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We compare analytic predictions for real and Fourier space two-point statistics for biased tracers from a
variety of Lagrangian Perturbation Theory approaches against those from state of the art N-body simulations in
f (R) Hu-Sawicki and the nDGP braneworld modified gravity theories.

We show that the novel physics of gravitational collapse in scalar tensor theories with the chameleon or the
Vainshtein screening mechanism can be effectively factored in with bias parameters analytically predicted using
the Peak-Background Split formalism when updated to include the environmental sensitivity of modified gravity
theories as well as changes to the halo mass function.

We demonstrate that Convolution Lagrangian Perturbation Theory (CLPT) and Standard Perturbation Theory
(SPT) approaches provide accurate analytic methods to predict the correlation function and power spectra,
respectively, for biased tracers in modified gravity models and are able to characterize both the BAO, power-law
and small scale regimes needed for upcoming galaxy surveys such as DESI, Euclid, LSST and WFIRST.

I. INTRODUCTION

About 20 years after the discovery of cosmic accelera-
tion [1, 2], the ΛCDM model of the universe is rightfully
called the standard model of cosmology, after having suc-
cessfully passed a broad range of tight observational tests
[3–9]. This model augments the cosmic baryonic and lep-
tonic matter components in the Standard Model, with two ad-
ditional ingredients that dominate the cosmic energy budget,
cold dark matter (CDM) and a cosmological constant, Λ, with
the latter playing the role of vacuum energy that is respon-
sible for the observed late-time acceleration. Central to the
above paradigm is also the assumption that gravitational evo-
lution is governed by Einstein’s General Theory of Relativity
(GR), which led to the observed inhomogeneous pattern of
the Large-Scale Structure (LSS) of the Universe through the
process of gravitational instability. The value of the vacuum
energy predicted by quantum field theory, however, is orders
of magnitude larger than the best-fit one that is necessary to
explain cosmic acceleration, so Λ needs to be fine-tuned; the
so-called cosmological constant problem [10]. Such an unfor-
tunate mismatch, together with the need to fully explore the
space of all theoretical alternatives, has generated growing in-
terest in testing gravity models that self-accelerate though a
large-scale modification to GR, instead of dark energy, the so-
called Modified Gravity (MG) models [11, 12].

Modifying the Einstein-Hilbert action, however, introduces
in principle an additional degree of freedom that is confor-
mally coupled to matter and can produce significant devia-
tions from the predictions of GR, which have passed a wide ar-
ray of precise observational tests, especially in the Solar Sys-
tem [13]. Furthermore, the recent simultaneous detection of
gravitational waves and EM counterparts by the LIGO/Virgo
collaboration [14–18], has placed additional constraints [19–
22] into the form of the most general expression of a scalar-
tensor theory that produces second order equations of motion,
described by the Horndeski action [23, 24].

In order to be able to confront such tight constraints
successfully, while at the same time provide a stable self-
accelerative cosmic mechanism, viable candidates contain a
restoring property, called “screening” [25, 26], which is a dy-

namical mechanism that weakens the additional fifth forces in
high-density environments through the corresponding scalar
field self-interactions. In the Vainshtein mechanism [27, 28],
GR is recovered thanks to the second derivative terms in the
scalar field Lagrangian, that become large in high density en-
vironments and effectively weaken the coupling to the matter
sources. The Vainshtein mechanism is very efficient in the
vicinity of a massive source and contains a rich phenomenol-
ogy, which makes it particularly attractive. Another popu-
lar class of screening consists of the chameleons [29, 30],
where in regions of high potential the scalar fields become
massive and cannot propagate, resulting thus in suppression
of the fifth forces. Despite the fact that chameleons can-
not produce self-acceleration [31], their very interesting phe-
nomenology makes them serve as ideal testbeds for gravity
and considerable efforts have been put into their study in the
past decade [32]. Other screening classes include the sym-
metrons [33, 34], that employ spontaneous symmetry break-
ing and share qualitative similarities with the chameleons and
the K-Mouflage [28, 35], in which deviations are suppressed
when scalar field gradients exceed a certain value.

The observed inhomogeneous LSS of the Universe, is the
outcome of the subsequent nonlinear gravitational evolution
of the primordial density fluctuations, partially modulated by
the late-time acceleration. As a result, it provides us with
an observational window into the fundamental physics that
shaped this process, including sensitive tests of the underly-
ing large-scale gravitational law, making it particularly valu-
able for constraining the various MG models. Indeed, as we
are entering the era of “precision cosmology”, multiple spec-
troscopic and photometric surveys of the LSS, both already
operating, such as the DES [36] and also about to be com-
missioned in the next decade, like DESI [37], Euclid [38], the
LSST [39] and WFIRST [7], will provide us with particularly
precise maps of the LSS that will shed light on the mysteri-
ous nature of the dark sector. Taking full advantage of this
wealth of cosmological information poses a great challenge
for experiment and theory alike.

From a theoretical standpoint, models of structure forma-
tion rely upon accurately tracing the nonlinear evolution of
dark matter perturbations. In the linear regime and when grav-
ity is governed by GR, different modes evolve independently,
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with the time evolution encapsulated in the scale-independent
growth factor. At nonlinear scales, however, the dynamics of
the self-gravitating dark matter system can only be tracked ac-
curately by full-blown N-body simulations, which are highly
computationally expensive . Additional complexity arises in
accounting for the fact that the observed galaxies do not per-
fectly trace the underlying dark matter density field, but are
biased tracers of it [40]. While this effect can be easily cap-
tured by introducing a multiplicative bias factor in the large
scales [41], in the regime of nonlinear dynamics, empirical
modeling needs to be combined with sophisticated simula-
tions in order to predict the spatial distribution of galaxies
inside gravitationally collapsed dark matter halos [42–44].
Furthermore, when MG configurations are considered, the
fifth forces introduce an additional layer of complexity, scale-
dependent growth is generally present even at the linear level
and in the nonlinear scales, one needs to solve the scalar field
Klein-Gordon (KG) equation that is highly nonlinear and adds
to the computational costs significantly. The intermediate,
quasi-linear, scales can fortunately be analytically accessed
by higher order Perturbation Theory (PT) [45, 46] approaches
or hybrid methods [47, 48].

The Lagrangian Perturbation Theory approach [49–58] to
structure formation is one the oldest and most popular analyt-
ical frameworks in the literature, that has been been particu-
larly successful at describing the Baryon Acoustic Oscillation
(BAO) peak [3], observed at a comoving scale of ∼110 Mpc/h,
and the power-law correlation function, on comoving scales
∼20-90 Mpc/h, in ΛCDM [59]. Combined with a model for
halo bias [40, 55, 60–63], it can be used to predict the 2-point
statistics for halos in the real and redshift space [55, 56, 64],
which serves as a crucial step to the theoretical description of
galaxy clustering. Additional contributions from small-scale
physics can also be included using techniques inspired by ef-
fective field theory theory [64, 65]. In the context of MG
cosmologies, extensive studies have been performed in the
framework of Eulerian Standard Perturbation Theory (SPT)
[66–73]. LPT was first found to work very well within the
COLA hybrid framework for chameleon and Vainshtein MG
cosmologies [48], while third order LPT for dark matter was
recently developed in the case of scalar-tensor theories in [74].

In this work, we perform a comprehensive study of how
LPT can be used to make predictions for biased tracers in
modified gravity theories, and how well the predictions com-
pare with full numerical simulations for a variety of modi-
fied gravity models. We study chameleon and Vainsthein MG
theories, focusing on the f (R) Hu-Sawicki [76] and nDGP
braneworld models [77] as popular, representative examples
for each category. The underlying dark matter clustering is
described using the formalism in [74]. We then consider
the Convolution Lagrangian Perturbation Theory (CLPT) [56]
for biased tracers, as well as the variants, using the partic-
ular resummation scheme in [64, 65]. We extend the peak-
background split formalism (PBS) [40, 63, 78] in which the
Lagrangian bias factors are calculated as responses, to ac-
count for modifications to the halo mass function in modified
gravity theories and the environmental dependence of screen-
ing effects. We show how this formalism should be extended

in the case of each screening mechanism. Finally, we cross-
check and validate our results in terms of the 2-point statis-
tics against state-of-the-art cosmological N-body simulations
that allow us to assess the LPT predictions in the nonlinear,
quasi non-linear and baryon acoustic oscillation peak regimes.
Comparison with simulations is required to ensure that the
predictions will be sufficiently robust for upcoming surveys
such as DESI, Euclid, LSST and WFIRST.

We note that a recent paper, submitted to the arXiv while
this work was being finalized, also studied biased tracers in
MG using CLPT [75] but used a different bias scheme and
results were not compared against full simulations.

Our paper is structured as follows: in Section II A, we
present the MG models we studied and the details of the N-
body simulations employed to test our LPT implementation.
We summarize the formalism for developing biased tracer
statistics for GR in Section II B. In Section III A, we discuss
the modifications required to the perturbative schemes to pre-
dict the real and Fourier space 2-point statistics and the associ-
ated bias parameters for tracers of different masses for models
beyond GR. The LPT predictions are compared to statistics
derived from simulations in Section III B. Finally, we con-
clude, and discuss implications for future work, in Section
IV. More detail on the derivations in the paper are given in
the Appendix.

II. FORMALISM

A. Modified gravity models

1. The f (R) model

Despite the latest surge in the field of MG, deformations
to GR, together with associated experimental tests, have been
around for almost as long as GR itself [13]. One of the oldest
attempts consisted of adding a nonlinear function f (R) of the
Ricci scalar R to the standard Einstein-Hilbert action, the so-
called f (R) theories [79], with a resulting action S of the form:

S =

∫
d4x
√
−g

[
R + f (R)

16πG
+Lm

]
, (1)

with Lm denoting the matter sector Lagrangian and G the
gravitational constant. Since such an action frees up an ad-
ditional degree of freedom, the latest interest in this class of
theories comes from the idea that a modification of this type
is responsible for cosmic acceleration, rather than dark energy
[80].

Such a model is the Hu-Sawicki f (R) model [76], which we
study in this paper and the functional form of which is given
by:

f (R) = −m2
c1

(
R/m2

)n

c2

(
R/m2

)n
+ 1

. (2)

In equation (2), Ωm0 denotes the matter fractional energy
density and H0 the Hubble Constant, both evaluated today,
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m = H0
√

Ωm0, which has dimensions of mass and n, c1 and c2
are free parameters.

In order to match the ΛCDM expansion history and for
sufficiently small values of | fR0 |, the background value of the
Ricci scalar, R̄, becomes equal to:

R̄ = 3ΩmH2
0

(
1 + 4

ΩΛ0

Ωm0

)
. (3)

where ΩΛ0 is the dark energy fractional density evaluated at
the present time.

The derivative fR =
d f (R)

dR becomes a functional of the cos-
mological parameters when evaluated today, through the rela-
tionship

f̄R0 = −n
c1

c2
2

(
Ωm0

3(Ωm0 + ΩΛ0)

)n+1

. (4)

The above mapping allows us to reduce the number of
free parameters and the Hu-Sawicki model is commonly
parametrized by quoting the values chosen for n and | fR0 |,
with the latter being the background value of the fifth potential
evaluated today.

The reason the Hu-Sawicki model is so popular is that it
can be cast into the form of a scalar-tensor theory that real-
izes the chameleon screening mechanism [29, 30], through
a conformal transformation [81], with the quantity fR iden-
tified as the scalar field that is coupled to matter. Through
the interplay between matter and the self-interaction potential,
the scalar chameleon field becomes massive near high over-
densities and the associated fifth forces get exponentially sup-
pressed due to the Yukawa effect. A stronger screening effect
is manifested in lower values of the parameter | fR0 |, with the
limit of | fR0 | → 0 exactly recovering GR. Following the litera-
ture and also because of the available simulations (as we will
discuss below in II A 3), we choose n = 1 and consider three
different f (R) models with

∣∣∣ f̄R0

∣∣∣ = {10−6, 10−5, 10−4}, which
we shall refer to, from now on, as F6, F5 and F4.

When considering perturbations around a homogeneous
and isotropic FRW metric in the conformal Newtonian gauge,
the resulting system of the Poisson and KG equations becomes
[76]:

∇2ΦN = 4πGa2δρm −
1
2
∇2 fR,

∇2 fR = −
a2

3
δR −

8πGa2

3
δρm,

(5)

where ΦN is the Newtonian potential and δρm the matter den-
sity perturbation. δR, the perturbation to the Ricci scalar, can
be written as a function of the scalar field fR, which will play
a central role in our screening implementation in Section II B.

2. The nDGP model

The second MG model under consideration comes from the
realm of higher-dimensional braneworld cosmology. The sim-
plest example of such a configuration is the so-called Dvali-
Gabadadze-Porrati (DGP) model [77], which is described by

an action of the following form:

S =

∫
d4x
√
−g

[
R

16πG
+Lm

]
+

∫
d5x
√
−g5

(
R5

16πGrc

)
.

