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The tunneling wave function of the universe is calculated exactly for a de Sitter minisuperspace
model with a massless conformally coupled scalar field, both by solving the Wheeler-DeWitt equa-
tion and by evaluating the Lorentzian path integral. The same wave function is found in both
approaches. The back-reaction of quantum field fluctuations on the scale factor amounts to a con-
stant renormalization of the vacuum energy density. This is in contrast to the recent suggestion of
Feldbrugge et al. that the back-reaction should diverge when the scale factor gets small, a → 0.
Similar results are found for a massive scalar field in the limit of a large mass. We also verified that
the tunneling wave function can be expressed as a transition amplitude from a universe of vanishing
size with the scalar field in the state of Euclidean vacuum, as it was suggested in our earlier work.

I. INTRODUCTION

In quantum cosmology the entire universe is treated
quantum mechanically and is described by a wave func-
tion, rather than by a classical spacetime. The wave func-
tion Ψ(g, φ) is defined on the space of all 3-geometries (g)
and matter field configurations (φ), called superspace. It
can be found by solving the Wheeler-DeWitt (WDW)
equation

HΨ = 0, (1)

where H is the Hamiltonian operator. Alternatively, the
wave function can be expressed as a path integral,

Ψ(g, φ) =

∫ (g,φ)

Dg Dφ eiS , (2)

where S is the action.
The choice of the boundary conditions for the WDW

equation and of the class of paths included in the path in-
tegral has been a subject of ongoing debate. The most de-
veloped proposals in this regard are the no-boundary [1]
and the tunneling [2–4] proposals.1 The debate around
these proposals has recently intensified [10–15], spurred
by the work of Feldbrugge et al. [10–12], who pointed out
that the path integral in (2) can be rigorously defined
with the aid of the Picard-Lefschetz theory (at least in
minisuperspace models, where the number of degrees of
freedom is truncated to a finite number).
Our focus in this paper will be on the tunneling wave

function of the universe. It was defined in Refs. [2, 3] by
specifying a boundary condition for the WDW equation.
Roughly, Ψ is required to include only outgoing waves at
the boundary of superspace, except for the part of the
boundary corresponding to vanishing 3-geometries (see
Refs. [2, 3] for more details). This is supplemented by
the regularity condition, requiring that Ψ remains finite
everywhere, including the boundaries of superspace,

|Ψ(g, φ)| <∞. (3)

1 For early work closely related to the tunneling proposal, see
Refs. [5–9].

The resulting wave function can be interpreted as de-
scribing a universe originating at zero size, that is, from
‘nothing’.
It was conjectured in Refs. [4, 8] that the same wave

function can be expressed as a path integral (2) with the
integration taken over (Lorentzian) histories interpolat-
ing between a vanishing 3-geometry and a given configu-
ration (g, φ) in superspace. In the simple de Sitter min-
isuperspace model describing a spherical universe with
a positive vacuum energy density this expectation was
confirmed in Ref. [16] and more recently in [10] using the
Picard-Lefschetz method. However, the situation with
extensions of the de Sitter model to perturbative super-
space, including scalar field and/or gravitational wave
perturbations, is still a matter of dispute.
The tunneling wave function in a perturbative WDW

approach has been discussed in Refs. [3, 17], with the con-
clusion that the modes of free scalar and gravitational
fields are described by Gaussian wave functions corre-
sponding to de Sitter invariant (Bunch-Davies) quantum
states. On the other hand, Feldbrugge et al. [11] ar-
gued that the path integral version of the tunneling pro-
posal predicts a runaway instability: the probability of
quantum fluctuations of the fields grows with their am-
plitude, so the conjecture of [8] does not hold. Similar
claims about instability of the tunneling proposal have
also been made in the earlier literature [18].
We have addressed this issue in our recent paper [15],

where we showed that quantum field fluctuations in the
tunneling wave function (2) are well behaved if the ac-
tion S is supplemented with a suitable boundary term.
Inclusion of this term is in fact necessary. The regular-
ity condition (3) requires that the mode functions satisfy
the Robin boundary condition at a → 0, where a is the
radius of the universe, and the boundary term must be
chosen so that the variational problem is well defined.
The path integral then gives the same wave function as
the WDW approach in [3, 17].
A related issue is the behavior of the mode functions

