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In this paper we address the problem of finding optimal cosmic shear tomographic bins. We
generalise the definition of a cosmic shear tomographic bin to be a set of commonly labelled voxels
in photometric colour space; rather than bins defined directly in redshift. We explore this approach
by using a self-organising map to define the multi-dimensional colour space, and a we define a ‘label
space’ of connected regions on the self-organising map using overlapping elliptical disks. This allows
us to then find optimal labelling schemes by searching the label space. We use a metric that is
the signal-to-noise ratio of a dark energy equation of state measurement, and in this case we find
that for up to five tomographic bins the optimal colour-space labelling is an approximation of an
equally-spaced binning in redshift; that is in all cases the best configuration. We also show that
such a redefinition is more robust to photometric redshift outliers than a standard tomographic bin
selection.

I. INTRODUCTION

Despite the tremendous progress in the precision with
which cosmological parameters have been determined, we
still do not understand the physical nature of the main
ingredients that make up the Universe in the currently
favoured ΛCDM model. To advance observational con-
straints a number of techniques can be employed. Of
these, weak gravitational lensing by large-scale structure,
or cosmic shear, is potentially the most promising. It uses
the distortions in the observed images of distant galax-
ies to map the mass perturbations along the line-of-sight.
These projected image distortions - changes in the size
and third flattening (ellipticity) of the images - are corre-
lated in the angular direction and as a function redshift
and these correlations are typically summarised in terms
of a power spectrum or a correlation function.

Thanks to ever larger, deep imaging surveys with good
image quality, the lensing signal is now routinely mea-
sured [e.g. 1–3], and yields constraints on certain param-
eter combinations that match the precision of the most
recent CMB results [4]. Moreover, even larger surveys
aim to constrain the dark energy equation-of-state with
per cent precision [5–7]. The projected matter power
spectrum is rather featureless, and the sensitivity to dark
energy, and modifications to the theory of gravity, arises
from the ability to measure the growth of structure by di-
viding the source samples by redshift. Obtaining precise
spectroscopic redshifts for such large samples of distant,
faint galaxies is not possible, but the lensing kernel is

broad so that photometric redshifts are adequate. How-
ever uncertainties in the photometric redshift determina-
tion of individual sources prevent a clean division of the
sources, thus reducing the precision with which cosmo-
logical parameters can be determined.

In practice the division is commonly done by deter-
mining photometric redshifts using the available multi-
band data and binning these estimates. The more bands,
the better the mapping between the colours and the red-
shift. It is, however, not clear what the best labelling
of sources is for the binning, because of statistically ill-
defined (catastrophic) outliers and the overall statistical
uncertainties in the redshift determination. Instead of
this approach we explore here the possibility to bypass
the photometric redshift determination step, and divide
the sources based on their colour measurements directly.

In this paper we investigate how one should optimally
choose colour voxel sets for cosmic shear. We do this by
using the self-organising map derived from [8], so we can
work in lower dimensions, and explore this space. The
methodology is presented in Sections 2 and 3, results
are presented in Section 4, and we present our conclu-
sions in Section 5. This is a preliminary study of this
re-definition of cosmic shear tomography, that will be
extended in future works to include intrinsic alignments,
galaxy-clustering cross-correlations and combined with
optimal scale-cutting weights [9].
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II. COSMIC SHEAR TOMOGRAPHY

The most widely used cosmic shear power spectrum
formulation uses the Limber [10], flat-Universe [11] and
equal-time [12] approximations, and creates bins in red-
shift known as ‘tomographic’ bins. This approach was
generalised in [13] to a generalised spherical-transform

that is defined as:

γℓm (η) =

√
2

π

∑

g

γg (rg, θg)Wℓ (η, rg) 2Yℓm (θg) , (1)

where γ ∈ C is the shear, the sum is over all galaxies
g with angular coordinate θg and radial coordinate rg,
Wℓ(ηi, rg) is a weight where ηi is a general label, and

2Yℓm are the spin-weighted spherical harmonics with spin
2. The cosmic shear power spectrum is the covariance of
this quantity that is:

Cℓ (ηi, ηj) =
9Ω2

mH4
0

16π4c4
(ℓ+ 2)!

