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Abstract: We study the real time dynamics of Nf flavors of fermions coupled to a U(1)

gauge field in 2 + 1 dimensions to leading order in a 1/Nf expansion. For large enough Nf ,

this is an interacting conformal field theory and describes the low energy properties of the

Dirac spin liquid. We focus on thermalization and the onset of many-body quantum chaos

which can be diagnosed from the growth of initally anti-commuting fermion field operators.

We compute such anti-commutators in this gauge theory to leading order in 1/Nf . We find

that the anti-commutator grows exponentially in time and compute the quantum Lyapunov

exponent. We briefly comment on chaos, locality, and gauge invariance.
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1 Introduction

Remarkably, closed quantum systems exhibiting chaotic dynamics can act as their own heat

bath, leading to an effective thermal state at late time [1][2][3][4][5]. One of the great chal-

lenges in condensed matter physics is to understand this process of thermalization in closed

many-body systems in the vicinity of interacting quantum critical points. These systems have

fast dynamics and relax on a timescale set by the temperature, τϕ ∼ ~
kBT

. At early times, the

timescales of thermalization can be probed via the time dependence of simple local correlation

functions. At intermediate times, a process called “scrambling” spreads information about

the initial state or perturbation throughout the entire system [6][7][8][9]. Scrambling after

local relaxation has occurred is not easily accessible in local correlation functions, as it must

be described by objects that probe degrees of freedom of the entire system.

In quantum systems with many degrees of freedom, the rate of scrambling can be char-

acterized by a quantum Lyapunov exponent which controls the onset of quantum chaos

[10][6][11]. In classical systems, one aspect of chaos is the divergence of initially nearby

phase space trajectories. This gives a schematic definition for a classical Lyapunov exponent

λL as

|δx(t)| = eλLt|δx(0)|. (1.1)

An analogous notion in quantum systems is obtained from the behavior of an out-of-time-order

correlation function (OTOC) [10][6][11]. This object has an elegant description in AdS/CFT

as the correlation between two entangled black holes connected by a wormhole [6][12]. In

fermionic systems, this object is contained in the regulated squared anti-commutator of two

fermionic operators. We denote this object as F(t,x) which is defined as follows

F(t,x) = 〈{W (t,x), V (0)}{W (t), V (0)}†〉β (1.2)

where V and W are two fermionic operators separated in space-time.

The squared anti-commutator can be understood as characterizing the effect that one

local measurements has on another. For spatially local systems, causality implies that initially

separated V and W must have zero anti-commutator (since we are dealing with fermions).

However, the squared anti-commutator grows exponentially with time in systems with many

local degrees of freedom, and it saturates to its late time value after the “scrambling” time

t∗. During this process, the anti-commutator behaves like

F(t,x) ∼ εeλL
(
t− |x|

vB

)
(1.3)

where λL is identified as a Lyapunov exponent in analogy with classical chaos, and vB is called
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Figure 1: 1a represents the time ordered correlation function on the two fold contour and
1b represents the OTOC. The red represent Aµ and blue represents Aν . These are two of the
terms in the squared commutator for the photon field. There are two more times, one which
is time ordered and one which is out of time order.

the butterfly velocity which acts as an effective speed limit. We emphasize that this is expected

to hold when there are a large number of local degrees of freedom. More generally, it has

been argued recently that the exponential form above is modified by quantum fluctuations in

a non-trivial way. Here we focus for simplicity on the spatially averaged object,
∫
d2xF(x, t),

which diagnoses scrambling within the local Hilbert space.

Quantum Lyapunov exponents have by now received intense scrutiny. They can be

measured experimentally [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23], are related to

operator growth [24] [25] [26] [27] [28] [29] [30] [31], and can be computed either numerically

or analytically in many model systems [11] [24] [25] [26] [32] [33] [34] [35] [36] [37] [38] [39]

[40] [41] [42][43] [44] [45] [46] [47] [48] [49] [50] [51].

In particular, chaos exponents have been computed for several interesting field theories

including scalar matrix theory, the O(N) model, the critical fermi surface, the diffusive metal,

and graphene [52]. In this paper, we study many-body chaos in QED3 with Nf flavors of

massless fermions in the large Nf limit. This theory is described by the Lagrangian

L = − 1

4e2Nf
F 2 +

NF∑
a=1

iψ̄a(x)γµDµψa(x) (1.4)

where we define the covariant derivative Dµ = ∂µ− iAµ√
NF

and the Lorentzian Dirac matrices are

given by γµ = (σz, iσx, iσy) and we work in the +−− signature. QED3 appears throughout

condensed matter as the proposed low energy theory for several lattice systems such as the the
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Kagome antiferromagnet for Nf = 2. It also relevant for a variety of quantum critical points

[53] [54]. While these lattice models also contain monopole operators which can drastically

modify the long-wavelength physics, for large enough Nf these become irrelevant and the

theory flows to a strongly coupled renormalization group fixed point. It is known that the

large Nf expansion breaks down below some critical value of Nf , below which the theory

is confining [55][56][57][58]. Below a second critical value of Nf chiral symmetry breaking

occurs [59][60][61].

Our motivations for studying this model are the following. First, we wanted to understand

possible subtleties in the quantum Lyapunov exponent story associated with gauge invariance.

In particular, the anti-commutator by itself is not gauge invariant, although the squared anti-

commutator is. The anti-commutator can be made gauge invariant by attaching a Wilson

line, so this non-locality might conceivably modify the chaos story. Second, it is interesting

to understand how to detect failures of the large Nf expansion. One idea is that the chaos

bound of Ref. [62] might be in tension with the large Nf result for λL, indicating a transition.

Of course, the leading 1/Nf term is not reliable away from large Nf , but it might still be

suggestive of an issue. Third, we wanted to compare chaos in conventional and unconventional

quantum critical points, for example, how does chaos in the O(N) model compare to chaos in

QED3?

To analyze chaos in QED3, we choose to study the index averaged squared anti-commutator

F(t,x) =
1

N2
f

Nf∑
a,b=1

Tr
[√

ρ̂{ψa(t,x), ψ̄b(0)}
√
ρ̂{ψa(t,x), ψ̄b(0)}†

]
. (1.5)

We restrict attention to the spatial average of F to avoid issues associated with spatial

propagation and focus on chaos within the large local Hilbert space. However, our results

could be easily extended to the compute the butterfly velocity at large Nf .

We briefly summarize our main results. We numerically calculate the photon polarization

bubble in real time and analyze analytically it in the limit of high temperature and the limit

of low frequency. We use it to numerically calculate the fermion decay rate which scales as

Γk ∼
T

Nf
(1.6)

and vanishes as k→ 0. The Lyapunov exponent takes the form

λL =
2πT

Nf
C (1.7)

with C ≈ 0.65. This form is analogous to the form of λL in the O(N) model with here the

value of C is slightly higher. Because C < 1, the chaos bound is satisfied for all values of
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NF despite the known breakdown of the large NF expansion. Also, chaos is not significantly

stronger in this unconventional quantum critical point as compared to the usual O(N) critical

theory, at least at large N .

Notation guide: Throughout we will use lower case letters to denote Lorentz vectors

kµ = (k0,k) where the inner product is defined as

k2 = (k0)2 − k2 (1.8)

For Euclidean vectors we will use capital letter Kµ = (kn,k) vectors and the Euclidean inner

product is defined as

K2 = k2
n + k2 (1.9)

Integrals in Minkowski space are defined as∫
x
≡
∫

dt

∫
x

(1.10a)∫
k
≡
∫

dk0

2π

∫
k

(1.10b)

Integrals and sums in Euclidean space are defined as are defined∫
X
≡
∫

dτ

∫
x

(1.11a)∑∫
K

≡ 1

β

∑
kn

∫
k

(1.11b)

For Feynman slash notation /k ≡ γµkµ, we will use the shorthand /k
0

= γ0k0, /k = γiki

and /k = γ0k0 + γiki = γ0k0 − γ · k where γ = (iσx, iσy). In Euclidean time /K ≡ γ̃µKµ

/K = γ̃0ikn + γ̃iki To go from to /K back to /k we have i /K → /k. Further conventions are

specified in the appendices.

2 Preliminaries

In this section, we set up the formalism required to compute F(t,x) in a 1/Nf expansion The

generating function corresponding to Eqn. 1.4 is

Z =

∫
DADψDψ̄ exp (iSM ) (2.1)

In the limit e→∞ , we can neglect the Maxwell term.
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It will also be useful to consider the theory in Euclidean time. Setting it → τ and

A0 → iAτ we obtain the following Euclidean action

LE = − 1

4e2Nf
F 2 +

Nf∑
a=1

ψ̄a(X)γ̃µDµψa(X) (2.2)

where the Euclidean and Minkowski Dirac matrices are related by γ̃0 ≡ γ0 and γ̃i ≡ −iγi

and γ̃i = γ̃i. We will use repeated lower indices and capital letters when using the Euclidean

metric This gives us the generating functional

ZE =

∫
DADψDψ̄ exp

(
−
∫
X
LE
)

(2.3)

where
∫
X ≡

∫ β
0 dτ

∫
x.