φn(a) at a → 0. The tunneling wave function has two
branches in the classically forbidden (under-barrier) re-
gion: one branch growing with a and the other decreasing
with a. On the growing branch our boundary conditions
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select the modes satisfying φn(0) = 0.2 But on the de-
creasing branch the mode function grow without bound
at a → 0, and some authors suggested that this may
cause serious problems.
In the path integral approach, Feldbrugge et al. [12]

have argued that such behavior of the mode functions
is unacceptable because it makes the mode action infi-
nite. However, we showed in [15] that inclusion of the
boundary term renders the action finite. We emphasize
that inclusion of this term is not a matter of choice: it is
dictated by our boundary conditions. Another concern
raised in Ref. [12] is that the unbounded growth of modes
would cause an infinitely strong back-reaction on the ge-
ometry. The perturbative expansion would then break
down when one tries to go beyond the linear perturba-
tion theory considered in [15].
Here, we are going to show that the back-reaction is

actually well under control. We first note that the prob-
lem, if it exists, should be present in the case of a massless
conformally coupled field, where the mode functions ex-
hibit the same behavior. Moreover, the same behavior of
the mode functions is obtained in the WDW approach,
so one would expect the same back-reaction problem to
arise there as well. An attractive feature of this model
is that it allows an exact solution, so the back-reaction
problem can be completely analyzed.
In the next section we consider a de Sitter model with

a massless conformal scalar field in the WDW approach
and show that the field back-reaction amounts to the
usual renormalization of the vacuum energy density. We
also consider a massive field in the perturbative super-
space framework and reach the same conclusion regard-
ing the back-reaction in the limit of a large mass. In
Section III we evaluate the Lorentzian path integral for
both massless and massive models. This yields the same
results as the WDW approach. We also verify that the
tunneling wave function can be expressed as a transi-
tion amplitude from a universe of vanishing size with the
scalar field in the state of Euclidean vacuum, as it was
suggested in [15]. Our results are summarized and dis-
cussed in Sec. IV.

II. WDW APPROACH

A. Perturbative superspace

We consider a closed FRW universe,

ds2 = a2(η)
(

N2dη2 − dΩ2
3

)

, (4)

with a conformally coupled scalar field φ. Here, a(η) is
the scale factor (radius of the universe), η is the confor-
mal time, and N is the lapse parameter, which is set to

2 The same modes are selected by the Hartle-Hawking wave func-
tion, which does not include a decreasing branch.

be constant. The action for this model is given by

S =

∫

√

−g(4) d4x
(

R

2
− ρv

)

+ Sm + SB, (5)

Sm =

∫

√

−g(4) d4x
[

−1

2
(∇φ)2 − 1

2
m2φ2 − 1

12
Rφ2

]

.

(6)

Here, ρv is the vacuum energy density, SB is the bound-
ary term, and we use Planck units with ~ = c = 1 and
8πG = 1. The boundary term is unimportant in the
WDW approach; it will be specified in the next section.
We expand the field φ as

φ(x, t) =
∑

φn(t)Qn(x) =
1

a(t)

∑

χn(t)Qn(x), (7)

∫

QnQ
∗
n′dΩ3 = δnn′ , (8)

where Qnlm(x) are suitably normalized spherical har-
monics and we have suppressed the indices l,m for
brevity.
The wave function of the universe Ψ(a, {φn}) satisfies

the WDW equation
[

1

24π2

∂2

∂a2
− 6π2V (a) +

∑

n

n2Hn

]

Ψ = 0. (9)

Here,

V (a) = a2 −H2a4, (10)

H2 = ρv/3, the scalar field Hamiltonian for the n-th
mode is

Hn = −1

2

∂2

∂χ2
n

+
1

2

(

n2 +m2a2
)

χ2
n, (11)

and n2 is the mode degeneracy factor. We also disregard
the ambiguity of ordering the factors a and ∂/∂a. This
is justified when ρv ≪ 1 and the scale factor can be
regarded as a semiclassical variable.3 With the modes
χn treated as small perturbations, a solution of Eq. (9)
can be expressed as a superposition of terms of the form
[17, 19, 20]

