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CEA, CNRS, URA 2306, 91191 Gif-sur-Yvette, France

5Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

We study the accuracy with which cosmological parameters can be determined from real space
power spectrum of matter density contrast at weakly nonlinear scales using analytical approaches.
From power spectra measured in N -body simulations and using Markov chain Monte-Carlo tech-
nique, the best-fitting cosmological input parameters are determined with several analytical methods
as a theoretical template, such as the standard perturbation theory, the regularized perturbation
theory, and the effective field theory. We show that at redshift 1, all two-loop level calculations can
fit the measured power spectrum down to scales k ∼ 0.2hMpc−1 and cosmological parameters are
successfully estimated in an unbiased way. Introducing the Figure of bias (FoB) and Figure of merit
(FoM) parameter, we determine the validity range of those models and then evaluate their relative
performances. With one free parameter, namely the damping scale, the regularized perturbation
theory is found to be able to provide the largest FoM parameter while keeping the FoB in the
acceptance range.

PACS numbers: 98.80.-k, 98.80.Es

I. INTRODUCTION

The primordial density fluctuations, which are believed
to be generated quantum mechanically during inflation-
ary stage of the Universe, has evolved under the influ-
ence of cosmic expansion and gravity, and resulted in
rich structures over the observable scale of the Universe.
Thus, the statistical nature of the large-scale structure
of the Universe, as partly traced by galaxy redshift sur-
veys and weak lensing surveys, contains rich cosmological
information. Given large-scale structure data set, sta-
tistical inference of cosmological parameters as well as
the test of cosmological models are now a routine task,
and increasing the statistical precision, an efficient and
unbiased way to extract the cosmological information is
rather critical. In particular, the baryon acoustic oscilla-
tions (BAO) imprinted on the spatial clustering pattern
of galaxies is known as primeval acoustic signature of the
baryon-photon fluid, and is used as a standard ruler to
constrain the late-time cosmic acceleration through the
precise measurement of power spectrum or correlation
function [1]. While the BAO is thought to be a robust
and idealistic cosmological probe, several systematics in
reality come to play. Accurately modeling or removing
those systematics is currently the central issue in preci-
sion cosmology with large-scale structure observations.

Over the last decade, there have been survey projects
which aimed at detecting BAO via the measurements of
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galaxy power spectrum, e.g., Baryon Oscillation Spectro-
scopic Survey (BOSS) [2, 3], 6dF Galaxy Survey [4], and
WiggleZ [5]. In addition, projects which span larger ar-
eas and can detect more objects have been proposed, for
example, Dark Energy Spectroscopic Instrument (DESI)
[6], Subaru Prime Focus Spectrograph (PFS) [7], Large
Synoptic Survey Telescope (LSST) [8], and Euclid [9, 10].
Since these surveys measure power spectrum at sub-
percent level, we need more accurate and precise mod-
eling of power spectrum over a wider range of scales to
constrain cosmological parameters and as well as to test
cosmological models at high precision.

A standard approach to get accurate power spectrum
over the wide range of scales is numerical simulations.
Among other numerical methods, N -body simulation, in
which the smooth matter distribution is described ap-
proximately by the collections of discrete particles, is a
suitable tool to trace the nonlinear gravitational evolu-
tion of the matter fluctuation because nonlinear evolution
is efficiently taken into account down to the scales limited
by the resolution. However, running N -body simulations
to explore large parameter spaces is not practical because
of the large computational cost. In many cases, analytical
prescriptions are employed to efficiently compute power
spectrum with numerous sets of cosmological parameters
in a forward modeling manner and infer the cosmolog-
ical parameters from measurements of power spectrum.
For this purpose, several approaches have been proposed
to accurately predict power spectrum. The perturbation
theory (PT) has played a central role to compute power
spectrum analytically (see Ref. [11] for a comprehensive
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review). Under the single-stream approximation, the sys-
tem to solve is reduced to the cosmic fluid which follows
the continuity, Euler, and Poisson equations in the ex-
panding Universe, and one can expand these equations
with respect to the linear density contrast. This naive
perturbative approach is called as standard perturbation
theory (SPT). However, it is known that SPT has poor
convergence properties when higher order correction is
included, and deviates from the results of N -body simu-
lations from a relatively large scale [12].

In order to improve the convergence and compute
power spectrum more reliably on small scales, approaches
alternative to SPT have been presented based on resum-
mation schemes in Lagrangian [13] or in Eulearian [14–16]
space. Analytical approaches have been further extended
in the context of effective field theories (EFT) [17–19],
which incorporate small scale physics, beyond the sin-
gle stream regime, by introducing effective interaction
terms in the equation of motions. The scales of validity
of those models obviously vary from models to models.
Furthermore, important effects, e.g., galaxy bias or red-
shift space distortion, can be taken into account in some
models [20, 21]. In Ref. [22], they investigate how choice
of analytical approaches and models of bias and redshift
space distortion affects the goodness of fit in the case of
power spectrum. The goal we pursue here is to give first
insights in the ability of such models to not only repro-
duce N -body results at one representative cosmological
parameter set, but also to effectively infer cosmological
parameters from matter power spectrum measurements.
For this purpose, we investigate how accurately these
methods can recover the cosmological parameters from
the full shape measurement of matter power spectrum.
More specifically, we first generate initial conditions with
a set of cosmological parameters, and then run N -body
simulations to create a matter density field at the late
time Universe. Following analysis similar to that used in
observations, we measure matter power spectrum from
the simulations and fit it with analytical methods based
on Markov chain Monte-Carlo (MCMC) technique. Fi-
nally, we can obtain the constraints on cosmological pa-
rameters and compare them with the parameters used to
generate the initial condition. With such a test, we can
then infer the scales down to which the analytical meth-
ods can be used without biasing the retrieved cosmo-
logical parameters — within the statistical error-bars —
and then identify the best performing theoretical model-
ing. In addition to commonly used methods like SPT, we
employ the following extended theories. One is the regu-
larized perturbation theory (RegPT) [23]. In this frame-
work, the expansion based on SPT is reorganized based
on multipoint propagator expansion. Other approaches
we test in this study are based on EFT constructions
where one or several free parameters are introduced to
describe the impact of the small scale physics, such as
the effective pressure of cosmic fluid, to the growth of the
large scale modes. A specific goal of our study precisely
lies in investigating the usefulness of such models with

free parameters. The presence of those parameters ex-
tends naturally the validity range of models but require
either their calibration in simulations or their joint fit-
ting, together with the cosmological parameters. In this
study we test these models by fitting the free parameters
they contain simultaneously with the set of cosmolog-
ical parameters we choose. Furthermore, for reference
we also use the response function approach [24], which
is a simulation-aided approach for computing nonlinear
power spectrum.

This paper is organized as follows. In Sec. II, we re-
view basics of analytical approaches: SPT, RegPT, IR-
resummed EFT, and the response function approach. We
give details of N -body simulations and parameter estima-
tion in Sec. III. Then, we present analysis of parameter
estimation with the power spectrum measured from sim-
ulations in Sec. IV. We conclude in Sec. V.

Throughout the paper, we assume a flat Λ cold dark
matter Universe model, and fiducial cosmological pa-
rameters are as follows: scaled Hubble parameter h =
H0/(100 km s−1 Mpc−1) = 0.6727, physical cold dark
matter density Ωch

2 = 0.1198, baryon density Ωbh
2 =

0.02225, the amplitude As = 2.2065 × 10−9 and the tilt
ns = 0.9645 of scalar perturbation at the pivot scale
kpiv = 0.05 Mpc−1. Then, the total matter density Ωm

is the sum of dark matter, baryon and massive neutrino
components and we assume neutrinos compose of two
massless neutrinos and one massive neutrino with the
mass Mν = 0.06 eV, which corresponds to the physical
energy density Ωνh

2 = 0.00064. Note that the effect of
massive neutrinos are taken into account only in the com-
putation of linear matter power spectrum at z = 0. Both
the simulations and the analytical calculations are based
on the linear power spectrum scaled to the initial redshift
or the redshift at which the nonlinear spectra are com-
puted assuming a scale-independent linear growth factor
ignoring the masses of neutrinos.