To compute F (t,x), we will need the Wightman, Euclidean, and Euclidean propagators for

the fermions and the gauge field. For fermions these are defined as

G̃ab(t,x) = Tr
[√

ρ̂ψa(t,x)
√
ρ̂ψ̄b(0,0)

]
(2.4a)

GabE (τ,x) = Tr
[
ρ̂ψa(τ,x)ψ̄b(0,0)

]
(2.4b)

GabR (t,x) = −iTr
[
ρ̂{ψa(t,x), ψ̄b(0,0)}θ(t)

]
(2.4c)

In momentum space these propagators can be written in the spectral representation

GW (/k) =
/ρ(k)

2 cosh βk0

2

(2.5a)

GE( /K) =

∫
dω

2π

/ρ(K)

ikn − ω
(2.5b)

GR(/k) =

∫
dω

2π

/ρ(k)

k0 − ω + iε
(2.5c)

where we have defined the spectral function as

/ρ(k) = −2=[GR(/k)] (2.6)

For free fermions the spectral function is

/ρ(k0,k) =
π/k

Ek
[δ(k0 − Ek)− δ(k0 + Ek)] (2.7)
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Figure 2: The fermion polarization bubble is the O(1) contribution to the gauge field prop-
agator and dominates over the bare term at low energies.

which gives us the retarded and Wightman propagators

GW (/k) =
∑
s

s/kδ(k0 − sEk)

2 cosh βEk
2

(2.8a)

GR(/k) =
/k

(k0 + iε)2 − E2
k

(2.8b)

Similarly, for the gauge field we define the propagators as

DµνW (t,x) = Tr
[√

ρ̂Aµ(t,x)
√
ρ̂Aν(0,0)

]
(2.9a)

DµνE (τ,x) = iTr
[
ρ̂Aµ(τ,x)Aν(0,0)

]
(2.9b)

DµνR (t,x) = −iTr
[
ρ̂ [Aµ(t,x), Aν(0,0)] θ(t)

]
(2.9c)

In the spectral representation we can write these as

DµνW (k) =
Aµν(k)

2 sinh βk0

2

(2.10a)

DµνE (K) =

∫
dω

2π

Aµν(ω,k)

ikn − ω
(2.10b)

DµνR (k) =

∫
dω

2π

Aµν(ω, k)

k0 − ω + iε
(2.10c)

(2.10d)

where we define the spectral function as

Aµν = −2=DµνR (k)] (2.11)

The gauge field propagator Dµν is O(1) in Nf and hence a non-perturbative object. Since

the self energy dominates at low energies and Dµν completely in terms of the self energy.

At finite temperature, the choice of frame breaks Lorentz invariance. As a result, lon-

gitudinal and transverse become distinct. In 2 + 1d, the photon has one longitudinal and

one transverse polarization with associated polarization vectors εµL(k) εµT (k). A thermal mass
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can appear in the longitudinal component of the longitudinal part without violating gauge

invariance. To make calculation simpler we will use Coulomb gauge throughout with gauge

fixing condition ∇ · A = 0. In this gauge, we define the longitudinal polarization vector

εµL(k) = uµ = (1, 0, 0), where uµ is the rest frame of the medium. For k lying along the x axis

we can write the transverse polarization vector as following

εµT (k) =
1

|k|
(0,−ky, kx) (2.12)

In this gauge, we can write the bare propagator in the following form

iDµν(k0,k) = − i

k2
uµuν − i

k2
PµνT (k) (2.13)

where PµνT (k) is a transverse projection tensor defined as

PµνT (k) =
(
δij − kikj

|k|2
)
gµi g

ν
j (2.14)

We can also write PµνT (k) as a tensor product of the transverse polarization vectors

PµνT (k) = εµT (k)εµT (k) (2.15)

For the self energy, current conservation requires

kµΠµν(k) = 0 (2.16)

This allows us to write it with the following tensor structure.

Πµν(k) =
k2

k2
Π00(k)PµνL (k) + ΠyyPµνT (k) (2.17)

where longitudinal projector is defined as

PµνL (k) =

(
−gµν +

kµkν

k2

)
− PµνT (k) (2.18)

Since the tensor 2.17 has only two independent components, we can calculate everything in

terms of the spatial components of the self energy Πxx(k0,k), Πyy(k0,k) and write Π00(k0,k)

in terms of these functions.

We start with the following expression for Πµν(K) in Euclidean time

Πµν(ikn,k) =
∑∫
P

Tr

[
γ̃µ
−i /P
P 2

γ̃ν
−i( /K − /P )

(K − P )2

]
(2.19)
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Figure 3: The imaginary and real parts of the full polarization component Πxx(k0,k) are
plotted against the high temperature limits in Fig. 3a and Fig. 3b respectively.

For For Euclidean gamma matrices we have

Tr[γ̃µ /P γ̃ν /Q] = −2(Pµ(Kν − Pν) + Pν(Kµ − Pµ)− δµν(P · (K − P )) (2.20)

which gives us

Πµν(K) = −2
∑∫
{P}

[
Pµ(K − Pν) + Pν(K − Pµ)− δµνP · (K − P )

P 2(K − P )2

]
(2.21)

We can simplify the KµP ν +KνPµ terms by shifting P → K − P in half of this term to get

Πµν(K) = −
∑∫
{P}

[
2δµν
P 2

+
−K2δµν + 2KµKν − 4PµPν

P 2(K − P )2

]
(2.22)

We leave the rest of the calculation of the polarization bubble to appendix A.

We write the full photon propagator in terms of Π00(k0,k) and Πyy(k0,k) the as

iDµν(k) = − i
1
e2
k2 −Π00(k0,k)

uµuν − i
1
e2
k2 −Πyy(k0,k)

PµνT (k) (2.23)

Since the self energy is O(1), it will always dominate over the bare term. Thus we drop the

bare term and write

iDµν(k) =
i

Π00(k0,k)
uµuν +

i

Πyy(k0,k)
PµνT (k) (2.24)

At finite temperature, a thermal mass mthermal =
√
eT log 2
π will appear in the longitudinal

part of the propagator Π00. This does not violate gauge invariance and is due to the Debye
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Figure 4: The leading contribution to the fermion self energy is O( 1
Nf

) so the correction to

the mass can be neglected.

screening of the gauge field.

Next we consider the first correction to the fermion self energy. Since the fermion mass is

1/Nf suppressed, to leading order the physical effects are controlled by the imaginary. This

introduce a damping rate Γk leading to a finite lifetime to the fermions. In terms of the

photon and free fermion spectral functions, we can write the self energy as

Σ( /K) = − 1

Nf

∑∫
{P}

∫
dν

2π

∫
dω

2π
γ̃µ
/ρ(ω,p)

ipn − ω
γ̃ν
Aµν(ν,k − p)

ikn − ipn − ν
(2.25)

Doing the Matsubara sum gives us

Σ( /K) =
1

Nf

∫
p

∫
dν

2π

∫
dω

2π
γ̃µ/ρ(ω,p)γ̃νAµν(ν,k − p)

(1− nf (ω) + nb(ν)

ikn − ω − ν

)
(2.26)

Analytically continuing back to real time and inserting the free fermion spectral function

gives us

ΣR(/k) =
1

Nf

∫
p

∫
dν

2π

∫
dω

2π

∑
s=±

πsδ(ω − sEp)γµ/pγν

Ep
Aµν(ν,k − p)

1− nf (ω) + nb(ν)

ikn − ω − ν
(2.27)

=
1

Nf

∫
p

dν

2π

∑
s=±

s

2Ep
γµ/psγνA

µν(ν,k − p)
1− nf (sEp) + nb(ν)

k0 − sEp − ν + iε

where ps = (sEp,p) and Ep = |p|. Defining Γk as the imaginary part of the pole in the

propagator, Γk can be written in terms of the self energy as

Γk = − 1

2Ek
=Tr[/kΣR(/k)]

∣∣∣
k0=Ek

(2.28)
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Taking the imaginary part of Eq. 2.28 we have

=ΣR(/k)] = − 1

Nf

∫
p

∫
dν

2π

∑
s=±

πs

2Ep
γµ/psγνA

µν(ν,k − p)δ(k0 − sEp − ν) (2.29)

(1− nf (sEp) + nb(ν))

= − 1

Nf

∫
p

s

4Ep

∑
s=±

[
γµ/psγνA

µν(k − ps)(1− nf (sEp) + nb(k
0 − sEp))

]
Expanding the photon propagator into its longitudinal and transverse components, this be-

comes

Γk = − 1

2Ek
=Tr[/kΣR(/k)]

∣∣∣
k0=Ek

(2.30)

=
1

Nf

∫
p

∑
s=±

∑
λ=L,T

s

4EkEp
Aλ(k − ps)(2(k · ελ(k − ps))(ps · ελ(k − ps))− k · ps(ελ(k − ps) · ελ(k − ps)))

(1− nf (sEp) + nb(k
0 − sEp))

∣∣∣
k0=Ek

We can evaluate Eq. 2.30 in Coulomb gauge by choosing the longitudinal polarization vector

εµL = uµ. The complete expression is given in B. We also note that this expression is consistent

with the finite temperature optical theorem. Implementing Γk as a shift in the pole, we can

write the retarded propagator as

GR(/k) =
1

2Ek

( γ0Ek − γ · k
k0 − Ek + iΓk

− −γ
0Ek + γ · k

k0 + Ek + iΓk

)
. (2.31)

Note that the fermion 2-point function is not gauge invariant, so this decay rate is not

manifestly gauge invariant and is defined in the Coulomb gauge which we use. It is consistently

used below in the 1/NF expansion to compute gauge-invariant observables, and it presumably

manifests in other gauge-invariant response functions.