Ψ(a, χn) = A exp

[

−12π2S(a)− 1

2

∑

n

Rn(a)χ
2
n

]

, (12)

where A is a normalization constant. Substituting this
in (9) and neglecting terms O(χ4

n), we obtain
(

dS

da

)2

− V (a)− ~

12π2
S′′ +

~

12π2

∑

n

n2Rn = 0, (13)

(

dS

da

)(

dRn

da

)

−R2
n + ω2

n(a)−
~

24π2
Rn

′′ = 0. (14)

3 With a suitable choice of factor ordering the WDW equation
for the scale factor can be solved exactly and the semiclassical
approximation is not necessary [3].
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Here we explicitly wrote the Planck constant ~ = 1 only
to indicate the subleading terms in the WKB expansion.4

The terms proportional to S′′ and R′′
n are responsible for

WKB pre-factors, while the last term in (13) accounts
for the back-reaction of quantum field fluctuations on
the dynamics of the scale factor a. We shall first focus
on the leading semiclassical behavior, neglecting terms
proportional to ~.
In the classically forbidden range (a < H−1) it will

be convenient to introduce a Euclidean conformal time
variable τ via

da

dτ
=
dS

da
= ±

√

V (a). (15)

With V (a) from (10), this has the solution

a(τ) = (H cosh τ)−1 (16)

or

eτ =
1±

√
1−H2a2

Ha
. (17)

The upper and lower signs in Eqs. (15), (17) correspond
to the decreasing and growing branches of the wave func-
tion respectively. Note that for a→ 0 we have τ → −∞
on the decreasing branch and τ → +∞ on the growing
branch. More specifically,

Ha

2
≈ e∓τ (τ → ±∞). (18)

The tunneling boundary condition requires that only
an outgoing branch of the wave function should be
present in the classically allowed range. The relative
magnitude of the three branches can then be determined
using the WKB connection formulas at the turning point
a = H−1.

B. Mode functions

Turning now to Eq. (14) for Rn, we rewrite it in the
leading semiclassical order as

dRn

dτ
−R2

n + ω2
n(a) = 0. (19)

This is a Riccati equation; it can be reduced to a linear
equation by the standard substitution

Rn(τ) = − ν̇n
νn
, (20)

where dots stand for derivatives with respect to τ and
the functions νn(τ) satisfy the free field equation

ν̈n − ω2
nνn = 0. (21)

4 For a more detailed discussion of WKB expansion in the WDW
equation, see e.g. [21].

The regularity condition (3) requires that the functions
Rn(a) should satisfy Re{Rn(a)} > 0. It has been shown
in Ref. [15] that this condition is enforced, provided that
the mode functions satisfy the Robin boundary condition

dνn
dτ

= −nνn (22)

at τ → ±∞. This selects the solutions

νn(τ) ∝ exp(−nτ) (τ → ±∞). (23)

As we noted, τ → ±∞ corresponds to a → 0, with the
upper and lower signs corresponding respectively to the
growing and decreasing branches of the wave function.
We then find that νn ∝ a±n at a→ 0. Hence on the grow-
ing branch our mode functions νn are regular at a = 0,
while on the decreasing branch they grow without bound.
Note, however, that it follows from Eq.(20) that on

both branches of the wave function we have Rn(0) = n,
so the wave function Ψ(a, {χn}) is non-singular at a→ 0.
Furthermore, the back-reaction terms Rn in Eq. (13) are
all regular and show no sign of an infinite back-reaction.
One may still be concerned that this is an artifact of per-
turbative superspace and that the back-reaction problem
would arise in higher orders of perturbation theory in χn.
We address this issue in the next section, where we dis-
cuss the exactly soluble case of a massless field.

C. Massless field: an exact solution

For a massless field, m = 0, the solutions νn(τ) ∝
exp(−nτ) are exact and the mode functions exhibit the
same divergent behavior at τ → −∞. In this case the
WDW equation separates, and solutions can be found in
the form

Ψ(a, {χn}) = ψ(a)
∏

n

ψn(χn). (24)

Here, ψn(χn) are eigenstates ofHn with eigenvalues (pn+
1
2 )n, where pn is an integer occupation number indicating
the excitation level of the mode n. The scale factor wave
function ψ(a) satisfies

[

1

24π2

∂2

∂a2
− 6π2V (a) +

∑

n

n3(pn +
1

2
)

]

ψ(a) = 0,

(25)

where the last term represents the back-reaction of the
scalar field modes on the scale factor.
Eq. (25) can be rewritten as

[

1

24π2

∂2

∂a2
− 6π2a2 + 2π2a4 (ρv +∆ρv + ρr)

]

ψ(a) = 0.