II. THEORY

In this Section, we briefly review several PT ap-
proaches to analytically compute matter power spectrum
on weakly nonlinear scales.

A. Standard Perturbation Theory

In this prescription, we begin with fluid equations in
the single-stream approximation (continuity, Euler, and
Poisson equations) and then the density and velocity
fields are expanded with respect to the linear density con-
trast. It is useful to expand the fields in Fourier space
because it clarifies how the mode couples with each other.
The resultant expansion of the density field δ is expressed
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in powers of linear density field δ0 at the present Universe,

δ(k) =
∑
n=1

Dn
+δ

(n)(k), (1)

δ(n)(k) =

∫
d3q1 · · · d3qn
(2π)3(n−1)

δD(k − q1 − · · · − qn)

×F (n)
sym(q1, . . . , qn)δ0(q1) · · · δ0(qn), (2)

where δD is the Dirac delta function, D+ is the linear

growth factor, and F
(n)
sym is the n-th order symmetrized

kernel, which characterizes mode coupling via the non-
linear evolution. The kernels can be analytically con-
structed [14, 25].

A key statistical property for a statistically homoge-
neous stochastic density field is its power spectrum P (k)
defined as,

〈δ(k)δ(k′)〉 ≡ (2π)3δD(k + k′)P (k). (3)

The power spectrum depends only on the magnitude of k
due to the statistical isotropy. Assuming that the linear
density field follows the Gaussian statistics, and using
the perturbative expansion in Eqs. (1) and (2), we can
express the power spectrum perturbatively,

P (k) = D2
+P0(k) + ∆P SPT

1-loop(k) + ∆P SPT
2-loop(k) + · · · , (4)

where P0(k) is linear power spectrum defined as

〈δ0(k)δ0(k′)〉 ≡ (2π)3δD(k + k′)P0(k). (5)

The first and second terms in Eq. (4) are called as 1-
loop and 2-loop correction terms which involve square
and cubic powers of linear power spectrum, respectively.
The explicit expressions for correction terms can be found
in Appendix A 1.

B. Regularized Perturbation Theory

As an extended PT treatment that improves the con-
vergence of PT expansion by reorganizing the infinite se-
ries of SPT expansion, we consider a model based on
multipoint propagator expansion, RegPT [23]. Here, we
review the basic formalism of density power spectrum
according to this framework.

First, we construct (n+1)-point propagator Γ(n) as an
ensemble average of functional derivatives,

1

n!

〈
δnδ(k, η)

δδ0(k1) · · · δδ0(kn)

〉
≡

δD(k − k1...n)
1

(2π)3(n−1)
Γ(n)(k1, · · · ,kn), (6)

where k1...n = k1 + · · ·+ kn,

Γ(n)(k1, . . . ,kn) = Dn
+F

(n)
sym(k1, . . . ,kn) +

∞∑
p=1

Γ
(n)
p-loop(k1, . . . ,kn), (7)

Γ
(n)
p-loop(k1, . . . ,kn) = Dn+2p

+ c(n)
p

∫
d3q1 · · · d3qp

(2π)3p
F (n+2p)

sym (q1,−q1, . . . , qp,−qp,k1, . . . ,kn)P0(q1) · · ·P0(qp), (8)

P RegPT(k) =

∞∑
n=1

n!

∫
d3q1 · · · d3qn
(2π)3(n−1)

δD(k − q1...n)[Γ(n)(q1, . . . , qn)]2P0(q1) · · ·P0(qp), (9)

where c
(n)
p = (n+2p)Cn(2p − 1)!! and (n+2p)Cn is the bi-

nomial coefficient.

The propagator Γ(n) has an asymptotic form in high-k
limit. It is shown that [16]

lim
k→∞

Γ(n)(k1, . . . ,kn) = exp

(
−k

2D2
+σ

2
d

2

)
×Γ

(n)
tree(k1, . . . ,kn), (10)

where k = k1...n. Here, the tree term Γ
(n)
tree is identical to

the SPT kernel Dn
+F

(n)
sym, and σ2

d is the root-mean-square

of one-dimensional displacement field,

σ2
d ≡

1

3

∫
d3q

(2π)3

P0(q)

q2

=

∫
dq

6π2
P0(q). (11)

This quantity controls the damping behavior in high-k
regime and is sensitive to integration range. Ref. [23]
proposed the running UV cutoff to reproduce the spectra
measured from N -body simulations,

σ2
d(k) =

∫ kΛ(k)

0

dq

6π2
P0(q), (12)

where the UV cutoff scale is kΛ(k) = k/2.
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Then one can construct the regularized propagators
which approaches toward the expected asymptotes at
both ends, Eq. (10) at the high-k limit and SPT at the
low-k limit. The expressions for 2-loop and 1-loop levels
are found in Appendix A 2. The damping factor is cru-
cial to determine the shape on high-k regime. In addition
to the running UV cutoff case employed in the original
RegPT code, we investigate a simple generalization of this
model by treating σd as a free parameter. In what fol-
lows, we call this version as RegPT+.

C. IR-resummed Effective Field Theory

The EFT of the large-scale structure provides a way
to incorporate the effects of small-scale physics, beyond
shell-crossing, by introducing counter terms. It has been
known that once parameters are calibrated with N -body
simulations, one can reproduce the measured power spec-
trum by sub-percent level up to high-k (. 0.30hMpc−1).
However, those parameters have explicit cosmological de-
pendence, and they must be in general treated as free
parameters in practical analysis of cosmological parame-
ter estimation. In the present study, we examine a sim-
plified treatment of IR-resummed EFT as presented in
Refs. [26, 27], where the damping of the BAO wiggle fea-
ture in the power spectrum due to the large-scale bulk
motion is modeled by the so-called IR-resummation.

First, we split the power spectrum into the smooth

and wiggle part. For the linear power spectrum, the
smoothed part is evaluated using a featureless transfer
function as

P nw
L (k) = PEH(k)F [PL(k)/PEH(k)], (13)

where PL(k) is linear power spectrum at a given redshift,
i.e., PL(k) = D2

+P0(k), and PEH(k) is the power spec-
trum from the no-wiggle formula given by Ref. [28]. The
functional F [f(k)] represents a smoothing operation de-
fined as,

F [f(k)] =
1√

2π log10 λ

∫
d(log10 q)f(q)

× exp

[
− (log10 k − log10 q)

2

2(log10 λ)2

]
, (14)

where λ determines the smoothing scale and we adopt
λ = 100.25 hMpc−1 [27]. That is, we adjust the slight dif-
ference in the broadband between the formula by [28] and
the linear power spectrum computed by CAMB, and obtain
a smooth baseline model that traces the overall shape of
the linear power spectrum better than PEH(k). The wig-
gle part Pw

L is obtained by subtracting the smooth part
P nw

L from the total spectrum PL. The higher order cor-
rection terms, i.e., ∆P nw

1-loop and ∆P nw
2-loop, are obtained

by plugging the no-wiggle linear spectrum P nw
L into SPT

formulas instead of linear power spectrum PL. Similarly,
the wiggle terms ∆Pw

1-loop and ∆Pw
2-loop are obtained as

the residuals. Finally, we can compute the matter power
spectrum based on IR-resummed EFT at 2-loop level as,

P IR EFT
2-loop (k) = P nw(k) + Pw(k); (15)

P nw(k) = (1 + α1k
2)P nw

L (k) + (1 + α2k
2)∆P nw

1-loop(k) + ∆P nw
2-loop(k), (16)

Pw(k) = e−k
2Σ2 [

(1 + α1k
2 + C1)Pw

L (k) + (1 + α2k
2 + C2)∆Pw

1-loop(k) + ∆Pw
2-loop(k)

]
, (17)

where

C1 = k2Σ2(1 + α1k
2) +

1

2
k4Σ4, (18)

C2 = k2Σ2(1 + α2k
2). (19)

Here we introduce three free parameters, α1, α2, and
Σ. The parameters α1 and α2 roughly correspond to
the effective sound speed and Σ controls the damping
behavior at small scales. The explicit formulas are also
found in Appendix A 3.