3 Diagrammatic expansion for the squared fermion anti-commutator

We now consider the diagrammatic expansion of the squared anti-commutator of two fermion

operators by expanding F(t,x) in the interaction on both time folds and keeping only dia-

grams to order 1/NF which are uncrossed. The rules are very similar to those summarized in

[63] except all of the propagators and hence rungs have a matrix structure. In summary:

1. Vertex insertions are restricted to lie on real time folds

2. Horizontal lines correspond to retarded or advanced photon or fermions propagators in-

cluding self energy corrections

3. Vertical lines correspond to full photon propagators or bare fermion Wightman propaga-
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Figure 5: A plot of the fermion decay rate Γk in units of temperature which vanishes as
k→ 0.

tors

4. Each rung or pair of rails is a matrix in spinor space and can be written in terms of a

tensor product basis of gamma matrices. A rung or pair of rails is added to the ladder by

matrix multiplication.

We now consider the two rungs at this order. The first rung involves a single photon Wight-

man function sandwiched between two gamma matrices. The whole rung can be giving us

the following expression

R1(k − k′) =
1

Nf
γµDµνW (k − k′)γν (3.1)

=
1

Nf
γµQb(k0 − k′0)Aµν(k − k′)γν

where we define Qb(ω) = (2 sinh(βω2 ))−1 for bosons and Qf (ω) = (2 cosh(βω2 ))−1 for fermions.

We can write the longitudinal and transverse contributions to R1(k− k′) in terms of a tensor

products of polarization vectors. In 2 + 1d, we can express the transverse projector PµνT (k)

as the tensor product of a single transverse polarization vector

PµνT (k) = εµT (k)ενT (k) (3.2)

where we define ενT (k) lying along the x axis as

εµT (k − k′) =
1

|k|
(0,−ky, kx) (3.3)
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Defining k̄ = k − k′ as the relative momentum, we can write a general expression for R1(k̄)

R1(k̄) =
1

Nf

∑
λ=L,T

Qb(k̄0)Aλ(k̄)(/ελ(k̄)/ελ(k̄)) (3.4)

where we have separated the longitudinal and transverse parts of the rung. Using the defini-

tions of the longitudinal and transverse polarization vectors this becomes

R1(k̄) =
Qb(k̄0)

Nf

(
AL(k̄)(γ0γ0) +AT (k̄)(γiγj)(δ

ij − ˆ̄ki ˆ̄kj)
)

(3.5)

The second rung is a box structure consisting of two fermion Wightman functions and

two retarded photon propagators. We can write this as

R2(k, k′) =
1

Nf

∫
p
γρGW (/p− /k′)γσγνGW (/k − /p)γµDσνR (p)DµρR (q − p) (3.6)

where pµ = (p0,p) Inserting the free fermion spectral functions, we get

R2(k, k′) =
1

Nf

∫
p

∑
ss′=±

π2ss′δ((p0 − k′0)− s′Ek′−p)δ((k0 − p0)− sEk−p)

Ek′−pEk−p
(3.7)

Qf (p0 − k′0)Qf (k0 − p0)(γρ(/p− /k′)γσγν(/k − /p)γµ)DµρR (q − p)DσνR (p)

defining the absolute Lorentz momentum K = k+k′

2 corresponding to the Lorentz vector

Kµ = (K0,K) and the relative momentum k̄ = k − k′ corresponding to the Lorentz vector

k̄µ = (k̄0, k̄). Shifting p→ p+K, we define E± = Ek̄/2±p given by

E± =
√
|k̄|2/4 + |p|2 ± |k̄||p| cos θ (3.8)

where θ is the angle between k̄ and p This gives us

R2(k, k′) =
1

Nf

∫
p

∑
ss′=±

π2ss′δ(k̄0/2 + p0 − sE+)δ(k̄0/2− p0 − s′E−)

E+E−
(3.9)

Qf (−k̄0/2− p0)QF (k̄0/2− p0)(γρ(/̄k/2 + /p)γσγν(/̄k/2− /p)γµ)DµρR (q − p−K)DσνR (p+K)

performing the p0 integral in Eq. 3.8, we get

R2(k̄,K) =
1

Nf

∫
p

∑
ss′=±

πss′δ(k̄0 − sE+ − s′E−)

2E+E−
Qf (s′E−)Qf (k̄0 − s′E−) (3.10)

(γρ(/̄k/2 + /̃p)γσγν(/̄k/2− /̃p)γµ)DσνR (p̃+K)DµρR (−p̃−K)
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where p̃µ = (k̄0/2 − s′E−,p). In three dimensions γµγνγρ = gµνγρ − gµργν + gνργµ which

allows us to write Eqn. 3.11 in terms of the polarization vectors as follows

R2,λλ′(k̄,K) =
1

Nf

∫
p

∑
λλ′=L,T

∑
ss′=±

πss′δ(k̄0 − sE+ − s′E−)

2E+E−
Qf (s′E−)Qf (k̄0 − s′E−)(3.11)

((k̄ + 2p̃) · ελ′(−p̃−K)/ελ(p̃+K)− (/̄k/2 + /̃p)ελ(p̃+K) · ελ′(−p̃−K)

((k̄ − 2p̃) · ελ(p̃+K)/ελ′(−p̃−K)− (/̄k/2− /̃p)ελ(p̃+K) · ελ′(−p̃−K))

DRλ(p̃+K)DRλ′(−p̃−K)

Since the external momentum q is O
(

1
Nf

)
, the momenta of the two photon propagators are

approximately anti-parallel. Therefore, we only need to consider terms in the sum over λ

where λ = λ′.

We can now write the whole rung in the tensor product form

R2(k̄,K) =
1

Nf

∫
p

∑
ss′=±

∑
λ=L,T

πss′δ(k̄0 − sE+ − s′E−)

2E+E−
Qf (s′E−)Qf (k̄0 − s′E−) (3.12)

DR,λ(p̃+K)DR,λ(−p̃−K)
(
R(1)

2,λ(k̄,K,p)µγµR(2)
2,λ(k̄,K,p)νγν

)
where we define the coefficients of γµ ⊗ γν as

Rµν2 (k̄,K) =
1

Nf

∫
p

∑
πss′=±

∑
λ=L,T

ss′δ(k̄0 − sE+ − s′E−)

2E+E−
Qf (s′E−)Qf (k̄0 − E−) (3.13)

DR,λ(p̃+K)DR,λ(−p̃−K)R(1)
2,λ(k̄,K,p)µR(2)

2,λ(k̄,K,p)ν

The expressions for the matrix elements defined in 3.14 are contained in appendix.

We can do the integral over |p| where the zeroes of the delta function are given by

|p|0 =
k̄0

2

√
(k̄0)2 − |k̄|2

(k̄0)2 − |k̄|2 cos2 θp
(3.14)

where θp is the angle between the loop momenta p and the relative momenta k̄.

For the root to be positive, we have condition (k0)2 < |k|2 cos2 θ or (k0)2 > |k|2, which occurs

for (s, s′) = (1, 1) and (s, s′) = (±1,∓1).

4 Bethe Salpeter equation and the Lyapunov exponent

Our diagrammatic expansion of the squared fermion anti-commutator will give us an integral

equation we will solve to obtain the Lyapunov exponent and butterfly velocity. This equation
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is reminiscent of the original Bethe-Salpeter equations first used to study bound states in

quantum electrodynamics in [64][65][66].

