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Massive cosmic neutrinos change the structure formation history by suppressing perturbations on
small scales. Weak lensing data from galaxy surveys probe the structure evolution and thereby can
be used to constrain the total mass of the three active neutrinos. However, much of the information
is at small scales where the dynamics are nonlinear. Traditional approaches with second order
statistics thus fail to fully extract the information in the lensing field. In this paper, we study
constraints on the neutrino mass sum using lensing peak counts, a statistic which captures non-
Gaussian information beyond the second order. We use the ray-traced weak lensing mocks from the
Cosmological Massive Neutrino Simulations (MassiveNuS), and apply LSST-like noise. We discuss
the effects of redshift tomography, multipole cutoff `max for the power spectrum, smoothing scale
for the peak counts, and constraints from peaks of different heights. We find that combining peak
counts with the traditional lensing power spectrum can improve the constraint on neutrino mass
sum, Ωm, and As by 39%, 32%, and 60%, respectively, over that from the power spectrum alone.
We note that observational systematics such as baryonic effects, intrinsic alignments, photometric
redshift errors are not studied in this work, but will be an important next step to take.

I. INTRODUCTION

While ground-based neutrino oscillation experiments
established the mass sum of the three active neutrinos
to be nonzero (Ahmed et al. 2004, Becker-Szendy et al.
1992, Fukuda et al. 1998), the strongest constraint on
the upper bound currently comes from cosmology. With
nonzero masses, cosmic neutrinos can change the ex-
pansion history and suppress the growth of structure.
As such, the combined measurements of the cosmic mi-
crowave background (CMB), CMB lensing, and baryon
acoustic oscillation put an upper limit of 0.12 eV on the
neutrino mass sum (Planck Collaboration et al. 2018),
under the assumption of a Λ–Cold Dark Matter (ΛCDM)
cosmology.

A promising way to improve upon the current con-
straints is the inclusion of weak lensing of galaxies, which
measures the distortion of background galaxies by fore-
ground matter. Compared with CMB lensing, weak lens-
ing of galaxies probes the structure growth at lower red-
shifts. Combined together, the primary CMB, CMB lens-
ing, and weak lensing capture the evolution of struc-
ture growth under the influence of massive neutrinos
from when they were relativistic (z ≥ a few × 100) to
non-relativistic today. Pioneering weak lensing surveys
such as the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS) (Heymans et al. 2012), Kilo-Degree
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Survey (KiDS) (Hildebrandt et al. 2017), Dark Energy
Survey (DES) (DES Collaboration et al. 2017), and Hy-
per Suprime-Cam (HSC) (Mandelbaum et al. 2017) have
already demonstrated the power of weak lensing. Weak
lensing is also a key science component of next generation
surveys, including the LSST1, WFIRST2, and Euclid3.

Massive neutrinos affect the growth of structure most
prominently on small scales. However, nonlinear growth
dominates these scales at low redshifts. The usual tech-
niques to quantify weak lensing observables—the two-
point correlation function or its Fourier transformation,
the power spectrum—are insufficient in capturing all
the nonlinear information. Additional non-Gaussian in-
formation can be extracted by including higher-order
statistics, such as the three-point function or the bis-
pectrum (Bergé et al. 2010, Dodelson & Zhang 2005, Fu
et al. 2014, Sefusatti et al. 2006, Takada & Jain 2003,
2004, Vafaei et al. 2010). However, computing higher-
order correlation functions quickly becomes prohibitive
as the number of possible shapes increases logarithmi-
cally and the signal-to-noise degrades.

Counting peaks in weak lensing convergence (κ) maps
has been proposed to be one simple yet efficient non-
Gaussian statistic (Jain & Van Waerbeke 2000, Lin & Kil-
binger 2015a,b, Liu & Haiman 2016, Marian et al. 2009,

1 Large Synoptic Survey Telescope: http://www.lsst.org
2 Wide-Field Infrared Survey Telescope: http://wfirst.gsfc.

nasa.gov
3 Euclid: http://sci.esa.int/euclid

mailto:zequnl@astro.princeton.edu
http://www.lsst.org
http://wfirst.gsfc.nasa.gov
http://wfirst.gsfc.nasa.gov
http://sci.esa.int/euclid