(ℓ− 2)!

∫
dk

k2
Gℓ (ηi, k)Gℓ (ηj , k) ,

(2)
where c is the speed of light in vacuum, Ωm is the frac-
tional mass-energy density of matter, and H0 is the value
of the Hubble constant. The matrix G is given by:

Gℓ (ηi, k) ≡

∫
dzpdz

′ n (z′) pi (z
′|zp)

×Wℓ (ηi, r [z
′])Uℓ (r [z

′] , k)

(3)

where r[z] is the co-moving distance at a redshift z.
pi (z|zp) is the probability that a galaxy has a redshift
z, given a photometric redshift measurement zp for bin i.
The radial distribution of galaxies is denoted by n(z). By
taking the the Limber and flat-Universe approximations
[11, 14], the matrix U can be written as:

Uℓ (r, k) =
FK (r, ν (k))

ka (ν (k))

√
π

2 (ℓ+ 1/2)
P 1/2 (k, ν (k)) ,

(4)

where ν (k) ≡ ℓ+1/2
k . These are good approximations for

small-scales ℓ > 100 [10], and for flat universes consistent
with current measurements of Ωk [11]. The power spec-
trum of matter overdensities is denoted P (k; r) where
the equal-time approximation has been used [12]. The
lensing kernel, for a spatially flat cosmology is:

FK (r, r′) ≡
r − r′

rr′
. (5)

The shot noise power spectrum, caused by the random
(unlensed) ellipticity of galaxies, is given by:

Nℓ (η1, η2) =
σ2
e

2π2

∫
dz n (z)Wℓ (η1, r)Wℓ (η2, r) , (6)

where σ2
e ≃ (0.3)2 [15] is the variance of the unlensed

ellipticities of the observed galaxies. The shot noise am-
plitude scales as 1/Ng, whereNg is the number of galaxies
in a given bin, see [9].

From this general definition the question is then which
weight function to choose. By taking the weight-function,
Wℓ (ηi, r [z]) ≡ jℓ (ηir[z]) in equations (3) and (6) the
equations for ‘3D cosmic shear’ are reproduced [16–18].
In this case the labels η correspond to inverse-distance
variables in the Bessel function. The standard ‘tomo-
graphic’ cosmic shear spectra [19], are reproduced by
taking the weight function to be a top hat function in
redshift only:

W (ηi, z) ≡

{
1 if z ∈ i

0 if z /∈ i,
(7)

defines the ‘tomographic’ bin associated with redshift re-
gion i. Normally tomographic bin selection is done in
one of two ways: equally-spaced bins in redshift, or bins
that have an equal-number of galaxies per bin; we re-
fer to theses as ‘equally-spaced’ and ‘equal-number’ as a
shorthand throughout. Both these options are discussed
in [13].
In this paper we generalise the ‘tomographic’ bin la-

bels ηi to be indicators of a population of galaxies with
similar colours (or SEDs), or with SEDs close in colour
space, rather than directly similar spectroscopic redshifts
(as is the case in standard tomography). We refer to the
corresponding power spectra Cγγ

ℓ (ηi, ηj) as ‘rainbow to-
mography’. In this sense the colour combinations for a
set of bin labels {ηi} can generically result in compli-
cated equivalent behavior as a function of redshift. This
is similar to the proposal of [20]. More specifically the
bin labels ηi correspond to a set of colour voxels V that
have been given a common label i:

ηi =̂
⋃

Va, . . . , Vn = {V }i (8)

where the union of the voxels a . . . n corresponds to bin
i. We use the notation =̂ to mean ‘corresponds to’.
For each voxel Vα it is assumed that there is a spe-

cific unique spectroscopic probability distribution nα(z)
and a corresponding photometric redshift probability dis-
tribution pα(z|zp), derived from broadband information
used in a specific experiment. We note that the sum over
all the voxels results in the radial distribution of galaxies
that enters equation (3),