III. METHODS

In order to test the analytical treatments presented
in the previous section, we conduct a mock cosmologi-
cal analysis. First, we generate initial conditions with

a given set of cosmological parameters and then run N -
body simulations to obtain matter distribution at the
late-time Universe. With the simulated power spectrum
and theoretical approaches, we infer cosmological param-
eters and compare them with the true values, i.e., those
used to generate initial conditions.

A. N-body simulations

In order to carry out the cosmological parameter esti-
mation, we need a measured data of matter power spec-
trum, for which we use N -body simulations. We run
N -body simulations to obtain the matter distribution at
the redshift z = 1. We employ 20483 particles and the
length on a side is 2h−1 Gpc. The initial conditions (ICs)
are generated at the redshift z = 28.683. The standard
way to create ICs is generating them as Gaussian ran-
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dom field according to linear power spectrum. However,
this IC is subject to the large sample variance at low-
k regime, which might affect the parameter estimation.
In order to circumvent this effect and improve the con-
vergence, we employ suppressed variance initial condi-
tions [29], in which the norm of Fourier modes, |δ0(k)|, is
fixed to its expectation value from linear power spectrum
and then two simulations with inverted phases are paired.
Since the fluctuations in the measured power spectra are
partly cancelled by taking the mean of the pair, this IC
can greatly reduce the variance. Then, we simulate the
gravitational evolution of the matter distribution with
the Tree-PM code Gadget-2 [30]. Finally, we measure
power spectrum from the particle distribution with fast
Fourier transform. Our simulation template is based on
the average over 5 pairs of simulations, and the typical
statistical error is sub-percent level. The input cosmolog-

ical parameters used to generate the IC are h = 0.6727,
Ωch

2 = 0.1198, Ωbh
2 = 0.02225, Ωνh

2 = 0.00064,
ns = 0.9645, and As = 2.2065× 10−9. The derived total
matter density parameter is Ωm = Ωc+Ωb+Ων = 0.3153.

B. Inference of input cosmological parameters
from power spectrum

Here, we estimate cosmological parameters with the
methods described in Sec. II and the power spectrum
measured from simulations. To summarize, we consider
4 analytical approaches: RegPT, SPT, RegPT+, and IR-
resummed EFT.

The likelihood distribution L(θ|P̂ ) is given as the form
of multivariate Gaussian distribution,

L(θ|P̂ ) =
1√

(2π)n detC
exp

−1

2

n∑
i,j

(P̂ (ki)− P (ki;θ))(C−1)ij(P̂ (kj)− P (kj ;θ))

 , (20)

where C is the covariance matrix of power spectrum,
P̂ (k) is the measured power spectrum from simulations,
and P (k;θ) is the prediction based on analytical schemes
with parameters θ, which include cosmological param-
eters and also nuisance parameters in cases of RegPT+
and IR-resummed EFT. We consider three dimensional
cosmological parameter space of (h,Ωm, As) to get con-
verged results within reasonable time. The parameter
As directly determines the amplitude of matter power
spectrum and varying parameters h or Ωm changes the
distance scales at large scale. Furthermore, large Ωm

enhances the nonlinear growth of matter fluctuations at
small scales. The measurement of matter power spec-
trum is known to give tight constraints on these param-
eters and that is why we focus on these parameters in
this study. When varying Ωm, we fix the ratio between
matter and baryon density Ωb/Ωm = 0.1559. The infor-
mation about cosmological parameters is summarized in
Table I. We adopt flat prior for all parameters and var-
ied parameters have reasonable ranges (see Table I). The
prior is zero outside the ranges. The setting of binning
of wavenumbers, i.e., the minimum kmin, maximum kmax,
and the interval ∆k, is shown in Table II. Note that all
bins are linearly spaced.

For the covariance matrix, we consider only the Gaus-
sian part along with the shot noise contribution, which
is given by

Cij =
2

Nki

[
P (ki) +

1

ngal,eff

]2

δij , (21)

where we define the effective number density ngal,eff ≡
b2gngal with galaxy bias bg and the number density of

galaxies ngal, Nki is the number of the mode, and δij is
the Kronecker delta. Strictly speaking, due to mode cou-
pling, off-diagonal terms appear in the covariance matrix.
However, the impacts by these terms can be ignored on
our interested scales [31]. Note that the galaxy bias is
introduced only to adjust the relative contribution of the
shot noise to the survey setting that we consider. The
matter power spectrum, not galaxy power spectrum, is
considered throughout the analysis. The shot noise term
regulates the available scales, where information can be
extracted. Otherwise, the constraints on parameters are
determined only from power spectrum on small scales.
We count the number of modes Nk in the simulations
where the periodic boundary condition is adopted. In our
case, we adopt the survey volume V = 8.0 (h−1 Gpc)3,
the galaxy bias bg = 1.41, and the galaxy number den-
sity ngal = 8.4×10−4 (h−1 Mpc)−3, which gives the effec-
tive number density ngal,eff = 1.67 × 10−3 (h−1 Mpc)−3.
These parameters are chosen to match the Euclid survey
in the specific redshift bin 0.9 < z < 1.1 [10].

We use an Affine invariant Markov chain sampler
emcee [32] to obtain the posterior distribution. For the
burn-in process, we compute the auto-correlation time
tc of parameters for each chain and discard the first 2tc
steps. For convergence, the sampler is run until the total
steps is 50 times larger than auto-correlation time for all
parameters [33].
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TABLE I. Cosmological parameters

Varied parameters

Symbol Value Explanation Range

h 0.6727 Hubble parameter in the unit of 100 km s−1 Mpc−1 0.3 < h < 1.3

Ωm 0.3153 The matter density at the present Universe 0.01 < Ωmh
2 < 0.99

As 2.2065 × 10−9 The amplitude of scalar perturbation at the scale kpiv = 0.05 Mpc−1 As > 0

Fixed parameters

Symbol Value Explanation Range

Ωb/Ωm 0.1559 The baryon density fraction 0.005 < Ωbh
2 < 0.1

ns 0.9645 The tilt of scalar perturbation

Ων 0.00064 The energy density of massive neutrino

TABLE II. Binning of wavenumbers

Model kmin [hMpc−1] kmax [hMpc−1] ∆k [hMpc−1]

RegPT and SPT 0.004 [0.15, 0.18, 0.21, 0.24, 0.27, 0.30] 0.004

RegPT+, IR-resummed EFT, and RESPRESSO 0.004 [0.15, 0.18, 0.21, 0.24, 0.27, 0.30, 0.33, 0.36] 0.004

C. Response function approach

In order to validate our whole procedure we consider
a hybrid approach recently proposed in Refs. [24, 34],
which, by construction, gives unbiased estimates of the
parameters with computable error bars. In this ap-
proach, nonlinear matter power spectrum is expanded
by linear power spectrum, instead of the linear density
contrast, around a fiducial cosmology at which an accu-
rate simulation data is available. We then make use of
the response function which describes the way the non-
linear power spectrum responds to the variation of the
linear power spectrum:

K(k, q) = q
δP (k)

δPL(q)
. (22)

The function K(k, q) was studied with numerical simu-
lations and perturbation theory in detail in Ref. [24] and
it was found that while the function is well described by
SPT at linear to weakly nonlinear scale (in wavenum-
ber q), it exhibits a strong damping behavior at large q,
and this is even true when the other wavenumber k stays
in a very large scale. Then, the follow-up paper [34] pre-
sented an analytical model based on a regularized PT and
SPT with damping tail motivated by results of numerical
simulations, which performs well over a wide dynamical
range in q for a given k in the mildly nonlinear regime.