2

2013, Maturi et al. 2010). Previous theoretical works
have found up to a factor of two improvement in con-
straining cosmological parameters such as Ωm, σ8, and
w, when peak counts and two-point statistics are com-
bined, compared with using the latter alone (Yang et al.
2011). This prediction is recently supported by measure-
ments using observational data from the CFHTLenS (Liu
et al. 2015a), CS82 (Liu et al. 2015b), DES (Kacprzak
et al. 2016), and KiDS (Martinet et al. 2018, Shan et al.
2018) surveys. The neutrino mass sum, however, has
been typically assumed to be zero in these works. Peel
et al. (2018) is the first to study peak counts in mas-
sive neutrino cosmology. They found that peak counts
in aperture mass maps can help break the degeneracy
between neutrino mass and modified gravity, and that
peaks outperform the third- and fourth-order moments.

In this paper, we extend the study of peak counts
to cosmological constraints including the neutrino mass
sum, and forecast for an LSST-like survey. Because the
linear theory breaks down at small scales where nonlinear
evolution dominates, we model the lensing power spec-
trum and peak counts using N-body ray-tracing simula-
tions. In particular, we use the Cosmological Massive
Neutrino Simulations (MassiveNuS, Liu et al. 2018),
which includes a set of 101 cosmological models, all
with different neutrino masses, and other two varying
parameters: the matter density Ωm and the primordial
power spectrum amplitude As. We use an LSST-like noise
and redshift distribution for five tomographic redshift
bins, and study the constraints from the power spectrum
and peak counts separately and jointly. Our compan-
ion papers explore the constraints on the neutrino mass
sum from other non-Gaussian statistics, including the
bispectrum (Coulton et al. 2018), one-point probability
distribution function (Liu & Madhavacheril 2018), and
Minkowski Functionals (Marques et al. 2018). In addi-
tion, Kreisch et al. (2018) examined the effect of massive
neutrinos on cosmic voids.

We begin this paper with theoretical background in
Section II. We describe the MassiveNuS simulations and
lensing maps used in this work in Section III. In Sec-
tion IV we describe our analysis process, including the
lensing power spectrum, peak counts, and the likelihood
function. In Section V we forecast the cosmological con-
straints given expected LSST galaxy density and shape
noise. We summarize our findings and discuss implica-
tions in Section VI.

II. BACKGROUND

A. Effects of massive cosmic neutrinos

Big bang cosmology predicts a relic sea of cosmic neu-
trinos (Lesgourgues & Pastor 2006), which is coupled
to the quark-baryon fluid at early times and decouples
at a temperature of Tdec ≈ 1 MeV. Massive neutrinos
contribute to the expansion of the universe but not to

gravitational clustering below their free-streaming scale,
and hence slow down the growth of matter perturbations.
During matter domination, the linear theory solution to
the growth of matter perturbation—δcdm ∝ a for zero
neutrino masses—is altered by massive neutrinos,

δcdm ∝ a1−
3
5 fν , (1)

where we assume the neutrino to matter density fraction
fν ≡ Ων/Ωm � 1. Measurements of the matter pertur-
bation therefore enable us to measure the total mass of
neutrinos.

At present, only the differences between the squared
masses of the three species are known, ∆m2

21 ≡ m2
2 −

m2
1 = 7.37+0.60

−0.44 × 10−5 eV2 and |∆m2| ≡ |m2
3 − (m2

1 +

m2
2)/2| = 2.5+0.13

−0.13 × 10−3 eV2 from oscillation experi-
ments (Patrignani & Particle Data Group 2016). As a
result, there are two possible ways to arrange the three
neutrino masses, the normal hierarchy (m3 > m1,m2)
and the inverted hierarchy (m1,m2 > m3) with minimum
total masses of ∼ 0.06 eV and ∼ 0.1 eV, respectively.