(26)

Here,

ρr(a) =
1

2π2a4

∑

n

n3pn (27)
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is the energy density of scalar radiation, which is present
if some of the occupation numbers pn are non-zero, and

∆ρv =
1

4π2a4

∑

n

n3 (28)

is the correction to the vacuum energy density due to the
zero-point oscillations of the field modes.
The sum in Eq. (28) is divergent. It can be regularized

by introducing a cutoff at a physical momentum kmax =
Λ, which corresponds to the wavenumber nmax = aΛ.
Approximating the sum over n by an integral over k =
n/a, we have

∆ρv ≈ 1

4π2

∫ Λ

0

k3dk =
Λ4

16π2
, (29)

which is independent of a, as it should be.
If ρr 6= 0, it becomes the dominant term at small a, and

the back-reaction becomes very significant. In this case
another classically allowed region appears near a = 0,
so the wave function does not describe tunneling from
‘nothing’. Instead, it describes a universe originating at
a singularity, then bouncing and recollapsing or alterna-
tively tunneling to large values of a [21]. The tunneling
boundary conditions require that pn = 0. Then it fol-
lows from Eq. (26) that there is no back-reaction effect,
except for a constant renormalization of the vacuum en-
ergy density.
With pn = 0 the mode wave functions are given by

ψn ∝ exp
(

−n
2
χ2
n

)

. (30)

These wave functions decrease exponentially with χn, so
the fluctuations are well behaved.

D. Massive field back-reaction

Back-reaction of a massive quantum field can be ana-
lyzed in the limit ofm≫ H . In this case an approximate
solution of Eq. (14) is

Rn(a) ≈ ωn(a). (31)

This approximation is accurate, provided that

S′R′
n ≈ m2a

√

V (a)

ωn
≪ ω2

n. (32)

It is easily verified that this is always satisfied form≫ H .
In this limit the back-reaction term in the WDW equa-

tion (14) is given by

1

12π2

∑

n

n2Rn ≈ 1

12π2

∫

dnn2
√

n2 +m2a2

=
a4

12π2

∫ Λ

0

dkk2
√

k2 +m2, (33)

where we have defined a new variable k = n/a and a
UV cutoff scale Λ. As before, this term gives a constant
correction to the vacuum energy density,

∆ρv =
1

4π2

∫ Λ

0

dkk2
√

k2 +m2. (34)

For m . H the analysis is more complicated and we
will not attempt it here. We note also that our regular-
ization method (a momentum cutoff) is rather crude and
could miss subtle effects like trace anomaly. We expect
that such effects can be recovered using, for example, the
Pauli-Villars regularization, but we shall not attempt to
do that in this paper.

III. PATH INTEGRAL APPROACH

We now consider the model of a conformally coupled
field in the path integral approach, starting with the
massless case. The wave function is now given by

Ψ(a1, χn1) =

∫ ∞

0

dN

∫

DaeiSg(a,N)
∏

n

∫

Dχne
iSn[χn;N ]

(35)

where

Sg[a,N ] = 6π2

∫ η1

η0

[

− ȧ
2

N
+Na2

(

1−H2a2
)

]

dη (36)

is the gravitational part of the action,

Sn[χn;N ] =
1

2

∫ η1

η0

dη

(

1

N
χ̇2
n −Nn2χ2

n

)

+ SBn (37)

is the action for the n-th scalar field mode, and the
boundary term

SBn =
in

4π2a3

∫

B0

√

−g(3) d3yχ2
n =

in

2
χ2
n(η0) (38)

has been added at the lower boundary B0 : η = η0. As we
already mentioned, this term in the action is necessary to
make the variational problem consistent with the Robin
boundary condition (22). There is no boundary term at
the upper boundary (η = η1), because a Dirichlet bound-
ary condition is imposed there. As in the WDW formal-
ism, there is no direct coupling between the variables a
and χn, but both Sg and Sn depend on the lapse function
N , and this opens the possibility of back-reaction.

