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We derive the general conditions for a large family of shift symmetry breaking degenerate higher
order scalar-tensor (DHOST) theories to admit stealth black hole solutions. Such black hole config-
urations correspond to vacuum solutions of General Relativity and admit a scalar hair which does
not gravitate, revealing itself only at the perturbative level. We focus our investigation on hairy
Schwarzschild-(A)dS or pure Schwarzschild solutions, dressed with a linear time-dependent scalar
hair, and assuming a constant kinetic term. We also discuss subclasses of this family which satisfy
the observational constraint cgrav = clight, as well as the recent constraint ensuring the absence of
graviton decay. We provide at the end concrete examples of DHOST lagrangians satisfying our con-
ditions. This work provides a first analysis of exact black hole solutions in shift symmetry breaking
DHOST theories beyond Horndeski.

Since the discovery of the acceleration of the expan-
sion of the universe, an important effort has been de-
voted in constructing large scale modification of General
Relativity (GR). Scalar tensor theories are by far the
most studied extensions. As any modified gravity the-
ory, these scalar-tensor candidates have to successfully
explain the observed acceleration on large scale, while
restoring GR on scales in which the theory is experimen-
tally confirmed, typically for the local tests within the
solar system. Additionally to the IR modifications in the
cosmological sector, the new scalar-metric coupling al-
lows to violate some of the assumptions of the famous
no hair theorem which strongly restricts the black hole
solution in General Relativity [1–3].

The search for such hairy black hole solutions beyond
General Relativity is however quite challenging. Hawk-
ing and latter, Sotiriou and Faraoni, derived no hair the-
orems for Brans-Dicke scalar tensor theories and its gen-
eralization [4]. Exact black hole solution with scalar hair
were then found by violating some assumptions of these
theorems, an example of which is the BNBB hairy black
hole [5]. However, such scalar hairy configurations are
usually unstable and the scalar field fails to be regular at
the horizon. An additional no hair theorem was found
latter on in the more general shift symmetric Horndeski
theory in [6]. Soon after, it was shown how to by pass the
assumptions of this no-go result. Hairy solutions were ob-
tained following two different strategies: by introducing a
Gauss-Bonnet-Scalar coupling [7–11], or by allowing the
scalar field for a linear time-dependent profile [13].

In this work [13], a stealth Schwarzschild-(A)dS black
hole dressed with a linear time-dependent scalar field was
obtained. Such stealth configuration corresponds to a
vacuum metric solution of GR supplemented with a non-
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trivial scalar hair which does not gravitate. The scalar
field is a spectator admitting a vanishing energy momen-
tum tensor and its physical effects only show up at the
perturbative level. Such stealth black hole solution were
initially introduced in [12] and represent the simplest ex-
ample of hairy black hole configuration, i.e in which the
scalar field remains regular on the horizon.
These stealth black hole configurations were then in-

vestigated in several scalar-tensor extensions, such as
bi-scalar extension of Horndeski [14], covariant galileons
theories [15], shift symmetric beyond Horndeski [16–19],
and more recently in shift symmetric breaking Horndeski
theory [20, 21]. More details on the black holes solutions
and stars within the Horndeski and beyond Horndeski
classes can be found in [22–25].
For single scalar field extension of GR, the most gen-

eral theory constructed so far, up to cubic order in the
derivative of the scalar field, was presented in [26], and
dubbed degenerate higher order scalar tensor theories,
i.e DHOST, owing to the degeneracy property of its la-
grangian which ensures the absence of an Ostrogradsky
ghost. See [27] for a recent review on DHOST theories
and [28–32] for further details, as well as [33] for a recent
investigation of their cosmological sector and [35] con-
cerning the Vainshtein mechanism. This DHOST con-
struction encompasses most of the existing scalar-tensor
candidates studied so far, among which the GLPV theory
[36, 37], and represents therefore an unifying framework
to discuss viable scalar-tensor theories and confront them
to observational tests. (See [38] for a review with a more
general perspective).
Recently, the joined detection of the events GW170817