In matrix form, the equation for the ladder is basis dependent. However it, turns out that at

long times, we can take advantage of the matrix structure of this equation and turn it into

two scalar equations for components of a “wave-function” To illustrate this, we start define

the Lorentz vectors qµ = (ν, q) kµ = (k0,k) and the following on-shell projectors

Λ
(i)
± (k) =

Ek ± γ0γ · k
2Ek

(4.1)

where i = 1, 2 refers to the particle index and γ · k = −γiki. These have the following

properties

Λ
(i)
± (k)Λ

(i)
± (k) = Λ

(i)
± (k), Λ

(i)
± (k)Λ

(i)
∓ (k) = 0, Λ

(i)
+ (k) + Λ

(i)
− (k) = 1 (4.2)

The eigenvectors of Λ
(i)
± (k) are

u+(k) =

(
Ek

ikx + ky
, 1

)
(4.3a)

u−(k) =

(
− Ek

ikx + ky
, 1

)
(4.3b)

From Eqns. 4.3a and 4.3b we see u−(k) = u+(−k). Acting with the projectors on u±(k) we

get

Λ±(k)u±(k) = u±(k) Λ∓(k)u±(k) = 0 (4.4a)

From this, we conclude that u±(k) are eigenvectors of Λ±(k) with eigenvalue one and u±(k)

are an eigenvectors of Λ∓(k) with eigenvalue zero. We define Λ
(1)
s (k)Λ

(2)
s′ (k) as the tensor

product of two projection operators. Eq. 4.2 gives us the additional four properties

(Λ
(1)
+ (k)Λ

(2)
+ (k) + (Λ

(1)
− (k)Λ

(2)
+ (k) + (Λ

(1)
+ (k)Λ

(2)
− (k)) + (Λ

(1)
− (k)Λ

(2)
− (k)) = 1 (4.5)

The eigenvectors of u
(1,2)
± . Λ

(1)
s (k)Λ

(2)
s′ (k) can be written as tensor products of the form

u
(1,2)
ss′ (k) = u(1)

s (k)u
(2)
s′ (k) (4.6)

We can use the free fermion spectral function to write the retarded Green’s function in the

form /kgR(k).

G∗R(/k − /q)GR(/k) = (/k − /q)/kg∗R(k − q)gR(k) (4.7)
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Consider the product g∗R(q − k)gR(k). Writing it explicitly in terms of momentum and fre-

quency arguments we have

g∗R(k − q)gR(k) =
∑
ss′=±

ss′

4EkEk−q

(
1

k0 − ν − sEk−q − iε

)(
1

k0 − s′Ek + iε

)
(4.8)

Evaluating the k0 integral we have four poles: k0 = ν − sEk−q + iε and k0 = s′Ek − iε which

give residues proportional to ∼ (ν+ sEk−q − s′Ek)−1. To get the longtime behavior, we keep

only the contribution from the most singular terms ∼ (ν ±Ek−q ∓Ek)−1 where we close the

contour clockwise on the lower half plane

In the end we have

g∗R(k − q)gR(k) →
∑
s=±
−πiδ(k

0 − sEk)

2Ek−qEk

[
1

ν − s(Ek − Ek−q) + iε

]
(4.9)

Note that for q = 0, these terms become proportional to ν−1. Assuming Γq−k ≈ Γq we can

shift the poles in 4.9 to get

g∗R(k − q)gR(k) →
∑
s=±

πiδ(k0 − sEk)

2Ek−qEk

[
1

ν − s(Ek − Ek−q) + 2iΓk

]
(4.10)

For small q, we can express Eqn. 4.9 in terms of projection operators as follows

G∗R(/k − /q)GR(/k) ≈
∑
s=±

s2πiδ(k0 − sEk)
Λ

(1)
s (k)γ0Λ

(2)
s (k)γ0

ν − s(Ek − Ek−q) + 2iΓk
(4.11)

where we used using (γ0)2 = 1. Consider the first term in the ladder, which is the tensor

product of two retarded Green’s functions

F0(t,x) =
1

NF
[GR(t,x)G∗R(t,x)] (4.12)

In momentum space we can define the object f(q, k) as

F(q) =
1

Nf

∫
k
f(q, k) (4.13)

And write the first term as

F0(q) =
1

Nf

∫
k
G∗R(/k − /q)GR(/k) (4.14)
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Figure 6: A diagrammatic picture of the square of the fermion anticommutator. The lower
rails and retarded propagators and upper rails are advanced propators and the rails are
Wightman functions.

We can now write the infinite ladder as

F(q) =
1

Nf

∫
k
G∗R(/k − /q)GR(/k)

(
1 +

∫
k′
R(k, k′)f(k, k′, q)

)
(4.15)

Where qµ = (ν, q), kµ = (k0,k) and k′µ = (k′0,k′), and R(k, k′) is the sum of the two rungs.

It is important to note that we have computed the two rungs in a different basis, and we

would need to use the Fierz identities to explicitly write R(k, k′) in the correct matrix form.

Assuming exponential growth at long times, the ladder will remain invariant under the ad-

dition of one rung. For q small, we can make the approximation Ek − Ek−q = δEq ≈ q · vk
where vk = ∇kEk is the group velocity. Dropping the constant term and inserting Eqn. 4.11

into 4.15, we get

(−iν+iδEq+2Γk)f(q, k) =
1

Nf

∫
k′

∑
s=±

(Λ(1)
s (k)γ0Λ(2)

s (k)γ0)δ(k0−Ek)R(k, k′)f(q, k′) (4.16)

Acting on both sides of Eqn. 4.16 with (Λ
(1)
s (k)γ0Λ

(2)
s (k)γ0), we see from Eqn. 4.5 that

Eqn. 4.16 is just multiplied by one or zero. So instead of considering the matrix f(q, k),

we can consider an eigenvalue equation for a vector v(q, k) which is an eigenvector of the

projection operators. We can now propose the following on-shell form of v(q, k)

v(ν, q,k) =
∑
s=±

Λ(1)
s (k)Λ(2)

s (k)δ(k0 − sEk)vs(ν, q,k) (4.17)

Since v±(ν, q,k) are eigenstates of Λ
(1)
± (k)Λ

(2)
± (k) for small q we can write v

(i)
± (ν, q,k) in the

form

v±(ν, q,k) = u
(1,2)
± (k)ψ±(ν, q,k) (4.18)

where ψ±(ν, q,k) is a scalar function. To write equations for ψ±(ν, q,k) we take the inner

product of both sides, defining a scalar kernel written in terms of both rungs and as

Kss′(k,k
′) =

〈u(1,2)
s (k)|γ0

(1)γ
0
(2)(R1(sk, s′k′) +R2(sk, s′k′))|u(1,2)

s′ (k′)〉

〈u(1,2)
s (k)|u(1,2)

s (k)〉
(4.19)
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Because inner product is basis independent, it does not matter that the rungs are written in

different bases.

(−iν + isδEq + 2Γk)ψs(ν, q,k) =
∑
s′=±

1

Nf

∫
k′
Kss′(k,k

′)ψs′(ν, q,k
′) (4.20)

Eqns. 4.20 now looks like two coupled effective Dirac equations for a scalar wave function.

We can now define a kernel matrix in the ss′ indices as

K̂ss = Kss − 2NfΓkδss′ (4.21)

and Ψ(ν, q,k) = (ψ+(ν, q,k), ψ−(ν, q,k)T

(−iνσ̂0 + iδEqσ̂z)Ψ(ν, q,k) =
1

Nf

∫
k′
K̂(k,k′)Ψ(ν, q,k′) (4.22)

In the time domain, this becomes

(∂tσ̂0 + iq · vkσ̂z)Ψ(t, q,k) =
1

Nf

∫
k′
K̂(k,k′)Ψ(t, q,k′) (4.23)

5 Numerics

We define the Lyapunov exponent to be the largest eigenvalue of K̂ at q = 0 with eigenvector

ψ1. We assume ψ1 is rotationally symmetric so the eigenvalue equation can be simplified

by projecting both sides onto states with angular momentum l = 0. The resulting eigen-

value equation involves a one dimensional integral transform, involving only the magnitude

of the momentum. Below we summarize the computational procedure, with further details

in Appendix E.

First, we compute Πxx and Πyy numerically on a fine grid in (ω, |k|) space and use these

to construct the full photon spectral function matrix. We then use these to calculate the

fermion decay rate and the matrix components of the rung functions. Since these quantitites

effectively vanish when the norms of their arguments greatly exceed T, we use a simple linearly

spaced grid with a hard momentum cutoff of order 10 T . The temperature is the only scale

in the problem, so the entire numerical computation is set up in terms of the scaled variables

k = k/T and w = ω/T .

We can write λL in the form

λL =
2πT

Nf
C (5.1)

Numerics give C ≈ 0.65. λL takes the same form for the O(N) model with C = 0.51. For

nonzero q we can also calculate a butterfly velocity vB which we expect to be vB ∼ 1. We
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Figure 7: We get four types of terms from expanding the squared current-current commu-
tator to first order. The first nontrivial diagrams can be divided into two group and are
shown in a and b. The black dots are current insertions. Each group contains a diagram
corresponding to each direction of particle flow. Only the diagrams with uncrossed rungs will
contribute to chaos.

do not give a precise number as computing vB is more numerically involved and the spatial

propagation is expected to be significantly modified by higher order in 1
Nf

corrections [67].

6 Discussion

In this work we studied thermalization and chaos in QED3 at finite temperature in a large

Nf expansion. We calculated the photon polarization tensor in real time numerically and

also obtained exact expressions in the limits of high temperature and high frequency. We

numerically computed the fermion decay rate and obtained the Lyapunov exponent from a

two-body Dirac-like equation for the squared anti-commutator.

