 3.901 0.922 0.213 5.147 1.572 1.326 4.458 1.623 1.350 HYP
0.9 0.63 0.010 1.000 19.980 0.265 4.515 0.895 0.212 4.889 1.493 1.260 4.237 1.542 1.283 HYP
1.0 0.66 0.010 1.000 19.170 0.252 5.184 0.869 0.212 4.679 1.429 1.206 4.056 1.477 1.229 HYP
1.5 0.83 0.010 1.000 16.500 0.193 9.511 0.746 0.213 4.059 1.240 1.046 3.509 1.277 1.063 HYP
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TABLE VIII. The columns list the same quantities as in Tab. V but for the APR EOS.

Type Â−1 εmax
rp
re

β̂ Rc
T
|W |

Ωc
Ωe

J
M2 C M0

M�
M0

MTOV
0,max

M0

M
sup
0,max

MADM
M�

MADM

MTOV
ADM,max

MADM

M
sup
ADM,max

CLASS

A 0.0 2.42 0.564 0.059 12.900 0.137 1.000 0.709 0.201 3.091 1.163 1.000 2.599 1.187 1.000 SUP
0.1 2.43 0.546 0.121 12.980 0.148 1.074 0.735 0.204 3.141 1.182 1.016 2.644 1.208 1.017 HYP
0.2 2.41 0.490 0.248 13.270 0.181 1.298 0.801 0.210 3.306 1.244 1.070 2.793 1.276 1.075 HYP
0.3 2.00 0.414 0.508 13.700 0.236 1.703 0.880 0.226 3.649 1.373 1.181 3.095 1.414 1.191 HYP
0.4 1.27 0.368 0.510 16.360 0.247 1.769 0.912 0.186 3.547 1.335 1.148 3.047 1.392 1.172 HYP
0.5 0.99 0.377 0.521 17.520 0.231 1.772 0.925 0.144 2.852 1.073 0.923 2.525 1.154 0.972 HYP

B 0.4 0.86 0.011 1.000 20.900 0.327 2.025 1.020 0.221 5.410 2.036 1.751 4.621 2.111 1.778 UBE
0.5 0.91 0.010 1.000 19.090 0.315 2.432 0.996 0.219 4.875 1.835 1.578 4.182 1.910 1.609 HYP

C 0.6 0.95 0.010 1.000 17.830 0.304 2.869 0.973 0.216 4.476 1.685 1.448 3.853 1.760 1.483 HYP
0.7 0.99 0.010 1.000 16.830 0.291 3.353 0.949 0.214 4.168 1.569 1.349 3.597 1.643 1.384 HYP
0.8 1.04 0.010 1.000 15.920 0.279 3.918 0.922 0.213 3.926 1.477 1.270 3.391 1.549 1.305 HYP
0.9 1.10 0.010 1.000 15.110 0.265 4.572 0.894 0.213 3.732 1.405 1.208 3.223 1.472 1.240 HYP
1.0 1.16 0.010 1.000 14.440 0.252 5.285 0.866 0.214 3.576 1.346 1.157 3.087 1.410 1.188 HYP
1.5 1.48 0.010 1.000 12.340 0.190 9.915 0.739 0.217 3.124 1.176 1.011 2.683 1.226 1.032 HYP
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FIG. 5. Ratio of rest mass M0 to maximum TOV rest mass
MTOV

0,max as a function of degree of differential rotation Â−1 for
each solution type and EOS. The solid lines show the relative
increase for Type A models, the dash-dotted lines show the
relative increase for Type B models, and the dashed lines show
the relative increase for Type C models. The red, blue, green,
and black lines correspond to the FPS, HFO, NL3, and APR
EOSs, respectively.

Â−1 (0.0 to 0.3) presented here. However, an “anomaly”
in this trend is seen in the case of the APR EOS. For
instance, the low Â−1 (0.0 to 0.3) maximum rest mass
models for the FPS EOS (the softest considered here)
show a very similar increase in the rest mass as those of
APR (the stiffest EOS considered here), as can be seen

from the low Â−1 part of the leftmost curves of Figure 5

and the corresponding
M0

MTOV
0,max

entries of Tables V and

VIII for Type A models of low Â−1. A possible expla-
nation for the break in the trend is that [21] consider a
large range of adiabatic indices 1.8 ≤ Γ ≤ 3.0, whereas
the effective adiabatic indices of the EOSs in our sample
cover a smaller range. On the other hand, assigning one
number to stiffness in the case of realistic EOSs may not
be entirely appropriate as the stiffness defined through
stellar models may depend on the choice of mass. For
example, the TOV mass-radius curves of the HFO and
APR EOSs intersect near their corresponding TOV lim-
its (see Appendix C). In this work we defined stiffness
based on the maximum rest mass TOV configurations
and on TOV configurations with gravitational mass of
1.4M�. It is also the case that Type A configurations