B. Weak lensing

Gravitational lensing describes the phenomenon where
photons from distant objects are deflected by matter be-
fore reaching the observer, resulting in a distorted image
of the object. The image, usually of a galaxy, can change
in brightness and shape as the result of lensing, with the
degree of modification in proportion to the mass of the
structure inducing the deflection. In strong lensing, these
image distortions can be very dramatic, though such
events are rare. All galaxies experience weak lensing—
minute distortions by foreground matter (“lens”). The
effect of weak lensing is difficult to measure on individual
galaxies, due to the large uncertainties in their intrinsic
brightness and shapes. Nevertheless, robust signals can
be achieved statistically by averaging over a large sample
of galaxies. This method holds promise for its potential
to probe small scale structures and sensitivity to all mat-
ter.

The lens creates a deflection angle ~α between the

source position ~β and the observed position ~θ (Bartel-
mann & Schneider 2001),

~θ = ~β + ~α(~θ). (2)

For a thin lens, the deflection angle is related to the lens-
ing potential Ψ, through

~α =∇Ψ (3)

Ψ(~θ) =
Dds

DdDs

2

c2

∫ zs

0

Φ(Dd
~θ, z) dz, (4)

where Ds, Dd, Dds are the angular diameter distances
between the source and observer, lens and observer, and
source and lens, respectively. Φ is the three-dimensional
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(3D) gravitational potential. The weak lensing conver-
gence κ is a projected density, and its relation to the
lensing potential,

κ =
1

2
∇2Ψ, (5)

can be viewed as the 2D analogy of the Poisson equation
linking the density field ρ to the 3D potential Φ.

C. Lensing power spectrum

The power spectrum of the convergence map C` is a
weighted projection of the 3D matter power spectrum
P (k, z). In a flat universe, under the Born and flat sky
approximations,

C` =

∫ zs

0

H(z)

cχ2(z)
W 2(z)P

(
k =

l

χ(z)
, z

)
dz (6)

W (z) =
3

2
ΩmH

2
0

1 + z

H(z)

χ(z)

c
(7)

×
∫ zs

z

dn(zs)

dzs

χ(zs)− χ(z)

χ(zs)
dzs. (8)

where the χ(z) is the comoving distance, H is the Hubble
parameter with a present day value H0, zs is the source
redshift, and dn/dzs is the source redshift distribution.

D. Lensing peak counts

Lensing peaks are the local maxima in a convergence
κ map. To remove noises that are dominating the small
scales, the maps are first smoothed, typically with a
Gaussian filter. The optimal smoothing scale depends
on the galaxy number density and the shape noise, and
we found that in our case 2 arcmin is optimal. In a
pixelized map, peaks are the pixels with values higher
than all the neighboring pixels. They are quantified as
a function of height, i.e. the pixel’s κ value, or the de-
tection significance to noise (S/N). They are particularly
sensitive to nonlinear structures, and hence provide in-
formation beyond second order statistics like the power
spectrum.

High significance peaks (S/N>3) are typically the re-
sult of single, massive halos, while medium and low
peaks come from aligned smaller halos along the line
of sight (Liu & Haiman 2016, Yang et al. 2011). To
date, (semi-)analytic models are available only for the
high peaks (Fan et al. 2010, Lin & Kilbinger 2015a), and
medium to low peaks are modeled using N-body simula-
tions. While high peaks have high signal and are com-
monly used in cluster searches, medium and low peaks
have been shown to contain comparable cosmological in-
formation (Yang et al. 2011), a feature that we also ex-
plore in this paper. We include peaks with a wide range
of heights with S/N=[−0.6, 6].

III. SIMULATIONS

We use the public MassiveNuS simulation suite (Liu
et al. 2018), a set of 101 N-body simulations with vary-
ing

∑
mν , the total mass of massive neutrinos, Ωm =

Ωc + Ωb + Ων , the present matter-component density,
and As, the primordial power spectrum normalization
at pivot scale k0 = 0.05 Mpc−1. The model sampling of
the simulation is shown in Fig. 1. The simulations have
a 512 Mpc/h box size and 10243 particles.

The linear power spectrum at z = 99 was first com-
puted using the Boltzmann code CAMB (Howlett et al.
2012, Lewis et al. 2000). The initial conditions were gen-
erated using a modified version of N-GenIC (Springel
2005), which includes the radiation contribution as well
as massive neutrinos. The N-body simulations were run
with a modified version of Gadget-2 (Springel 2005),
which includes a background density of neutrinos using
a linear response algorithm (Ali-Häımoud & Bird 2013,
Bird et al. 2018).