(6)
In this model, the spacetime consists of 5 dimensions, rather
than the usual 4, but the standard model fields are restricted to
a 4-dimensional (4D) brane and the free parameter, rc, denotes
the length-scale below which gravity becomes 4D. R5 and g5
denote the corresponding 5D versions of the Ricci scalar and
metric tensor determinant, respectively. The resulting Fried-
man equation from (6) is:

ε
H
rc

= H2 −
ρm

24πG
, (7)

where ε = ±1. Each of the two values of ε represents a par-
ticular branch of the model, with ε = +1 producing the self-
accelerating solution, which, however, suffers from undesir-
able ”ghost” instabilities [82] and is thus an unphysical model
to consider. The value of ε = −1 corresponds to the so-called
normal branch, hereafter called nDGP, which is well behaved,
but does not self-accelerate and can match a ΛCDM expan-
sion history only in the presence of dark energy.

When focusing on the normal branch and in the quasi-static
limit for sub-horizon scales, the perturbations in the confor-
mal Newtonian gauge give the modified Poisson system of
equations [66]:

∇2ΦN = 4πGa2δρm +
1
2
∇2ϕ,

∇2ϕ =
8πGa2

3β
δρm −

r2
c

3βa2

[
(∇2ϕ)2 − (∇i∇ jϕ)2

]
,

(8)

with the coupling β given by

β(a) = 1 + 2H(a)rc

1 +
˙H(a)

3H(a)2

 . (9)

The nDGP model is a typical example of a scalar-tensor the-
ory that realizes the Vainshtein screening mechanism [27, 28],
in which the modifications to gravity are suppressed in the ex-
istence of large second derivatives of the scalar field. In the
second equation of (8), in particular, it can be seen how, once
the second derivatives of the scalar field become large in high
densities, the second term on the right hand side (r.h.s.) be-
comes significant and effectively weakens the source strength,
resulting in strong screening of the fifth forces.

We consider the nDGP model for two choices of the free
parameter rc, corresponding to n ≡ H0rc = 1 and n = 5,
which we shall call, from now on, N1 and N5, respectively.

3. N-body Simulations

Accurate realizations of structure formation in the nonlin-
ear regime can only be achieved by performing N-body sim-
ulations. In this paper, we test our results against two groups
of state-of-the-art N-body simulations, that serve complemen-
tary purposes to each other, as explained below.
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The first group of simulations, to which we shall refer as
Group I from now on, are the ELEPHANT simulations, pre-
sented in [83]. These span the parameter space of both MG
models we study: the F4, F5 and F6 f (R) models and N1 and
N5 nDGP models. The f (R) simulations were performed us-
ing the ECOSMOG code [84, 85], while the nDGP ones [86]
using the ECOSMOG-V version [87, 88], both of which were
based on the GR code RAMSES [89] and where suitably ex-
tended to integrate the scalar field KG equation for the corre-
sponding models using adaptive-mesh-refinement techniques.
The parameters describing the background ΛCDM cosmology
are the best-fit ones given by the 9-year WMAP release [90]
and have the following values: Ωb = 0.046, Ωcdm = 0.235,
Ωm = 0.281, ΩL = 0.719, h = 0.7, ns = 0.971 and σ8 = 0.82.
Np = 10243 equal mass particles were placed in a simulation
box with a side Lbox = 1024 Mpc/h and the density field was
resolved in a 10243 resolution grid. Furthermore, the simula-
tions were initialized at redshift zi = 49 using the Zel’dovich
approximation [49] and evolved through z f = 0.

Gravitationally bound dark matter halos were identified us-
ing the ROCKSTAR halo finder [91]. Finally, so as to get an
estimate of the variance, each model was simulated for 5 ran-
dom realizations, corresponding to different random phases in
the initial density field.

The 10243 (Mpc/h)3 volume simulations’ results in Group
I become noisy at scales r > 100 Mpc/h. To probe the BAO
scales, where LPT has been previously found to perform very
well for GR [59], we also test our results against the largest
volume f (R) simulations performed to date for the modified
gravity lightcone simulation project [92]. In these simula-
tions, which we will call Group II from now on, the box side
is Lbox = 1536 Mpc/h with 20483 equal mass particles used,
for GR and the

∣∣∣ f̄R0

∣∣∣=10−5 model. The parameters describing
the background ΛCDM cosmology are the best-fit ones given
by the Planck collaboration [93] and have the following val-
ues: Ωb = 0.0486, Ωm = 0.3089, ΩL = 0.6911, h = 0.6774,
ns = 0.9667 and σ8 = 0.8159. The simulations were per-
formed using the MG code MG-GADGET [94], which is a
MG extension to the code P-GADGET3, an improved ver-
sion of the code GADGET-2 [95], created for GR simulations.
Dark matter halo catalogues were produced using the SUB-
FIND algorithm [96]. Each model has been simulated for one
random realization.

For more detailed discussions on the N-body implementa-
tions, we refer interested readers to the corresponding publi-
cations.

B. Convolution Lagrangian Perturbation Theory for biased
tracers in MG

1. LPT for dark matter

The Lagrangian Perturbation Theory approach to structure
formation has been extensively studied [49–58] in the con-
text of ΛCDM scenarios. Opposite to the Eulerian picture, in
which one monitors the evolution of the desired quantities at
a given, fixed, position, in LPT one instead tracks down the

evolution of a given fluid element over time. Starting from an
initial, Eulerian, comoving position q at a desired early time
t0, each mass element is mapped to its comoving Lagrangian
position x(q, t) at time t, through the relationship

x(q, t) = q +Ψ(q, t). (10)

The Lagrangian displacement Ψ(q, t), taken to be 0 at the ini-
tial time t0, is the fundamental quantity of interest in LPT.
Furthermore, enforcing mass conservation, through the conti-
nuity equation, between the initial and final infinitesimal vol-
ume elements centered around q and x, respectively, gives
ρm(x, t)d3x = ρm(q, t0)d3q. Assuming t0 refers to an epoch
early enough that the density perturbations around the back-
ground density ρ̄ are negligible, meaning ρm(q, t0) = ρ̄m, al-
lows us to obtain the dark matter fractional overdensity, δm, in
the Lagrangian picture:

1 + δm(x, t) =

∫
d3qδD

[
x − q −Ψ(q, t)

]
=

1
J(q, t)

, (11)

with δD being the Dirac delta function and J(q, t) the determi-
nant of the deformation matrix

Ji j =
∂xi

∂q j = δi j +
∂Ψi

∂q j . (12)

For an irrotational flow, which is a good approximation for
cold dark matter and assuming that the gravitational evolution
is governed by GR, perturbations around a flat FRW metric
give the geodesic and Poisson equations, in the quasi-static
approximation and for sub-horizon scales, as:

ẍ + 2Hẋ = −
1
a2∇xψ(x, t),

1
a2∇

2
xψ(x, t) = 4πGρ̄mδ(x, t).

(13)

We should point out that in (13) ψ(x, t) denotes the metric per-
turbation, which should not be confused with the Lagrangian
displacement field Ψ(q, t).
In the LPT picture, we perturbatively expand Ψ as

Ψ(q, t) =

∞∑
n=1

Ψ(n)(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t)...

(14)
and equations (10)-(14) form a closed system, that is recur-
sively solved for the various orders of Ψ. The first order solu-
tion is the so-called Zel’dovich approximation [49].

In MG theories, as also explained in Section II A, an ad-
ditional degree of freedom is present, that directly couples
to matter and causes particles to deviate from the nominal
geodesics of GR. Consequently, equations (13) are, in prin-
ciple, modified for a scalar-tensor theory and so is the LPT
framework presented above. In [48], the LPT approach was
expanded for chameleons and symmetrons, including the first
order contribution to the Klein-Gordon equation and was
shown to perform very well in the context of the COLA hy-
brid framework. The LPT approach for scalar-tensor theories
up to third order was presented in [74], the main results of
which we summarize in this section.
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In [70], which developed an SPT framework for studying
MG theories with a screening mechanism in the nonlinear
regime, based on the closure theory approximation in [97], the
scalar field KG equation for a Brans-Dicke-like (BD) theory
with interactions of a scalar field, φ, was written as:

(3 + 2ωBD)
1
a2 k2

xφ(kx, t) = 8πGρ̄mδ(kx, t) − I(φ), (15)

where I(φ) denotes the perturbative form of the field self-
interaction term:

I(φ) = M1(k, t)φ

+
1
2

∫
d3k1d3k2

(2π)3 δD(k − k12)M2(k1,k2)φ(k1)φ(k2)

+
1
6

∫
d3k1d3k2d3k3

(2π)6 δD(k − k123)

×M3(k1,k2,k3)φ(k1)φ(k2)φ(k3), (16)

where we adopted the standard notation ki jk = ki + k j + kk
and M1(k, t), M2(k1,k2) and M3(k1,k2,k3) are mass terms.
The higher order piece in the Fourier space representation of
the interaction term in equation (16), incorporates the screen-
ing effect, up to third order, that is responsible for recover-
ing GR at small scales. The mapping between a given scalar-
tensor theory and the BD form above can be easily performed
through assigning appropriate values to the mass terms and
the BD coupling ωBD above, as we will later show for our two
models of study.

The perturbed modified Einstein equations have the form
[74]

∇xT̂Ψ = −
1
a2∇

2
xψ(x, t),

1
a2∇

2
xψ(x, t) = 4πGρ̄mδ(x, t) −

1
2a2∇

2φ −
1

2a2

(
∇2

xφ − ∇
2φ

)
,

(17)
where we use (10) and introduce the time derivative operator
T̂ = d2

dt2 + 2H d
dt , as in [54]. The last term in the second line of

(17), called frame-lagging in [74], is a geometrical term that
occurs due to the fact that, in LPT, the KG equation should
be expressed in Lagrangian

(
∇2

)
, rather than Eulerian coordi-

nates
(
∇2

x

)
. Taking this into account, equations (15)-(17) are

combined to give(
J−1

)
i j
T̂Ψi, j(k) = −A(k)δ(k) +

k2

a23Π(k)
δI(k)

+
M1(k)
3Π(k)

1
2a2

(
∇2

xφ − ∇
2φ

)
(k),

(18)

where, following the definitions in [70], we have

A(k) = 4πGρ̄m

1 +
k2

a23Π(k)

 ,
Π(k) =

1
3a2

[
(3 + 2ωBD) k2 + M1a2

] (19)

and all the quantities are Fourier transforms in the Lagrangian
q-space. The inverse Jacobean in (18) reflects the deriva-
tive transformation to the q-space, where the Einstein nota-
tion is adopted. Furthermore, δ(k), δI(k) and

(
∇2

xφ − ∇
2φ

)
(k)

are the Lagragian Fourier transformations of the Lagrangian-
transformed overdensity (11), the higher order interaction
Kernels in (16) and the frame-lagging Kernel, correspond-
ingly. The expression for the latter is given in [74]. Equa-
tion (18) forms a closed system with (11), (12), (15) and (16)
that is solved, perturbatively, to obtain the MG solution up to
various orders in Ψ, as in (14).

Solving for the first order solution, one gets [48]:

k ·Ψ(1) = iD(1)(k, t)δ(1)(k, t = 0), (20)

which can be easily solved for the displacement field, as:

Ψ j(k, t) =
ik j

k2 D(1)(k, t)δ(1)(k, t = 0). (21)

We see that the r.h.s of (21) can be conveniently decomposed
into a product of the first order density mode at very early
times, δ(1)(k, t = 0), early enough to be gaussian and a space-
time dependent growth factor D(1)(k, t), given by:

T̂D(1)(k, t) = A(k)D(1)(k, t). (22)

In the GR limit, A(k) = A(k = 0) = 4πGρ̄m, D(1) becomes
scale independent and is nothing else than the first order grow-
ing mode for GR; the Zel’dovich approximation.

Moving on to the second order piece, we have:

k ·Ψ(2) =
i
2

∫
d3k1d3k2

(2π)3 δD(k−k12)D(2)(k1,k2)δ(1)
1 δ(1)

2 , (23)

where, for compactness, we adopted the notation δ(1)
1 = (k1, 0)

and the second order growth factor, D(2)(k1,k2), is given by
[74]:

D(2)(k1,k2) = D(2)
a (k1,k2) − D(2)

b (k1,k2)
k1 · k2

k2
1k2

1

+D(2)
FL(k1,k2) − D(2)

δI
(k1,k2). (24)

The four individual components are given by:(
T̂ − A(k)

)
D(2)

a (k1,k2) = A(k)D(1)(k1)D(1)(k2),(
T̂ − A(k)

)
D(2)

b (k1,k2) =
(
A(k1) + A(k2) − A(k)

)
D(1)(k1)D(1)(k2),(

T̂ − A(k)
)

D(2)
δI

(k1,k2) =

(
2A0

3

)2 k2

a2

M2(k1,k2)D(1)(k1)D(1)(k2)
6Π(k)Π(k1)Π(k2)

,

(
T̂ − A(k)

)
D(2)

FL(k1,k2) =

(
M1

3Π(k)

)
K(2)

FL(k1,k2)D(1)(k1)D(1)(k2).

(25)
The two last terms represent the second order contributions to
the growth factor, given by the screening and frame-lagging
effects, correspondingly, while the expression for K(2)

FL is given
in [74]. Despite its lengthier expression, when taking the GR
limit we get D(2)

FL = D(2)
δI

= 0 and D(2)
a = D(2)

b , allowing D(2) to
become scale-independent, reducing to the known GR result,
which can be well approximated by D(2)(t) = − 3

7

(
D(1)(t)

)2
for

ΛCDM cosmologies [51].
Solving for the third order piece in (18) results in a lengthy

differential equation for the third order MG growth factor,
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D(3)(k1,k2,k3), that also needs to be symmetrized. The re-
sult is given by equation (A5) in the appendix A 1. It should
be also noted that equations (22), (25) and f(A5) can be ei-
ther solved by inverting the linear operator

(
T̂ − A(k)

)
using

its Green function, as done in [57, 74], or by numerically
solving the corresponding differential equations. Even though
both methods give results that agree with each other well, we
chose to proceed with the latter because it is computationally
faster. The differential equations were solved using a 5th order
Runge-Kutta scheme, implemented in Mathematica [98].