∑
nα(z) = n(z). Within a voxel

the mapping of spectroscopic redshift to photometric red-
shift probability distribution is a subject of photometric
redshift estimations codes such as [21, 22]. Therefore we
define the weight function for a given label i to be

W (ηi, z) =
1

n(z)

∑

α∈{V }i

nα(z), (9)

where the sum is over all voxels in the set {V }i. We note
that the standard tomographic bin definitions (equally-
spaced, and equal-number) are instances of this definition
where, in reference to equation (7), the voxels in {V }i
correspond to all galaxies with zα ∈ i. The denominator
ensures that in equation (3) this definition reduced to the
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weights used in the standard tomographic case (equations
7, 6).

For reference, one can define the photometric redshift
probability distribution for a given bin

pi(z, zp) =
1

Ni

∑

α∈{V }i

pα(z|zp), (10)

where each 0 < pα(z|zp) < 1 is an individual probability
distribution for voxel α, and the denominator is the num-
ber of voxels Ni that contribute to bin i which ensures
that 0 < pi(z, zp) < 1.

In the voxel-based approach each voxel has an associ-
ated PDF. Therefore when one constructs a tomographic
bin the PDFs propagate as described in equation (10),
which would then be used in a cosmological analysis to
model the lensing signal (equation 3). This allows for
the error propagation for general configurations of bins.
In the standard approach one subdivides the population
based on redshift alone and propagates redshift error in
the same way.

III. METHODOLOGY

Here we briefly review the self-organising map ap-
proach of [8] and then describe how this space is explored
to optimally select colour voxel combinations for tomo-
graphic bin labelling.

A. Self-Organising Map

When observing galaxies in NB broadband filters the
colour space (all possible wavelength differences in this
set) is of dimension NB!/2, that for cosmic shear sur-
veys results in a high-dimensional space. In this space
colour combinations that have similar spectroscopic red-
shifts form lines or planes (see e.g. [8]). In order to
more efficiently represent this space [8] applied a self-
organising map that projects this high-dimensional data
onto a lower dimensional (2D) manifold. The result is
a map of 2D pixels that represent voxels in the higher-
dimensional space, and crucially that the topology of the
higher-dimensional space is retained. In [8] this method
was used to map the multi-colour space and its complete-
ness using COSMOS data, in particular to determine in
which pixels additional spectroscopic information is re-
quired.

In Figure 1 we show a 2D self-organising map, coloured
by the mean redshift per pixel, the axes are pixel num-
bers that are arbitrary labels. This map is a modified
version of the one used in [8] made for C3R2 targeting,
that now includes VVDS/EGS in its derivation as well as
COSMOS; this will be described in the C3R2 DR2 paper,
(Masters et al., in prep). This self-organising map rep-
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FIG. 1. The [8] self-organising map. The colour scale shows
the mean photometric redshift per pixel. The axes are pixel
labels that are arbitrarily defined.

resents the redshift distribution for Euclid1 [5]. For each
pixel there is in principle a full posterior redshift distribu-
tion, see equation (10), but the current version has only
mean redshift estimates; this is sufficient for our proof of
concept study where for each bin we assign a Gaussian
pα(z|zp) with mean zp and width σ(z) = 0.03(1 + z).
We note several features of the self-organising map that

are salient to the discussion in this paper. Firstly neigh-
bouring pixels represent voxels in colour space that have
similar spectral energy distributions (SEDs). This means
that areas of interconnected and adjacent pixels can be
delineated in this space that have some physical meaning.
Secondly there is some structure in this space, i.e. non-
random and well defined in shape, suggesting that the
topology of the projected 2D space can be approximated
using simple shapes.
In principle each pixel in the self-organising map (or

equivalently voxel in colour space) could be used as a
distinct tomographic bin. In this approach, as shown
by [13], the total 3D shear-field information would be
fully captured. The utility of binning the data is there-
fore only one of computational nature and regularisa-
tion. For the case that one uses a small number of to-
mographic bins Ntomo ≪ Npixel, which is usually the
case, there will a dramatic reduction in the time required
to compute the cosmic shear power spectra, where the
computational time scales as O(N2

tomo), relative to the
non-tomographically binned case. One may also expect
that the behaviour of the statistics may be more Gaus-
sian (due to the central limit theorem), and the use of