Lensing convergence maps are generated using the
public ray-tracing code LensTools (Petri 2016). Each
snapshot is cut into four equal-sized slices and CDM par-
ticles are projected onto a 2D density plane. They are
then combined with the neutrino density plane. Light
rays are shot from the center of the z=0 plane backwards
through time, and the deflection angles are computed at
each plane. The trajectories of the light rays are tracked
robustly, making no assumptions about small deflection
angle or unperturbed geodesics, i.e. the Born approxi-
mation. 10,000 map realizations were generated for each
model by rotating and shifting the spatial planes. Each
map has 5122 pixels and is 12.25 deg2 in size. We refer
the readers to the code paper for more simulation details
and code testing.

The LSST Science Book forecasts a projected num-
ber density of 50 arcmin−2 for the survey, with a red-
shift distribution that peaks at z=1 and 10% of galaxies
at z > 2.5 (LSST Science Collaboration et al. 2009).
We adopt a five redshift tomography setting, assuming
a galaxy number density ngal=8.83, 13.25, 11.15, 7.36,
4.26 arcmin−2 for source redshifts zs=0.5, 1, 1.5, 2,
2.5, respectively. To demonstrate the power of tomog-
raphy (Hu 2002), we also study the constraints from one
single redshift, where all galaxies are at zs = 1.0 and
ngal = 40 arcmin−2. For both configurations, we consid-
ered galaxy shape noise σλ = 0.35.

To model the LSST noise, we add κnoise to each pixel,
drawn from a random Gaussian distribution centered at
zero with variance

σ2
noise =

〈σ2
λ〉

ngal∆Ω
. (9)

The noise level depends on the galaxy shape noise, the
galaxy density, and the smoothing scale. For our default
smoothing scale of two arcmin, σnoise=[0.0169, 0.0138,
0.0150, 0.0185, 0.0243] for the redshift bins zs=[0.5, 1,



4

∑
m
ν  [eV]

0.0 0.2 0.4 0.6 Ω m

0.2
0.3

0.4

10
9
A
s

1.5
2.0
2.5

0.0 0.2 0.4 0.6∑
mν [eV]

1.5

2.0

2.5

3.0

1
0

9
A
s

0.0 0.2 0.4 0.6∑
mν [eV]

0.20

0.25

0.30

0.35

0.40

Ω
m

0.2 0.3 0.4
Ωm

1.5

2.0

2.5

3.0

10
9
A
s

FIG. 1. The models (black) used in the MassiveNuS simulations, projected onto 2D planes. The fiducial model
∑

mν = 0.1
eV, Ωm = 0.3, As = 2.1× 10−9 is highlighted in red.

1.5, 2, 2.5], respectively. The noise level for the single
redshift case is σnoise=0.0079.

Finally, we measure both the power spectrum and
peak counts for each map. For the power spectrum,
we use logarithmically spaced bins with neighboring bin
edges increasing by a factor of 1.124, with `min=100
and `max=5000 (equivalent to ∼2 arcmin in real space).
For peak counts, we use linearly spaced bins between
S/N=−0.6 to 6 with ∆S/N=0.16, where the noise term
is defined in Eq. 9.

IV. ANALYSIS

A. Interpolation with Gaussian Process

To build models for the power spectrum and peak
counts at an arbitrary cosmology, we interpolate between
the available cosmological models (Fig. 1) using Gaus-
sian Process (GP). Unlike a simple spline interpolator,
which only uses the average information, GP also uses the
variance to weight different bins and cosmologies when
performing the interpolation. We find roughly an order
of magnitude improvement in comparison to the RBF
scheme used in previous work (Liu et al. 2016). We fit our
GP with an anisotropic squared-exponential kernel with
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FIG. 2. The fractional interpolation error from the Gaussian
Process (GP) for peak counts (top, black) and power spec-
trum (bottom, black). We test the robustness of the inter-
polation by comparing the true statistic at the fiducial model
with that obtained from our GP interpolator (built with the
other 100 models), We also show the expected variance of an
LSST-like survey (purple).

four hyperparameters—an interpolation length scale for
each of the three parameters, as well as an overall ampli-
tude. These are fit with the standard marginal likelihood
approach (Rasmussen & Williams 2006) implemented in
scikit-learn (Pedregosa et al. 2011).