We finish this section by showing the particular expressions
for the mass terms in (16) and the sources in (19) for the f (R)
and nDGP models we study. For the f (R) Hu-Sawicki model,
the Brans-Dicke scalar is simply ωBD = 0, while the mass
terms are given by the expansion [66]:

Mn =
dnR̄( fR0 )

d f n
R0

, (26)

which, using (2), gives [74]:

M1(a) =
3H2

0

2| fR0 |

(
Ωma−3 + 4ΩΛ

)3(
Ωm + 4ΩΛ

)2 ,

M2(a) =
9H2

0

4| fR0 |

(
Ωma−3 + 4ΩΛ

)5(
Ωm + 4ΩΛ

)4 ,

M3(a) =
45H2

0

8| fR0 |

(
Ωma−3 + 4ΩΛ

)7(
Ωm + 4ΩΛ

)6 .

(27)

In the case of the nDGP braneworld model, a similar proce-
dure, informed by (8), gives the relevant expressions [66, 75]:

M1(a) = 0,

M2(k1,k2, a) = 2
n2

H2
0a4

(
k2

1k2
2 − (k1 · k2)2

)
,

M3(k1,k2,k3, a) = 18
n2β(a)

H2
0a64πGρ̄m

(k1 · k2)k2
1k2

3 + 2(k1 · k2)2k2
3

− 2(k1 · k2)(k1 · k3)(k2 · k3) − (k1 · k2)(k1 · k3)2

,
(28)

with β defined in (9). It is interesting to notice that, even
though the interaction term in (8) contains only second or-
der derivatives, in (28) a 3rd order mass contribution is now
present, that arises when transforming the Eulerian derivatives
to the Lagrangian space through (12).

2. 2-point statistics for biased tracers in GR

The perturbative theory of galaxy clustering [58], which
aims to describe the statistics of biased tracers in the quasi-
linear regime, consists of a perturbative description for the
evolution of the underlying dark matter density field, com-
bined with an analytical description for the bias parameters
at each given order. In the case of cold dark matter, the

calculation of the 2-point statistics, even in LPT, is a more
straightforward process, since one just needs to plug the q-
space Lagrangian overdensity, mapped to the Eulerian frame
through (11), into the common expressions for the autocorre-
lation function:

ξ(r) = 〈δm(x)δm(x + r)〉 (29)

and its Fourier space counterpart, the matter power spectrum

(2π)3 δD(k + k′)P(k) = 〈δ̃m(k)δ̃m(k′)〉. (30)

When studying biased tracers, like for example dark matter
halos, we need an analytical model to describe their statistical
prevalance with respect to the underlying density field. Fol-
lowing [55, 56], we employ a model of a local in matter den-
sity Lagrangian bias in which the positions of biased tracers
are purely specified by a distribution of the underlying CDM
density field δ(q, t = 0) ≡ δ(q), encoded through a function
F

[
δR(q)

]
, as

ρX(q) = ρ̄XF
[
δR(q)

]
, (31)

where, consistent with the literature, we use the subscript X to
indicate biased tracers. δR(q) denotes the primordial density
field smoothed over some scale R, while ρ̄X is the mean den-
sity of tracers. Density conservation provides the equivalent
of equation (11) for tracers,

δX(x, t) =

∫
d3qF

[
δR(q)

]
δD

[
x − q −Ψ(q, t)

]
− 1. (32)

This model of local Lagrangian bias, which corresponds to a
non-local bias in the Eulerian space, can be extended to in-
clude a biasing scheme that is non-local in the Lagrangian
space [99]. Combining (32) and (29) and after some transfor-
mations one gets the general expression for the 2-point corre-
lation function for biased tracers in LPT,

1+ξX(r) =

∫
d3q

∫
d3k

(2π)3 eik·(q−r)
∫

dλ1

(2π)
dλ2

(2π)
L(q,k, λ1, λ2),

(33)
with

L(q,k, λ1, λ2) = F̃1F̃2 〈ei[λ1δ1+λ2δ2+k·(∆))]〉︸                 ︷︷                 ︸
K(q,k, λ1, λ2)

, (34)

where F̃1, F̃2 are the Fourier space representations of F, with
corresponding wavemodes λ1 and λ2 and ∆ = Ψ2 − Ψ1. The
notation δ(q1) ≡ δ1 has been adopted for all quantities. The
ensemble average K in (34) can be cast into an exponent of
a power series in cumulants, through the cumulant expansion
theorem, 〈eiX〉 = exp

[∑∞
N=1

iN

N! 〈X
N〉c

]
, which, combined with

a multinomial expansion, gives:

K(q,k, λ1, λ2) = exp
[∑ in+m+r

m!n!r!
λm

1 λ
n
2ki1 ..kir 〈δ

m
1 δ

n
1∆i1 ..∆ir 〉c

]
,

(35)
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in terms of a series of correlators

σ2
R = 〈δ2〉c

ξL(~q) = 〈δ1δ2〉c,

Amn
i j (~q) = 〈δm

i δ
n
j∆i∆ j〉c,

Wmn
i jk (~q) = 〈δm

i δ
n
j∆i∆ j∆k〉c,

Umn
i (~q) = 〈δm

1 δ
n
2∆i〉c,

(36)

where we adopted the commonly used notation for the La-
grangian cumulants in (36).

Keeping all terms in (35) that contain cumulants up to third
order, which is the equivalent of the one-loop correction to the
linear power spectrum, results in a highly oscillatory integrand
that presents challenges when ensuring the integral is fully
converged. [54] proposed expanding all contributions to the
exponent but the scale-independent “zero-lag” piece of A00

i j ,
which results in a non-perturbative resummation scheme that
is simpler to handle analytically. Building upon this result,
[56] proposed keeping all the terms of A00

i j in the exponent,
in their Convolution Lagrangian Perturbation Theory (CLPT)
scheme. Keeping only the linear component of A00

i j exponen-
tiated, as done in [64, 65], and performing the λ and k inte-
grations in (33) gives a CLPT expression for the 2-point real
space correlation function,

1 + ξX(r) =

∫
d3q

e−
1
2 (qi−ri)(A−1

L )i j(q j−r j)

(2π)3/2 |AL|
1/2

×

1 − 1
2

Gi jA
loop
i j

+
1
6

Γi jkWi jk − b1

(
2Uigi + A10

i j Gi j

)
−b2

(
U(1)

i U(1)
j Gi j + U20

i gi

)
+b2

1

(
ξL − U(1)

i U(1)
j Gi j − U11

i gi

)
+

1
2

b2
2ξ

2
L − 2b1b2ξLU(1)

i gi

, (37)

with

gi ≡ (A−1
L )i j(q j − r j),

Gi j ≡ (A−1
L )i j − gig j,

Γi jk ≡ (A−1
L )i jgk + (A−1

L )kig j + (A−1
L ) jkgi − gig jgk. (38)

Furthermore, in (37) we define U10
i ≡ Ui, W000

i jk ≡ Wi jk and use
superscript numbers in brackets to indicate the various orders
of contribution. The 1st and 2nd order Lagrangian bias factors,
b1 and b2, are the expectation values of the 1st and 2nd order
derivatives of the Lagrangian bias function F, respectively,
through the identity [55, 99],

bn ≡

∫
dλ
2π

F̃(λ)e−
1
2 λ

2σ2
R (iλ)n =

〈
dnF
dδn

〉
. (39)

In the case of dark matter, we have F = 1 and F̃(λ) = 2πδD(λ)
[56], and we recover b1 = b2 = 0 for the unbiased, dark matter
distribution.

The Fourier transform gives the CLPT power spectrum for
biased tracers [64, 65]:

PX(k) =

∫
d3qeik·qe−

1
2 kik jAL

i j ×

1 − 1
2

kik jA
loop
i j −

i
6

kik jkkWi jk

+b1

(
2ikiUi − kik jA10

i j

)
+ b2

(
ikiU20

i − kik jU
(1)
i U(1)

j

)
+b2

1

(
ξL + ikiU11

i − kik jU
(1)
i U(1)

j

)
+

1
2

b2
2ξ

2
L + 2b1b2ξLikiU

(1)
i

. (40)

In addition to the one-loop expressions for the two-point
statistics, we also calculate the Zel’dovich (1st order LPT) ap-
proximation for biased tracers in the configuration and Fourier
space, which can be identified as the subset of terms in (37)
and (40) that are linear in PL(k). These are the terms that de-
pend on combinations of ξL, U(1) and AL

i j.
While, for GR, CLPT does a very good job at modeling the

configuration space ξ(r), it is known to perform less well in
reconstructing clustering in the Fourier space [59]. Expand-
ing the resummed exponent in (40) and performing the result-
ing integrals gives the Eulerian one-loop Standard Perturba-
tion Theory (SPT) power spectrum for biased tracers in GR
[55],

PS PT
X (k) =

(
1 − k2σ2

L

)
(1 + b1)2 PL(k) +

9
98

Q1(k) +
3
7

Q2(k)

+
1
2

Q3(k) + b1

(
6
7

Q5(k) + 2Q7(k)
)

+ b2

(
3
7

Q8(k) + Q9(k)
)

+b2
1
(
Q9(k) + Q11(k)

)
+ 2b1b2Q12(k) +

1
2

b2
2Q13(k)

+
6
7

(1 + b1)2 [
R1(k) + R2(k)

]
−

8
21

(1 + b1) R1(k), (41)

where

σ2
L =

1
6π2

∫ ∞

0
dkPL(k), (42)

is the 1D variance of the Lagrangian displacement and the
functions Qn and Rn were defined in [55] for GR. The SPT
power spectrum has been shown to follow the power spectrum
much better than the CLPT prediction in GR [59].

The correlation function obtained from Fourier transform-
ing (41) is, unfortunately, known to be ill-behaved [54]. How-
ever, if one performs an alternative resummation proposed in
[54, 55], known as Lagrangian Resummation Theory (LRT),
the resulting power spectrum,

PLRT
X (k) = e−k2σ2

L

(1 + b1)2 PL(k) +
9
98

Q1(k) +
3
7

Q2(k) +
1
2

Q3(k)

+b1

(
6
7

Q5(k) + 2Q7(k)
)

+ b2

(
3
7

Q8(k) + Q9(k)
)

+b2
1
(
Q9(k) + Q11(k)

)
+ 2b1b2Q12(k)

+
1
2

b2
2Q13(k) +

6
7

(1 + b1)2 [
R1(k) + R2(k)

]
−

8
21

(1 + b1) R1(k)

, (43)
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which differs from (41) only by the exponential prefactor, can
be Fourier transformed to the configuration space and is found
to characterize the BAO scales well for both dark matter [54,
59] and biased tracers [55, 56]. It decays sharply for large
values of k however.

3. Calculation of bias parameters in GR

In this section, we present an analytical model for the cal-
culation of the bias parameters (39) in GR, which will be ex-
tended to include MG in section III A 2. It should be noted
though, that even in the complete absence of an analytical
model, one or both of the bias parameters in CLPT can be
treated as free parameters, to be fitted over simulations, as for
example done in [56, 100]. With regards to analytical mod-
els for bias, arguably the most popular one is the halo ap-
proach [60, 61, 101–106], that is based on the extended Press-
Schechter (PS) formalism [107, 108], in combination with the
Peak-Background Split (PBS) approach [40]. A discussion of
the accuracy of such approaches can be found in [109, 110].
In what follows, we briefly summarize the main ingredients of
this prescription in GR.

Let M0 be the mass of a collapsed region at a redshift of
interest z, that is enclosed in a Lagrangian region of radius R0,
which, given the mean matter density ρm0, will be given by

R0 =

(
3M0

4πρm0

) 1
3

. (44)

The variance of matter density fluctuations in this region is,

σ2(M0) =

∫
dkk2

2π2 W2 (kR0) PL(k, z = 0), (45)

with PL(k, z = 0) the linear matter power spectrum evaluated
today and W (kR0) the top-hat smoothing Kernel,

W (kR0) =
3
[
sin(kR0) − kR0 cos(kR0)

]
(kR0)3 . (46)

For GR, density perturbations are evolved in time, relative to
present time using the GR linear growth factor D(z).

Based on the PS theory and its variants [107, 108], the co-
moving mean number density of halos per logarithmic mass
bin d ln M, n̄h, can be analytically modeled as:

n̄h(M) =
∂2N̄h

∂V∂ ln M
=
ρ̄m

M
νc(M) f

[
νc(M)

] d ln νc(M)
dM

, (47)

where N̄h is the mean number of halos with mass M, in a bin
of width dM, enclosed in a comoving volume V .