1 http://euclid-ec.org

http://euclid-ec.org
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FIG. 2. Left: The self-organising map with pixels highlighted in blue that contain less than or equal to one galaxy. Middle:
The distribution of the galaxies with unreliable redshift distributions (blue) in colour space, compared to all galaxies (green).
Right: The equal-spaced tomographic bin PDFs when the unreliable pixels are either included (thin solid lines) or excluded
(thick dashed lines).

lower dimensional binned data may improve the prop-
erties of correspondingly lower dimensional matrices in
an analysis. Furthermore covariance matrices computed
from simulated data will require fewer simulations [23]
(the number of simulations scales as N2

tomo). None of
these has been shown to cause intractable problems in
the regime that Ntomo ≃ Npixel, but for the purposes of
this paper we will assume that tomographic bin labelling
is a desired approximation of the data.

B. Treatment of Outliers and Unreliable Redshifts

Compared to traditional approaches based on splitting
the galaxy sample by photometric redshift, we can dis-
tinguish problematic voxels and exclude these from the
analysis. These can take a variety of forms. Firstly
where the corresponding nα(z) is multi-modal, secondly
voxels for which there is insufficient or missing spectro-
scopic information to calibrate the colour-redshift rela-
tion, and thirdly where nα(z) differs significantly from
that of neighbouring voxels.

The first category, with multimodal nα(z), known as
‘outliers’, result in redshift overlap between tomographic
bins, thus reducing the efficacy. The second, with insuf-
ficient data, correspond to ‘unreliable’ voxels. The third
correspond to the sharp transitions in Fig. 1, where even
though the voxels may have unimodal redshift distribu-
tions, uncertainties in the photometry may lead to multi-
modal distributions

None of these are ideal, but especially voxels for
which the redshift calibration is uncertain should be ex-
cluded. This is difficult to achieve when dividing the
sample based on simple colour selections that may have a
non-trivial distribution in the NB!/2-dimensional colour
space. Individual colour voxels, however, could in prin-
ciple be identified and simply excluded. The reason to

use the self-organising map space is the same reason why
this method was proposed in [8], namely that the di-
mensionality of the problem is reduced from NB!/2 to 2,
thereby making calculations and selections in this space
tractable.

To demonstrate the usefulness of rainbow tomography,
we consider the identification of unreliable voxels, but
we note that in general all three complications should be
characterised for each voxel. To do so, we identify all
self-organising map pixels with less than or equal to one
galaxy and label these as unreliable as an example; this
is a plausible selection to make for this simple demon-
stration. In Figure 2 we show the unreliable pixels in
the self-organising map plane, where each pixel can be
identified and excluded, and in an example colour space
projection using the same data (r − i vs. i − z), where
the distribution is much more complex and overlaps in
projection with the sample of pixels for which adequate
redshift information is available. We also show the to-
mographic bin PDFs for an equal-spacing configuration
for three bins, with and without the unreliable pixels ex-
cluded. Even in this simple case the difference caused by
the exclusion of these pixels causes a shift in the mean
redshift of the bins of ∆z = 0.004, 0.001, 0.003 for the
three bins respectively from lowest to highest redshift;
which would be outside the requirement of ∆z ≤ 0.002
for a Stage-IV cosmic shear experiment [24].