We assess the reconstruction accuracy by comparing
the GP prediction with the “ground truth” from the sim-
ulation. Here, the test GP is built with that particu-
lar model removed. We found consistently sub-percent
errors, well below the systematical error expected from
LSST 4. We show an example for the fiducial model in
Fig. 2.

4 We also test the improvement on interpolation by including the
` or κ as an input parameter, i.e. fitting the GP on simulation
data varying (`,

∑
mν ,Ωm, As) or (κ,

∑
mν ,Ωm, As), as well as

the redshift, though found negligible effects.

B. Covariance

We estimate the covariance matrices using 10,000 real-
izations from a separate, independent set of simulations
at the fiducial massless model (

∑
mν = 0 eV, Ωm = 0.3,

As = 2.1×10−9), to avoid correlations between the model
and the covariance. We conduct separate and joint analy-
ses for the power spectrum and peak counts in this paper.
When the two statistics are combined, the full covariance
is used.

We show the full covariance for both the noiseless
and noisy power spectrum (bins 1–120) and peak counts
(bins 121–326) in Fig. 3. Within each of the two main
blocks, five sub-blocks are for the tomographic redshift
bins (zs=0.5, 1, 1.5, 2, 2.5, from left to right, respec-
tively). For the power spectrum, larger nonlinear sig-
nals are seen at lower redshifts as larger values in the
off-diagonal terms. The cross blocks between the power
spectrum and peak counts show amplitude smaller than
the self off-diagonal terms of the power spectrum, hinting
that peak counts is a probe relatively independent from
the power spectrum.

The inverse covariance is corrected for the limited num-
ber of realizations used (Hartlap et al. 2007),

C−1 =
Ns −Np − 2

Ns − 1
C−1

∗ , (10)

where Ns is the number of realizations, Np is the num-
ber of bins, C is the corrected covariance, and C∗ is the
covariance computed from the simulations. Our sim-
ulated lensing maps are 12.25 deg2, but LSST covers
roughly 2×104 deg2. Therefore, we scale our covariance
by 12.25/(2 × 104) to account for this difference in sky
coverage.

C. Likelihoods and parameter estimation

We compute the likelihood assuming Gaussian errors,
as the maps are Gaussian noise dominated. The log like-
lihood for a cosmology-independent covariance is

logL(p) = −1

2
(x− µ(p))

T
C−1 (x− µ(p)) , (11)

where x is the vector of “observed” power spectrum or
peak counts, for which we use the average from the
fiducial cosmology (

∑
mν = 0.1 eV, Ωm = 0.3, As =

2.1 × 10−9), and µ is the GP prediction for the cos-
mological parameters p. We estimate the posteriors of
parameters using Markov Chain Monte Carlo (MCMC)
with the emcee package, using 100 walkers initialized in
a tight ball of radius 10−3 in each parameter about the
fiducial model.
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FIG. 3. Noiseless (left) and noisy (right) covariance matrices, normalized by the diagonal terms, for the power spectrum (bins
1–120) and peak counts (bins 121–326). We assume LSST noise (Sec. III). Five source redshifts (zs=0.5, 1, 1.5, 2, 2.5) are shown
as the five mini-blocks within each statistic.

V. RESULTS

In this section, we present forecasts on the neutrino
mass sum

∑
mν , the matter density Ωm, and the primor-

dial power spectrum amplitude As given a galaxy survey
with LSST noise properties. Ωm and As are two param-
eters expected to be most degenerate with the neutrino
mass for weak lensing. We compare the constraints de-
rived from the lensing power spectrum and peak counts,
as well as them jointly. We also present studies of vary-
ing the configurations: (1) single source redshift versus
five tomographic redshifts; (2) the ` range included in
the power spectrum analysis; (3) the smoothing scale
for peak counts; (4) constraints from peaks of different
heights (or significance); and (5) combining with primor-
dial CMB priors. A summary of our findings can be
found in Fig. 13 and Table I.