While the object we have computed, F(t,x), is gauge invariant, the fermion anti-commutator

by itself is not. Furthermore, because of their anti-commutation relations, fermions are inher-

ently non-local, thus the squared anti-commutator we are computing is actually a non-local

object even though the growth is causal.

We can compare the growth of the squared fermion anti-commutator with the growth of

local operators. The most natural local operator in QED3 is the fermion current. This is

defined as

jµa (t,x) = ψ̄a(t,x)γµψa (6.1)

We can consider the squared commutator of two current operators

C(t,x) =
1

Nf
δµρδνσTr

[√
ρ̂ [jµa (t,x), jνb (0, 0)]

√
ρ̂ [jρa(t,x), jσb (0, 0)]†

]
(6.2)

Another object we could have considered is the squared commutator for the gauge field. Due

to current conservation, we know that the photon and current correlation functions are related

up to contact terms which vanish on shell.

We expect composite operators will grow as fast as elementary operators [68]. However,

it is not guaranteed that these grow at the same rate. We can compare C(t,x) to F(t,x) by
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Figure 8: Terms contributing to the current current commutator at higher order.

looking at the structure of the ladder diagrams. The technical details are left to appendix

D.1). We see that all of the rungs in F(t,x) are also contained in C(t,x) as well as additional

structures with crossed legs and particle arrows oriented in opposite directions. The internal

structure of this ladder contains the same terms in the squared fermion anti-commutator as

well as other pieces. If we expand C(t,x) further, we obtain diagrams containing particle flows

in opposing directions as shown in Fig. 8. In principle, these can also occur in the ladder

expansion for F(t,x). However, these terms are suppressed by 1
NF

, so they do not contribute

to chaos to leading order. Thus, we argue that the diagrams in F(t,x) are all contained in

C(t,x), so chaos must grow at least as fast as the rate obtained from F(t,x).

At small Nf , the fermions are expected to develop a dynamical mass through a chiral

phase transition. In this situation, we expect an exponentially dilute gas of particles with an

exponentially long scattering time at temperature below the mass gap. This would correspond

to a Lyapunov exponent λL ∼ e−m/T . It has also been proposed that QED3 exhibits an

intermediate phase which is dominated by fluctuations in a vector channel and is characterized

by a Lorentz-breaking vector condensate [59][60]. It would be interesting to see how λL scales

in this regime.

In the future it would be interesting to see if one could adapt a kinetic method such as

described in [46] to simplify the calculation. It would also be interesting to improve numerics

so that the Lyapunov exponent can be calculated to higher accuracy and get an estimate for

the butterfly velocity. Our work also serves as a starting point to compute other dynamical

quantities in finite temperature QED3 such as the charge diffusion coefficient in systems with

disorder. While the decay rate we computed is not gauge invariant, it is the first step in the

computation of physical response functions.
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A Real time Polarization bubble

In this appendix we will describe the calculation of the components photon polarization tensor

We start with the expression for the spatial components in Euclidean time

Πij = T
∑
pn

∫
p

[
2δij
P 2

+
−K2δij + 2kikj − 4pipj

P 2(K − P )2

]
(A.1)

where K and P are Euclidean vectors. Note that the numerator does not involve the summed-

over Matsubara frequencies. The Matsubara sums can be performed to give

T
∑
pn

1

p2
n + E2

p

=
1− 2nF (Ep)

2Ep
(A.2)

and

T
∑
pn

1

p2
n + E2

p

1

(kn − pn)2 + E2
k−p

=
1

4EpEk−p

∑
s,s′

ss′ [nF (sEp) + nF (s′Ep−k)− 1]

ikn − sEp − s′Ek−p
. (A.3)

The first term, after subtracting the zero temperature value, gives

2

∫
p

1− 2nF (Ep)

2Ep
− 2

∫
p

1

2Ep
= −T

π

∫ ∞
0

du
1

eu + 1
= −T log 2

π
. (A.4)

where k = (|k|, 0) and p = |p|(cos θ, sin θ). The numerators of the second term are

Lxx = −(k2
n + |k|2) + 2|k|2 − 4|p|2 cos2 θ (A.5)

and

Lyy = −(k2
n + |k|2)− 4|p|2 sin2 θ. (A.6)

A.1 Tensor structure

The full real-time polarization can be expanded in two tensor structures. While the transverse

component is spatially transverse, the longitudinal component is spacetime transverse. This

tensor structure ensures that the full polarization bubble obeys the Ward identity required

by current conservation.
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At finite temperature there is a new vector available set by the rest frame of the medium.

The tensor structures are

PµνL = −gµν +
kµkν

k2
− PµνT (A.7)

and

PµνT = δµiδνj
(
δij − kikj

|k|2

)
. (A.8)

From these two structures we can define

P̃µν = PµνL + PµνT (A.9)

These obey

kµP̃
µν = 0, (A.10)

kµP
µν
T = 0, (A.11)

and

kiP
ij
T = 0. (A.12)

To give an invariant definition of PµνT , let uµ denote the velocity of the medium, which in the

medium’s rest frame is u = (1, 0, 0). Let the transverse u projector be

PµνT (u) = −gµν +
uµuν

u2
, (A.13)

and define

k̄µ = PµνT (u)kν = −kµ + (k · u)uµ. (A.14)

In the medium’s rest frame, k = (k0,k), then

k̄ = (0,−k). (A.15)

The transverse projector to k̄ is

PµνT (k̄) = −gµν +
k̄µk̄ν

k̄2
, (A.16)
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which in the medium’s rest frame is

P 00
L (k̄) = −1 = −u0u0, (A.17)

P 0i
L (k̄) = 0, (A.18)

and

P ijT (k̄) = δij − kikj

|k|2
= P ijT . (A.19)

Hence we may identify PµνT with uµuν + PµνT (k̄) (with P̃µν with P̃µν(k)). We write the full

polarization as

Πµν
R = Π̃P̃µν + ΠP̃µνT . (A.20)

The non-vanishing terms are

Π00
R = Π

|k|2

(k0)2 − |k|2
, (A.21)

Πxx
R = Π

(
1 +

(kx)2

(k0)2 − |k|2

)
+ Π̃

(
1− (kx)2

|k|2

)
, (A.22)

and

Πyy
R = Π

(
1 +

(ky)2

(k0)2 − |k|2

)
+ Π̃

(
1− (k2)2

|k|2

)
. (A.23)

For kinematics where k = (|k|, 0), these expressions simplify to

Π00
R = Π

|k|2

(k0)2 − |k|2
, (A.24)

Πxx
R = Π

(k0)2

(k0)2 − |k|2
, (A.25)

and

Πyy
R = Π + Π̃. (A.26)
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Hence Πxx
R and Πyy

R are sufficient to determine the two functions Π and Π̃.

A.2 Imaginary part, full expressions

The first contribution to both Πxx
R and Πyy

R is the constant term,

2

∫
p

1− 2nF (Ep)

2Ep
= −T log 2

π
+ ΠT=0. (A.27)

where ΠT=0 is the zero temperature contribution. Because this contribution is pure real, it

drops out of the imaginary part.

Thus the full imaginary part of Πij
R can be obtained from

=Πij
R = =

∑
s,s′

∫
p

Lij

4EpEk−p

ss′ [nF (sEp) + nF (s′Ek−p)− 1]

ω + iε− sEp − s′Ek−p
, (A.28)

where the numerator is

Lij = −(−(k0)2 + |k|2)δij + 2kikj − 4pipj . (A.29)

Using kinematics where k = (|k|, 0) and p = (|p| cos θ, |p| sin θ), we find

Lxx = (k0)2 + |k|2 − 4|p|2 cos2 θ (A.30)

and

Lyy = (k0)2 − |k|2 − 4|p| sin2 θ. (A.31)

We can check that =Πij
R is an odd function of frequency. For positive k0, only the (1, 1),

(1,−1), and (−1, 1) terms contribute. Furthermore, the (1,−1) and (−1, 1) terms give the

same result. The (1, 1) contribution is

=Πij
R

∣∣∣∣
ss′=1

= −
∫
p

πLij

4EpEk−p
[nF (Ep) + nF (Ek−p)− 1] δ(k0 − Ep − Ek−p). (A.32)

The (1,−1) contribution (counted twice) is

=Πij
R

∣∣∣∣
ss′=−1

= 2

∫
p

πLij

4EpEp−k
[nF (Ep)− nF (Ek−p)] δ(k0 − Ep + Ek−p). (A.33)

The delta function condition (with s = 1) is

k0 − Ep = s′Ek−p. (A.34)
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To solve it, let us square both sides,

(k0 − |p|)2 = (|k| − |p| cos θ)2 + |p|2 sin2 θ. (A.35)

The result is

(k0)2 − 2k0|p| = |k|2 − 2|p||k| cos θ (A.36)

or

|p| = |p|0 =
(k0)2 − |k|2

2(k0 − |k| cos θ)
. (A.37)

We need either k0 > |k| or k0 < |k| cos θ to have a positive solution for |p|. The former is

realized for ss′ = 1 while the latter is realized for ss′ = −1. To complete the evaluation of

the delta function, we also need

vs′ =
∂(Ep + s′Ek−p)