and GR170817 led to the new observational constraint
that the speed of gravitational wave be equal to the
speed of light, i.e cgrav = clight, (up to deviations of or-
der 10−15), at least on cosmological scales [39, 40]. The
remaining DHOST theories satisfying this observational
constraint were derived in [41], restricting drastically the
viable candidates. Additional constraint preventing from
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the potential decay of graviton into dark energy fluctua-
tions were presented in [42].
In this letter, we provide a first scan of shift symmetry

breaking DHOST theories beyond Horndeski and derive
the general conditions for a large class of these theories
to admits stealth black hole configurations. We focus on
hairy Schwarzschild-(A)dS and pure hairy Schwarzschild
black hole solutions. Th scalar field is assumed to be
linearly time-dependent while its kinetic term remains
constant.
This work is organized as follow. In section-A, we

present the general DHOST model. In section-B, we
discuss the algorithm to solve the modified field equa-
tions in the spherically symmetric case and with our
scalar profile. This algorithm is borrowed from [19]. In
section-C, we present our general conditions for the hairy
Schwarzschild-(A)dS and pure Schwarzschild black hole
solutions. Section-D is devoted to the subclasses satisfy-
ing the observational constraint cgrav = clight as well as
the subclass free from graviton decay. In section-E, we
consider also the reduction to the GLPV and Horndeski
subclasses satisfying cgrav = clight. Finally, in section- F,
we provide concrete examples of lagrangians solutions of
our conditions.
Our work extends the results obtained in previous

works in several subclasses of shift symmetric DHOST
theories [16–20] as well as on shift symmetry breaking
Horndeki theory satisfying cgrav = clight [21].

A. The DHOST model

Let us consider the family of DHOST theories given by
the action

SvDHOST[g, φ] =
∫

d4
√

|g|
∑

I L
I (g, φ) (1)

where the different lagrangians read

L2 = P (φ,X) (2)

L3 = Q (φ,X)�φ (3)

L4 = F (φ,X)R (4)

L5 = A3 (φ,X)φµφνφµν�φ+A4 (φ,X)φµφλφµνφ
νλ

+A5(φ,X) (φµνφ
µφν)

2
(5)

where the six potentials (P,Q, F,AI) with I ∈ {3, 4, 5}
are free functions of φ and its kinetic term X . We have
adopted the notation of [41]. This family of theories cor-
responds to the quadratic DHOST theories amputated
from the lagrangians L1,1 = (�φ)

2
and L1,2 = φµνφ

µν ,
namely A1 = A2 = 0 in the standard notation [28].
This class of DHOST theories can be made consistent

with the recent observational constraint from GW170817
which imposes that the speed of gravitons equal the speed
of light (up to deviations of order 10−15), at least on cos-
mological scales [41]. In order to satisfy this constraint,
the last two functions A4(φ,X) and A5 (φ,X) are related

to F (φ,X) and A3 (φ,X) through

A4 = 1
8F

(

48F 2
X − 8(F −XFX)A3 −X2A2

3

)

(6)

A5 = 1
2F (4FX +XA3)A3 (7)

The potentials A3(φ,X) and F (φ,X) remain free func-
tions, and the viable DHOST theories contain thus only
four free potentials (P,Q, F,A3).
In the following, we shall derive general conditions on

the potential of the DHOST family (1) to admit stealth
black hole solutions without restricting ourselves to the
subclass satisfying cgrav = clight. This constraint, to-
gether with the constraint derived in [42] concerning the
graviton decay, will be discussed in the last section. The
reduction to the beyond Horndeski (GLPV) and Horn-
deski theories will be also discussed at the end.

B. Solving the fields equations: the algorithm

In order to solve the field equations, we adopt the ele-
gant strategy presented in [19]. Starting from the model
(1), we derive the field equations that we write in a com-
pact way

δL = E
(g)
αβ δg

αβ + E(φ)δφ (8)

The field equations being rather complicated, we do not
write them explicitly here. Instead, the equation of mo-
tion with respect to the metric gαβ can be written in the
simple form

FGαβ = Tαβ (9)