This provides an example of the type of error that
could occur in a standard treatment of outliers, where
such an exclusion would be difficult (involving high-
dimensional exclusion boundaries in colour space), com-
pared to the self-organising map case in which the exclu-
sion of outliers would be straightforward.
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FIG. 3. The self-organising map with areas labelled by tomo-
graphic bin number for a 3-bin case where the examples of
equally-spaced bins (middle column), and equal-number bins
(right column) are shown. The left column is a random reali-
sation of the label-space as defined in Section IIIC. The upper
panels show the self-organising maps where each colour labels
a tomographic bin, the middle panels show the spectroscopic
redshift probability density functions (PDFs) of the associ-
ated weights WS (ηi, z) as a function of redshift, where each
colour represents a different bin. Similarly the lower panels
show the photometric redshift probability density functions
(PDFs) of the associated weights W (ηi, z) as a function of
redshift. The colours match between panels.

C. Optimisation Approach

In Figure 3 we show the same self-organising map as
in Figure 1 with tomographic areas defined for the two
cases of equally-spaced and equal-number bins. We show
an illustrative case of 3 tomographic bins. It can be seen
that the areas associated with each bin combination are
very different, but they have a similar geometry. We
show the spectroscopic and photometric distributions for
each bin choice, where it can be seen that the former is
approximately a convolution of the latter; see equations
(9) and (10).

A full optimisation of the self-organising map for tomo-
graphic bin labelling would involve assigning a label be-
tween [0, Ntomo−1] for each self-organising map pixel and
sampling all possible combinations of this labelling over
all pixels. For n×m pixels this represents (nm)Ntomo−1

combinations. For the self-organising map we are using
(dimension (75, 150)) for Ntomo > 3 tomographic labels
the full brute-force searching of this space would have
dimension > 1.4 × 1012. Even if one down-sampled this
space by a factor 10 in each dimension, thereby loos-
ing sensitivity, this would still result in a space with

> 1.4× 106 dimensions. Therefore this a brute-force op-
timisation is not possible.
To make the bin labelling problem tractable, and to op-

timise over this space for Ntomo tomographic labels, we
define Ntomo−1 overlapping areas represented by ellipti-
cal disks. For each disk there are 4 free hyper-parameters
(x, y, a, b) where (x, y) are the centre of the disk in the
self-organising map pixels, and (a, b) are the semi-major
and semi-minor axes of the disks (in principle this could
be extended to include inclined ellipses with an orienta-
tion angle, but we found that this additional freedom was
not required). For Ntomo tomographic labels this gives a
‘label-space’ with dimensional 4(Ntomo−1) (two labelled
areas, and the unlabelled area, that defines the N th

tomo

bin). Different combinations of the hyper-parameters de-
scribe different divisions of the self-organising map into
tomographically binned labels. This is an extremely flex-
ible space over which to optimise and allows one to op-
timise tomographic bin labelling in a way that is consis-
tent with the underlying topography of the colour space
(recall that neighbouring pixels have similar SEDs). In
Figure 3 we show an example of a random realisation of
the hyper-parameter label space for three tomographic
bin labels.
Given a particular labelling one needs to define a met-

ric, or figure of merit, that quantifies how optimal this
labelling is. To do this we use the cosmic shear signal-
to-noise ratio for the dark energy parameter w0 defined
as

F = −
∑

ℓ,i,j

[
∂Cℓ(ηi, ηj)

∂w0

]2
1

[Cℓ(ηi, ηj) +Nℓ(ηi, ηj)]2
,

(11)
where Cℓ and Nℓ are defined in equations (2) and (6)
respectively. Throughout we present a normalised value
of this quantity F/Feqz, where the denominator Feqz is
equal to −F (note the minus sign to maintain the nega-
tivity of the optimisation metric, that is required for the
optimisation algorithms we use) except using the equally-
spaced bins (see e.g. Figure 3). F is effectively (minus)
the square root of the normalised w0 component of the
cosmic shear Fisher matrix. To compute the power spec-
tra we use a Planck [4] maximum likelihood cosmology.
We note that many metrics could be used in this opti-
misation, and we leave an exploration of possible metric
choices to future work.
The label space defined above is still relatively large,

for (3, 4, 5) tomographic labels the space has dimensions
(8, 12, 16), and due to the overlapping nature of the el-
liptical regions and sharp boundaries the space is also
highly structured with many local extrema. Therefore
an optimisation algorithm needs to be chosen that can
cope with these conditions. To do this we chose the
SciPy differential evolution optimisation2 [25], which is