A. Semiclassical wave function

We decompose the modes χn(η) into a classical part
and a quantum fluctuation part:

χn(η) = χ̄n(η) + ξn(η). (39)
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The classical part χ̄n(η) satisfies the classical equation of
motion

1

N2
¨̄χn + n2χ̄n = 0 (40)

with the boundary conditions

˙̄χn(η0) = inNχ̄n(η0), χ̄n(η1) = χn1. (41)

The solution is

χ̄n(η) = χn1e
inN(η−η1). (42)

The path integral over χn can be represented as a prod-
uct ψn = ψncψnq, where

ψnc = eiSnc (43)

ψnq =

∫

DξneiS̃n[ξn;N ]. (44)

Here,

Snc = Sn[χ̄n;N ]

=
i

2N
χ̄n1 ˙̄χn1 −

i

2N
χ̄n0 ˙̄χn0 + iSBn(χ̄n) (45)

is the classical action for the solution χ̄n(η) and

S̃n[ξ;N ] =
1

2

∫ η1

η0

dη

(

1

N
ξ̇2n −Nn2ξ2n

)

. (46)

The last two terms in Snc cancel out and the classical
contribution to the wave function for χn becomes

ψnc ∝ exp

(

−1

2
Rnχ

2
n1

)

, (47)

where

Rn = − i

N

χ̇n1

χn1
= n. (48)

The path integral in ψnq is independent of χn, so the χn

dependence of ψn is

ψn ∝ exp
(

−n
2
χ2
n1

)

, (49)

the same as in the WKB approach (30).

B. Massless field back-reaction

Evaluation of the remaining path integral over ξn(η)
is similar to the standard calculation of functional deter-
minants, as e.g. in Ref. [22], except the standard calcu-
lation assumes Dirichlet boundary conditions ξn(η0) =
ξn(η1) = 0, while in our case the boundary conditions
are

ξ̇n(η0) = inNξn(η0), ξn(η1) = 0. (50)

The path integral can be reduced to Gaussian integrals
by expanding ξn(η) into an infinite series of complete

orthonormal functions fp(η) (p = 1, 2, . . . ) that satisfy
these boundary conditions. However, we can find such
a set of functions only if N is pure imaginary. In ad-
dition, ImN must be negative, so that we can perform
the Gaussian integral. We set N = −iÑ with Ñ being
real and positive and calculate the path integral. After
that we analytically continue the result as a function of
Ñ (= iN).
We expand ξn as

ξn(η) =

∞
∑

p=1

cpfp(η), (51)

where cp are real constants and normalize the functions
by

∫ η1

η0

dηfp(η)fp′(η) = δpp′ . (52)

The boundary conditions determine the form of the func-
tions as

fp(η) = Ap sin [kp (η − η1)] , (53)

where Ap are normalization constants. The frequency kp
is determined by

− tan (kp∆η) =
kp

nÑ
, (54)

and is labeled by an integer p, where ∆η ≡ (η1 − η0). It
satisfies

π

∆η

(

p− 1

2

)

< kp <
π

∆η
p. (55)

Note that kp+1−kp ≈ π/∆η in the limit of nÑ ≫ 1/∆η,
which is the case for η0 → −∞.
Expanding ξn as in Eq. (51), we can rewrite Eq. (44)

as

ψnq ∝
∫

∏

p

dcp exp

[

−1

2

∑

p

(

1

Ñ
k2p + n2Ñ

)

c2p

]

∝ exp

[

−1

2

∑

p

ln

(

1

Ñ
k2p + n2Ñ

)

]

, (56)

where we disregard the normalization constant. Noting
that η0 → −∞ as a(η0) → 0 for the classical solution, we

take a limit of nÑ ≫ 1/∆η, which allows us to approxi-
mate the infinite sum as an integral as follows:

ψnq ∝ exp

[

−1

2

∆η

π

∫ ∞

0

dk ln

(

1

Ñ
k2 + n2Ñ

)]

= exp

[

−1

2
nÑ

∫

dη

]

. (57)

In the last line we used ∆η =
∫

dη.