A. Power spectrum

We show the impact of neutrino mass on the power
spectrum in the left panel of Fig. 4. For comparison,
we also vary the other two parameters, to demonstrate
the well-know degeneracy among them—decreasing As or
Ωm, and increasing

∑
mν all decrease the overall lensing

power spectrum, with very subtle changes in the shape
of the curve.

We first examine the constraining power for a single
source redshift (“1z”) versus five tomographic redshifts
(“5z”), i.e. if we put all galaxies in one single lensing
map, or split them into different redshift bins for mul-
tiple maps. The motivation is to break the degeneracy
among the three parameters. For example, while As sets
the initial power spectrum shape and hence only impacts
the overall amplitude, Ωm can change the shape of the
power spectrum by shifting the matter-radiation equality,

and Σmν has a strong dependence on time as neutrinos
gradually change from relativistic to non-relativistic. Hu
(2002) found that splitting galaxies to only a few tomo-
graphic bins can already gain up to an order of magni-
tude improvement. We show the results in the left panel
of Fig. 5. We use lensing multipoles 300 < ` < 5000
for both 1z and 5z configurations. Using 5z tomography,
the constraints are improved by 12%, 55%, and 34% for∑
mν ,Ωm, andAs, respectively.
In Fig. 6 we compare the parameter constraints de-

rived from different multipole cutoffs at `max=2000, 5000,
8000. In the noise-free case, we expect that including
smaller scales (higher `) would add more information.
Overall, the constraints are stable to changes in the max-
imum multipole, as expected. When we extend from
`max=2000 to `max=5000, we see some mild improve-
ments for all parameters. However, pushing further to
`max=8000 has negligible impact on the confidence lev-
els, due to the dominance of galaxy noise at small scales
(Fig. 4, left panel).

Finally, in Fig. 7 we check our simulation results
against a simple Fisher forecast, using the lensing power
spectrum predicted by the Halofit model (Smith et al.
2003, Takahashi et al. 2012). We use a single redshift
configuration (“1z”). The theory curve is computed using
the CLASS software (Blas et al. 2011). The degeneracy
direction from the simulations agrees well with that from
the Fisher forecast. The detailed contour shapes do not
match exactly, though this is expected from the Fisher
formalism, which only incorporates linear sensitivity to
parameters, and Halofit, which is only accurate to 10%.

B. Peak counts

We show the impact of neutrino mass on lensing peaks
in the right panel of Fig. 4. We also vary other two pa-



7

10-12

10-11

10-10

10-9
C
` fiducial (0.1, 0.3, 2.1)

0.95As
0.95Ωm

Mν = 0.25 eV
Noise

0

2500

5000

7500

10000

12500

pe
ak

 c
ou

nt
s N

fiducial (0.1, 0.3, 2.1)
0.95As
0.95Ωm

Mν = 0.25 eV

1000 2000 3000 4000
`

0.85

0.90

0.95

1.00

C
`
/C

fi
d

`

−0.02 0.00 0.02 0.04 0.06
Peak Height 

0.8

0.9

1.0

1.1

1.2

N
/
N
fi
d

FIG. 4. Left: The impact of changes in the cosmological parameters on the noiseless lensing power spectrum at z = 1, shown
as fractional changes from the fiducial model (solid black,

∑
mν=0.1 eV, Ωm=0.3, As=2.1×10−9). We generate the other

three curves from our Gaussian Process interpolator, while keeping the other two parameters fixed. Decreasing As or Ωm, and
increasing

∑
mν all decrease the overall lensing power spectrum, with very subtle changes in the shape of the curve, which

explains the degeneracy among these parameters. Right: same but for the peak counts. Similarly, the three parameters
show degenerate behavior. However, a close examination of the bottom panel shows different crossing at N = Nfid for the
three parameters, hinting on potential to break the degeneracy. Also shown in the top left is the amplitude of white noise for
ngal = 40 per arcmin2.

rameters to examine the degeneracy. Decreasing As or
Ωm, and increasing

∑
mν suppress the number of low

and high peaks, but boost the medium peaks. If we re-
call previous discussions that high peaks are found to be
related to massive halos (Sec. II D), it is then not sur-
prising to see that massive neutrinos reduce the number
of massive halos in the universe.