Once a reasonable model for the response function
K(k, q) is constructed, one can compute the nonlinear
matter power spectrum via

P (k;θ) = P (k;θ0)+

∫
d ln q K(k, q) [PL(q;θ)− PL(q;θ0)] ,

(23)
where we denote by θ the cosmological parameters in the

target cosmology and by θ0 those in the fiducial cosmo-
logical model in which the simulation data for the non-
linear power spectrum is available. The RESPRESSO code
developed in Ref. [34] follows this equation to compute
power spectrum in the target cosmology. Eq. (22) is valid
as long as the difference in the two linear power spectra is
small, but the code takes into account possible higher or-
der corrections by considering multiple-step reconstruc-
tion with an appropriate cosmology-dependence in the
K(k, q) function, when the target cosmology is quite far
from the fiducial one [35].

In this paper, the power spectrum template for the
fiducial cosmology, i.e., the first term in the right-hand-
side of Eq. (22), is the same as the simulation data used
in this study. This model should therefore provide, by
construction, an unbiased estimate of the cosmological
parameters when fitted to the simulation data, no matter
up to what wavenumber is considered in the fitting.

The response function approach provides also a nat-
ural way to estimate the Fisher matrix forecast as will
be discussed in Sec. IV D. We thus employ this model
to discuss the consistency between the MCMC analysis
and the Fisher matrix forecast. Also, the model pro-
vides the best-case scenario for the figure of merit assess-
ment, where no nuisance parameter is introduced and the
best-fit parameters are unbiased for the reason discussed
above. As a consequence, this model can be used to val-
idate our numerical procedure and be used as referential
perfomance for the analytical approaches we use in the
following.
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IV. RESULTS

In this Section, we show results of the parameter infer-
ence based on the various methods presented in Sec. II.
All of the results presented in the subsequent sections
are based on 2-loop level calculations. For comparison,
the results with 1-loop level calculations are presented in
Appendix B.

A. Fiducial and best-fit power spectra

In Fig. 1, power spectra computed with input cos-
mological parameters and the power spectrum measured
from the simulations are shown. RegPT can accurately fit
the power spectrum up to moderate k ∼ 0.2hMpc−1,
but for higher k & 0.20hMpc−1, it fails to fit the
power spectrum. At a first glance, SPT seems to re-
produce the power spectrum at the wide range of scales,
but the small discrepancy can be seen even at large
scales ∼ 0.15hMpc−1. In RegPT and SPT, there are
no free parameters, but RegPT+ and IR-resummed EFT
models contain free parameters, which are fitted by the
least squares method using spectrum up to 0.27hMpc−1.
The free parameters help to reproduce the spectrum at
small scales, and the fitting results are improved com-
pared with the cases without free parameters. In Fig. 2,
power spectra with best-fit parameters estimated from
MCMC chains with the maximum wavenumber kmax =
0.27hMpc−1 and the spectrum measured from simula-
tions are shown. For RegPT, the fitting works well at
small scales & 0.20hMpc−1, where errors are small, at
the expense of the agreement at large scales. On the other
hand, SPT can reproduce the overall shape of the power
spectrum. Furthermore, with the help of the introduc-
tion of free parameters, RegPT+ and IR-resummed EFT
can completely capture the feature up to kmax. How-
ever, even if the best-fitting power spectra are consistent,
the best-fit cosmological parameters do not always match
with the input parameters. This aspect is discussed in
detail in Sec. IV C. In Figs. 1 and 2, the results with
RESPRESSO are not shown because this method by con-
struction gives the identical power spectrum measured
from simulations.

We also show results of fitting with different kmax in
Figs. 3, 4, 5, and 6. In the case of RegPT, for kmax .
0.24hMpc−1, the fitting works well but for larger kmax,
it starts to fail and discrepancy appears at large scales
because the fitting is determined by small-scale spectra
where errors are small but predictions at these scales are
no longer reliable, as we have seen in Fig. 2. SPT can
fit the power spectrum well at large scales, but the small
scale feature cannot be captured even with best-fit pa-
rameters for large kmax. As we have seen, RegPT+ and
IR-resummed EFT can reproduce power spectrum even
for kmax > 0.3hMpc−1 with the help of the free param-
eters.
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FIG. 1. Predictions of power spectrum for each analytical
method with fiducial cosmological parameters. For RegPT+

and IR-resummed EFT models, nuisance parameters are de-
termined by the least-squares method using power spectrum
up to kmax = 0.27hMpc−1. The arrow shows the maximum
wavenumber in the least-squares method. Note that spectra
with these two models for wavenumbers larger than kmax are
shown as dashed lines.
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FIG. 2. Power spectra with each analytical method with best-
fit parameters with kmax = 0.27hMpc−1. Note that spec-
tra for wavenumbers larger than kmax are shown as dashed
lines and the arrow shows kmax. The best-fit cosmological pa-
rameters and nuisance parameters are estimated from MCMC
chains.

B. Parameter estimation with MCMC analysis

In Figs. 7, 8, 9, 10, and 11, the confidence regions
of cosmological parameters with RegPT, SPT, RegPT+,
and IR-resummed EFT at 2-loop level and RESPRESSO for
kmax = 0.21hMpc−1 are shown. At this scale, all pre-
scriptions give the precise predictions of power spectrum
and we can safely recover the input cosmological param-
eters. However, for example, the constraints with RegPT
are tighter than those with IR-resummed EFT because
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FIG. 3. Best-fitting power spectra for RegPT at 2-loop level
with best-fit parameters with different maximum wavenum-
bers from 0.15hMpc−1 to 0.30hMpc−1. The arrows show
corresponding maximum wavenumbers kmax. Note that spec-
tra for wavenumbers larger than kmax are shown as dashed
lines. The best-fit cosmological parameters are estimated
from MCMC chains.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

k [hMpc−1]

0.9

1.0

1.1

1.2

1.3

P
(k

)/
P

n
w

(k
)

kmax = 0.15hMpc−1

kmax = 0.18hMpc−1

kmax = 0.21hMpc−1

kmax = 0.24hMpc−1

kmax = 0.27hMpc−1

kmax = 0.30hMpc−1

simulation

FIG. 4. Best-fitting power spectra for SPT at 2-loop level
with best-fit parameters with different maximum wavenum-
bers from 0.15hMpc−1 to 0.30hMpc−1. The arrows show
corresponding maximum wavenumbers kmax. Note that spec-
tra for wavenumbers larger than kmax are shown as dashed
lines. The best-fit cosmological parameters are estimated
from MCMC chains.

free parameters introduced in this model degrade the re-
sultant constraints. In addition, these parameters also af-
fect parameter degeneracy between cosmological param-
eters. This effect will be addressed later in Sec. IV E.
For other models which contain no nuisance parameters,
i.e., SPT and RESPRESSO, the constraints are almost the
same as those with RegPT. On the other hand, for RegPT+,
the constraints are weaker than those with RegPT as this
model also introduces a free parameter.