Since the result is an analytic function of Ñ , we can
analytically continue the resulting function to the whole
complex plane of Ñ . Rewriting Ñ as iN , we obtain

ψnq ∝ exp

[

−inN
∫

dη

]

. (58)
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Combining this with Eq. (36) and taking into account
the degeneracy factor n2 with summation over n, we find
that the wave function (35) reduces to

Ψ(a1, χn1) =

∫ ∞

0

dN

∫

DaeiS(a,N), (59)

where S(a,N) is given by Eq. (36) with the replacement

H2 =
1

3
ρv → 1

3
(ρv +∆ρv) (60)

and ∆ρv given by (28). Thus, as before, the effect of
quantum fluctuations amounts to a constant renormal-
ization of the vacuum energy density. The path-integral
(59) can now be calculated using the Picard-Lefschetz
theory as in the de Sitter minisuperspace model, like it
was done in Refs. [10, 16, 23].

C. Massive field back-reaction

In this section, we calculate the backreaction of a mas-
sive scalar field. We add Na2(η)m2χ2

n in the parenthesis
for Sn in Eq. (37). We shall first do the path integral over
χn in Eq. (35) treating N as an undetermined parameter
and a(η) as an unspecified function, so that integrations
over N and a(η) can be performed afterwards.
As before, we represent the field χn(η) as a sum of a

classical solution and a quantum fluctuation. The classi-
cal solution χ̄n(η) satisfies the equation

1

N2

d2χ̄n

dη2
+ ω2

n(η)χ̄n = 0, (61)

where

ω2
n(η) ≡ n2 + a2(η)m2. (62)

The corresponding classical action Snc can be found using
integration by parts and the classical field equation (61),

iSnc = −1

2
Rnχ

2
n1. (63)

Here Rn is defined by

Rn = − i

N

χ̇n1

χn1
, (64)

and satisfies Eq. (19) with the replacement dτ → −iNdη.
Note that since we do not specify the function a(η) in this
calculation, Snc (orRn) should be regarded as functionals
in terms of a(η). Now we shall use the WKB approxima-
tion, dRn/d(Nη) ≪ R2

n. Then an approximate solution
is given by Rn ≈ ωn(a1). Since this is independent of
the form of the function a(η) in the range of (η0, η1),
the classical part of the massive field does not affect the
equation of motion for a(η).
The quantum correction comes from Eq. (44) with

S̃n[ξ;N ] =
1

2

∫ η1

η0

dη

(

1

N
ξ̇2n −Nn2ξ2n −Nm2a2ξ2n

)

.

(65)

The boundary conditions are the same as in Eq. (50).
This path integral can be calculated in the limit of large
m by using an adiabatic expansion.
First, we divide the domain of integration ∆η = η1−η0

into K small intervals ǫ = ∆η/K,

∫ η1

η0

dη[...] =

K−1
∑

j=0

∫ ηj+1

ηj

dη[...], (66)

where ηj = η0+jǫ. Then let us focus on the j-th interval.
When ǫ is small enough, we can treat the scale factor
as a constant. In this case, we can calculate the path
integral in the same way as we did in Sec. III B with the
replacement of ∆η → ǫ and n → ωn(ηj), where ωn(η) =
√

n2 +m2a2(η). The result is

exp [−iNǫωn(ηj)] . (67)

As we noted above Eq. (57), this calculation requires
that the condition

Ñ
√

n2 +m2a2(η) ≫ 1/ǫ (68)

is satisfied. Furthermore, the assumption that the vari-
ation of the scale factor can be neglected in the interval
of (ηj , ηj+1) implies that

1

ωn

dωn

dη
≪ 1

ǫ
. (69)

We can choose ǫ satisfying both conditions (68) and (69),
provided that

1

Ñωn

dωn

dη
≪

√

n2 +m2a2(η). (70)

Anticipating that the back-reaction will only renormalize
the vacuum energy, we can estimate the left-hand side of
Eq. (70) using the known results for the de Sitter min-
isuperspace model. Then Eq. (70) is equivalent to the
adiabatic condition Eq. (32) and is satisfied for m≫ H .
Combining the contributions of different time intervals

and of different n, we find

∏

n

∫

Dχne
iSn[χn;N ]