(Qφ −QX − PX)�φ = ζ (10)

where Gαβ is the standard Einstein tensor and where
Tαβ and ζ account for all the other terms obtained from
the variation of the action respectively w.r.t gαβ and φ,
containing therefore all the higher order terms.
Looking for stealth black hole solutions implies that

the scalar field does not gravitate. This can be trans-
lated in (9) by Tαβ = 0. Then, one can solve the l.h.s
of the equation of motion using a GR black hole solution
such that Gαβ = 0. A common strategy is to assume
for example a constant kinetic term for the scalar field
profile, such that X = X∗. Then, under some specific
conditions on the potentials of the Lagrangian, the ef-
fective energy momentum tensor Tαβ can be written as

Tαβ = f(X)Tαβ (11)

such that f(X∗) = 0, and example of which being f(X) =
log (X∗/X). Below, we should derive the condition on the
DHOST lagrangian (1) to admit such stealth black hole
solutions.
We consider therefore a static spherical symmetric

metric which reads

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 (12)



3

and we choose a linear time-dependent profile for the
scalar field

φ(t, r) = φ̇ct+ ψ(r) (13)

where φ̇c is assumed to be a constant. Following [19], we

introduce the notation φ̇c = Mq which implies that the
kinetic term reads

X = −
gαβ∂βφ∂αφ

M2
= q2e−ν − e−λ (ψ

′)
2

M2
(14)

In order to further (drastically) simplify the field equa-
tions, we also assume that the kinetic term is constant
everywhere, such that X = X∗ = q2. Notice that the ki-
netic energy −M2X is negative since the gradient of the
scalar field is a time-like vector. With this assumption,
all the unknown potentials, commonly denoted f(φ,X),
can now be written as function

f (φ,X) = f (qt+ ψ(r), X∗) (15)

In the following, we restrict further to potentials f(φ,X)
satisfying

fφ(φ,X∗) = 0 ⇒ ∂nφf(φ,X∗) = 0 ∀n ∈ N (16)

This will allow us to simplify our conditions in the beyond
shift symmetric case. Notice that while this condition is
quite general, it is still possible to find counter-example
in principle, and thus, we are potentially restricting the
set of allowed potentials.
The third simplification, inherited from the assump-

tion of a constant kinetic term, lies in that the radial
dependent part of the scalar field is given by

ψ′ =Mq
√

eλ (1 + e−ν) (17)

Hence, ψ′ is directly known in term of the metric com-
ponents, as well as its higher order derivatives: ψ′′, ψ′′′

etc. This can be plugged back in the field equations to
further simplify the expression.
In the end, the field equations becomes lengthy expres-

sions depending on the radial coordinate r. Now these
field equations have to be satisfied at any point of space-
time, and thus at any couple (t, r). The elegant strategy
followed in [19] is to expand the resulting field equations
around a given r∗ and check the resulting conditions be-
tween the unknown potential AI(qt+ψ(r), q2) and their
derivatives. Denoting ǫ = r − r∗, the expansion of the
equations of motion can be written as

Ett(r, t) =
∑m

n E
(n)
tt (t, r)

∣

∣

r∗
ǫn +O(ǫm) = 0 (18)

Err(r, t) =
∑m

n E
(n)
rr (t, r)

∣

∣

r∗
ǫn +O(ǫm) = 0 (19)

Eφ(r, t) =
∑m

n E
(n)
φ (t, r)

∣

∣

r∗
ǫn +O(ǫm) = 0 (20)

The conditions we obtain out of this procedure are of the
form

E
(n)
tt (t, r)

∣

∣

r∗
= E(n)

rr (t, r)
∣

∣

r∗
= E

(n)
φ (r, t)

∣

∣

r∗
= 0 (21)

but these conditions are not all independent. Moroever,
they are only valid when evaluated at X = X∗ = q2.
Once conditions on the potentials (P,Q, F,AI) (and their
derivatives) are obtained at a given order, we inject them
back in the full field equations and expand once more
around the same r∗ to obtain new conditions. The algo-
rithm closes when we obtain enough conditions between
the potentials such that the full field equations are com-
pletely satisfied.

Notice that this perturbative algorithm is rather gen-
eral, and especially useful when working with such com-
plicated Lagrangian. Owing to the large freedom in the
potentials AI(φ,X), the search for black hole solutions
in these theories is somehow reversed, since one can start
with any black hole metric and scalar profile, and us-
ing this algorithm, look for a specific Lagrangian which
admits this ansatz as solution of its field equations.