We compare the parameter constraints obtained from a
single source plane versus five redshifts for lensing peaks
in the right panel of Fig. 5. Like the power spectrum,
redshift tomography does provide additional information.
Interestingly, whereas tomography for the power spec-
trum appears to uniformly shrink the contours in the∑
mν–Ωm plane, peak counts benefit from redshift infor-

mation primarily in the direction of degeneracy. Using 5z
tomography, the constraints are improved by 40%, 39%,
and 36% for

∑
mν ,Ωm, As, respectively.

We also test the constraints from different smoothing
scales in Fig. 8. While small smoothing scales can extract
more nonlinear information, too small a scale would re-
sult in a noise dominated map. This is similar to the

practice of applying an `max to the power spectrum. We
see some improvement from 5 arcmin to 2 arcmin smooth-
ing, but almost no difference from 2 arcmin to 1 arcmin.
Therefore, we choose to use 2 arcmin smoothing in our
final analysis. We note that the constraints could be po-
tentially improved further with more sophisticated filter-
ing methods. For example, Liu et al. (2015a) found that
combining different smoothing scales can slightly shrink
the contour size. Peel et al. (2018) discussed an alterna-
tive filtering scheme using wavelets, which can separate
information on different scales more effectively than the
Gaussian filter.

Past work has suggested that much of the cosmological
information in peak counts comes from the medium and
low peaks. To study this, we separate the peaks accord-
ing to their heights: low (S/N<1), medium (1<S/N<3),
and high (S/N>3) peaks. We illustrate our definitions
in Fig. 9. We show the resulting parameter constraints
in Fig. 10, where we see that medium and low peaks
both contain similar amount of information as the high
peaks. Peaks of different heights also show different de-
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C. Joint constraints

We show the joint 95% confidence level constraints in
Fig. 11. We use a maximum multipole of `max=5000 for
the power spectrum and a smoothing scale of 2 arcmin
for peak counts. We also visualize the marginalized con-
straints in Fig. 13, with the values tabulated in Table I.
Peak counts outperform the power spectrum in constrain-
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ing all three parameters. The combined constraints are
particularly impressive in

∑
mν , where the marginalized

uncertainty is 39% smaller, when compared to that from
the power spectrum alone.

The eventual strongest constraint on
∑
mν would not

be from weak lensing alone, but by combining with other
probes such as the CMB, baryon acoustic oscillation,
Lyman-α forest, etc. We demonstrate this in Fig. 12
with an example of combining our weak lensing likeli-
hood with a Planck-like Fisher prior. While the CMB
constraint on

∑
mν is weaker than that from weak lens-

ing, it is particularly sensitive to As, which breaks the
strong degeneracy between

∑
mν and As in weak lens-

ing, and hence resulting in a much tighter
∑
mν than

either probe alone.

VI. CONCLUSION

In this paper, we study the constraints on the neutrino
mass sum (

∑
mν) from the weak lensing power spectrum

and peak counts for an LSST-like survey. We study the
effects of redshift tomography, `max for the power spec-
trum, and smoothing scales for the peak counts. We also
show the power of joint constraints of the power spec-
trum and peak counts, as well as that with primordial
CMB temperature.

We show the marginalized errors on
∑
mν , Ωm, and

As in Fig. 13 for different combinations of the survey
configurations discussed above. Our major findings are:

1. Redshift tomography improves parameter con-
straints for both the power spectrum and peak
counts, compared with using only a single redshift
bin. The marginalized constraints on the neutrino
mass are improved by 12% for the power spectrum,
and 39% for the peak counts (Fig. 5).

2. Combining peak counts and the power spectrum
can improve the constraint on

∑
mν by ∼40% over

the power spectrum alone, as the two probes have
different degrees of degeneracy between

∑
mν and

the other two parameters, Ωm and As (Fig. 11). It
is worth noting that peak counts alone can already
provide constraints on

∑
mν , Ωm, and As that are

competitive to the power spectrum. For example,
the constraint on

∑
mν from peaks alone is ∼33%

smaller than that from the power spectrum.

3. While including smaller scales in both the power
spectrum and peak counts can improve the con-
straints, such effects are diminishing at around
`max = 5000 for the power spectrum and 2 arcmin
smoothing for peak counts, due to the galaxy noise
(Figs. 6 and 8).