Next, we show the estimated cosmological and nui-
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FIG. 5. Best-fitting power spectra for RegPT+ at 2-loop level
with best-fit parameters with different maximum wavenum-
bers from 0.15hMpc−1 to 0.36hMpc−1. The arrows show
corresponding maximum wavenumbers kmax. Note that spec-
tra for wavenumbers larger than kmax are shown as dashed
lines. The best-fit cosmological parameters are estimated
from MCMC chains.
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FIG. 6. Best-fitting power spectra for IR-resummed EFT at
2-loop level with best-fit parameters with different maximum
wavenumbers from 0.15hMpc−1 to 0.36hMpc−1. The ar-
rows show corresponding maximum wavenumbers kmax. Note
that spectra for wavenumbers larger than kmax are shown as
dashed lines. The best-fit cosmological parameters are esti-
mated from MCMC chains.

sance parameters with analytical models at 2-loop level
in Figs. 12 and 13. The values plotted in these fig-
ures are medians, which are robust to outliers, instead
of means. However, for cosmological parameters, since
the posterior distributions are symmetric, the median
and mean are almost the same. On the other hand,
for some of nuisance parameters (see, e.g., the param-
eter Σ in Fig. 10), the posterior distribution is far from
symmetric, the median can be different from the sample
mean. The range of error bars corresponds to 16% and
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tively. The median and 16% and 84% percentiles are also
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the input parameters.

h = 0.6743+0.0078
−0.0077

0.304

0.312

0.320

0.328

Ω
m

Ωm = 0.3167+0.0034
−0.0033

0.
62

5

0.
65

0

0.
67

5

0.
70

0

0.
72

5

h

1.95

2.10

2.25

2.40

10
9
A

s

0.
30

4

0.
31

2

0.
32

0

0.
32

8

Ωm

1.
95

2.
10

2.
25

2.
40

109As

109As = 2.199+0.051
−0.049

FIG. 8. Parameter confidence regions with SPT at 2-loop level
and kmax = 0.21hMpc−1. The light, normal, and dark blue
lines correspond to the 1-σ, 2-σ, and 3-σ limits, respectively.
The median and 16% and 84% percentiles are also shown on
the top of each histogram. The black dashed lines correspond
to 16% and 84% percentiles. The red lines show the input
parameters.

h = 0.6711+0.0085
−0.0084

0.304

0.312

0.320

0.328

Ω
m

Ωm = 0.3162+0.0033
−0.0034

1.95

2.10

2.25

2.40

10
9
A

s

109As = 2.217+0.055
−0.054

0.
62

5

0.
65

0

0.
67

5

0.
70

0

0.
72

5

h

0.0

1.5

3.0

4.5

6.0

σ
d
/(
h
−

1
M

p
c)

0.
30

4

0.
31

2

0.
32

0

0.
32

8

Ωm

1.
95

2.
10

2.
25

2.
40

109As

0.
0

1.
5

3.
0

4.
5

6.
0

σd/(h
−1 Mpc)

σd/(h
−1 Mpc)

= 4.59+0.69
−0.90

FIG. 9. Parameter confidence regions with RegPT+ at 2-loop
level and kmax = 0.21hMpc−1. The light, normal, and dark
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tively. The median and 16% and 84% percentiles are also
shown on the top of each histogram. The black dashed lines
correspond to 16% and 84% percentiles. The red lines show
the input parameters.

84% percentiles, which correspond to 1-σ range when the
posterior distribution is completely Gaussian. For RegPT
at 2-loop level, this model gives unbiased estimates up
to kmax . 0.24hMpc−1, where the calculations are sup-
posed to be accurate. As a general trend, the errors be-
come small by increasing kmax because more information
become available. However, at high k & 0.25hMpc−1,
this model is not supposed to compute the spectrum ac-
curately (see Fig. 1). As a result, the fitting process it-
self breaks down, and then errors increase and estimated
parameters deviate from the true values. RegPT+, IR-
resummed EFT, and RESPRESSO can all reproduce the
input cosmological parameters up to high kmax. However,
RegPT+ and IR-resummed EFT contain free nuisance pa-
rameters and thus they have more degrees of freedom to
fit the power spectrum. Thus, that leads to degradation
of constraints.

C. Figure of bias

Here, we quantify how close to the input cosmological
parameters estimated parameters are for each template
with respect to the statistical errors. For this purpose,
first we compute the correlation matrix of all parameters
S, i.e., cosmological parameters and nuisance parameters
(σd for RegPT+ and α1, α2, and Σ for IR-resummed EFT),



10

h = 0.6729+0.0134
−0.0125

0.304

0.312

0.320

0.328

Ω
m

Ωm = 0.3165+0.0044
−0.0043

1.95

2.10

2.25

2.40

10
9
A

s

109As = 2.206+0.069
−0.070

−4

−2

0

2

4

α
1
/(
h
−

1
M

p
c)

2

α1/(h
−1 Mpc)2

= 0.02+1.19
−1.10

−20

−10

0

10

20

α
2
/(
h
−

1
M

p
c)

2

α2/(h
−1 Mpc)2

= 0.11+5.74
−6.10

0.
62

5

0.
65

0

0.
67

5

0.
70

0

0.
72

5

h

0.0

2.5

5.0

7.5

10.0

Σ
/(
h
−

1
M

p
c)

0.
30

4

0.
31

2

0.
32

0

0.
32

8

Ωm

1.
95

2.
10

2.
25

2.
40

109As

−4 −2 0 2 4

α1/(h
−1 Mpc)2

−2
0
−1

0 0 10 20

α2/(h
−1 Mpc)2

0.
0

2.
5

5.
0

7.
5

10
.0

Σ/(h−1 Mpc)

Σ/(h−1 Mpc)
= 3.92+2.66

−2.66
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which can be estimated from MCMC chains:

Sαβ =
1

N − 1

N∑
k

(θkα − θ̄α)(θkβ − θ̄β), (24)

where θk is a parameter vector at the k-th step, N is
the number of total steps in chains, and θ̄ is the sam-
ple mean of the parameters. We are interested only in
cosmological parameters and marginalize the posterior
distribution over the nuisance parameters. Under the
assumption that the parameters follow the multivariate

Gaussian distribution, this operation simply corresponds
to taking submatrix, which is denoted by S̃. Then, we
define the figure of bias (FoB) as,

FoB ≡

∑
α,β

δθα

(
S̃
)−1

αβ
δθβ

1/2

, (25)

where δθ is the difference between the estimated and in-
put cosmological parameters [36]. FoB corresponds to
the distance between true and estimated cosmological
parameters normalized by their variances. In Fig. 14,
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FIG. 11. Parameter confidence regions with RESPRESSO at 2-
loop level and kmax = 0.21hMpc−1. The light, normal, and
dark blue lines correspond to the 1-σ, 2-σ, and 3-σ limits,
respectively. The median and 16% and 84% percentiles are
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lines correspond to 16% and 84% percentiles. The red lines
show the input parameters.

we show FoBs with different models and kmax along with
1-σ, 2-σ, and 3-σ critical values, which correspond to
68%, 95%, and 99.7% percentiles, respectively, in the
case of three parameters, when the parameter deviation
δθ follows multivariate Gaussian. These critical values
are derived from cumulative distribution function for the
chi-squared distribution. The degree of freedom is 3 re-
gardless of the choice of the model because the nuisance
parameters have already been marginalized. FoBs of SPT
and RegPT exceed the 1-σ critical value from relatively
small kmax while FoBs of RegPT+ and IR-resummed EFT
are kept small even for high kmax. This fact means that
we can employ RegPT+ and IR-resummed EFT up to
scales & 0.30hMpc−1 without having a substantial bi-
ased parameter estimation. However, there is a caveat
about the small FoBs. Since FoB is normalized by the
variance of parameters, if power of constraining parame-
ters is weak, the resultant FoB will be also small. In the
cases of RegPT+ and IR-resummed EFT, the nuisance
parameters degrade constraints and that leads to large
variances. Though these models can provide us with the
accurate prediction even at small scales, their small FoBs
should be taken with cautions. The FoB of RESPRESSO
is not shown in Fig. 14 because, as stated before, the
simulations used in the analysis is also used to calibrate
the response function in RESPRESSO and thus the FoB of
RESPRESSO should always be zero.

So far, we have presented FoBs with power spectra at

2-loop level, but as a whole, those with spectra at 1-loop
level show similar behavior qualitatively. However, FoBs
are generally larger and exceed 1-σ limit even for smaller
kmax. We present detailed discussions for results at 1-
loop level in Appendix B.

D. Figure of merit

Next, we quantify the precision of parameter estima-
tion for each model using figure of merit (FoM). We de-
fine FoM as the inverse of volume of the parameter space
determined by iso-posterior density surface [37], i.e.,

FoM ≡ 1√
detS̃

. (26)

Roughly speaking, FoM is an indicator of constraining
power for each model. We also introduce an analytical
way to estimate the upper limit of FoM for RESPRESSO.
With response function approach, we can compute the
Fisher information matrix. Since the covariance matrix
does not depend on parameters, the Fisher matrix can
be given as

Fαβ =
∑

ki,kj<kmax

∂P (ki)

∂θα
(C−1)ij

∂P (kj)

∂θβ
. (27)

The derivatives of the power spectrum can be obtained
via the response function (Eq. 22),

∂P (k)

∂θα
=

∫
dq
δP (k)

δPL(q)

∂PL(q)

∂θα
=

∫
d ln q K(k, q)

∂PL(q)

∂θα
.