The quantity νc(M), the peak significance, is given by

νc(M) =
δcr

σ(M, z)
=

δcr

D(z)σ(M)
. (48)

where D(z) is the linear growth factor at the time of collapse
z, normalized so that D(z = 0) = 1. In (48), σ(M, z) =

D(z)σ(M) is the variance at redshift z, with σ(M) the vari-
ance (45) evaluated today and δcr is the critical overdensity
for collapse at redshift z. For an Einstein De-Sitter (EDS)
cosmology, the latter is always δcr = 1.686, which turns out
to be a very good approximation for ΛCDM cosmologies and
will be adopted here.

f
[
νc(M)

]
is the multiplicity function, that in the original PS

theory is given by:

νc f [νc] =

√
2
π
νce

−ν2c
2 . (49)

The prescription (47), often referred to as the universal mass
function, is exact in an EDS universe with a power law power
spectrum. While (49) has been used to describe the halo mass
function for a broad range of cosmologies, it lacks the neces-
sary accuracy for precision predictions. For this reason, Sheth
and Tormen (ST) [61], introduced an alternative function:

νc f [νc] =

√
2
π

A(p)
[
1 +

1
(qν2

c)p

]
√

qνce
−qν2c

2 , (50)

where A(p) =
[
1 + π−

1
2 2−pΓ(0.5 − p)

]−1
and q, p are free pa-

rameters that can be fitted over N-body simulations. The best
fit pair was initially proposed to be (q, p) = (0.707, 0.3) which
was later updated to (q, p) = (0.75, 0.3). These are consid-
ered to be the “standard” ST parameters [61, 111]. For the PS
function, q = 1, p = 0.

Based on the PBS argument [40], a large-wavelength den-
sity perturbation ∆ (that is effectively constant on small scales)
has the same effect on the formation of biased tracers as a
modification to the mean background density by this offset.
If by n̄h(M,∆) we denote the halo mass function’s response
to such a perturbation, also sometimes called the conditional
mass function, then the fractional overdensity of halos will be
given by [60, 101, 102]:

1 + δh(M) =
n̄h(M,∆)
n̄h(M, 0)

, (51)

where n̄h(M, 0) = n̄h(M), is the standard, unconditional halo
mass function. It also worth noticing that equation (51) also
defines F

[
δR(q)

]
, through (31). The Lagrangian bias of order

n, is then given by

bL
n (M) =

1
n̄h(M, 0)

dnn̄h(M,∆)
d∆n

∣∣∣∣∣∣∣
∆=0

, (52)

where the time argument in the above is assumed and omit-
ted for simplicity. Equation (52) is the rigorous definition
of the bias parameters, that is exact even in the absence of
an analytical description for the halo mass function and can
be calculated numerically, for example employing separate
universe simulations [63]. In the presence of a universal
mass function, the conditional mass function is given by the
same expression (47), but with the modified peak significance
ν′c(M) = δcr−∆

D(z)σ(M) , in which case the the bias factors are easily
calculated [102] by (51), as:

bL
n (M) =

(−1)n(
D(z)σ(M)

)n
1

νc f [νc]
dn (

νc f [νc]
)

dνn
c

, (53)
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which are the so-called PBS Lagrangian biases. Applied on
the ST function (50), the PBS biases are:

bL
1 (M) =

−1
δcr

qν2
c − 1 +

2p

1 +
(
qν2

c

)p

 ,
bL

2 (M) =
1
δ2

cr

q2ν4
c − 3qν2

c +
2p

(
2qν2

c + 2p − 1
)

1 +
(
qν2

c

)p

 .
(54)

These PBS biases are identical to the Lagrangian bias factors
defined within the context of CLPT through (39) [55, 99].

III. RESULTS

A. Lagrangian Perturbation Theory for Biased Tracers in MG

1. 2-point statistics for Biased Tracers in MG

In section II B 2, we showed the expressions for the calcu-
lation of 2-point statistics in CLPT and its variants, under the
assumption that gravitational evolution is governed by GR.
Here we explain how each of these relationships have to be
modified in the case of MG theories. We note that these re-
sults are consistent with those recently presented in [75].

The two-point statistics for biased tracers in MG are given,
as in GR, by the definitions 29 and 30, in the configuration
and Fourier space, respectively. Considering biased tracers in
the Lagrangian space, through (31), the overdensity of biased
tracers in LPT is given by

δX(x, t) =

∫
d3qF

[
δR(q)

]
δD

[
x − q −Ψ(q, t)

]
− 1, (55)

where we used density conservation. The above equation is
similar to (32) for GR, but differs in that the Lagrangian field
Ψ(q) follows the MG evolution presented in Section II B 1.
In particular, if we work in terms of the Fourier transform of
Ψ(q), labeled as Ψ̃(p), the nth order LPT solutions in MG will
be given by,

Ψ̃
(n)
j (p) =

i
n!

∫
d3 p1

(2π)3 ..
d3 pn

(2π)3 δ
3
D

 n∑
j=1

p j − p


× L(n)

j (p1, ..,pn)δ̃L(p1)..δ̃L(pn), (56)

where δ̃L(pn) are the linear-density Fourier transformed fields
at the time of evaluation and the Kernels L(n)

j (p1, ..,pn) are
given by [74]:

L(1)
j (p) =

p j

p2 ,

L(2)
j (p1,p2) =

p j

p2

D(2)(p1,p2)
D(1)(p1)D(1)(p2)

,

(L(3)
j )sym(p1,p2,p3) = i

p j

p2

D(3)
sym(p1,p2,p3)

D(1)(p1)D(1)(p2)D(1)(p3)
.

(57)

The MG growth factors in (57), are the ones given by (22),
(24) and (A5). Plugging the overdensity (55) into (29) and
(30) and working as in (33)-(36), we arrive at equations (37)
and (40), that give the 2-point statistics for biased tracers in
MG and depend on the MG Lagrangian correlators

σ2
R = 〈δ2〉c

ξL(~q) = 〈δ1δ2〉c,

Amn
i j (~q) = 〈δm

i δ
n
j∆i∆ j〉c,

Wmn
i jk (~q) = 〈δm

i δ
n
j∆i∆ j∆k〉c,

Umn
i (~q) = 〈δm

1 δ
n
2∆i〉c.

(58)

For the MG correlators (58), we use the same definition and
index structure as in GR, but these functions differ from their
GR counterparts, because the quantities in the cumulants fol-
low the MG LPT solutions (57). In particular, plugging (56)
and (57) into (58), we get the Lagrangian correlators in MG:

V (112)
1 (q) =

1
2π2

∫
dk
k

(
−

3
7

) [
R1(k)

]
MG j1(kq),

V (112)
3 (q) =

1
2π2

∫
dk
k

(
−

3
7

) [
Q1(k)

]
MG j1(kq),

S (112)(q) =
3

14π2

∫
dk
k

[
2 [R1]MG + 4R2 +

[
Q1

]
MG + 2Q2

] j2(kq)
kq

,

T (112)(q) =
−3

14π2

∫
dk
k

[
2 [R1]MG + 4R2 +

[
Q1

]
MG + 2Q2

]
j3(kq),

U(1)(q) =
1

2π2

∫
dkk (−1) PL(k) j1(kq),

U(3)(q) =
1

2π2

∫
dkk

(
−

5
21

)
R1(k) j1(kq),

U(2)
20 (q) =

1
2π2

∫
dkk

(
−

6
7

)
Q8(k) j1(kq),

U(2)
11 (q) =

1
2π2

∫
dkk

(
−

6
7

) [
R1(k) + R2(k)

]
MG j1(kq),

X(12)
10 (q) =

1
2π2

∫
dk

1
14

2 (
[R1]MG − R2(k)

)
+ 3 [R1]MG j0(kq)

− 3
[
[R1]MG + 2R2 + 2

[
R1(k) + R2(k)

]
MG + 2Q5

] j1(kq)
kq

,
Y (12)

10 (q) =
1

2π2

∫
dk

(
−

3
14

) [R1]MG + 2R2

+2
[
R1(k) + R2(k)

]
MG + 2Q5

 × [
j0(kq) − 3

j1(kq)
kq

]
,

X(q) =
1

2π2

∫
dk a(k)

[
2
3
− 2

j1(kq)
kq

]
,

Y(q) =
1

2π2

∫
dk a(k)

[
−2 j0(kq) + 6

j1(kq)
kq

]
, (59)

where we additionally performed the decompositions

Amn
i j (q) = Xmn(q)δi j + Ymnq̂iq̂ j

Wi jk(q) = V1(q)q̂iδ jk + V2(q)q̂ jδki + V3(q)q̂kδi j + T (q)q̂iq̂ jq̂k
(60)
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and defined a(k) = PL(k) + 9
98 Q1(k) + 10

21 R1(k). The functions
Qn(k) and Rn(k) that appear in the r.h.s of (59), are defined, as
in GR, to be:

Qn(k) =
k3

4π2

∫ ∞

0
drPL(kr)

×

∫ 1

−1
dxPL(k

√
1 + r2 − 2rx)Q̃n(r, x)

Rn(k) =
k3

4π2 PL(k)
∫ ∞

0
drPL(kr)

∫ 1

−1
dxR̃n(r, x). (61)

The scale and redshift dependency of the growth factors alters
the evaluation of these expressions relative to GR:

Q̃1 = r2
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI

2

Q̃2 =
rx(1 − rx)

1 + r2 − 2rx

D̄(2)
a − D̄(2)

b
x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃3 =

x2(1 − rx)2

(1 + r2 − 2rx)2

Q̃5 = rx
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃7 =

x2(1 − rx)
(1 + r2 − 2rx)

Q̃8 = r2
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃9 =

rx(1 − rx)
1 + r2 − 2rx

Q̃11 = x2

Q̃12 = rx

Q̃13 = r2[
Q̃1

]
MG

=
r2(1 − x2)

1 + r2 − 2rx

D̄(2)
a − D̄(2)

b
x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI

 .
(62)

and

R̃1 =
21
10

r2 D(3)
sym(k,−p,p)

D(1)(k)
(
D(1)(p)

)2

R̃2 =
rx(1 − rx)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
[
R̃1(k) + R̃2(k)

]
MG

=
r2(1 − rx)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
[
R̃1

]
MG

=
r2(1 − x2)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
.

(63)
The functions Q1-Q13 in (62) and R1, R2 in (63) differ from
GR as they depend on the MG growth factors (22), (24)
and (A5). In addition, the functions

[
Q1

]
MG, [R1]MG and[

R1(k) + R2(k)
]

MG are new ones that arise in MG. In the GR
limit, that corresponds to D̄(2)

a = D̄(2)
b = 1 and D̄(2)

FL = D̄(2)
δI

= 0,[
Q1

]
MG = Q1, [R1]MG = R1,

[
R1(k) + R2(k)

]
MG = R1(k) +

R2(k) and the functions Qn and Rn reduce to their GR expres-

20 40 60 80 100 120 140
r(Mpc/h)

10 3

10 2

10 1

100

101

r2 |
(r)

|

DM
b1
b2

b2
1

b1b2

b2
2

FIG. 1: Contributions to the CLPT correlation function prediction,
ξ, given in (37), for the F4 model at z=0.5, by the various terms in
the expansion: dark matter (no bias prefactors) [blue solid], b1 term
[black dash-dot], b2 term [cyan dotted], b2

1 term [red dash], b2
2 term

[orange dash-dot] and b1b2 term [brown solid].

sions in [54]. In that limit, furthermore, the correlators (59) re-
cover their GR forms presented in [56]. The derivations of the
above, along with a more detailed discussion, are presented in
Appendices A 1 and A 2.

In Figure 1, we show the contributions of the different terms
in (37) as a function of r for the F4 model (which predicts the
largest deviations from GR), evaluated at z = 0.5.

As in the GR case, proceeding to expand the resummed
exponent in (40) and performing the resulting integrals, as
shown in Appendix A 3, gives the equivalent of the Eulerian
one-loop SPT power spectrum for biased tracers in MG:

PS PT
X (k) =(
1 − k2σ2

L

)
(1 + b1)2 PL(k) +

9
98

Q1(k) +
3
7

Q2(k) +
1
2

Q3(k)

+ b1

(
6
7

Q5(k) + 2Q7(k)
)

+ b2

(
3
7

Q8(k) + Q9(k)
)

+ b2
1
(
Q9(k) + Q11(k)

)
+ 2b1b2Q12(k)

+
1
2

b2
2Q13(k) +

6
7

(
b2

1 + b1

) [
R1(k) + R2(k)

]
MG

+
6
7

(1 + b1)
[
R1(k) + R2(k)

]
−

8
21

(1 + b1) R1(k).
(64)

Equation (64), that depends on the functions (61), is the
MG version of (41). Appendix A 1 provides a more thorough
discussion. While we refer to this as the “SPT” expression,
we note that, unlike in GR, where equation (41) has been
shown to be identical to the SPT expression, in MG, addi-
tional terms that appear when transforming the Klein-Gordon
equation from Eulerian to Lagrangian coordinates need to be
considered to show the equivalence [75].