∂|p|

∣∣∣∣
|p|=|p|0

= 1 + s′
|p| − |k| cos θ

Ek−p
. (A.38)

The ss′ = 1 contribution is

=Πij
R

∣∣∣∣
ss′=1

= − 1

(2π)2

∫ 2π

0
dθ

∫ ∞
0

d|p||p|δ(|p| − |p|0)

|v1|
πLij (nF (Ep) + nF (Ek−p)− 1)

4EpEk−p
.(A.39)

The ss′ = −1 contribution is

=Πij
R

∣∣∣∣∣
ss′=−1

=
1

(2π)2

∫ cos−1 k0

|k|

− cos−1 k0

|k|

dθ

∫ ∞
0

d|p||p|δ(|p| − |p|0)

|v−1|
πLij (nF (Ep)− nF (Ek−p))

4EpEk−p
.(A.40)

The real part is then obtained from a subtracted Kramers-Kronig relation. For a function

χ(ω) = χ1 + iχ2 obeying the assumptions of Kramers-Kronig, the real part in terms of the

imaginary part is

χ1(ω) =
2

π

∫ ∞
0

dν
ωχ2(ω)− νχ2(ν)

ω2 − ν2
. (A.41)

A.3 Low temperature limit

Suppose ω � T and |k| = 0. Only the ss′ = 1 term contributes to =Πij
R. The contribution is

=Πij
R =

1

(2π)2

∫
d|p||p|δ(|p| − k

0/2)

2

πLij

4|p|2
(A.42)
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with Lxx → (k0)2 − 4|p|2 cos2 θ and Lyy → (k0)2 − 4|p|2 sin2 θ. Because of the simple depen-

dence on θ, we conclude the =Πxx
R = =Πyy

R in this limit. (Physically, since |k| = 0, there is

no difference between longitudinal and transverse.)

We find

=Πyy
R =

1

16πk0

∫
dθ((k0)2 − (k0)2 sin2 θ) =

k0

16
. (A.43)

A.4 High temperature limit

In the high temperature limit, k/T � 1, we neglect |k| and k0 relative to T and the loop

momentum whenever the dependence on k is non-singular. The numerators limit to

Lxx = −4|p|2 cos2 θ (A.44)

and

Lyy = −4|p|2 sin2 θ. (A.45)

The xx polarization is

Πxx
R =

−T log 2

π
+
∑
s,s′

∫
p

Lxx

4|p|2
ss′ [nF (sEp) + nF (s′Ek−p)− 1]

k0 + iε− sEp − s′Ek−p

 . (A.46)

Both ss′ = 1 terms inside the parenthesis contribute the same value (in the small k/T limit,

both are real), as do both ss′ = −1 terms. These are

ss′ = 1 : 2

∫
p

−4 cos2 θ

4

2nF (|p|)− 1

−2|p|
=
T log 2

2π
+ (T = 0 value) (A.47)

and

ss′ = −1 : 2

∫
p

−4 cos2 θ

4

−∂nF
∂|p| |k| cos θ

k0 + iε− |k| cos θ
= −T log 2

2π2

∫
dθ cos2 θ

cos θ

z − cos θ
, (A.48)

where z = (k0 + iε)/|k|. Further processing the ss′ = −1 term gives

ss′ = −1 : −T log 2

2π2

(
−π +

∫
dθ cos2 θ

z

z − cos θ

)
. (A.49)

Then we see that the constant term, the ss′ = 1 terms, and the constant part of the ss′ = −1
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terms combine to give zero. Thus the xx polarization is

Πxx
R = −T log 2

2π2

∫
dθ

z cos2 θ

z − cos θ
. (A.50)

The only difference between xx and yy is the replacement cos2 θ → sin2 θ when going

from Lxx to Lyy. Hence it follows that

Πyy
R = −T log 2

2π2

∫
dθ

z sin2 θ

z − cos θ
. (A.51)

The two integrals we must calculate are

I1 =

∫
dθ

z cos2 θ

z − cos θ
(A.52)

and

I2 =

∫
dθ

z sin2 θ

z − cos θ
. (A.53)

The sum of I1 and I2 is

I1 + I2 = −
∫
dw

iw

2wz

w2 − 2wz + 1
, (A.54)

where we converted the expression to a contour integral around the unit circle. The integrand

has poles at w = w± = z ±
√
z2 − 1. The w = w− pole is inside the unit circle for =z > 0.

The integral is thus

I1 + I2 = −2π
2z

w− − w+
=

2πz√
z2 − 1

. (A.55)

The difference of I1 and I2 is

I1 − I2 = −
∫
dw

iw

2wz

w2 − 2wz + 1

w4 + 1

2w2
, (A.56)

where again we converted to a contour integral. The integrand now has poles at w = 0

(double pole) and at w = w± = z ±
√
z2 − 1. The integral is thus

I1 − I2 = −2π

(
2z2 +

2z

w− − w+

w4
− + 1

2w2
−

)
. (A.57)
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Simplifying gives

I1 − I2 = −2π

(
2z2 − z√

z2 − 1

(
(w2
− + 1)2

2w2
−

− 1

))
, (A.58)

or using w2
− + 1 = 2zw−,

I1 − I2 = 2π

(
z√

z2 − 1
(2z2 − 1)− 2z2

)
. (A.59)

Hence

Πxx
R = −T log 2

2π

[
z√

z2 − 1
+

z√
z2 − 1

(2z2 − 1)− 2z2

]
(A.60)

or

Πxx
R = −T log 2

2π

[
2z3

√
z2 − 1

− 2z2

]
. (A.61)

Similarly,

Πyy
R = −T log 2

2π

[
z√

z2 − 1
− z√

z2 − 1
(2z2 − 1) + 2z2

]
(A.62)

or

Πyy
R = −T log 2

2π

[
z(2− 2z2)√

z2 − 1
+ 2z2

]
. (A.63)

B Fermion damping rate

We can verify the expression for the fermion damping directly from the optical theorem using

the finite temperature cutting rules [69]. This relates the decay rate to the imaginary part of

the tree level cross-section which in turn is related to the imaginary part of the self-energy.

We can define ML and MT as the longitudinal and transverse matrix elements for the tree

level scattering processes of an electron emitting a soft photon

ML(T ) =
1√
NF

ū(p)(−iγµ)u(k)εµL(T )(q
0,k − p) (B.1)
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2

~

Figure 9: The decay rate is related to the imaginary part of the fermion self energy via the
optical theorem.

where ū(p) and u(k) are massless on shell spinors. We can write Γk in terms of these matrix

elements as

Γk ≡
1

2Ek

∫
p

∫
dp0

2π

dq0

2π

∑
λ=L,T

Aλ(q0,k − p)2πδ((p0)2 − E2
p)|Mλ|2(1− nF (p0) + nB(q0)) (B.2)

2πδ(k0 − p0 − q0)

=

∫
p

∫
dq0

2π

∑
s=±

∑
λ=L,T

s

8EkEp
Aλ(q0,k − p)|Mλ|2(1− nF (sEp) + nB(q0))2πδ(k0 − sEp − q0)

=
∑
λ=L,T

∑
s=±

∫
p

s

8EkEp
Aλ(k − ps)|Mλ|2(1− nF (sEp) + nB(k0 − sEp))

where k = (k0,k) and ps = (sEp,p). Plugging ML(T ) into B.3 and using the relation

u(k)ū(k) = /k we get

Γk =
∑
λ=L,T

∑
s=±

∫
p

Tr
[
sū(k)γµ/psγνu(k)εµλ(k − p)ενλ(k − p)|Mλ|2

]
8EkEp

Aλ(k − ps) (B.3)

(1− nF (sEp) + nB(k0 − sEp))

= − 1

2Ek
Tr [ū(k)=ΣR(/k)u(k)]

∣∣∣
k0=Ek

= − 1

2Ek
=Tr[/kΣR(/k)]

∣∣∣
k0=Ek

we find the relation for the self energy and the decay rate given in Eqn. 2.28. We can now

write the decay rate Γk in Coulomb gauge as

Γk =
1

Nf

∑
s=±

∫
p

s

4EkEp

(
AL(k − ps)(2(k · u)(ps · u)− k · psu · u) (B.4)

+ AT (k − ps)(2(k · εT (k − p))(ps · εT (k − p))− k · ps(εT (k − p) · εT (k − p))
)

(1− nF (sEp) + nB(k0 − sEp))

∣∣∣∣∣
k0=Ek
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Defining the Lorentz vectors k = (k0, |k|, 0), ps = (sEp, |p| cos θ, |p| sin θ), and the transverse

polarization vector εµT (k−p) = 1
|k−p| (0, |p| sin θ, |k| − p cos θ), we get the final expression for

Γk in Coulomb gauge

Γk =
1

Nf

∫
p

∑
s=±

s

4EkEp

[(
AL(k − p̃s) (sEkEp + |k||p| cos θ) (B.5)

+ AT (k − p̃s)
(
sEkEp − |k||p| cos θ +

2|k|2|p|2(1− cos2 θ)

|k|2 + |p|2 − 2|k||p| cos θ

))
(1− nf (sEp) + nb(Ek − sEp))

]
.