(28)
Then the Fisher matrix estimate of the FoM is given by,

FoMF =
√

detF . (29)

From the Cramér-Rao bound [38], FoMs for RESPRESSO
can not exceed FoMF . If the likelihood distribution
(Eq. 20) follows Gaussian with respect to parameters,
FoMF coincides with FoM computed from correlation
matrix (Eq. 26).

In Fig. 15, we show FoMs with different models and
kmax and Fisher matrix approach with RESPRESSO. Gen-
erally, FoM increases with kmax because more informa-
tion becomes available. As a whole, RegPT, SPT, and
RESPRESSO work quite well. However, shown in Fig. 14,
FoBs of RegPT and SPT soon exceed the 1-σ limit lead-
ing to biased estimated parameters. On the other hand,
FoMs of RegPT+ and IR-resummed EFT are significantly
suppressed with respect to RESPRESSO results. Clearly
though free parameters contained in these models help to
fit the power spectra down to small scales, the presence of
extra degrees of freedom degrades the constraining power
of these models.
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chains. The lower (upper) limit of error bars correspond to 16% (84%) percentile.

E. Correlations between parameters

Generally, nuisance parameters help to improve fitting
power spectrum even at small scales. Simultaneously,
if cosmological parameters are taken far from the true
value, nuisance parameters can adjust spectra and thus
constraints on cosmological parameters will be degraded.
This effect can be observed in the parameter degeneracy
between cosmological and nuisance parameters. The de-
generacy means that the effect due to the cosmological
parameter can be compensated by changing the nuisance
parameter. On the other hand, when there is no de-
generacy, the nuisance parameter simply enhances the
prediction capability of the model or has almost no ef-
fects in the interested ranges. In order to address this
effect, we quantify the degeneracy between parameters

from correlation coefficients defined as,

Rαβ ≡
Sαβ√
SααSββ

. (30)

In Figs. 16, 17, 18, 19, and 20, the correation coef-
ficients for all pairs of parameters with RegPT, SPT,
RegPT+, IR-resummed EFT, and RESPRESSO for kmax =
0.18, 0.24hMpc−1 are shown. We observe that chang-
ing kmax does not alter significantly the structure of the
correlation matrix. However, if kmax is higher than the
scale where each model is reliable or equivalently the cor-
responding FoB is high, the correlations might be altered.
In RegPT+ model, the nuisance parameter σd is moder-
ately degenerate with cosmological parameters, and for
IR-resummed EFT model, the parameters α1 and α2 are
strongly correlated with cosmological parameters though
the parameter Σ does not show strong correlation. This



13

0.15 0.18 0.21 0.24 0.27 0.30 0.33 0.36

kmax [hMpc−1]

0

1

2

3

4

5

6

7

8

F
oB

RegPT (2-loop)

SPT (2-loop)

RegPT+ (2-loop)

IR-resummed EFT (2-loop)

FIG. 14. Figure of bias for different models estimated from
MCMC chains. The black dashed lines show the 1-σ, 2-σ,
and 3-σ critical values 1.88, 2.83, and 3.76, respectively. The
open (filled) symbols represent that the figure of bias exceeds
(falls below) the 1-σ critical value.

0.15 0.18 0.21 0.24 0.27 0.30 0.33 0.36

kmax [hMpc−1]

104

105

F
oM

RegPT (2-loop)

SPT (2-loop)

RegPT+ (2-loop)

IR-resummed EFT (2-loop)

RESPRESSO

Fisher matrix estimate

FIG. 15. Figure of merit for different models estimated from
MCMC chains. The result with RESPRESSO is shown as a
dashed line since it is different from other methods in the sense
that it relies on simulation-aided approach, not completely
analytical prescription. The cyan line shows figure of merit
from Fisher matrix with RESPRESSO. The open (filled) symbols
represent that the corresponding figure of bias exceeds (falls
below) the 1-σ critical value (see Fig. 14).

degeneracy reduces the constraining power and leads to
the suppression of FoM. Since there exists stronger de-
generacy in IR-resummed EFT model, the suppression
of FoM is more appreciable. The parameter degeneracy
also changes the degeneracy between cosmological pa-
rameters, and the resultant correlation becomes different
from no nuisance parameter case via marginalization (see
Figs. 16 and 17 in the cases of RegPT and SPT, respec-
tively).
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FIG. 16. Correlation coefficients for RegPT at 2-loop level.
The upper left (lower right) triangle shows results with kmax =
0.18 (0.24)hMpc−1. The red (blue) parts correspond to pos-
itive (negative) correlations.
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FIG. 17. Correlation coefficients for SPT at 2-loop level. The
upper left (lower right) triangle shows results with kmax =
0.18 (0.24)hMpc−1. The red (blue) parts correspond to pos-
itive (negative) correlations.

V. CONCLUSIONS

The measurement of matter power spectrum or the
BAO feature imprinted on it has been considered to be
one of the most fundamental observables in precision cos-
mology. But in order to efficiently constrain cosmological
models or parameters, observables such as power spec-
trum should be analytically modeled beyond the linear
theory. In this work, we explore the efficiency with which
such models could constrain the cosmological parameters
focusing our analysis on what could be derived from real
space power spectrum. The latter is obtained from an
N -body simulation for a specific set of cosmological pa-
rameters. The performances of analytical models can
then be scrutinized in terms of precision and accuracy.
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FIG. 18. Correlation coefficients for RegPT+ at 2-loop level.
The upper left (lower right) triangle shows results with kmax =
0.18 (0.24)hMpc−1. The red (blue) parts correspond to pos-
itive (negative) correlations.
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FIG. 19. Correlation coefficients for IR-resummed EFT at
2-loop level. The upper left (lower right) triangle shows re-
sults with kmax = 0.18 (0.24)hMpc−1. The red (blue) parts
correspond to positive (negative) correlations.

The analytical approaches we employ are

• Standard Perturbation Theory, (SPT), based on a
direct expansion of the Euler fluid equations with
respect to linear density contrast;

• Regularized Perturbation Theory, (RegPT), based
on a reorganization of the series expansion with the
help of the multipoint propagators;

• An extension of RegPT (RegPT+) in which the
damping scale is taken as a free parameter to ac-
count for the fact that it not predictable from first
principle calculations;

• An IR-resummed Effective Field Theory (EFT)
model in which non-PT parameters are introduced
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FIG. 20. Correlation coefficients for RESPRESSO. The up-
per left (lower right) triangle shows results with kmax =
0.18 (0.24)hMpc−1. The red (blue) parts correspond to pos-
itive (negative) correlations.

to account for the impact of the small scale physics
on the growth of spectra, such as the effective pres-
sure, etc.

Those models, all considered up to 2-loop order, are
more precisely described in Sec. II. Our whole procedure
is checked and calibrated with the help of RESPRESSO
which can accurately predict how nonlinear power spec-
trum are deformed, in the whole range of modes of inter-
est, when the cosmological parameters are varied. Taking
advantage of a simulated mock observation of real space
power spectrum, cosmological parameters are then fit-
ted using the analytical models described above with the
MCMC technique.

In order to precisely quantify the performances of the
codes we used the Figure of Bias (FoB), which is the
difference between estimated and input parameters nor-
malized by the variances, and the Figure of Merit (FoM),
which roughly corresponds to the inverse of the volume
of the confidence region. Our findings from the analy-
sis with power spectrum at the redshift z = 1 can be
summarized as follows,

• RegPT and SPT give unbiased estimates of the cos-
mological parameters when the range of modes
used to fit the parameters is limited to kmax =
0.24hMpc−1. They fail for higher kmax. RegPT+
and IR-resummed EFT are accurate up to kmax =
0.30hMpc−1 thanks to the extra degrees of free-
dom they contain.