Obviously, one can in principle proceed to the expan-
sion around any value of r. But in practice, some spe-
cific values will allow to close the algorithm in a quicker
way. In the following, we shall expand the field equa-
tions around r∗ = 0. The set of conditions we obtained
being quite involved to reduce, we emphasize that, once
the full conditions on the potentials have been found, we
have checked the consistency of our solution by inject-
ing it directly in the full (spherically symmetric reduced)
field equations and check that there are identically van-
ishing. Having review the method of resolution of the
field equations borrowed from [19], we present now our
result.

C. Exact hairy black hole solutions

We consider the Schwarzschild-(A)dS metric given by

eν = e−λ = 1−
2m

r
− Λr2 (22)

The radial dependent part of the scalar field is straitfor-
wardly obtained by integrating (17) and reads

ψ′(r) =Mq

√

(2m+ Λr3) r

(2m− r + Λr3)
2 (23)

and one observes that ψ′(r) → 0 when r → 0. We can
now inject this in the equations of motion and proceed
to the expansion around r∗ = 0.

1. Stealth Schwarzschild-(A)dS solution

Applying the algorithm reviewed above, we obtain a
complete set of conditions on the potentials which fully
solve the field’s equations. These conditions, valid only
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when evaluated at the value X∗ = q2, read

Qφ

∣

∣

X∗

= Fφ

∣

∣

X∗

= 0 (24)

QX

∣

∣

X∗

= −
X

2
A3φ

∣

∣

X∗

(25)

P
∣

∣

X∗

= −6ΛF
∣

∣

X∗

(26)

A3

∣

∣

X∗

=
2

9XΛ
(PX + 12ΛFX)

∣

∣

X∗

(27)

At this stage, there are no condition on the potentials
A4 and A5, and the class solution of our conditions de-
pend still on sic free potentials (P,Q, F,AI). With this
conditions (24) to (27), we have obtained a subset of
DHOST theories, larger than the sector staisfying cgrav =
clight, which admits a stealth Schwarzschild-(A)dS solu-
tion dressed with a linear time dependent scalar field
(13), assuming a constant kinetic term X = X∗ = q2.

2. Stealth Schwarzschild solution: Λ = 0

It is interesting to investigate the case Λ = 0 which cor-
responds to a pure Schwarzschild geometry. In that case,
several of the previous conditions are modified because
some of them are proportional to Λ and therefore disap-
pear for pure Schwarzschild. The new set of conditions,
valid at X = X∗, are

Qφ

∣

∣

X∗

= Fφ

∣

∣

X∗

= 0 (28)

P
∣

∣

X∗

= PX

∣

∣

X∗

= 0 (29)

QX

∣

∣

X∗

= −
X

2
A3φ

∣

∣

X∗

(30)

Once again, there are no condition on the potentials A4

and A5 which remain free. In total, this class depends
still six free potentials (P,Q, F,AI) subject to conditions
(28)-(30) at X = X∗.
We can now investigate additional requirement for the

subclass of DHOST that we found in order to satisfy the
recent observational constraints.

D. Observational constraints

1. Subsector satisfying cgrav = clight

We can now impose the recent observational constraint
cgrav = clight and reduce the above constraints to the
viable subsector of DHOST remaining after GW170817
[41].
Schwarzschild-(A)dS: This is done by imposing the re-

lations (6) and (7) to obtain the two last potentials A4

and A5 at X = X∗. These conditions read for A4(φ,X)

A4

∣

∣

X∗

=
6F 2

X

F
− (12ΛFX+PX )2

162Λ2FX

+ 2(X−1)(12ΛFX+PX )
9ΛX

∣

∣

X∗

(31)

while for A5(φ,X), one has

A5

∣

∣

X∗

=
2 (12ΛFX + PX) (30ΛFX + PX)

81Λ2XF

∣

∣

X∗

(32)

which ensure that cgrav = clight for the Schwarzschild-
(A)dS solution sector.

Pure Schwarzschild: In that case, we don’t have any
constraint on (A3, A3X , F, FX) at X = X∗, there is no
additional constraint on A4 and A5 for this subsector.
Notice that despite the above constraints on A4 and A5

at X = X∗, the subset of theories satisfying (31) and (32)
has again six free potentials (P,Q, F,AI).