The LRT power spectrum for MG theories is obtained, just
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like in GR, by keeping the zero-lag term exponentiated:

PLRT
X (k) = e−k2σ2

L

(1 + b1)2 PL(k) +
9

98
Q1(k) +

3
7

Q2(k) +
1
2

Q3(k)

+b1

(
6
7

Q5(k) + 2Q7(k)
)

+ b2

(
3
7

Q8(k) + Q9(k)
)

+b2
1
(
Q9(k) + Q11(k)

)
+ 2b1b2Q12(k)

+
1
2

b2
2Q13(k) +

6
7

(
b2

1 + b1

) [
R1(k) + R2(k)

]
MG

+
6
7

(1 + b1)
[
R1(k) + R2(k)

]
−

8
21

(1 + b1) R1(k)

. (65)

The derivation is discussed in Appendix A 3. The configura-
tion space counterpart, ξLRT

X (r), is obtained by Fourier trans-
forming (65),

ξLRT
X (r) =

∫
d3k

(2π)3 eik·rPLRT
X (k)

=

∫
dk
2π2 k2PLRT

X (k) j0(kr),
(66)

with j0(kr) the zeroth-order Bessel function.
To evaluate the expressions (37), (40), (64) and (65) we

modified a publicly available code released by [64] in [141],
that efficiently performs the 2D integrals in (37), (40) us-
ing Haskel transformations, as well those in (59) and (61).
On top of the functions Q1-Q13 and R1, R2, the code was
extended to evaluate the new functions

[
Q1

]
MG, [R1]MG and[

R1(k) + R2(k)
]

MG, as well as the modified correlators (59).
We make this code publicly available in [142]. Our modi-
fied version accepts the modified gravity model growth fac-
tors, DMG(k, z) as input along with the linear power spectrum
given by:

PL
MG(k, z) =

D1
MG(k, z)

D1
GR(k, 0)

2

PL
GR(k, 0). (67)

The linear power spectrum for the background ΛCDM cos-
mology is calculated using the publicly available code CAMB
[112].

After calculating the necessary MG growth factors using
our Mathematica notebook, we feed our modified version of
the code with tabulated values of the growth factors for the
various values of k, r and x needed at a given cosmologi-
cal redshift z. The PYTHON module computes the various
Qn(k) and Rn(k) functions through equations (62) and (63),
which are then used to calculate the various components of
the CLPT power spectrum PX(k). The k functions can then
be simply combined to give the SPT and LRT power spectra,
by equations (64) and (65), respectively. Finally, the modi-
fied C++ counterpart follows a similar procedure to compute
the configuration space two-point correlation function given
by CLPT, through (37). The procedure is explained in more
detail in the Appendix A 2.

We finish this section by noting that, even though we re-
strict our model to the case of a local Lagrangian bias, our
framework can be extended to include a curvature bias and/or

corrections from EFT, as in [64]. For modified gravity the-
ories with scale-dependent growth, a general expansion bias
is not possible in principle, though for some theories, such as
the f (R), the effects of the fifth force can be perturbatively
absorbed in terms of higher-order derivatives [58, 75].

2. Calculation of bias parameters in MG

In this section we turn to the final necessary ingredient to
describe biased tracers, an analytical model for the calculation
of the bias parameters in MG.

Central to the GR derivation in Section II B 3, is the as-
sumption that spherical collapse is independent of the exte-
rior spacetime, which, in the case of GR evolution, is given
by Birkhoff’s theorem. In MG theories, however, the addi-
tional degree of freedom violates Birkhoff’s theorem, which
will have important consequences for the modeling of the halo
mass function, as well as on its response to an external density
perturbation.

The Press-Schechter formalism (47) relies upon the as-
sumption that the linearly evolved critical overdensity, δcr, is
always constant at the time of collapse, for example δcr =

1.686 for an EDS evolution. This is not the case for MG due
to the presence of the additional scalar field that generates the
fifth forces. Following [113, 114], if we define 1 + δh = y−3

h ,
the evolution of a spherically symmetric halo density pertur-
bation, will be given by:

y′′h −
(
2 −

3
2

Ω(a)
)

y′h +
1
2

Ω(a)
Ge f f

G

(
y−3

h − 1
)

yh = 0, (68)

where ′ denotes derivatives with respect to ln(a) and Ge f f , the
modified Newton’s constant, is given by

Ge f f = (1 + E) G, (69)

For the nDGP braneworld model,[115]

E =
2

3β(a)

√
1 + χ3 − 1
χ−3 , (70)

where β(a) was defined in (28) and

χ−3 =
Ωmn2

1.10894a3β2(a)
y3

h − 1

y3
h

, (71)

with the nDGP parameter, n = H0rc. Note that the fifth force
modification does not depend on either the mass or the en-
vironment, a property of the Vainshtein mechanism, which
means that the collapse barrier for this model is redshift and
scale independent [115, 116]. Thanks to this property, the
halo biases for this model can be easily calculated by the cor-
responding GR expressions (54), with a different value for the
constant threshold δcr. For the background cosmology of the
Group I simulations, at z = 0.5, we integrate equation (68)
and find δcr to have values (linearly extrapolated at z = 0.5) of
δcr = 1.571 and δcr = 1.657 for the N1 (n = 1) and N5 (n = 5)
cases, respectively.
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For f (R) models, for a collapsing sphere of mass M and
radius Rth, E is given by

E = 2β2

3∆R
Rth
− 3

(
∆R
Rth

)2

+

(
∆R
Rth

)3
 , (72)

with β = 1
√

6
. Finally, ∆R

Rth
is given by

∆R
Rth

=
| fR0|a3

Ωmy−3
h H2

0R2
th

×


 1 + 4 ΩΛ

Ωm(
yenva

)−3
+ 4 ΩΛ

Ωm


n+1

−

 1 + 4 ΩΛ

Ωm(
yha

)−3
+ 4 ΩΛ

Ωm


n+1

 .
(73)

Here the overdensity related to yh is embedded on a longer
wavelength environment with over density, 1 + δenv = y−3

env. In
models that realize the chameleon screening mechanism, like
the f (R) Hu-Sawicki, only a thin shell of a massive sphere
contributes to the fifth force, with a fractional thickness ∆R

Rth
,

that causes an enhancement given by E. It is this factor E that
causes the environmental dependence of spherical collapse in
MG, through (68). When set equal to zero, we recover the
standard GR solution, which is the one that describes the evo-
lution of the environment, since on such a long wavelength
perturbations Ge f f ≈ G and we have:

y′′env −

(
2 −

3
2

Ω(a)
)

y′env +
1
2

Ω(a)
(
y−3

env − 1
)

yenv = 0. (74)

In light of the coupling between a collapsing halo and the
background on which it evolves, as seen through (68), it is
clear that in MG the collapse barrier, δcr, that is constant in
GR, should now be promoted to a function of both the mass
M and the environment overdensity δenv. For each choice of
M and δenvi , equations (68) and (74) form a system of cou-
pled differential equations that we solve simultaneously, as in
[113, 114]. The critical overdensity is identified as the small-
est value of the boundary condition δh(ai) at the initial scale
factor ai = 0.002, that causes a singularity i.e. signifying
the onset of nonlinear collapse, at the scale factor of interest,
which is then evolved to that scale factor a through [113, 114]:

δh(a) =
D(1)(a)
D(1)(ai)

δh(ai), (75)

with D(1) the linear GR growth factor
In Figure 2, we show the critical density, δcr(z,M, δenv) as

a function of mass, M, for the three f (R) models at z = 0.5,
as it was obtained for a variety of environmental densities,
δenv. Because the gravitational strength, Ge f f , is greater in the
modified models this allows haloes to form more easily, trans-
lating into a lower value of δcr than the value in ΛCDM. Ge f f
is scale dependent and tends towards the GR value on large
scales (which would collapse into large mass haloes). GR is
also recovered for highly screened models and high density
environments. For this reason the critical threshold tends to-
wards the GR value δcr = 1.686 for smaller values of fR0,
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M(M /h)
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c
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1.7

c
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M(M /h)
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c

FIG. 2: Critical overdensity for collapse, δcr, as a function
of halo mass for the F4 [top], the F5 [middle] and the F6
[bottom] MG models at z = 0.5 and for various environ-
ments. The different color curves correspond to the solutions
for the following values of the environment overdensity, δenv =[
−1(purple),−0.72,−0.43,−0.15, 0.13, 0.42, 0.7, 0.98, 1.27, 1.55(red)

]
.

The horizontal black line shows the δcr = 1.686 value for GR. The
background cosmology is that of the Group I simulations.

increasing values of M and more positive values of δenv (re-
gions with larger screening) as found in [113, 114]. The de-
viations from GR become progressively less pronounced as
we move from weaker (F4, top panel) to stronger (F6, lower
panel) screening, as one would expect.

Having calculated the function δcr(z,M, δenv) for the three
f (R) models, the MG halo mass function can be again given
by the universal prescription (47), but now with a modified
peak significance

νcMG(z,M, δenv) =
δcr(z,M, δenv)
D(1)(z)σ(M)

. (76)

The growth factors in MG are scale-dependent, meaning that
in equation (76) one should in principle use D(1)

MG(k, z), how-
ever, it has been shown [113, 114], that it is sufficient to
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use the GR growth factor, D(1)(z) to define the νc parameters.
Modifications beyond this assumption are accounted for later
in the free parameters of the halo mass function.

The dependence on the mass and the environment alters,
and makes environment dependent, not only the unconditional
halo mass function in MG, but also the conditional one. In
the presence of a long-wavelength density perturbation, ∆,
the conditional halo mass function will be again described by
(47), but now with a modified ν′cMG given by:

ν′cMG(M, δenv) =
δcr(z,M, δenv + ∆) − ∆

D(1)(z)σ(M)
. (77)

Application of the bias definition (52) in that case, gives the
first and second order bias parameters

b1
MG(M, δenv) =

dδcr(M,δenv)
dδenv

− 1

δcr(M, δenv)

qν2
cMG − 1 +

2p

1 +
(
qν2

cMG

)p

 ,
b2

MG(M, δenv) =(
dδcr(M,δenv)

dδenv
− 1

)2

δ2
cr(M, δenv)

q2ν4
cMG − 3qν2

cMG +
2p

(
2qν2

cMG + 2p − 1
)

1 +
(
qν2

cMG

)p


+

d2δcr(M, δenv)
dδ2

env

1
δcr(M, δenv)

qν2
cMG − 1 +

2p

1 +
(
qν2

cMG

)p

 .
(78)

In the case of a sample of halos in a mass range of width dM
around a single value M, the conditional and unconditional
mass functions need to be first averaged over the mass range,

b1
MG(M, δenv) =

1
IdM

∫ 
(

dδcr(M,δenv)
dδenv

− 1
)

δcr(M, δenv)
νcMG

M
∂ f [νcMG]
∂νcMG

d ln νcMG

dM

 dM,

b2
MG(M, δenv) =

1
IdM

∫ 
(

dδcr(M,δenv)
dδenv

− 1
)2

δ2
cr(M, δenv)

ν2
cMG

M
∂2 f [νcMG]
∂ν2

cMG

d ln νcMG

dM

 dM

+
1

IdM

∫ 
d2δcr(M,δenv)

dδ2
env

δcr(M, δenv)
νcMG

M
∂ f [νcMG]
∂νcMG

d ln νcMG

dM

 dM,

(79)
with

IdM =

∫ [
f [νcMG]

M
d ln νcMG

dM

]
dM. (80)

The details of the peak-background split derivations, for (78),
(79), are shown in more detail in Appendix B.

We note that another popular method, as an alternative to
PBS, for calculating halo biases is the excursion set approach
[108]. Here the universal halo mass function is associated
with the Brownian-walk, first crossing distribution of a col-
lapse threshold. In the GR case, the redshift and scale inde-
pendence of the collapse barrier leads to an analytical solution

that recovers the common PBS biases. Given the potential
scale, environment and redshift dependence that δcr has in MG
models however, there is no analytical solution for the excur-
sion set approach in MG and one would need to perform nu-
merical simulations, rather than analytic prediction available
for PBS, to determine the predicted biases [113, 117, 118].

In order to make predictions to compare against simula-
tions, given that the correlation statistics sample a distribution
of environments, rather than a specific value of δenv, we av-
erage all environment-dependent quantities over a probability
distribution for environments in which halos form and reside,
defining these on a fixed scale ζ which we set to 8 Mpch/h
[117–119],

pζ(δenv) =
β0.5ω

√
2π

[
1 + (ω − 1)

δenv

δcr

] (
1 −

δenv

δcr

)−0.5ω−1

,

× exp

−βω2 δenv(
1 − δenv

δcr

)ω
 ,

(81)

where β ≡
(
ζ
8

)3
/(δcrσ

(2/ω)
8 ) with ω ≡ δcr

ns+3
3 .

The list of environments over which we average the other
dependent quantities for the rest of this work, is δenv =[
−1,−0.72,−0.43,−0.15, 0.13, 0.42, 0.7, 0.98, 1.27, 1.55

]
.

In Figure 3 we demonstrate the impact of the reduced δcr
values in modified gravity models, separately from modifica-
tions to the halo mass function itself, by plotting the environ-
mentally averaged bias parameters b1

MG and b2
MG for GR and

three f (R) models we study calculated from relations (54) and
(78), while assuming the same underlying halo mass model,
with (q, p) = (0.707, 0.3) for all models. As described earlier,
the increased gravitational strength in modified gravity mod-
els, parameterized by Ge f f in (69), allows haloes of a given
mass to collapse more readily, yielding a lower critical thresh-
old values for δcr and a lower bias relative to the background
(reduced b1 relative to GR). The deviations from GR are most
pronounced in the models with least screening, like the F4
model and are suppressed in the presence of stronger screen-
ing.