• On the other hand, as expected, FoMs of a given
model monotonically increase as a function of kmax

as the amount of available information increases.
And as expected the resulting precision in the cos-
mological parameters is all the more sensitive to
kmax that the number of useful modes scales like
k3

max.



15

• FoMs of models with extra free parameters, RegPT+
and IR-resummed EFT, are significantly reduced,
by a factor respectively about 2 and 10, compared
with those from models that are entirely predictive
such as SPT and RegPT in our case. This effect is
roughly independent of kmax.

In order to address more precisely the origin of the
latter reduction, we investigate how nuisance parameters
correlate with cosmological parameters taking advantage
of the fact that such correlation coefficients can be coher-
ently extracted from the MCMC chains. Our results are
presented in Sec. IV E. We find that some of the nuisance
parameters are degenerate with cosmological parameters
degrading the precision with which the latter are deter-
mined. This effect is all the more important that the
number of free parameters is large. It is on the other
hand quite independent of kmax. We are then put in a
situation where a trade-off should be found between accu-
racy, which calls for more free parameters, and precision,
which calls for less. The best performing prescription of
those we consider here is the RegPT+ model, having only
one free nuisance parameter while still being able to pro-
vide unbiased estimates up to kmax about 0.33hMpc−1.
This is unlikely however to be a definitive results: other
prescriptions could probably be as effective and this va-
lidity range depends in effect on the detailed covariance
properties of the mock data.

Note that in this exercise, we were forced to restrict
the chains to a three dimensional cosmological parameter
space (six dimensional space in total for EFT models).
The reason is that the code we used here was not fast
enough to cope with larger dimensional space [39]. Need-
less is to say that the larger the number of parameters is,
the slower the convergence of the MCMC procedure is.
For exploring larger parameter spaces, it is then crucial to
implement fast methods for computing power spectrum.
Several methods have already been proposed to speed
up 2-loop level calculations [40–42]. Other aspects which
should eventually be incorporated are modified gravity,
which is addressed in the context of EFT in Ref. [43],
galaxy bias, and redshift space distortions effects. They
also lead to a further increase of the number of parame-
ters to use. These will be subjects of subsequent papers.

We are planning to release a set of numerical codes to
compute the power spectrum perturbatively based on the
fast scheme originally proposed by Ref. [23]. The code

suite will handle redshift space distortions and galaxy
bias with the fast scheme consistently up to the 2-loop
level. We have made an initial version of this code avail-
able on the repository (https://github.com/0satoken/
Eclairs). The current version supports computation of
matter power spectrum in real space based on analytical
approaches presented in this paper. The codes are writ-
ten in C++ with the python wrapper, which is designed
to be easily combined with MCMC samplers.
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Appendix A: Explicit formulas of analytical
approaches

In this Appendix, we present explicit formulas for
power spectrum based on SPT, RegPT, and IR-resummed
EFT.

1. SPT

The correction terms of power spectrum based on SPT
at 1-loop and 2-loop levels are

∆P SPT
1-loop(k) = D4

+[2P13(k) + P22(k)], (A1)

∆P SPT
2-loop(k) = D6

+[2P15(k) + 2P24(k) + P33(k)].(A2)

Each correction term is given as

https://github.com/0satoken/Eclairs
https://github.com/0satoken/Eclairs
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P13(k) = 3P0(k)

∫
d3q

(2π)3
F (3)

sym(k, q,−q)P0(q), (A3)

P22(k) = 2

∫
d3q

(2π)3
[F (2)

sym(q,k − q)]2P0(q)P0(|k − q|), (A4)

P15(k) = 15P0(k)

∫
d3q1

(2π)3

d3q2

(2π)3
F (5)

sym(k, q1,−q1, q2,−q2)P0(q1)P0(q2), (A5)

P24(k) = 12

∫
d3q1

(2π)3

d3q2

(2π)3
F (2)

sym(q1,k − q1)F (4)
sym(q1,k − q1, q2,−q2)P0(q1)P0(q2)P0(|k − q1|), (A6)

P33(k) = 9P0(k)

[∫
d3q

(2π)3
F (3)

sym(k, q,−q)P0(q)

]2

+6

∫
d3q1

(2π)3

d3q2

(2π)3
[F (3)

sym(q1, q2,k − q1 − q2)]2P0(q1)P0(q2)P0(|k − q1 − q2|). (A7)

Eventually, the power spectra at 1-loop and 2-loop levels
are given as

P SPT
1-loop(k) = PL(k) + ∆P SPT

1-loop(k), (A8)

P SPT
2-loop(k) = PL(k) + ∆P SPT

1-loop(k) + ∆P SPT
2-loop(k).(A9)

2. RegPT

The expression of power spectrum of RegPT at 2-loop
level should be

P RegPT
2-loop(k) = [Γ(1)

reg(k)]2P0(k) + 2

∫
d3q

(2π)3
[Γ(2)

reg(q,k − q)]2P0(q)P0(|k − q|)

+6

∫
d3q1

(2π)3

d3q2

(2π)3
[Γ(3)

reg(q1, q2,k − q1 − q2)]2P0(q1)P0(q2)P0(|k − q1 − q2|), (A10)

where the regularized propagators are expressed as,

Γ(1)
reg(k) = D+

[
1 + αk +

1

2
α2
k

+D2
+Γ

(1)
1-loop(k)(1 + αk) +D4

+Γ
(1)
2-loop(k)

]
× exp(−αk), (A11)

Γ(2)
reg(k1,k2) = D2

+

[
(1 + αk)F (2)

sym(k1,k2)

+D2
+Γ

(2)
1-loop(k1,k2)

]
exp(−αk), (A12)

Γ(3)
reg(k1,k2,k3) = D3

+F
(3)
sym(k1,k2,k3) exp(−αk), (A13)

where αk = (1/2)k2D2
+σ

2
d, and Γ

(1)
1-loop(k), Γ

(1)
2-loop(k), and

Γ
(2)
1-loop(k1,k2) are defined in Eq. (8).

The power spectrum at 1-loop level is given as

P
RegPT
1-loop(k) = [Γ(1)

reg(k)]2P0(k)

+2

∫
d3q

(2π)3
[Γ(2)

reg(q,k − q)]2P0(q)P0(|k − q|),

(A14)

with the corresponding regularized propagators Γ
(1)
reg and

Γ
(2)
reg,

Γ(1)
reg(k) = D+

[
1 + αk +D2

+Γ
(1)
1-loop(k)

]
× exp(−αk), (A15)

Γ(2)
reg(k1,k2) = D2

+F
(2)
sym(k1,k2) exp(−αk). (A16)

3. IR-resummed EFT

In the following, we give expressions for matter power
spectrum at 2-loop and 1-loop levels based on the IR-
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resummed EFT approach. At 2-loop level, the matter power spectrum is given as,

P IR EFT
2-loop (k) = P nw(k) + Pw(k); (A17)

P nw(k) = (1 + α1k
2)P nw

L (k) + (1 + α2k
2)∆P nw

1-loop(k) + ∆P nw
2-loop(k), (A18)

Pw(k) = e−k
2Σ2 [

(1 + α1k
2 + C1)Pw

L (k) + (1 + α2k
2 + C2)∆Pw

1-loop(k) + ∆Pw
2-loop(k)

]
, (A19)

where

C1 = k2Σ2(1 + α1k
2) +

1

2
k4Σ4, (A20)

C2 = k2Σ2(1 + α2k
2). (A21)

Here, we have introduced three free parameters α1, α2,
and Σ, which are usually calibrated with N -body simu-
lations. For no-wiggle linear spectra P nw

L (k), we smooth
linear power spectrum as described in Eqs. (13) and (14),
i.e.,

P nw
L (k) = PEH(k)

1√
2π log10 λ

∫
d(log10 q)

PL(q)

PEH(q)

× exp

[
− (log10 k − log10 q)