2. Absence of graviton decay

If one takes into account now the recent constraint de-
rived in [42] for the absence of graviton decay, in addition
to the constraint cgrav = clight, then the DHOST action
(1) reduced to

L = P (φ,X) +Q(φ,X)�φ+ F (φ,X)R

+ 6F 2
X(φ,X)/F (φ,X) φµφλφµνφ

νλ (33)

with only three free potentials (P,Q, F ). It implies that

A3(φ,X) = 0 A4(φ,X) = 6F 2
X(φ,X)/F (φ,X) (34)

Schwarzschild-(A)dS: The constraint (27) implies that

FX

∣

∣

X∗

= −
PX

12Λ

∣

∣

X∗

(35)

which, as expected, automatically satisfies the constraint
on A4 at X = X∗ as seen from (31).
Pure Schwarzschild: In that case, the vanishing of

A3(φ,X) implies from (30)

QX

∣

∣

X∗

= 0 (36)

and no additional restriction than (28)-(29) occurs.
It implies therefore that the subclass of shift symme-

try breaking DHOST theories successfully accounting for
the observational constraints cgrav = clight, and satisfying
the requirement of absence of graviton decay, still admits
non trivial stealth black hole solutions. In each case, the
remaining theory has still three free potentials (P,Q, F )
still depending on φ and X .

E. Beyond Horndeski and Horndeski subclasses

We consider now the GLPV and Horndeski subclasses
satisfying cgrav = clight. These two subclasses are given,
in the standard notation, by P = G2, Q = G3 and F =
G4 with

A3 = −A4 = −4FX/X GLPV (37)

A3 = A4 = FX = 0 Horndeski (38)



5

and A5 = 0 valid for any φ and X . The resulting la-
grangian depends on only three free potential (P,Q, F ).

Schwarzschild-(A)dS: Using (31)-(32), one obtains the
following constraints in each cases

FX

∣

∣

X∗

= −
PX

30Λ

∣

∣

X∗

GLPV (39)

PX

∣

∣

X∗

= QX

∣

∣

X∗

= 0 Horndeski (40)

additionally to the constraint (24) and (26).

Pure Schwarzschild: For this solution, one obtains
from (30) the following constraints

No additional constraints GLPV (41)

QX

∣

∣

X∗

= 0 Horndeski (42)

additionally to constraints (28)-(29). Notice that in the
Horndeski case, since F depends only on φ, constraint
(28) implies that F (φ) = ζ where ζ is a constant [45].

F. Concrete examples

As a last step, we provide concrete examples of
potentials solutions of our conditions for both the
Schwarzschild-(A)dS and pure Schwarzschild cases for
the general DHOST case, but also for the GLPV and
Horndeski subclasses.

1. Examples for DHOST

Let us first focus on the general DHOST lagrangian.

Schwarzschild-(A)dS: An example of solution of our
conditions (24)-(27) is given by

F (φ,X) = f1(φ,X) log

(

q2

X

)

+ f2(X) (43)

P (φ,X) = f3(φ,X) log

(

q2

X

)

− 6Λf2(X) (44)

A3(φ,X) =
2

9XΛ

[

6Λf2X(X)−
f3(φ,X) + 12Λf1(φ,X)

X

]

(45)

Q(φ,X) = −
1

9Λ
[f3φ(φ,X) + 12Λf1φ(φ,X)] log

(

q2

X

)

+

∫

dX log

(

q2

X

)

f4(X) (46)

where (f1, f3) are free potentials depending on both φ
and X while (f2, f4) are free potentials depending only
on X .

Pure Schwarzschild: For the pure Schwarzschild so-
lution, an example of potentials solving our conditions

(28)-(30) is given by

F (φ,X) = f1(φ,X) log

(

q2

X

)

+ f2(X) (47)

P (φ,X) = f3(φ,X) log2
(

q2

X

)

(48)

Q(φ,X) =
X2

2
A3φ(φ,X) log

(

q2

X

)

+

∫

dX log

(

q2

X

)

f4(X) (49)

where again, (f1, f3) are free potentials depending on
both φ and X while (f2, f4) are free potentials depending
only on X .