2 https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optim

https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.differential_evolution.html
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FIG. 4. The left panel shows the distribution of the optimisation metric, equation (11), for 3 tomographic bin labels, when
randomly sampling the label space. The dashed line is at F/Feqz = 1, the equally-spaced cased, and the dotted line corresponds
to the case of using equal-number binning. The right panel shows the convergence of the optimisation algorithm as a function
of iteration number for 3 tomographic bin labels, again the dashed line is at F/Feqz = 1 and the dotted line corresponds to the
case of using an equal-number binning. The grey lines show different optimisation runs.

a genetic algorithm that supports a population of points
that mutate and evolve to the best-fit solution. Genetic
algorithms are particularly suitable for highly structured
optimisation problems with many local extrema.

We also confirmed our results by using two other algo-
rithms: the SciKit optimisation package3, which uses ei-
ther random forests, gradient descent boosting, or Gaus-
sian mixture models to represent the optimisation sur-
face more efficiently; and PyMultiNest4 ([26]), which
uses nested sampling to search the optimisation space.
We found for this particular optimisation problem that
these approaches were slower; this is because we are only
concerned with the best-fit solution and so algorithms
that compute other quantities such as Bayesian evidence
explore parts of the label space that are not necessary
for our purposes. The machine learning approaches in
SciKit optimisation in general use fewer live points (eval-
uations of the function) when searching a surface and
instead learns the features of the surface. However we
found that the rate of learning was inefficient for the
highly structured surface posed by this particular prob-
lem, requiring a large number of live points. The code for
this paper is available on request, where we use GLaSS [11]
and CosmoSIS [27] to compute the cosmic shear power
spectra.

3 https://scikit-optimize.github.io
4 https://johannesbuchner.github.io/PyMultiNest/

IV. RESULTS

In Figure 4 we show random realisations of the label
space for three tomographic bin labels if we randomly
sample the (8 dimensional in this case) space. The left
panel shows the distribution of F/Feqz. The conclusions
from this are two-fold. First we find that there is a small
spread in the distribution of the metric where the ex-
treme values are between [0.7, 1.0]; we confirmed this is
the case for all Ntomo ≤ 5. This demonstrates that there
is at most 30% impact on dark energy sensitivity over a
wide range of tomographic bin configurations. Secondly
this shows that over a wide space of possible bin config-
urations equally-spaced bins always perform better than
an arbitrary bin configuration. We find that the perfor-
mance of equal-number binning is ≃ 3% lower than than
the equally-spaced configuration. The right panel of Fig-
ure 4 shows the convergence of the optimisation algo-
rithm as a function of iteration number when the SciPy

optimisation routine iterates to a global solution, over
different realisations/sampling of the parameter space.
We find that the algorithm always converges in fewer
than 10 iterations.

In Figures 5 and 6 we show the result of the optimi-
sation for Ntomo = [2, 5]; for Ntomo > 5 all the opti-
misation algorithms become inefficient as they become
prohibitively slow (as the dimension of the label space
becomes large), and the ellipsoidal disk approximation
becomes a poorer representation of the redshift bound-
aries in this space (see Figure 1). We find that in all cases
the best-fit solution closely matches the equally-spaced
solution.

https://scikit-optimize.github.io
https://johannesbuchner.github.io/PyMultiNest/
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FIG. 5. The self-organising map with areas labelled by tomo-
graphic bin for 2,3,4 and 5-bin cases (top to bottom) where
the left-hand panels show the best-fit solution using the label-
space and optimisation routine described in Section IIIC, the
middle panels for equally-spaced bins, and the right-hand
panels for equal-number bins. We suppress axes labels for
clarity; as these are in arbitrary units. Each colour labels a
different bin that can be identified in Figure 6.