≈
∏

n

exp



−iNǫ
∑

j

ωn(ηj)





≈ exp

[

−iN
∑

n

n2

∫ η1

η0

dη
√

n2 +m2a2(η)

]

. (71)

After replacing summation over n by integration and in-
troducing a cutoff, as in Section II.D, this reduces to

exp

[

−2π2iN∆ρv

∫ η1

η0

dηa4(η)

]

, (72)

where ∆ρv is given by Eq. (34). Substitution of (72)
into Eq. (35) amounts to renormalizing the vacuum en-
ergy density in the gravitational part of the action, in
complete agreement with the WDW analysis.
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D. Boundary term as initial wave function

In the above calculation, the boundary term is added
to the action as a fundamental law and the Robin bound-
ary condition is imposed on the quantum variable χn. On
the other hand, as it was noted in [15], one can interpret
the boundary term as an initial condition for the wave
function without imposing the Robin boundary condi-
tion. In this subsection, we focus on the massless case
for simplicity.
In this case the path integral for the n-th mode be-

comes

ψn(χn1, N) =

∫

Dχne
iSn[χn;N ]ψini(χn0), (73)

where

ψini(χn0) = exp
(

−n
2
χ2
n0

)

(74)

can be thought of as the wave function of the Euclidean
vacuum. Here, the integration is performed with Dirich-
let boundary conditions

χn(η1) = χn1, χn(η0) = χn0 (75)

and the integration measure includes an integral over
χn0.
The classical part of the path integral is then given by

ψnc =

∫

dχ̄n0 exp

[

i

2N
χ̄n1 ˙̄χn1

− i

2N
χ̄n0 ˙̄χn0 −

n

2
χ̄2
n0

]

, (76)

where χ̄n(η) satisfies the classical equation of motion
Eq. (40) with the boundary conditions (75). The solution
is

χ̄n(η) =
χn1 sin (nN(η − η0))− χn0 sin (nN(η − η1))

sin (nN∆η)
.

(77)

Using this solution, we can rewrite χ̇n1 and χ̇n0 in terms
of χn0 and χn1. As a result, the exponent is given by

in

2
cot (nN∆η)χ2

n1 −
in

sin (nN∆η)
χn1χn0

+
n

2
(i cot (nN∆η)− 1)χ2

n0. (78)

Assuming Re[i cot(nN∆η)− 1] > 0, we can perform the
integral over χn0. The result is given by

ψnc ∝ exp
[

−n
2
χ2
n1

]

, (79)

which is the same as Eq. (47). Although we assumed
Re[i cot(nN∆η) − 1] > 0, we expect that the result can
be used for arbitrary N by analytic continuation.
The boundary condition for the quantum fluctuation

part ψnq is also the Dirichlet boundary condition at the
final and initial surfaces. The calculation of the quantum

fluctuation part is similar to that in the previous section,
except that km is determined by

km =
πm

∆η
. (80)

The result in the limit of nÑ ≫ 1/∆η is the same as
Eq. (58).

IV. SUMMARY AND DISCUSSION

We discussed the tunneling wave function of the uni-
verse in de Sitter minisuperspace with a conformally cou-
pled massless scalar field using both the WDW and path
integral approaches. We found by an exact calculation (i)
that the two approaches give the same wave function and
(ii) that the back-reaction of quantum field fluctuations
on the scale factor amounts to a constant renormalization
of the vacuum energy density ρv. We also verified that
the tunneling wave function can be expressed as a transi-
tion amplitude from a universe of vanishing size with the
scalar field in the state of Euclidean vacuum, as it was
suggested in [15]. Furthermore, we considered a mas-
sive conformally coupled field in the limit of large mass,
m ≫ H , and found that once again the back-reaction
gives only a constant renormalization of ρv. We expect
the same conclusions to hold for arbitrary values of m,
but the analysis in the general case would require more
sophisticated regularizationmethods (e.g., Pauli-Villars),
and we leave it for future work.
We now comment on why the divergence of mode func-