2. Examples for GLPV

We focus now on the GLPV subclass satisfying the
observational constraint cgrav = clight.

Schwarzschild-(A)dS: A set of potentials solutions of
our conditions is given for example by

F (φ,X) = f1(φ,X) log

(

q2

X

)

+ f2(X) (50)

P (φ,X)

= [−30Λf1(φ,X) + 24ΛXf2X(X)] log

(

q2

X

)

− 6Λf2(X)

(51)

A3(φ,X)

= −
4

X

[

f1X(φ,X) log

(

q2

X

)

−
f1(φ,X)

X
+ f2X(X)

]

(52)

Q(φ,X) = 2 [f1φ(φ,X)] log

(

q2

X

)

+

∫

dX log

(

q2

X

)

f4(X)

(53)

which depends again on four free potentials.
Pure Schwarzschild solution: For the pure

Schwarzschild case, an example of potentials solu-
tions of our conditions is given by

F (φ,X) = f1(φ,X) log

(

q2

X

)

+ f2(X) (54)

P (φ,X) = f3(φ,X) log2
(

q2

X

)

(55)

A3(φ,X) = −
4

X
(f1X(φ,X) log

(

q2

X

)

−
f1(φ,X)

X
+ f2X(X))

(56)

Q(φ,X) = 2f1φ(φ,X) log

(

q2

X

)

+

∫

dX log

(

q2

X

)

f4(X)

(57)
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3. Examples for Horndeski

Finally, let us now consider the Horndeski theory with
cgrav = clight. An example of Horndeski lagrangian ad-
mitting a stealth Schwarzschild-(A)dS black hole solution
for our specific scalar profile is the standard Einstein-
Hilbert term plus a cosmological constant together with
a generalized Galileon term, given by

LHorndeski = R− 6Λ + log2
(

q2

X

)

q(φ,X)�φ (58)

where q(φ,X) is a free potential. One can easily
check that it satisfies conditions (40). The pure stealth
Schwarzschild solution is simply obtained for Λ = 0. As
mentioned in the introduction, the square log term allows
to obtain an effective energy momentum tensor for the
scalar field of the form (11), which vanishes for X = q2.
Therefore, the scalar field does not gravitate and the met-
ric remains a pure GR solution. This provides a simple
example of the mechanism behind stealth black hole con-
figuration in such higher order scalar-tensor theories.

I. CONCLUSION

In this letter, we have provided a first scan of the spher-
ically symmetric sector of a large family of shift symmetry
breaking DHOST theories (the quadratic lagrangian with
A1 = A2 = 0). We have derived general conditions for
this subclass to admit the vacuum Schwarzschild-(A)dS
solution, Eq.(24)-(27), or pure Schwarzschild solution of
GR, Eq.(28)-(30), with a linear time-dependent scalar
dressing as well as for a static scalar dressing under the
assumption of a constant kinetic term, i.e X = q2.
Then, we have restricted the class of theories by re-

quiring the remaining shift symmetric DHOST theories,
solutions of our conditions, to satisfy the observational
constraint cgrav = clight as discussed in [41], and finally,

the recent theoretical requirement of absence of graviton
decay discussed in [42]. For all these viable subclasses,
we have shown that stealth black hole solutions, with our
without a cosmological constant, exist.
Finally, we have consider the restriction to the shift

symmetry breaking GLPV and Horndeski subclasses,
statisfying the constraint cgrav = clight. We have shown
that in each subclass, one can also find stealth black holes
solutions upon satisfying the conditions (39)-(42). In the
last section, we have provided concrete examples satisfy-
ing the conditions we found.
This work extends previous results focusing on stealth

black hole solution in DHOST with a constant scalar
profile [20], in shift symmetry breaking Horndeski the-
ory with cgrav = clight for more general scalar profiles
[21], as well as previous results obtained for linear time-
dependent scalar dressing in shift symmetric GLPV and
DHOST theories with or without cgrav = clight [16–19].
A crucial step for the future would be to investigate the

fate of the stealth black hole solutions considered here at
the perturbative level to fully contemplate the scalar field
back-reaction on the metric and investigate its stability.
Indeed, it is well known that the stealth hairy black hole
solutions found in shift symmetric Horndeski theory with
X = Constant, are either unstable or strongly coupled as
shown in [43]. We leave this stability analysis for future
work.