In Figure 7 we show the metric as a function of Ntomo.
We find that the best-fit solution metric is relatively con-
stant when the number of bins is increased, and that the
equal-number labelling scheme is consistently lower with
a slow convergence towards the equally-spaced binning.
In all cases, as is also suggested by the random sam-
pling shown in Figure 4, the equally-spaced binning has
a higher metric, suggesting that this is the global optimal
solution.

A. Discussion

In this paper we investigate optimised tomographic bin
labelling schemes by searching a label space that cap-
tures a wide variety of tomographic bin configurations.
The optimisation metric we use is the dark energy equa-
tion of state signal-to-noise ratio for the cosmic shear
power spectrum. In all cases we find a best-fit solu-

tion that is an approximation to a labelling scheme that
has equally-spaced bins in redshift. Moreover, we find
that the equally-spaced solution has a signal-to-noise ra-
tio that is slightly higher than our best-fit solution. This
is likely to be due to the approximate way in which we
define areas in the self-organising map (using ellipsoidal
disk features), which cannot accurately capture small dis-
connected regions with the same redshift.
All of these conclusions suggest that defining equally-

spaced bins in redshift is the optimal configuration for
a cosmic shear power spectrum analysis to maximise the
dark energy equation of state signal-to-noise ratio. This
is complementary to the conclusions of [13] who find that
for a sufficiently large number of bins both an equal-
number and equal-spaced configuration captures all the
3D information from the shear field, but that as the num-
ber of bins increased the equal-number case converges
more slowly than the equal-spaced case.
The reason why equally-spaced bins are optimal is two-

fold: the bins are orthogonal, and the equal-spacing pro-
vides better redshift coverage for dark energy measure-
ments. Orthogonal bins should have a higher overall
signal-to-noise ratio than non-orthogonal bins. If bins are
non-orthogonal the overlap causes the cross-correlations
between bins to have a non-zero noise component that
is not present in the orthogonal case. Furthermore the
signal is diluted in the redshift direction. For example,
two completely overlapping bins would be probing ex-
actly the same large-scale structure. The optimality of
orthogonal bins is a result of the positivity of the weight
functions we define in equation (9).
To test the relationship between the orthogonality of

the tomographic bins and the signal-to-noise ratio we de-
fine a measure of orthogonality as

Ω = 1−
2

Ntomo(Ntomo − 1)

∑

∀i6=j

2W (ηi, z)W (ηj , z)

W 2(ηi, z) +W 2(ηj , z)

(12)
where the sum is over all tomographic bin configurations.
In this case Ω = 1 if all bins are orthogonal and Ω = 0 if
they are completely overlapping. In Figure 8 we show Ω
as a function of the optimisation metric F/Feqz for 10,000
realisations of the tomographic bins configurations for
Ntomo = 3. We find that indeed there is a strong relation
between the orthogonality of the bins and the metric. For
a given orthogonality there is a maximum metric that
can be achieved, but also a distribution of configurations
that are less optimal (consider the case of equally-space
and equal-number, both are orthogonal but one is less
optimal).
We make a number of approximations in this study

that can be relaxed in future work. We focus here on
optimisation of cosmic shear power spectra as a proof of
concept, but this should be extended to include a larger
number of tomographic bins, intrinsic alignment power
spectra and a joint optimisation with galaxy-clustering
methods. Furthermore the metric could be extended to
include a full Fisher matrix for a cosmological parameter
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FIG. 6. The probability density functions (PDFs) of the associated weights W (ηi, z) as a function of redshift corresponding
to the labelling schemes in Figure 5, where each colour represents a different bin. The left hand panels show the spectroscopic
redshift distributions and the right hand panels the associated photometric redshift distributions. In each plot the left-hand
panels show the best-fit solution using the label-space and optimisation routine described in Section IIIC, the middle panels
for equally-spaced bins, and the right-hand panels for equal-number bins. We suppress axes labels to allow more space; the
y-axes are PDFs and the x-axes are redshift.

set rather than a single cosmological parameter.