To accurately predict the biases in the various modified
gravity models, we also need to accurately characterize the
halo mass function. The values (q = 0.707, p = 0.3) used
to characterize the ST halo mass function in GR were fixed
by fitting to ΛCDM simulations [61] and would not be ex-
pected to predict the mass function for modified gravity the-
ories, given the different physics involved in the growth rate
and collapse of nonlinear structures. Since the form of the
halo mass function is critical to evaluating the biases for the
LPT correlation function and power spectra predictions, we
determine the best fit values for (q, p) from the simulated halo
mass functions for each model in the mass ranges consid-
ered. These then uniquely determine the predictions for the
biased tracer correlation and power spectra. This approach
minimizes the errors that would be introduced at the outset of
the LPT modeling from an inaccurate halo mass function. To
do this, we evaluate the environment averaged Sheth-Tormen
halo mass function (47) for various pairs values of (q, p), each
using the MG prescription (76), over the distribution of en-
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FIG. 3: First and second order Lagrangian bias factors b1 [Top]
and b2 [Bottom], as a function of halo mass M, calculated for GR
[solid black], F6 [dash-dot blue], F5 [green dotted] and F4 [red dash],
through relationships (54) and (78), using the Sheth-Tormen values
(q, p) = (0.707, 0.3) at z = 0.5. For the 3 f (R) models, the biases are
the environmentally averaged.

vironments (81) and identify the pair of values that best fits
the corresponding halo mass functions from the simulations,
through the simple criterion that minimizes the quantity∑

i

∣∣∣∣∣∣∣ nsim(Mi)
nS T (Mi, q, p)

− 1

∣∣∣∣∣∣∣, (82)

previously used to fit the halo mass function in Galileons [116,
120]. In (82), i is the number of mass bins over which the sum
is performed, which, can be tuned to model a narrow mass
range rather than fitting the whole range with a single set of
parameters.

In Figure 4, we plot the halo mass functions for the GR and
three f (R) MG models we consider at z = 0.5, together with
the best fit ST halo mass functions obtained through (82). In
the case of f (R) gravity, we plot both the mean ST halo mass
function, as well as the halo mass function for each value of
δenv, to give a sense of the variation among various different
environments.

In Table I, we show the best fit values of (q, p) for the dif-
ferent models, mass ranges and simulations considered. For
Group I simulations, we study predictions at z = 0.5 for
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FIG. 4: Halo mass function, in the form of number of halos dNh,
per mass bin dM, as a function of halo mass M, calculated from the
Group I simulations at z = 0.5, for GR [black dot] in the upper left
panel, F4 [red triangle] in the upper right panel, F5 [green square]
in the middle left panel, F6 in the middle right panel and N1 and N5
nDGP models in the lower left and right panels, respectively . Along-
side with the simulations, we show the analytical Sheth-Tormen halo
mass functions (47), plotted using the best-fit (q, p) values for each
model using the criterion (82). For the f (R) models, the best-fit val-
ues correspond to the environmentally averaged halo mass function,
through (81), shown with black curves, while we also plot the halo
mass functions for individual values for δenv for each f (R) model.
The color scheme and distribution of values for δenv is the same as in
Figure 2.

halos in a mass range (2 − 3.5) × 1012M�/h, for all mod-
els. For the Group II simulations we analyze a z = 1 snap-
shot, where we consider halos in three separate mass bins: a
lower mass bin of 9 × 1011 − 2 × 1012 M�/h, an intermedi-
ate bin of 5 × 1012 − 1 × 1013 M�/h and a higher mass bin,
1.1 × 1013 − 9 × 1013 M�/h.

In Figure 5 we present the predicted correlation function,
ξenv for different environments for the F6 model, along with
the correlation function for the environment averaged bias val-
ues. Changing the environment can have a notable effect on
the predicted correlation function, with variations of ∼ 10%
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Best-fit ST Predicted Biases
Models q p b1 b2

Group I : GR 0.726 0.345 0.301 -0.501
Group I : F4 0.671 0.361 0.120 -0.435
Group I : F5 0.765 0.321 0.211 -0.470
Group I : F6 0.670 0.362 0.230 -0.449
Group I : N1 0.701 0.369 0.224 -0.661
Group I : N5 0.702 0.357 0.268 -0.503
Group II : GR Low 0.674 0.362 0.345 -0.183
Group II : GR Mid. 0.728 0.342 0.925 -0.05
Group II : GR High 0.806 0.594 1.720 1.900
Group II : F5 Low 0.733 0.314 0.295 -0.170
Group II : F5 Mid. 0.788 0.282 0.909 -0.033
Group II : F5 High 0.746 0.305 1.491 0.416

TABLE I: The table presents the values for the best-fit Sheth-Tormen
parameters (q, p) for the halo mass function (47), with respect to the
simulations, through the criterion (82), as well as the bias factors
b1 and b2 evaluated through (79) using the best-fit values. All the
evaluations for the Group I simulations were performed at redshift
z = 0.5 and for the Group II simulations at z = 1. The labels low, mid.
and high indicate reference to the three mass bins, specified in the
text. For all f (R) models, the bias values shown are environmentally
averaged as described in the text.

for the F6 model presented in the figure. A decrease in the
background environmental density corresponds to a reduction
in the correlation function because lower values of δenv give
rise to a lower δcr and consequently a lower value for the lin-
ear bias b1.

B. Comparison with simulations

In this Section, we compare the performance of the various
LPT resummation schemes under consideration, combined
with our bias model, against the corresponding results from
the Group I and Group II simulations, discussed in Section
II A 3, with respect to the correlation function and the power
spectrum. All correlation functions from the simulations have
been calculated employing the publicly available code CUT E
[121], using 30 linearly spaced bins in the range 0 − 140
Mpc/h. The power spectra, on the other hand, have been ex-
tracted using a Cloud-In-Cell (CIC) mass assignment scheme,
on a grid with resolution of Ngrid = 10243 and Ngrid = 12003

cells, for the Group I and Group II simulations, respectively.
The power was binned in 30 linearly spaced points in the k
range of 0.008 − 0.3 h/Mpc.

As discussed in Section III A 2, for Group I simulations,
we study predictions at z = 0.5 for halos in the mass range
(2 − 3.5) × 1012M�/h, for all models. For the Group II simu-
lations we analyze a z = 1 snapshot, where we consider halos
in three separate mass bins: a lower mass bin of 9× 1011 − 2×
1012 M�/h, an intermediate bin of 5 × 1012 − 1 × 1013 M�/h
and a higher mass bin, 1.1 × 1013 − 9 × 1013 M�/h.
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FIG. 5: [Top] Two-point correlation function predic-
tion form CLPT, through (37), for the F6 model at
z = 0.5 for the various bias values given when δenv =[
−1(purple),−0.72,−0.43,−0.15, 0.13, 0.42, 0.7, 0.98, 1.27, 1.55(red)

]
through (79) and the result when averaged over environments [black
line] using (81). [Bottom] Fractional deviation, ξenv

ξmean
− 1, for the

CLPT result for each environment in the top panel, with respect to
the CLPT curve given by the mean b1 and b2 values (black curve in
the top panel).

1. Correlation function

To assess the accuracy and performance of the LPT predic-
tions, we first utilize the Group II simulations as a comparison
dataset. Given that we only have 1 realization available for the
F5 and GR models, the correlation functions exhibit noise due
to the random initial phase, but still facilitate valuable conclu-
sions about the performance of the methods tested given the
appropriate combination of large volume and high resolution.
These allow us to evaluate the performance of CLPT and its
variations simultaneously across a wide range of scales, in-
cluding both the BAO scales and the region roughly following
a power-law scaling relation, down to r ∼ 5 Mpc/h.

The LPT predictions use the PBS biases evaluated from the
best fit halo mass function, when fitted over the specific mass
ranges, for each bin as summarized inTable I). Both the LPT
and simulation results are compared to the Zel’dovich predic-
tion for the correlation function.

To benchmark our findings we consider both the GR simu-
lations as well as those for the modified gravity model. Figure
6 shows these comparisons for the three mass bin ranges, and
Figure 7 shows the fractional variations with respect to the
Zel’dovich component of CLPT.

For both the GR and modified gravity cases it is important
to carefully understand the form of the halo mass function to
get accurate LPT predictions. We find that simply adopting
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FIG. 6: Two-point correlation functions for the Group II simulation
snapshots at z = 1 for GR [top panel] and F5 [lower panel] models.
The predictions from CLPT (37) [solid blue], the Zel’dovich approx-
imation [dashed cyan], LRT (66) [dotted magenta] and the linear the-
ory [dashed green], using the bias values shown in Table I are com-
pared to the correlation function extracted from simulations, shown
with Poisson error bars, for the three mass bins defined in Section III:
the low mass [red triangle], intermediate mass [black dot] and high
mass [brown square] bins.

the standard ST pair of values, (0.75, 0.3), gives a poor ap-
proximation to the first order bias b1 (for the various values of
halo mass), consistent with the findings of the simulation cre-
ators [92] when they extracted the bias estimate from the sim-
ulations and compared it to a standard ST prediction. For the
results with the best fit halo mass parameters, we find that the
full CLPT results for both the GR and the F5 model, incorpo-
rating the bias parameters evaluated using our PBS model (Ta-
ble I) and the environment averaging where necessary, does a
very good job, in describing the power-law correlation func-
tion, 20 − 80 Mpc/h, for all three mass bins and significantly
improves upon linear theory at the BAO peak. For all three
mass ranges, shown in Figure 7, the simulated correlation
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FIG. 7: Fractional deviations in the power-law regime of the cor-
relation function predictions with respect to the Zel’dovich approx-
imation for the results shown in Figure 6. For the GR analysis [top
panel], we also plot the ratio of the CLPT prediction using the stan-
dard ST values (q, p) = (0.75, 0.3) [dashed-dot blue], rather than the
best fit ones in Table I, divided by the Zel’dovich result.

function falls below the Zel’dovich approximation and we find
that the CLPT predictions are reflecting this better than both
the linear and LRT predictions. The three approaches, CLPT,
LRT and Zel’dovich, all perform well in characterizing the
BAO peak for the low mass and intermediate mass bins, for
the largest differences being in the highest mass bin for F5,
where the LRT approach performs slightly better. The LRT
performs poorly at the smaller scales, under 20Mpc/h, signif-
icantly overshooting the observed correlation function, con-
sistent with the results reported in previous studies performed
on ΛCDM cosmologies [55, 56, 59, 100]. The Zel’dovich
approximation provides the best agreement at scales below
10Mpch/h.

It is also interesting to notice that, in Figure 6, while the
correlation functions have similar values for GR and the F5
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model in the lowest mass bins, the F5 result is noticeably
lower than the GR one for the highest mass bin. The am-
plitude of the correlation function depends on the interplay
between the dark matter component (which has higher values
in MG) and mostly the linear bias factor, b1, which is lower
for MG. In the lower mass bins, the combination of the above
two is such that the difference between the GR and the F5
curves is almost neutralized, while in the highest mass bins
the linear bias factor b1 is, relatively, even lower, causing the
F5 two-point function to have clearly lower values than in the
GR case.

To expand on the results from the large volume simulations,
we now look into the comparison with the Group I simula-
tions, that, while spanning a smaller volume, allow us to test
our schemes for a wider range of models. For each model,
five different random realizations are available and the error
bars represent the standard deviations over these realizations.
Starting with the f (R) family, which is plotted in Figure 8, we
see that the picture painted for the F4 an F5 models here is
similar with the one for the F5 model (at z = 1), with CLPT
performing the best at scales r > 20 Mpc/h and the Zel’dovich
result being superior at capturing the smaller scales, while the
trend is more pronounced in the F4 case. For the F6 model
however, not only does CLPT perform better at these larger
scales, but it seems to trace the simulation results more accu-
rately compared to Zel’dovich down to r∼ 7 Mpc/h.

To explore this small scale performance sensitivity to
screening in more detail note we consider what makes the lin-
ear order LPT and its one-loop extensions perform differently.
In [59] (and also in [122]), it was argued, in dark matter-only
studies, that LPT does a poor job at estimating the higher or-
der corrections to the linear displacement dispersion, given by
(42) and the one-loop correction piece in LPT given by

σ2
1loop =

1
6π2

∫ ∞

0
dk

(
9

98
Q1(k) +

10
21

R1(k)
)
. (83)

Comparison with simulations in [59, 122], found CLPT to
overestimate the size of this correction at small scales, through
(83), with the true value of the total σ2

L + σ2
1loop being closer

to σ2
L, which is what the Zel’dovich result uses. Because one-

loop CLPT strongly depends on these corrections, through
its zero-lag terms (as can be seen in Appendix A 2), it per-
forms worse at the smaller scales compared to its Zel’dovich
counterpart. Calculated from our theory prediction for GR at

z = 0.5, the ratio
σ2

1loop

σ2
L

= 0.126, close to the value in Figure
5 of [59]. In comparison, for the f (R) models at z = 0.5, the

ratio
σ2

1loop

σ2
L

is (F4, F5, F6) = (0.212, 0.180, 0.152). The higher
values for F4 and F5 lead to an overestimation in these cases
that is responsible for the worse behavior at smaller r. It Is
worth noting here that if we do not include screening, the ra-

tio
σ2

1loop

σ2
L

= 0.17 in the F6 model, as opposed to the full value
of 0.152. For the z = 1 Group II simulations, the ratios are
(GR, F5) = (0.08, 0.103), which explains the lower discrep-
ancy and better performance of CLPT for F5. This also is
consistent with considering that this is an earlier reference in
which clustering differences between the theories will be less

pronounced. From a physical standpoint, the overestimation
reflects an inability in LPT (including the Zel’dovich result),
to trap dark matter particles within halos [59], which seems
to be more apparent in the LPT approach for stronger MG
chameleons. Fortunately, as we said earlier, these models are
the ones that violate the observational constraints and are thus
less interesting from an astrophysical standpoint.