2

2(log10 λ)2

]
, (A22)

where we adopt the smoothing scale as λ =
100.25 hMpc−1 and PEH(k) is the power spectrum with-
out wiggle feature [28]. The residual corresponds to the
wiggle part Pw

L (k), i.e.,

Pw
L (k) = PL(k)− P nw

L (k). (A23)

Then, we plug the smoothed spectrum P nw
L (k), instead of

linear spectrum PL(k), into the SPT formulas (Eqs. A1
and A2) to obtain no-wiggle correction terms at 1-loop
and 2-loop levels (∆P nw

1-loop and ∆P nw
2-loop). The wiggle

parts of correction terms are also obtained as residuals,

∆Pw
1-loop(k) = ∆P SPT

1-loop(k)−∆P nw
1-loop(k), (A24)

∆Pw
2-loop(k) = ∆P SPT

2-loop(k)−∆P nw
2-loop(k). (A25)

For 1-loop level, the matter power spectrum is given
as,

P IR EFT
1-loop (k) = P nw(k) + Pw(k), (A26)

P nw(k) = (1 + α1k
2)P nw

L (k) + ∆P nw
1-loop(k),

(A27)

Pw(k) = e−k
2Σ2 [

(1 + α1k
2 + k2Σ2)Pw

L (k)

+∆Pw
1-loop(k)

]
. (A28)

In this case, there are two free parameters, α1 and Σ,
which are also calibrated against N -body simulations.

4. EFT

We have considered IR-resummed EFT so far but there
is a simpler description of EFT. For 1-loop level, we can

write down the expression for EFT as,

PEFT
1-loop(k) = P SPT

1-loop(k)− 2(2π)c2s(1)

(
k

kNL

)2

PL(k),

(A29)
where kNL is the nonlinear scale and cs(1) is the effective
sound speed [19]. We treat the combination cs(1)/kNL as
a free parameter. The EFT prescription is based on the
similar idea for IR-resummed EFT, and roughly speaking
the parameter α1 in IR-resummed EFT corresponds to
the sound speed in EFT. Thus, these two models should
provide us with similar results. However, IR-resummed
EFT introduces another free parameter Σ which regu-
lates the damping feature at small scales and when Σ = 0,
the expression can be reduced to that of EFT.

Appendix B: Results with power spectra at 1-loop
level

For comparison, we present results with methods at 1-
loop level. In Figs. 21 and 22, cosmological and nuisance
parameters estimated with 1-loop level calculations are
shown. The results look mostly similar to 2-loop cases.
However, the estimated parameters start to deviate from
true values from smaller kmax. We can see a similar trend
in FoB and FoM shown in Figs. 23 and 24. According
to FoM, the constraining power is almost the same as
that at 2-loop level. On the other hand, in all cases FoBs
are higher than the counterpart in the 2-loop case. The
2-loop level calculations outperform 1-loop calculations
though they are computationally more expensive. The
FoM of EFT is slightly larger than that of IR-resummed
EFT but the effect is subdominant. In order to investi-
gate the reason, we show correlation coefficients for IR-
resummed EFT and EFT in Figs. 25 and 26. In IR-
resummed EFT model, the parameter Σ has almost no
correlations with cosmological parameters. That results
in no degradation of parameter constraints due to Σ. On
the other hand, α1 in IR-resummed EFT and cs(1)/kNL in
EFT correlates with cosmological parameters to similar
extent, and thus FoMs for these two models are almost
the same.



18

0.15 0.18 0.21 0.24 0.27 0.30

kmax [hMpc−1]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

δ(
h
/h

fi
d
)

0.15 0.18 0.21 0.24 0.27 0.30

kmax [hMpc−1]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

δ(
Ω

m
/Ω

fi
d

m
)

0.15 0.18 0.21 0.24 0.27 0.30

kmax [hMpc−1]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

δ(
A

s/
A

fi
d

s
)

RegPT (1-loop)

SPT (1-loop)

RegPT+ (1-loop)

IR-resummed EFT (1-loop)

EFT (1-loop)

FIG. 21. Medians of cosmological parameters estimated from MCMC chains with errors as the fractional ratios with respect
to the fiducial values. All of estimates are based on 1-loop level calculations. The lower (upper) limit of error bars correspond
to 16% (84%) percentile.
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FIG. 22. Medians of nuisance parameters, σd for RegPT+, α1 and Σ for IR-resummed EFT, and cs(1)/kNL for EFT, estimated
from MCMC chains. The lower (upper) limit of error bars correspond to 16% (84%) percentile.
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FIG. 23. Figure of bias for different models at at 1-loop level
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open (filled) symbols represent that the figure of bias exceeds
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I. Pâris, N. Padmanabhan, N. Palanque-Delabrouille,
K. Pan, M. Pellejero-Ibanez, W. J. Percival, P. Petit-
jean, M. M. Pieri, F. Prada, B. Reid, J. Rich, N. A.
Roe, A. J. Ross, N. P. Ross, G. Rossi, J. A. Rubiño-
Mart́ın, A. G. Sánchez, L. Samushia, R. T. Génova-
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riaga, Phys. Rev. D 92, 043514 (2015), arXiv:1504.04366.

[27] Z. Vlah, U. Seljak, M. Yat Chu, and Y. Feng, J. Cosmol.
Astropart. Phys. 3, 057 (2016), arXiv:1509.02120.

[28] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605
(1998), astro-ph/9709112.

[29] R. E. Angulo and A. Pontzen, Mon. Not. Roy. Astron.
Soc. 462, L1 (2016), arXiv:1603.05253.

[30] V. Springel, Mon. Not. Roy. Astron. Soc. 364, 1105
(2005), astro-ph/0505010.

[31] R. Takahashi, N. Yoshida, M. Takada, T. Matsubara,
N. Sugiyama, I. Kayo, A. J. Nishizawa, T. Nishimichi,
S. Saito, and A. Taruya, Astrophys. J. 700, 479 (2009),
arXiv:0902.0371 [astro-ph.CO].

[32] D. Foreman-Mackey, D. W. Hogg, D. Lang, and
J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013),
arXiv:1202.3665 [astro-ph.IM].

[33] Note that the standard Gelman-Rubin statistic is not
suitable for emcee because this algorithm uses informa-

tion of different chains in the ensemble to propose next
positions. The obtained chains are correlated and the re-
sultant Gelman-Rubin statistic will be underestimated.

[34] T. Nishimichi, F. Bernardeau, and A. Taruya, Phys.
Rev. D 96, 123515 (2017), arXiv:1708.08946.

[35] We do not repeat this here but the performance of the
model against rather extreme cosmological models, such
as Ωm = 0.15 or 0.45 can be found in Ref. [34].

[36] A. Taruya, S. Saito, and T. Nishimichi, Phys. Rev. D
83, 103527 (2011), arXiv:1101.4723 [astro-ph.CO].

[37] A. Albrecht, G. Bernstein, R. Cahn, W. L. Freedman,
J. Hewitt, W. Hu, J. Huth, M. Kamionkowski, E. W.
Kolb, L. Knox, J. C. Mather, S. Staggs, and N. B.
Suntzeff, ArXiv Astrophysics e-prints (2006), astro-
ph/0609591.

[38] A. Albrecht, L. Amendola, G. Bernstein, D. Clowe,
D. Eisenstein, L. Guzzo, C. Hirata, D. Huterer, R. Kir-
shner, E. Kolb, and R. Nichol, ArXiv e-prints (2009),
arXiv:0901.0721 [astro-ph.IM].

[39] For example, for RegPT with kmax = 0.21hMpc−1, the
length of converged MCMC chains is 132,000. And each
step roughly takes 1 minute with Intel Xeon E5-2695 v4
(2.1 GHz).

[40] M. Schmittfull, Z. Vlah, and P. McDonald, Phys. Rev.
D 93, 103528 (2016), arXiv:1603.04405.

[41] M. Schmittfull and Z. Vlah, Phys. Rev. D 94, 103530
(2016), arXiv:1609.00349.
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