tions at a → 0 in the tunneling wave function does not
result in infinite back-reaction, as it was expected by
Feldbrugge et al. in Ref. [12]. These authors assumed
that the effect of back-reaction can be accounted for sim-
ply by adding the classical energy-momentum tensor of
the modes to the right-hand side of classical Friedmann
equations. This, however, does not appear to be the case.
The mode functions νn(η) are related to the wave func-

tion (12) by Eq. (20). In the classically allowed range
(a > H−1) these are the ”negative energy” mode func-
tions [20, 24]. These mode functions are complex, and
when substituted in the energy-momentum tensor for a
real scalar field, they would give a complex Tµν . Back-
reaction of quantum fields on the metric has been exten-
sively studied by calculating the expectation value 〈Tµν〉
in a classical spacetime (for a review see [25]). The con-
tribution of a given mode νn to the expectation value
〈T00〉 is given by

1

4π2a4
(

ν̇∗nν̇n + n2ν∗nνn
)

. (81)

With νn(t) = (2n)−1/2 exp(inη), this gives

n

4π2a4
, (82)

which is real and agrees with Eq. (28). One can expect
that the corresponding contributions on the two branches
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of the wave function in the classically forbidden range can
be obtained from (81) by analytic continuation η → ±iτ .
This gives the same result (82) and no divergence.

We note also that even though the mode functions di-
verge at a → 0, the functions Rn(a) are finite, so the
wave function of the universe (12) is well behaved. Fur-
thermore, the functions Rn(a) describe the effect of back-
reaction in the WDW equation (13); hence this effect is
clearly finite, at least in the WDW approach.

Another objection that has been raised against the
path integral form of the tunneling wave function is that
it gives a Green’s function (propagator) rather than a
solution of the WDW equation [13, 26]. This, however,
is not a valid distinction in the present case. The delta
function in the propagator equation is δ(a), so its sup-
port is at the boundary of superspace (a = 0) and thus
the propagator satisfies the WDW equation everywhere
in superspace. This is supported by our result that the
path integral version of the tunneling wave function co-
incides with the WDW version.

We finally comment on the most recent version of the
no boundary wave function [26]. The original proposal
[1] was based on the Euclidean path integral, but it was
soon realized that as it stands this integral is divergent,
because the gravitational part of the Euclidean action is
unbounded from below. Attempts have been made to fix
the problem by extending the path integral to complex
metrics [16, 18]. However, the space of complex metrics
is very large and no obvious choice of the set of com-
plex histories in the path integral suggests itself as the
preferred one. The no-boundary approach was recently
applied to several minisuperspace models by Dorronsoro
et al. [13, 14], where they used different lapse integration
contours in the complex plane for different models. (An
extensive list of references to earlier literature can also
be found in these papers.) This analysis made it obvious
that the no boundary proposal is incomplete without a
choice of a complex integration contour in the path in-

tegral. Some general requirements to this contour have
been given in Ref. [18], but it is not clear that they can
always be satisfied or what contour should be used in
models admitting a number of choices that satisfy the
requirements.
Most recently, Halliwell, Hartle and Hertog [26] pro-

posed yet another version of the no boundary wave func-
tion, apparently in an attempt to address the difficul-
ties indicated above. They suggest that the semiclassical
wave function of the universe has the form

Ψ(g, φ) ≈
∑

i

di exp (−Si(g, φ)) . (83)

Here, Si(g, φ) is the Euclidean action evaluated for a reg-
ular (generally complex) solution of Einstein’s equations
on a four-disk (a saddle point) with boundary conditions
(g, φ) on its boundary. The index i labels different sad-
dle points. No attempt has yet been made to extend this
wave function proposal beyond the semiclassical level.
In this proposal there is no path integration, so one

does not have to choose between different integration con-
tours, but the choice of the coefficients di appears to be
arbitrary. Halliwell et al. suggest that saddle points pre-
dicting unbounded quantum fluctuations should be ex-
cluded (assigned di = 0) and that saddle points with
actions Si and S∗

i should contribute with equal weight.
But this still allows much room for different choices, es-
pecially if the model admits a large number of saddle
points. In our view, the basic criticism against this ap-
proach still remains: it does not specify the wave function
uniquely. But the wave function of the universe should
be unique, since if it is not, then what determines the
choice between different alternatives?
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