Finally, we test our LPT approaches applied on the nDGP
models, that represent the Vainshtein screening mechanism,
and the correlation functions of which are presented in Figure
9, for all LPT schemes and the Group II simulations. Just like
in the f (R) models, CLPT does a very good job at describ-
ing the correlation function for large scales and beyond that, it
even seems to perform at least equally well as the Zel’dovich
curve down to scales r ∼ 10 Mpc/h, similar to the F6 and
GR cases in Figure 8 discussed earlier. The measurement
of the 1-loop statistic discussed in the previous paragraph is

consistent with this; for the nDGP models, the ratio
σ2

1loop

σ2
L

=

(0.129, 0.122) for (N1, N5) respectively, very consistent with
the GR value = 0.126. This is the case even in the weaker
screening case, the N5 model, and is a very promising sign,
given that the Vainshtein mechanism is highly efficient at
screening modifications to gravity at smaller scales and con-
tains viable candidates that self-accelerate (even though this
particular model does not). The relative performance among
the different resummation schemes is very similar to the one
observed in the GR and f (R) cases, with all LPT models im-
proving the accuracy at the BAO peak upon linear theory, with
the LRT scheme giving more power that CLPT and then the
Zel’dovich result. The characterization of the BAO peak on
scales r > 100 Mpc/h is limited in the simulation box with
side 1,024 Mpc/h; larger-volume simulations for the nDGP
model, comparable to the Group II simulations for F5 or
GR, will allow us to more clearly trace the region between
100 − 140 Mpc/h and draw stronger conclusions about how
our models perform at the BAO scales.

The fact that CLPT performs well for all modified gravity
models considered in the power-law and BAO scales is very
encouraging. On the smaller scales, its robustness for highly
screened models is also a positive result. If an MG model was
ever detected, it would be a highly screened case, given the
tight constraints placed on GR; models F4 and F5 are actu-
ally ruled out by observations [32], but we include them in
our analysis to fully investigate the chameleon phenomenol-
ogy with LPT.

2. Power spectrum

Complementary to the correlation function, we also per-
form tests on its Fourier space counterpart, the halo power
spectrum. The mass bins and bias values used in the power
spectra calculations are exactly the same as the ones pre-
sented in the correlation function case, but with the additional
step that all power spectra are shot noise corrected [123]:
P̃(k) = P(k) − 1

nh
, where P(k) is the uncorrected power spec-

trum, and nh is the number density of halos in each bin. Es-
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FIG. 8: Two-point correlation functions from the Group I simulations, calculated at z = 0.5, for GR [black dots] in the upper left panel, for F4
[red triangles] in the upper right panel, for F5 [green squares] in the lower left panel and for F6 [blue right triangles] in the lower right panel.
The results are the average over the 5 realizations and the error bars shown are standard deviations. Furthermore, for each model we plot the
predictions from CLPT (37) [solid blue], from the Zel’dovich approximation [dashed cyan], from LRT (66) [dotted magenta] and from linear
theory [dashed green], using the bias values shown in Table I. The linear theory result for the F5 model is plotted using a blue dashed line
instead, for ease of comparison.

pecially for the higher mass bins that contain less halos, this
effect is not negligible, especially at higher k. We also identify
the scale at which perturbation theory starts to fail, kNL, with
the vertical dashed-dot blue line, using the definition [54],
kNL = (2σ2

L)−1, with σ2
L the linear power spectrum dispersion

defined in (42).

In Figure 10, we present the F5, Group II snapshot at z = 1.
We find the expanded, SPT power spectrum (64) to perform
very well at capturing the small k and to follow the power
spectrum until k ∼ 0.25h/Mpc, where it starts to overesti-
mate power compared to the simulations, for all three mass
bins. This behavior is consistent with what was found in
the GR case in earlier works on [55, 59] and also for dark
matter in MG [74]. The linear theory result is only accurate
at very large scales and quickly underestimates the power at
k > 0.05h/Mpc. Unlike in the correlation function compar-
ison, where LPT was found to perform very well at a wide
range of scales, here we see that the CLPT power spectrum
(40) decays quickly and performs considerably worse than the
SPT expansion. This is not unexpected, since the power spec-
trum in LPT has been found to receive, unlike in the config-
uration space, significant contributions from large, nonlinear
k modes, where LPT performs poorly and fails to trap parti-
cles inside dark matter halos [59]. Our results show that this

to also the case in our MG models. We find that this effect
is even more pronounced in the LRT power spectrum (65),
which decays sharply in k-space, for this reason we do not
include the result in our plots.

In Figure 11 summarizing the GR and f (R) cases from the
Group I simulations, at z = 0.5, while the CLPT consistently
underestimates the power spectrum for all models, the SPT
result tracing the simulation points well for F5 and F6 until
k ∼ 0.2h/Mpc, at which it starts to overestimate the power
spectrum. The performance for the the F4 model is slightly
worse on small scales. This earlier deviation is not surprising
given that the model has the smallest kNL prediction, resulting
from a comparatively higher 1D linear dispersion.

For the two nDGP models, also shown in Figure 11, we
find that the SPT predictions perform well at scales k < 0.15
Mpc/h but overestimate the power on small scales. The
CLPT predictions consistently underestimate the power, and
are broadly comparable to the linear prediction.

IV. CONCLUSIONS

In this work, we modeled the two-point statistics of biased
tracers in modified gravity (MG) up to one-loop order in the
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are the average over the 5 realizations and the error bars shown are
standard deviations. Furthermore, for each model we plot the predic-
tions from CLPT (37) [solid black], from the Zel’dovich approxima-
tion [dashed cyan], from LRT (66) [dotted magenta] and from linear
theory [dashed green], using the bias values shown in Table I.
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FIG. 10: Power spectra from the Group II simulations, calculated for
F5 at z = 1, in the low mass [red triangle], intermediate mass [black
dot] and high mass [brown square] bins, that were defined in Sec-
tion III. The error bars shown are Poisson error bars. Furthermore,
for each mass bin we plot the predictions from CLPT (37) [dotted
magenta], from SPT (64) [solid blue] and from linear theory [dashed
green], using the bias values shown in Table I.

linear power spectrum, using the Convolution Lagrangian Per-
turbation Theory (CLPT) framework and its variants. Follow-

ing standard methods in the literature, the linear piece of the
two-point Lagrangian correlator for dark matter is kept expo-
nentiated in the expression for the two-point correlation func-
tion, but everything else is expanded, leading to a series of
convolution integrals, the expressions of which we derive for
scalar-tensor theories.

The evolution of the underlying dark matter density field
is described by the LPT framework for dark matter, suitably
extended to study scalar-tensor theories, along with an ana-
lytical model for the calculation of the first and second or-
der bias parameters in MG. To perform the bias calculations,
we employ the Peak-Background split (PBS) approach, in
which biases are modeled rigorously as responses of the uni-
versal Sheth-Tormen halo mass function in the presence of
a long-wavelength density perturbation. This is extended in
MG theories, to account for the dependence of the gravita-
tional collapse on the environment and screening. Our PBS
implementation, provides a quantitative prediction for the in-
creased production, and the related lower biases, for haloes of
a given mass. We apply this scheme to the f (R) Hu-Sawicki
and the nDGP braneworld models, that are representatives of
the chameleon and Vainshtein screening mechanisms, respec-
tively. We make the code used for the analytic predictions
publicly available in [143] and evaluate their performance
against state-of-the-art cosmological N-body simulations, for
a variety of MG models at z = 0.5 and z = 1, with respect to
the correlation function and the power spectrum in a variety
of mass regimes and scales.

The CLPT implementation, in combination with the an-
alytical bias model, gives good agreement with the simula-
tions, with the only free parameters necessary being those to
best-fit the Sheth-Tormen universal halo mass function at the
given mass range. The CLPT predicts the correlation func-
tion across scales 20 − 80 Mpc/h, tracing the simulation re-
sults at an accuracy of 2 − 3% and better. At the BAO scales,
that provide a valuable probe of fundamental physics, CLPT
was found to improve significantly upon the linear theory and
Zel’dovich predictions for the F5 models, just like in GR. The
Lagrangian Resummation Theory (LRT) approach improved
the accuracy a little further at BAO scales for the highest mass
range considered. At scales of r < 20 Mpc/h, the CLPT per-
formed well for the highly screened model F6 and for the
nDGP models, while the Zel’dovich predictions performed
better for the weakly screened F5 and F4 models. The reason
for this behavior was identified, being an overestimation in
these low-screening chameleon models of the one-loop con-
tributions to the zero-lag terms at small scales.

In Fourier space, consistent with findings for GR, the CLPT
power spectrum was found to underestimate power quickly,
compared to the simulations for all MG models. This is due
to the power spectrum receiving significant contributions from
large k, where LPT performs poorly. The Standard Perturba-
tion Theory (SPT) approach, though, which is the low-k ex-
panded version of this power spectrum, performs very well
and remains consistent with the simulation results down to
k ∼ 0.2h/Mpc for the f (R) models and down to k ∼ 0.15h/Mpc
for the two nDGP models. Beyond these scales, the SPT curve
overestimates the power spectrum, as has been found for GR



20

k(h/Mpc)100

200

300

400

500

600

700
kP

(k
)

GR simulation
SPT
CLPT
Linear

F4 simulation
CLPT
SPT
Linear

0.05 0.10 0.15 0.20 0.25
k(h/Mpc)

100

200

300

400

500

600

700

kP
(k

)

F5 simulation
SPT
CLPT
Linear

0.05 0.10 0.15 0.20 0.25
k(h/Mpc)

F6 simulation
SPT
CLPT
Linear

N1 simulation
SPT
CLPT
Linear

0.05 0.10 0.15 0.20 0.25
k(h/Mpc)

N5 simulation
SPT
CLPT
Linear

FIG. 11: Power spectra from the Group I simulations, calculated at z = 0.5, for GR [black dots] in the upper left panel, for F4 [red triangles]
in the upper middle panel, for F5 [green squares] in the lower left panel, for F6 [blue right triangles] in the lower middle panel, for N1 [orange
diamonds] in the upper right panel and for N5 [purple hexagons] in the lower right panel. The results are the average over the 5 realizations
and the error bars shown are standard deviations. Furthermore, for each model we plot the predictions from CLPT (37) [dotted brown], from
SPT (64) [solid blue] and from linear theory [dashed green], using the bias values shown in Table I. The linear theory result for the F5 model
is plotted using a pink dashed line instead, for ease of comparison.

previously.
While we have focused our analysis on LPT predictions for

real space, our model can be expanded to capture the redshift-
space distortions required for upcoming LSS surveys. Fur-
thermore, even though we focused on a local in matter den-
sity bias scheme in the Lagrangian space, in which the bias
is purely a function of the local density, one can extend this
to include other factors determining bias into the formalism,
such as curvature bias, and model them successfully by this
PBS scheme. The same applies for potential extensions to in-
clude EFT corrections to our LPT model, as in [64], which
could also be used to calculate the components of the Gaus-
sian Streaming Model for MG theories. Finally, our CLPT
MG framework can be used to analytically predict marked
statistics in MG and assess their ability to boost the MG sig-
nals carried in cosmic density fields, as in [124, 125]. We
leave these natural extensions to future work.

In the coming decade, a wide array of cosmological surveys
will span a large part of the observable universe, searching for
hints of new physics beyond ΛCDM. In this work we demon-

strate that semi-analytical approaches, extensively employed
in the context of standard GR, can serve as invaluable tools to
predict structure formation in cosmologies with an extra de-
gree of freedom in the gravitational sector. A next step for
these approaches are to confront them in comparison to real-
istic simulations of galaxies and clusters that will be observed
with surveys coming online in the coming year or two and
assess survey ability to identify and constrain potential devia-
tions from GR.
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Appendix

Appendix A: One loop corrections for biased statistics in MG

In section III A 1 of the main text, it was stated that the two
point statistics for biased tracers, up to one loop in CLPT, are
given by equations (37) and (40), in the configuration space
and the Fourier space, respectively. The expressions are con-
volutional integrals over a sum of individual terms that depend
on the Lagrangian correlators (58), which are essentially the
fundamental blocks of CLPT. These expressions (58), how-
ever, are functions of the Lagrangian coordinates q, while the
LPT solutions for the displacement fields up to various or-
ders are found in the Fourier space (through the growth factors
(22), (25) and (A5)). As was also stated in III A 1, substituting
the LPT solutions (56) into (58) gives the integral expressions
for the MG Lagrangian correlators (59), that depend on the
functions (61), which are also the building blocks of the SPT
and LRT power spectra (64) and (65). We start with the inner-
most layer of integration, deriving the expressions for the k-
dependent functions (61) in section A 1, before showing how
to get to the correlators (59) in section A 2. Finally, in section
A 3, we show how the SPT and LRT expressions for the two-
point statistics are derived. The notation and index structure is
the one adopted in [54–56]. These results are consistent with
those recently presented in [75].