V. CONCLUSION

In this paper we generalise cosmic shear tomography,
in which tomographic bins are traditionally defined di-
rectly in redshift space, to the case where tomographic
bins are defined in photometric colour space where each
colour space voxel is labelled by a bin number; this is
similar to that proposed in [20]. In this case the redshift
distribution of the bins is the sum of the redshift prob-
ability distributions of the galaxy populations given the
same tomographic bin label. This results in weight func-
tions that can overlap in redshift in complex ways. We
demonstrate that in this redefinition it is more straight-
forward to exclude galaxies with undesirable redshift dis-
tributions from a photometric redshift sample.

We then define an approach to find optimal to-
mographic bin labelling. To do this we use the
self-organising map of [8] that already compresses the

NB!/2-dimensional colour space for NB broad photo-
metric bands down into a 2 dimensional space. We then
define regions in this space represented by ellipsoidal
areas that for Ntomo tomographic bins creates a ‘label
space’ of dimension 4(Ntomo− 1). By searching over this
label space we can optimise tomographic bin labelling
for any metric that depends on the tomographic weight
functions.

We define the dark energy equation of state signal-to-
noise ratio for the cosmic shear power spectrum as our
metric. To perform the optimisation we use the SciPy

differential evolution algorithm [25]. We find that there
is at most a 30% sensitivity in the dark energy equa-
tion of state signal-to-noise ratio to the tomographic bin
configuration; this is in agreement with [28] who find cos-
mological results to be largely insensitive to tomographic
bin configuration. We find that for Ntomo ≤ 5 in all cases
the best-fit solution is a close approximation to the case
where equally-spaced bins in redshift are defined. More-
over, the equally-spaced bin configuration outperforms
the best-fit solution given the label space we use. This
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FIG. 7. The optimisation metric given in equation (11) as
a function of tomographic bin number. The lines show the
equally-spaced in redshift case (black line) that is constant
and equal to unity by definition; the best-fit solutions shown
in Figure 5 and 6 (blue line); and the equal-number density
labelling scheme (orange line).
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FIG. 8. The optimisation metric given in equation (11) as
a function of the orthogonality between the bins, defined in
equation (12) for 10,000 realisations of the tomographic bin
configurations for Ntomo = 3.

suggests that defining equally-spaced bins in redshift is
the optimal binning strategy for the metric we use.

This study can be extended to include further
statistics such as photometric galaxy clustering mea-
surements, as well as systematic effects such as intrinsic
alignments. By generalising the definition of cosmic
shear tomography to be labels in colour-space, rather

than bins in redshift, this opens up the possibility of
optimising tomographic bin configurations to maximise
the science return from future experiments.

ACKNOWLEDGMENTS

We thank the Cosmosis team for making their code
publicly available. P.T. is supported by STFC. T.K. is
supported by a Royal Society University Research Fel-
lowship. We thank J. Zuntz for providing a development
branch of Cosmosis that was used in this analysis. D.M.
and P.C. acknowledge support by NASA ROSES grant
12-EUCLID12-0004. D.M. acknowledges support for this
work from a NASA Postdoctoral Program Fellowship.
H.H. acknowledges support from Vici grant 639.043.512,
financed by the Netherlands Organisation for Scientific
Research (NWO).



10

[1] H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki,
K. Kuijken, C. Blake, T. Erben, B. Joachimi, D. Klaes,
L. Miller, et al., Monthly Notices of the Royal Astronom-
ical Society (2017).

[2] M. A. Troxel, N. MacCrann, J. Zuntz, T. F. Ei-
fler, E. Krause, S. Dodelson, D. Gruen, J. Blazek,
O. Friedrich, S. Samuroff, J. Prat, L. F. Secco, C. Davis,
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