C Full expressions for the scalar kernel

Using the definition in Eq. 4.19, we can write an expression for the scalar kernel in the

Bethe-Salpeter equation in terms of the rung matrix elements.

Kss′(k,k
′) = e2i(θk′−θk)R11 − ei(θk′−θk)s1s2(R22 +R23 +R32 +R33) +R44 (C.1)

− e−2iθkR14 − e2iθk′R41 + iei(2θk′−θk)s1(R21 +R31) + iei(θk′−2θk)s2(R12 +R13)

− ieiθk′s2(R42 +R43)− ie−iθks1(R24 +R34)

where θk is the angle between k and the x axis and θk′ is the angle between k′ and the x

axis.

If we make a rotationally symmetric ansatz for the wavefunction, only terms depending on

θk′ − θk remain, which leaves us

Kss′(k,k
′) = e2i(θk′−θk)R11 − ei(θk′−θk)s1s2(R22 +R23 +R32 +R33) +R44 (C.2)

Both rungs can be written in the form

R = R0,0γ0 ⊗ γ0 +Ri,jγi ⊗ γj +Ri,0γi ⊗ γ0 +R0,jγ0 ⊗ γj (C.3)
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For the first rung, we can write these coefficients as

R1(k̄)(0,0) = −Qb(k̄
0)

Nf
AL(k̄) (C.4)

R1(k̄)(x,x) = −Qb(k̄
0)

Nf
AT (k̄)

(
1−

(|k| − |k′| cos θk,k′)
2

|k̄|2
)

)
R1(k̄)(y,y) = −Qb(k̄

0)

Nf
AT (k̄)

(
1−

(|k′| sin θk,k′)2

|k̄|2
)

)
R1(k̄)(x,y) = −Qb(k̄

0)

Nf
AT (k̄)

(
(|k| − |k′| cos θk,k′)(|k′| sin θk,k′)

|k̄|2
)

)
R1(k̄)(y,x) = −Qb(k̄

0)

Nf
(AT (k̄)

(
(|k| − |k′| cos θk,k′)(|k′| sin θk,k′)

|k̄|2
)

)
where θk,k′ is the angle between k and k′. For the second rung, we use the general expression

given in 3.14. Defining θp as the angle between p and k̄ and φ as the angle between k̄ and

K, the transverse polarization vector with respect to the k̄ axis can be written as

εµT (p+K) =
1

|p+K|
(0,−(|p| sin θp + |K| sinφ), |p| cos θp + |K| cosφ) (C.5)

We use these to define the following Lorentz vectors which are contained in the numerators

of the longitudinal and transverse components of the second rung in

R(1)
2,L(k̄,K,p)µ =

(
k̄0 − s′E−,−k̄/2− p

)
(C.6a)

R(2)
2,L(k̄,K,p)µ =

(
s′E−,−k̄/2 + p

)
(C.6b)

R(1)
2,T (k̄,K,p)µ =

(
k̄0 − s′E−, (k̄ + 2p) · εT (p+K)εT (−p−K) + k̄/2 + p

)
(C.6c)

R(2)
2,T (k̄,K,p)µ =

(
s′E−, (k̄ − 2p) · εT (p+K)εT (−p−K) + k̄/2− p

)
(C.6d)

Plugging C.5 into C.6, we can write the spatial components of the Lorentz vectors for the

longitudinal polarizations as

R(1)
2,L(k̄,K,p)x = −|k̄|/2− |p| cos θp (C.7a)

R(1)
2,L(k̄,K,p)y = −|p| sin θp (C.7b)

R(2)
2,L(k̄,K,p)x = −|k̄|/2 + |p| cos θp (C.7c)

R(2)
2,L(k̄,K,p)y = |p| sin θp (C.7d)
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and the transverse polarizations as

R(1)
2,T (k̄,K,p)x =

(2|K||p| sin(θp − φ)− |k|(|p| sin θp + |K| sinφ))(|p| sin θp + |K| sinφ)

|p+K|2
+
|k̄|+ 2|p| cos θp

2

(C.8a)

R(1)
2,T (k̄,K,p)y = −(2|K||p| sin(θp − φ)− |k|(|p| sin θp + |K| sinφ))(|p| cos θp + |K| cosφ)

|p+K|2
+ p sin θp

(C.8b)

R(2)
2,T (k̄,K,p)x =

(2|K||p| sin(θp − φ) + |k|(|p| sin θp|K| sinφ))(|p| sin θp + |K| sinφ)

|p+K|2
+
|k̄| − 2|p| cos θp

2

(C.8c)

R(2)
2,T (k̄,K,p)y = −(2|K||p| sin(θp − φ) + |k|(|p| sin θp + |K| sinφ))(|p| cos θp + |K| cosφ)

|p+K|2
− |p| sin θp

(C.8d)

We can now now plug the expressions in C.8 into 3.14 and evaluate the momentum integrals

to get complete expressions for the matrix coefficients of rung II.

D Feynman rules for ladder diagrams

We derive the Feynman rules for the ladder diagrams in the 1
Nf

expansion. Ignoring thermal

corrections, we can start by going into the interaction picture with respect to the the free

Hamiltonian. The time evolution operator is given by

UI = T exp

− 1√
Nf

Nf∑
a=1

∫ t

0
ds

∫
x
Aµ(s,x)jµa (s,x)

 (D.1)

here A is the free photon field and jµ is the free fermion current jµ(t) = ψ̄(t)γµψ(t). We can

expand this (dropping spatial arguments) as

UI = 1 +
i

2

∫ t

0
ds1A

µ(s1)jµ(s) +

(
i

2

)2 ∫ t

0
ds1

∫ s1

0
ds2A

µ(s1)jµ(s1)Aµ(s2)jµ(s2) + ...(D.2)

for U †I we have

U †I = 1− i

2

∫ t

0
ds1A

µ(s1)jµ(s1) +

(
−i
2

)2 ∫ t

0
ds1

∫ s1

0
ds2A

µ(s2)jµ(s2)Aµ(s1)jµ(s1) (D.3)

+ ....
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We start by stating the usual anti-commutation relations for free fermions

{ψa(t,x), ψb(0)} = 0 (D.4a)

{ψ̄a(t,x), ψ̄b(0)} = 0 (D.4b)

{ψa(t,x), ψ̄b(0)} = γ0δabδ(t)δ(x). (D.4c)

For currents we have

[ψa(t,x), jµb (0)] = {ψa(t,x), ψ̄b(0)}γµψb(0) (D.5a)

[ψ̄a(t,x), jµb (0)] = −ψ̄b(0)γµ{ψ̄a(t,x), ψb(0)} (D.5b)

[jµa (t,x), jνb (0)] = ψ̄a(t,x)γµ{ψ(t,x), ψ̄b(0)}γνψb(0) (D.5c)

− ψ̄b(0)γν{ψ̄a(t,x), ψb(0)}γµψa(t,x).

The current-fermion and current-current commutators can be written in terms of the retarded

propagator terms of the retarded propagator is now

[ψa(t,x), jµb (0)] = GR,ab(t,x)γµψb(0) (D.6a)

[ψ̄a(t,x), jµb (0)] = −ψ̄b(0)γµG∗R,ab(t,x) (D.6b)

[jµa (t,x), jνb (0)] = ψ̄a(t,x)γµGR,ab(t,x)γνψb(0)− ψ̄b(0)γνG∗R,ab(t,x)γµψa(t,x). (D.6c)

Lastly for free fields, both jµa (t,x) and ψ̃(t,x) commute with the photon operator so we have

[jµa (t,x), Aν(0)] = [Aµi (t,x), ψ(0)] = [Aµi (t,x), ψ̄(0)] = 0. (D.7)

D.1 Fermion Ladder

In the interaction picture, F(t,x) is given by

F(t,x) =
1

N2
f

Nf∑
i,j=1

Tr
[√

ρ̂{U †Iψi(t,x)UI , ψ̄j(0)}
√
ρ̂{U †Iψi(t,x)UI , ψ̄j(0)}†

]
(D.8)

where U †I ψ̃(t)UI is given by the expansion

U †Iψ(t)UI = ψ(t) +
i

2

∫ t

0
ds1[ψ(t), iAρ(s1)jρ(s1)] (D.9)

+

(
−i
2

)2 ∫ t

0
ds1

∫ s1

0
ds2[[ψ(t), iAρ(s1)jρ(s1)], iAσ(s2)jσ(s2)]

+ ...
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From Eqn. D.10 and using the definition of the retarded propagator, we can immediately see

that the zeroth order term in F(t,x) is given by

F0(t,x) = [iGR(t,x)][iG∗R(t,x)] (D.10)

The first nontrivial term is given by

F1(t,x) ∼ Tr
[√

ρ̂
{ i

2

∫ t

0
ds

∫
y
[ψ(t,x), iAµ(s,y)jµ(s,y)], ψ̄(0)

}
(D.11)

√
ρ̂
{ i

2

∫ t

0
ds′
∫
y′

[ψ(t,x), iAν(s′,y′)jν(s′,y′)], ψ̄(0)
}†]

Expanding the anti-commutator for each time fold, we get

{[ψ(t,x), iAµ(s,y)jµ(s,y)], ψ̄(0)} = i{Aµ(s,y)[ψ(t,x), jµ(s,y)], ψ̄(0)} (D.12)

= iAµ(s,y){{ψ(t,x), ψ̄(s,y)}γµψ(s,y), ψ̄(0)}

= iAµ(s,y)(iGR(t− s,x− y))γµ(iGR(s,y))

Putting everything together gives us

F1(t,x) = − 1

4Nf

∫
ss′
DµνW (s− s′,y − y′)GR(s,y)γµGR(t− s,x− y) (D.13)

× [G∗R(s′,y′)]γν [G∗R(t− s′,x− y′)]

which we identify as a ladder with one type one rung.