of low Â−1 mostly sample the value of εmax from higher
density regions of the EOSs which may be of comparable
stiffness. This is supported by the fact that in all cases
considered here, the values of εmax for the Type A models
of low Â−1 are larger than for the Type B and C models.
The anomaly we mentioned above would not be observed
for EOSs of constant stiffness as defined by the effective
polytropic exponent, as in the case of the polytropes of
fixed polytropic index studied in [21]. A systematic study
of the effect may employ realistic EOSs as done here or
a piecewise polytropic EOS such as those presented in
[29–31], where the polytropic index has a dependence on
the energy density. However, such a study goes beyond
the scope of the current work.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have presented results for the solution
space of general relativistic differentially rotating neu-
tron stars with realistic EOSs. We found that the differ-
ent types of differentially rotating equilibrium solutions
that were previously discovered for polytropes [20, 21]
with the KEH rotation law [18], exist for realistic neu-
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tron star equations of state, too. Moreover, we demon-
strated that codes based on the KEH scheme [18], such
as the Cook code [22, 28], can build these different types
of stars, although we were not able to construct Type D
sequences of constant degree of differential rotation and
constant maximum energy density or complete Type B
sequences. The Cook code is capable of building most of
the extremely massive quasi-toroidal, relativistic config-
urations using realistic EOSs, but finds it challenging to
converge on solutions which are both highly pinched and
quasi-toroidal. Note that Type D stars are not likely to
be physical [20, 21].

We presented the maximum rest mass configurations
found in our search of the solution space for three of
the four types of solutions we were able to construct.
As in [20, 21] we find configurations that can support
a mass more than 2 times the TOV limit. We called
these configurations “ubermassive”. For the equations
of state considered here we find that ubermassive stars
can support up to 150% more rest mass than the TOV
limit mass with the same equation of state. This number
is a lower limit to the maximum rest mass that can be
supported by differential rotation. We have classified the
maximum mass configurations we found as supramassive,
hypermassive or ubermassive, and found that depending
on the equation of state ubermassive stars can be Type
B or Type C.

Differentially rotating hypermassive neutron stars can
form following binary neutron star mergers. Clearly, fol-
lowing such a merger, the remnant configuration cannot
have mass more than 2 times the TOV limit mass. Thus,
the ubermassive configurations we found may never ap-
pear in Nature, and if they do they would have to form
through some more exotic channel. Moreover, it is well
known that in binary neutron star mergers there exists a
threshold value for the binary total mass above which a
black hole forms promptly after merger [32–37]. This
value for the threshold mass (Mthres) depends on the
equation of state, and for quasicircular, irrotational bina-
ries it may be up to ∼ 70% greater than the TOV limit
mass [32]. It may also be that for irrotational binaries
Mthres ∈ [2.75− 3.25]M� [38]. Therefore, it may be diffi-
cult to form even extreme hypermassive neutron stars in
binary neutron star mergers. An exception may be dy-
namical capture mergers such as those studied recently
in [39–46], where the total angular momentum at merger
can be higher than those in quasicircular binaries, which
can provide additional centrifugal support.

Regardless of the precise value of Mthres the question
about what type of differentially rotating star can form
following a neutron star merger remains open. This is in-
teresting because less dramatic, but significant increases
to the maximum supportable mass can arise for degrees
of differential rotation different than those corresponding
to the more extreme cases. Such configurations may be
relevant for binary neutron star mergers, and may have
implications for the stability and lifetime of their hyper-
massive neutron star remnants.

Another important question is how well the KEH ro-
tation law describes the differential rotation profile of a
hypermassive neutron star formed in a binary neutron
star merger and whether the different types of stellar
solutions are unique to the KEH law. The rotational
properties of hypermassive neutron stars formed in qua-
sicircular binary neutron star mergers have been studied
recently in a number of works [47–51] and they appear
to deviate from that of the KEH rotation law. Neverthe-
less, the rotation profiles reported in [41, 42] for eccentric
neutron star mergers are different and seem to be within
the realm of the KEH rotation law. Interestingly, the
remnants found in [41, 42] were also quasi-toroidal. In
a recent work a new differential rotation law was intro-
duced [52] which captures the rotational profile of some
binary neutron star merger remnants. An interesting fol-
low up to our work is to adopt this new rotation law and
investigate the maximum possible mass that can be sup-
ported for different realistic EOSs and whether different
types (or even more types) of differentially rotating stars
arise.

Finally, the issue of dynamical stability of the different
types of differentially rotating stars is important to
address. Moreover, are ubermassive stars dynamically
stable? Many of the equilibrium configurations we built
have T/|W | > 0.25, and hence are unstable to a dynami-
cal bar mode instability (see [7] and references therein).
Some of the configurations we built have dimensionless
spin parameter J/M2 > 1, which does not necessarily
imply collapse on a secular timescale, as the star can
be unstable to non-axisymmetric modes and collapse
through fragmentation (see [53, 54] and [7] for a review).
Non-axisymmetric instabilities in differentially rotating
stars arise even for low values of T/|W | [55–63] and in
binary neutron star merger remnants [41–43, 64, 65].
If a certain type of solution is dynamically unstable
to collapse, then it cannot arise in Nature, despite the
fact that the equilibrium configuration can support
an amount of mass much larger than the TOV limit.
Unlike the case of uniformly rotating stars the turning
point theorem [66–68] does not apply to differentially
rotating stars (although it seems to apply approximately
for type A configurations [69, 70]), therefore dynamical
simulations in full general relativity offer a straightfor-
ward avenue to study the dynamical stability of these
configurations. The solutions we have constructed can
serve as initial data for such dynamical simulations. We
will address all of these open questions in future studies.
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Appendix A: Calculation of polytropic
representation of realistic Equations of State