Acknowledgement : We are grateful to H. Motohashi
and M. Minamitsuji for useful discussions and for having
pointed to us a mistake in the shift symmetry limit of our
conditions in the previous version of this draft, thank to
[44]. We would like also to thanks C. Charmousis, D.
Langlois and K. Noui for their comments on a first ver-
sion of this work. This work was supported by the Na-
tional Science Foundation of China, Grant No.11475023
and No.11875006 (J. BA), as well as by the China Post-
doctoral Science Foundation with Grant No. 212400209
(J. BA).

[1] M. S. Volkov, “Hairy black holes in the XX-th and XXI-st
centuries,” arXiv:1601.08230.

[2] C. A. R. Herdeiro and E. Radu, “Asymptotically flat
black holes with scalar hair: a review,” Int. J. Mod. Phys.
D 24, no. 09, 1542014 (2015) arXiv:1504.08209.

[3] J. D. Bekenstein, “Black hole hair: 25 - years after,” In
*Moscow 1996, 2nd International A.D. Sakharov Confer-
ence on physics* 216-219 arXiv:9605059.

[4] T. P. Sotiriou and V. Faraoni, “Black holes in scalar-
tensor gravity,” Phys. Rev. Lett. 108, 081103 (2012)
1109.6324.

[5] K. A. Bronnikov and Y. N. Kireev, “Instability of Black
Holes with Scalar Charge,” Phys. Lett. A 67, 95 (1978).

[6] L. Hui and A. Nicolis, “No-Hair Theorem for the
Galileon,” Phys. Rev. Lett. 110, 241104 (2013)
arXiv:1202.1296.

[7] T. P. Sotiriou and S. Y. Zhou, “Black hole hair in gener-

alized scalar-tensor gravity: An explicit example,” Phys.
Rev. D 90, 124063 (2014) 1408.1698.

[8] T. P. Sotiriou and S. Y. Zhou, “Black hole hair in general-
ized scalar-tensor gravity,” Phys. Rev. Lett. 112, 251102
(2014) 1312.3622.

[9] R. Benkel, T. P. Sotiriou and H. Witek, “Black hole hair
formation in shift-symmetric generalised scalar-tensor
gravity,” Class. Quant. Grav. 34, no. 6, 064001 (2017)
arXiv:1610.09168.

[10] G. Antoniou, A. Bakopoulos and P. Kanti, “Evasion of
No-Hair Theorems and Novel Black-Hole Solutions in
Gauss-Bonnet Theories,” Phys. Rev. Lett. 120, no. 13,
131102 (2018) arXiv:1711.03390.

[11] G. Antoniou, A. Bakopoulos and P. Kanti, “Black-
Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-
Bonnet Theories,” Phys. Rev. D 97, no. 8, 084037 (2018)
arXiv:1711.07431.

http://arXiv.org/abs/1601.08230
http://arXiv.org/abs/1504.08209
http://arXiv.org/abs/9605059
http://arXiv.org/abs/1109.6324
http://arXiv.org/abs/1202.1296
http://arXiv.org/abs/1408.1698
http://arXiv.org/abs/1312.3622
http://arXiv.org/abs/1610.09168
http://arXiv.org/abs/1711.03390
http://arXiv.org/abs/1711.07431


7

[12] E. Ayon-Beato, C. Martinez and J. Zanelli, “Stealth
scalar field overflying a (2+1) black hole,” Gen. Rel.
Grav. 38, 145 (2006) arXiv:0403228.

[13] E. Babichev and C. Charmousis, “Dressing a black
hole with a time-dependent Galileon,” JHEP 1408, 106
(2014) arXiv:1312.3204.

[14] C. Charmousis, T. Kolyvaris, E. Papantonopoulos
and M. Tsoukalas, “Black Holes in Bi-scalar Exten-
sions of Horndeski Theories,” JHEP 1407, 085 (2014)
arXiv:1404.1024.

[15] E. Babichev and G. Esposito-Farèse, “Time-Dependent
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