4. Low and medium peaks, typically formed due to
multiple much smaller halos (than the single halos
that cause the high peaks), contain a similar level
of information as the high peaks, but with different
degrees of degeneracy than the high peaks (Fig. 9).

5. While weak lensing and CMB (with Planck noise)
on their own provide comparable constraints on∑
mν , when they are combined the constraint is

improved by a factor of ∼4 compared to CMB alone
(Fig. 12).

In summary, we demonstrated that lensing peaks are a
powerful tool on its own, probing nonlinear information
that would be otherwise missed in the power spectrum
analysis. The combination of the weak lensing power
spectrum and peak counts tightens the constraint on neu-
trino mass for future galaxy surveys, than using the for-
mer alone, and is complementary to other cosmological
probes. To eventually realize the power of peak counts in
constraining neutrino mass, we must model carefully rel-
evant systematics, including the intrinsic alignment, pho-
tometric redshift (photo-z) errors, galaxy shape bias, and
baryonic feedback. Some pioneering work studying lens-
ing peak systematics, despite without considering mas-
sive neutrinos, can already guide our future efforts to
study them with massive neutrinos jointly. For exam-
ple, Yang et al. (2013) and Osato et al. (2015) studied
the impact of baryonic effects on peak counts, and found
that they impact high and low peaks differently, which
can serve nicely as a self-calibration tool. Kacprzak et al.
(2016) used semi-analytical models to study the effects
of shear multiplicative bias, intrinsic alignments, blend-
ing, and signal dilution from cluster members, and found
that mainly high peaks are affected. Abruzzo & Haiman
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FIG. 13. Marginalized constraints on each parameter for forecasts made in this paper, showing the 2.5 and 97.5 percentiles for
Ωm and As, as well as the 95% upper bound on

∑
mν . The values are listed in Table I.

observable
∑

mν+ Ωm− Ωm+ 109As− 109As+ ∆Ωm ∆109As
5z PS `max ∼ 2000 0.520 0.286 0.314 1.968 2.859 0.027 0.892
5z PS `max ∼ 5000 (fiducial) 0.484 0.289 0.310 1.999 2.795 0.022 0.796
5z PS `max ∼ 8000 0.457 0.289 0.310 1.996 2.731 0.021 0.736
1z PS `max ∼ 5000 0.553 0.278 0.327 1.810 3.019 0.049 1.209
5z Peaks 1 arcmin 0.341 0.295 0.312 2.004 2.316 0.016 0.312
5z Peaks 2 arcmin (fiducial) 0.323 0.293 0.312 1.993 2.341 0.019 0.348
5z Peaks 5 arcmin 0.355 0.289 0.314 1.949 2.463 0.025 0.513
1z Peaks 2 arcmin 0.540 0.292 0.323 1.979 2.524 0.031 0.545
5z Low Peaks 2 arcmin 0.454 0.290 0.324 1.901 2.454 0.034 0.553
5z Medium Peaks 2 arcmin 0.561 0.289 0.322 1.936 2.672 0.034 0.736
5z High Peaks 2 arcmin 0.564 0.283 0.320 1.934 2.860 0.037 0.926
Planck CMB Forecast 0.627 0.295 0.306 2.071 2.130 0.010 0.059
5z PS + Peaks 0.295 0.293 0.309 2.021 2.344 0.015 0.322
PS + CMB 0.163 0.297 0.305 2.075 2.130 0.007 0.055
Peaks + CMB 0.164 0.297 0.305 2.075 2.130 0.007 0.055
PS + Peaks + CMB 0.160 0.298 0.304 2.076 2.130 0.007 0.054

TABLE I. Marginalized constraints on each parameter for forecasts made in this paper, showing the 2.5 and 97.5 percentiles
for Ωm and As, as well as the 95% upper bound on

∑
mν . The values are visualized in Fig. 13.

(2018) studied the photo-z error, and found that peak
counts are more prompt to photo-z errors than the power
spectrum, though the photo-z error currently predicted
for LSST will need to be improved for both the power
spectrum and peak counts to reach the survey science
requirement. We plan to investigate these effects jointly
with massive neutrinos and device mitigation strategies
in our future work.
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