Now we can expand to second order on both time folds. We consider the expansion of the

commutator contained inside the anti-commutator on one time fold

[[, ], ] = [[ψ(t), iAµ(s1)jµ(s1)], iAν(s2)jν(s2)] (D.14)

= i2{ψ(t), ψ̄(s1)}γµψ(s1)jν(s2)[Aµ(s1), Aν(s2)]

+ i2{ψ(t), ψ̄(s1)}γµ[ψ(s1), jν(s2)]Aµ(s1)Aν(s2)

From the first term we get

{[[, ], ], }1 = i2{{ψ(t), ψ̄(s1)}γµψ(s1)jν(s2)[Aµ(s1), Aν(s2)], ψ̄(0)} (D.15)

= i2{ψ(t), ψ̄(s1)}γµψ(s1)ψ̄(s2)γν{ψ̄(0), ψ(s2)}[Aµ(s1), Aν(s2)]

= i2(iGR(t− s1))γµψ(s1)ψ̄(s2)γν(iG∗R(s2)[Aµ(s1), Aν(s2)]
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which will give us the type II rung. This can be written as

F2(t,x) = − 1

4Nf

∫
s1s′1

∫
s2s′2

Dµν(s1 − s2)Dµ′ν′(s′1 − s′2) (D.16)

GR(t− s1))γµGW (s1 − s′1)γµ′G
∗
W (s2 − s′2)γνG

∗
R(s2)γν′

The second term gives

{[[, ], ]}2 = i2{[[ψ(t), jµ(s1)], jν(s2)]Aµ(s1)Aν(s2), ψ̄(0)} (D.17)

= i2{ψ(t), ψ̄(s1)}γµ{ψ(s1), ψ̄(s2)}γν{ψ(s2), ψ̄(0)}Aµ(s1)Aν(s2)

= i2GR(t− s1)γµGR(s1 − s2)γνGR(s2)Aµ(s1)Aν(s2)

This will give two copies of the type I rung or a self energy term for ψ.

D.2 Squared Current-Current Commutator

In thr interaction C(t,x) is given by

C(t,x) =
1

N2
f

Nf∑
i,j=1

δµρδνσTr
[√

ρ̂{U †I j
µ
i (t,x)UI , j

ν
j (0)}

√
ρ̂{U †I j

ρ
i (t,x)UI , j

σ
j (0)}†

]
(D.18)

The zeroth order term can be deduced from the expression in D.6c

C0(t,x) = G∗W (t,x)γµiGR(t,x)γνGW (0)γνG∗R(t,x)γµ] (D.19)

+ G∗W (0)γνiG∗R(t,x)γµGW (t,x)γµiGR(t,x)γν

− G∗W (t,x)γµiGR(t,x)γνG∗W (t,x)γµiGR(t,x)γν

− G∗W (t,x)γνiG∗R(t,x)γµG∗W (t,x)γνiG∗R(t,x)γµ

Diagrammatically the first terms each look like a box but have momentum flowing in the

opposite directions. The second two terms also have opposite momentum flow but have

Wightman functions which are crossed. However, ladders with crossed legs should not con-

tribute to chaos given the pole structure [68].

The first nontrivial in the expansion for the current-current commutator is

C1(t,x) = Tr
[√

ρ̂
{ i

2

∫ t

0
ds

∫
y
[jµ(t,x), iAν(s,y)jν(s,y)], jρ(0)

}
(D.20)

√
ρ̂
{ i

2

∫ t

0
ds′
∫
y′

[jµ(t,x), iAν(s′,y′)jν(s′,y′)], jρ(0)
}†]
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Expanding the commutator on one of the time folds (again supressing spatial arguments)

gives us

[[jµ(t), Aν(s1)jν(s1)], jρ(0)] = Aν(s1)[[jµ(t), jν(s1)], jρ(0)] (D.21)

= Aν(s1)ψ̄(t)γµGR(t− s1)γνGR(s1)γρψ(0)

− Aν(s1)ψ̄(0)γρG∗R(s1)γνG∗R(t− s1)γµψ(t)

− Aν(s1)ψ̄(0)γρG∗R(t)γµGR(t− s1)γνψ(s1)

+ Aν(s1)ψ̄(s1)γνG∗R(t− s1)γµGR(t)γρψ(0)

The whole first order term will have 16 terms. However, most contain a photon three point

function and will vanish due to Furry’s theorem. The nonvanishing terms will gives us

C1(t,x) = − 1

4Nf

∫
sis′i

[
Dνν′W (s1)(G∗W (t)γµGR(t− s1)γνGR(s1)γρGW (0) (D.22)

γµ
′
G∗R(t− s′1)γνG∗R(s′1)γρ

+ G∗W (0)γρG∗R(s1)γνG∗R(t− s1)γµGW (t)γρ
′
G∗R(s′1)γν

′
G∗R(t′ − s′1)γµ

′

− G∗W (t)γµGR(t− s1)γνGR(s1)γρG∗W (t)γρ
′
G∗R(s′1)γν

′
G∗R(t′ − s′1)γµ

′

− GW (t)γρG∗R(s1)γνG∗R(t− s1)γµGW (t)γµ
′
G∗R(t− s′1)γνG∗R(s′1)γρ) + ...

]
where the primes will technically be contracted with the unprimed terms. These correspond

to boxes with one rung with momenta flowing in opposite directions. The parts in between

the Wightman functions are the same as the first order correction to the fermion ladder.

These are pictured in Fig. 7. To second order

[[[jµ(t), Aνjν(s1)], Aρjρ(s2)], jσ(0)] = Aν(s1)Aρ(s2)[[[jµ(t), jν(s1)], jρ(s2)], jσ(0)] (D.23)

+ [Aν(s1), Aρ(s2)][jµ(t), jν(s1)][jρ(s2), jσ(0)]

+ [Aν(s1), Aρ(s2)][[jµ(t), j̃ν(s1)], jσ(0)]jρ(s2)

By inspection, the first term will give us terms with two photon rails or a self energy correction.

The second term will give the second type of rung appearing in the fermion diagram. This

give four terms where the momentum flow in the boxes at either end can go in the opposite

direction. The third term can give us a ladder with self energy corrections on the rails.

E Details of numerical computations

Here we discuss the details of our numerical computation of Γk and λL. Our methods are

similar to those used in [68], with some adjustments made to address various issues. The
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most challenging aspect of the numerics is managing the light-cone singularities that appear

throughout the computation, which require additional care. To compute the components of

the polarization bubble, we dealt with this issue by a slight off-shift in the grid. From our

analysis in App. A, we know that all singularities that appear in the decay rate and the kernel

should be integrable, so we can manually remove them during each integration.

The first step in our computation is to compute the analytic continuation of the xx and

yy components of the polarization bubble. The imaginary parts are computed by numerical

integration of Eqn. A.28 using a standard MATLAB routine. The integral is computed

separately for k0 < |k| and k0 > |k| because of the non-analyticity at k0 = |k|. The real

parts are then obtained by a stable version of Kramers-Kronig given in the Eqn. A.41. These

are then used to precompute the values of the spectral function, retarded propagator, and

Wightman propagator on 200 × 200 grids for k0/T ∈ [0, 12.1], |k|/T ∈ [0, 12.21]. These

grids are then used to create two dimensional cubic interpolations for all propagators. Γk

is calculated from Eqn. B.6 on a 60 point grid for |k|/T ∈ [0, 12] where 60 grid points are

used for the angular integral. To calculate the exponent on varying grid sizes, we use a one

dimensional spline interpolation for the decay rate.

The kernel is computed using Eqn. C.2 on a 40× 40 grid for |k|/T, |k′|/T ∈ [0, 12] where

40 grid points are used for the angular integral. We find that most eigenvalues are complex

with negative real parts, but the eigenvalue with the largest real part is completely real. This

eigenvalue is identified as the Lyapunov exponent. There are also two eigenvalues which are

exactly zero. We also compute the kernel using an interpolation on a grid that is slightly

offset and find λL ≈ 4.06.
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