When building polytropic stellar configurations in ge-
ometrized units, the polytropic constant κ defines a fun-
damental length scale (κn/2) which scales out of the prob-
lem. To calculate κnuceff we first build the maximum rest
mass TOV models for polytropes with Γnuceff as defined in

Equation (9). Next, we calculate the polytropic constant
in geometrized units κnuceff,geo by matching the maximum
TOV ADM masses of the nuclear and polytropic EOSs,

κnuceff,geo =

(
MTOV,nuc

ADM,max

MTOV,poly
ADM,max

) 2

nnuceff
. (A1)

The quantity in the parentheses of Equation (A1) is
then converted to a unit of length (specifically, we work
in cgs units). We then replace the appropriate factors of
G and c needed to express our physical quantities in cgs
units,

κnuceff =
G

1
n

c
2
n−2

κnuceff,geo. (A2)

Finally, we write the polytropic representation of the
nuclear EOSs we considered as

P = κnuceffρ
Γnuc
eff

0 (A3)

and

ε = ρ0c
2 +

P

(Γnuceff − 1)
, (A4)

where Γnuceff is the effective adiabatic index as calculated
in Section III.

Appendix B: Cε as a measure of EOS stiffness

Here we discuss how Cε as defined through Equations
(7) and (8) varies with rest mass and how that may
change the ranking of EOS stiffness. In Figure 6, we
present the ratio of average energy density to maximum
energy density (Cε) plotted against the rest mass for the
TOV sequence of each EOS we treat in this paper. As
can be seen from Figure 6, the value of Cε changes as a
function of the rest mass M0, so that depending on the
choice of M0 the EOS ranking by stiffness based solely

1.0 1.5 2.0 2.5 3.0 3.5

M0 (M�)

0.30
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0.40
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C
ε

APR
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FPS

FIG. 6. Ratio of average energy density to maximum energy
density Cε as a function of rest mass along the TOV sequence
for each EOS in our study.

on Cε may change. However, since the stiffness compar-
ison is at fixed rest mass, the EOS ranking by stiffness
remains unchanged (and is the one we list in Table I), if
we cap the range of masses at the maximum mass of the
FPS EOS.

Nevertheless, Cε should not be adopted as the defini-
tive measure of EOS stiffness for realistic EOSs. This is
why we also considered Γnuceff as calculated in Section III.
By both measures of the stiffness, the ranking of EOS by
stiffness is consistent with the one presented in Table I.

Appendix C: Mass-radius curves for realistic
equations of state

Here we present the mass-radius relation of the nuclear
equations of state used in this work. As can be seen from
Figure 7, all EOSs but the FPS EOS respect the upper
bound set on NS masses from observations of the most
massive pulsar to date, PSR J1614-2230 [72, 74]. Despite
the FPS EOS having a maximum mass which falls below
this upper bound we include it in this study to offer a
comparison to the results of [17]. It is also useful to
consider the FPS EOS as an example of a relatively soft
nuclear EOS. We find that the maximum increase in rest
mass when compared to the TOV mass for the FPS EOS
is the highest (150%) in the set of EOS we considered (see
Fig. 5), which is consistent with our finding that softer
EOSs result in larger increases of the rest mass relative
to the TOV mass.

All EOSs but the NL3 EOS respect the 90% confidence
upper bound on NS radii set by the tidal deformability
of NSs as inferred from GW170817 [12, 73, 75]. The
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FIG. 7. Mass-radius relation for the realistic EOSs used in
this work. The red, blue, green, and black lines corresponds
to the FPS, HFO, NL3, and APR EOSs, respectively. The
solid horizontal line and red horizontal band correspond to the
upper bound on the NS mass from observations of PSR J1614-
2230 [72]. The vertical solid line corresponds to upper limit on
the NS radius from considerations of the tidal deformability
as inferred from GW170817[73].

NL3 EOS may also have too high a maximum mass [8–
10, 76]. Despite the fact that using the NL3 EOS results
in stars with masses and radii above these bounds we
include it in this study to investigate the solution space
of differentially rotating stars and maximum rest mass
solutions for an EOS with a relatively large TOV mass.
It is also useful to consider the NL3 EOS to investigate
the solution space of differentially rotating stars for a
relatively stiff EOS. We find that the maximum increase
in rest mass when compared to the TOV mass for the
NL3 EOS is among the lowest (120%) in the set of EOSs
we considered, which is consistent with our finding that
stiffer EOSs result in smaller increases of the rest mass
relative to the TOV mass.
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