1. Polyspectra and k-functions in MG

In LPT, we solve for the displacement fieldΨ(q) across var-
ious orders in perturbation theory, as

Ψ(q, t) =

∞∑
n=1

Ψ(n)(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t)...

(A1)
In the Fourier space representation, Ψ̃(p), the solutions are
expanded as

Ψ̃
(n)
j (p) =

i
n!

∫
d3 p1

(2π)3 ..
d3 pn

(2π)3 δ
3
D

 n∑
j=1

p j − p


× L(n)

j (p1, ..,pn)δ̃L(p1)..δ̃L(pn),

(A2)

where δ̃L(pn) are the linear density fields in the Fourier space
at the time of evaluation. For gravitational evolution gov-
erned by GR, the growth factors are only functions of time,
and under the additional assumption of an Einstein-De Sit-
ter evolution, the Kernels L(n)

j (p1, ..,pn) admit simple scale-
independent expressions and (A2) can be simply evolved in

time by powers of the linear growth factor [54]. This assump-
tion gives results accurate at the sub-percent level for ΛCDM
cosmologies [51].

In MG, however, the simple description presented above
does not hold, in principle, because the growth factors depend
on both space and time, as we saw in Section II B 1. Following
[74], we define

L(1)
j (p) =

p j

p2

L(2)
j (p1,p2) =

p j

p2

D(2)(p1,p2)
D(1)(p1)D(1)(p2)

(L(3)
j )sym(p1,p2,p3) = i

p j

p2

D(3)
sym(p1,p2,p3)

D(1)(p1)D(1)(p2)D(1)(p3)
,

(A3)

where the MG growth factors are calculated through the pre-
scription described in Section II B 1 and their time arguments
have been dropped for notational simplicity. Furthermore, the
subscript in the third order Kernel is meant to emphasize on
the fact that the configuration that enters the 2-point statistics
should be symmetrized [54, 74]. The symmetrized third order
growth factor that enters the two-point statistics is given by
[74]:

D(3)
sym(k,−p,p) = D(3)(k,−p,p) + D(3)(k,p,−p), (A4)

with D(3)(k,−p,p) given by:

(
T̂ − A(k)

)
D(3)(k,−p,p) = D(1)(p)

(
A(p) + T̂ − A(k)

)
D(2)(p,k)×1 −

(
p ·

(
k + p

))2

p2|p + k|2

 − D(1)(p)
(
A(p) + A(|p + k|) − 2A(k)

)
D(2)(p,k)

+
(
2A(k) − A(|p + k|) − A(p)

)
D(1)(k)

(
D(1)(p)

)2
(
k · p

)2

k2 p2

−
(
A(|p + k|) − A(k)

)
D(1)(k)

(
D(1)(p)

)2
− D(1)(k)

(
D(1)(p)

)2
×


M1(p + k)
3Π(|p + k|)

K(2)
FL(p,k) −

(
2A(0)

3

)2 M2(p,k)|p + k|2

6a2Π(|p + k|)Π(k)Π(p)

+
M1(k)
3Π(k)


2

(
p ·

(
k + p

))2

p2|p + k|2
−

p ·
(
k + p

)
p2

 (A(p) − A(0)
)

D(2)(p,k)D(1)(p)

+

2
(
p ·

(
k + p

))2

p2|p + k|2
−

p ·
(
k + p

)
|k + p|2

 (A(|k + p|) − A(0)
)

D(2)
φ (p,k)D(1)(p)

+ 3
(
k · p

)2

k2 p2

(
A(p) + A(k) − 2A(0)

)
D(1)(k)

(
D(1)(p)

)2


−
1
2

k2

6a2Π(k)
K(3)
δIsym(k,−p,p)D(1)(k)

(
D(1)(p)

)2
.

(A5)
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In (A5), we additionally defined

D(2)
φ (p,k) = D(2)(p,k) +

1 +

(
k · p

)2

k2 p2

 D(1)(k)D(1)(p)

−
2A(0)

3

M2(p,k) + 2
(

3
2A(0)

)2
K(2)

FL(p,k)Π(k)Π(p)

3Π(k)Π(p)
D(1)(k)D(1)(p)

(A6)
and also used the kernels K(2)

FL and K(3)
δIsym, the forms of which

were shown in [74]. The second and third order LPT kernels
(A3) need to be evaluated numerically, now, for each value
of p1,p2 and z and so should (A2), which is the main point
of divergence between the MG implementation and the corre-
sponding one in GR.

Now, following [55], we define the mixed polyspectra
Ci1...iN , as

〈δ̃L(k1)...δ̃L(kl)Ψ̃i1 (p1)...Ψ̃iN (pN)〉c =

= (2π)3δ3
D(k1 + .. + kl + ..p1 + .. + pN)(−i)NCi1...iN (p1, ..,pN).

(A7)
It is useful to decompose the various polyspectra into the vari-
ous constituents, order by order in perturbation theory, as e.g.

Ci j(~p) = C(11)
i j (~p) + C(22)

i j (~p) + C(13)
i j (~p) + C(31)

i j (~p) + ....

Ci jk(~p1, ~p2, ~p3) = C(112)
i jk (~p1, ~p2, ~p3)+

C(121)
i jk (~p1, ~p2, ~p3) + C(211)

i jk (~p1, ~p2, ~p3) + ...,

(A8)

where the additional notation has been adopted

〈δ̃L(k1)...δ̃L(kl)Ψ̃
(r)
i1

(p1)...Ψ̃(s)
iN

(pN)〉c =

= (2π)3δ3
D(k1 + .. + kl + ..p1 + .. + pN)(−i)NC(r...s)

i1...iN
(p1, ..,pN)

(A9)
and as previously, the bracketed numbers in the superscripts
indicate the orders of contribution in each Ψ̃i(p). The various
polyspectra can be expressed as functions of the Lagrangian
kernels (A3), by identifying the different contributions across
each order in LPT, as in (A8) and plugging the solutions (A2)
into equation (A9). The ones relevant for the two-point statis-
tics of biased tracers are [55]:

C(11)
i j (p) = L(1)

i (p)L(1)
j (p′)PL(p)

C(22)
i j (p) =

1
2

∫
d3 p′

(2π)3 L(2)
i (p′,p − p′)L(2)

j (p′,p − p′)×

× PL(p)PL(|p − p′|)

C(13)
i j (p) = C(31)

ji (p) = −
1
2

L(2)
i (p)PL(p)×

×

∫
d3 p′

(2π)3 (L(3)
j )sym(p,−p′,p′)PL(p′)

C(2)
i (p1,p2; p3) = −L(2)

i (p1,p2)PL(p1)PL(p2)

C(2)
i j (p1; p2,p3) = C(21)

ji (p1; p3,p2) =

= −L(1)
i (p2)L(2)

j (p1,p2)PL(p1)PL(p2)

C(112)
i jk (p1,p2,p3) = C(211)

ki j (p3,p1,p2) = C(121)
jki (p2,p3,p1) =

= L(1)
i (p1)L(1)

j (p2)PL(p1)PL(p2),
(A10)

where by PL(p) we denote the MG linear power spectrum.
The scalar functions Qn(k) and Rn(k) that contribute to the

SPT power spectrum (and as we shall see in the next section,
to the Lagrangian correlators (58)), are expressed as functions
of the polyspectra (A9) in GR [55]. Fortunately, since in MG
the above picture is only modified through the modified Ker-
nels in (A3), the relationships that give the various scalar func-
tions are of the same form as the ones presented in [55] (in par-
ticular, equations (A50)-(A67) in Appendix A). However, one
should be cautious at this point, because certain symmetries
that are present in the GR solutions, are not preserved any-
more. In particular, the integral in the l.h.s of eq. (A59) in [55]
will not be equal to R1(k)+R2(k) anymore, because of the scale
and redshift dependence of the MG growth factors. In a simi-
lar manner, the functions resulting from eq. (A57) and (A61),
that used to be equal to R1(k) and Q1(k), respectively, in GR,
will differ for our MG models and should be additionally cal-
culated. We denote these by

[
R1(k) + R2(k)

]
MG,

[
R1(k)

]
MG

and
[
Q1(k)

]
MG to emphasize on their GR limit. In order to

illustrate how these calculations are performed, we show the
derivations for

[
R1(k) + R2(k)

]
MG and

[
Q1(k)

]
MG, that are both

new in MG and serve as a representative example of each cat-
egory. For the former, we have:

[
R1(k) + R2(k)

]
MG = −

7
3

kik j

∫
d3 p
8π3 C(21)

ji (−p; p − k,k) =

=
7
3

∫
d3 p
8π3 kik jL

(1)
j (k)L(2)

j (−p,k)PL(p)PL(k) =

= PL(k)
7
3

∫
drdx
4π2 k2kr2 k2 − k · p

|k − p|2
D(2)(−p,k)

D(1)(p)D(1)(p − k)
PL(kr) =

=
k3

4π2 PL(k)
∫ ∞

0
drPL(kr)

∫ 1

−1
dx

r2 (1 − rx)
1 + r2 − 2rx

D̄(2)(−p,k),

(A11)
where we defined the quantities x = k̂ · p̂, p = kr and

D̄(2)(−p,k) =
7
3

D(2)(−p,k)
D(1)(p)D(1)(k)

=

=
7
3

D(2)
(
k
√

1 + r2 − 2rx, k, kr
)

D(1)(kr)D(1)(k)
=

D̄a − D̄bx2 + D̄FL − D̄δI,

(A12)

as was done in [74]. Similarly, for
[
Q1(k)

]
MG we will have:

[
Q1(k)

]
MG =

7
3

(kik jkl − k2kiδ jl)
∫

d3 p
8π3 C(211)

i jl (k,−p,p − k) =

=
7
3

(kik jkl − k2kiδ jl)×∫
d3 p
8π3 L(1)

l (p)L(1)
l (p − k)L(2)

i (−p,p − k)PL(p)PL(|k − p|) =

=
k3

4π2

∫
drdx

(k · p)(k · p − k2) − k2p(k − p)
p2|k − p|2

×

D̄(2)(p,k − p)PL(kr)PL(|k − p|) =

k3

4π2

∫ ∞

0
drPL(kr)

∫ 1

−1
dx

r2(1 − x2)
(1 + r2 − 2rx

D̄(2)(p,k − p)PL(|k − p|),

(A13)
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where |k−p| = k
√

1 + r2 − 2rx is used and similarly as before,
we defined

D̄(2)(p,k − p) =
7
3

D(2)(p,k − p)
D(1)(p)D(1)(|k − p|)

=

=
7
3

D(2)
(
k, kr, k

√
1 + r2 − 2rx

)
D(1)(p)D(1)(k

√
1 + r2 − 2rx)

=

D̄a − D̄b
x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄FL − D̄δI.

(A14)

The above two Kernels, as well as all of the rest that we need,
can be compactly written in the form [55]:

Qn(k) =
k3

4π2

∫ ∞

0
drPL(kr)

×

∫ 1

−1
dxPL(k

√
1 + r2 − 2rx)Q̃n(r, x)

(A15)

and

Rn(k) =
k3

4π2 PL(k)
∫ ∞

0
drPL(kr)

∫ 1

−1
dxR̃n(r, x). (A16)

Using similar methods as the one presented above we get that
the various Qn(k), and after some algebra, are given by:

Q̃1 = r2
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI

2

Q̃2 =
rx(1 − rx)

1 + r2 − 2rx

D̄(2)
a − D̄(2)

b
x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃3 =

x2(1 − rx)2

(1 + r2 − 2rx)2

Q̃5 = rx
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃7 =

x2(1 − rx)
(1 + r2 − 2rx)

Q̃8 = r2
D̄(2)

a − D̄(2)
b

x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI


Q̃9 =

rx(1 − rx)
1 + r2 − 2rx

Q̃11 = x2

Q̃12 = rx

Q̃13 = r2[
Q̃1

]
MG

=
r2(1 − x2)

1 + r2 − 2rx

D̄(2)
a − D̄(2)

b
x2 + r2 − 2rx
1 + r2 − 2rx

+ D̄(2)
FL − D̄(2)

δI

 .
(A17)

Similarly, in accordance with equation (A16), we will have

the Rn(k) functions:

R̃1 =
21
10

r2 D(3)
sym(k,−p,p)

D(1)(k)
(
D(1)(p)

)2

R̃2 =
rx(1 − rx)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
[
R̃1(k) + R̃2(k)

]
MG

=
r2(1 − rx)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
[
R̃1

]
MG

=
r2(1 − x2)

1 + r2 − 2rx

(
D̄(2)

a − D̄(2)
b x2 + D̄(2)

FL − D̄(2)
δI

)
.

(A18)
The functions Q1-Q3, R1 and R2 are the only ones that are
necessary to calculate LPT statistics for pure dark matter con-
siderations in MG, with the rest of them that we present here,
being the additional functions needed for statistics of biased
tracers in MG (in the configuration space). It should be em-
phasized at this point, that even the functions that have the
same integral structure as in GR (for example, Q9-Q13), do
differ from their GR values, but this difference is manifested
in the MG linear power spectra that appear in the integral re-
lations (A15) and (A16).

Let us finish this section, by noting that in the GR limit, the
above functions can be rather easily shown to recover their
standard GR forms given in [55], if one keeps in mind that
D̄(2)
δI

= D̄(2)
FL = 0 and D̄(2)

a = D̄(2)
b = 1 (for Einstein-De Sitter)

in this limit.

2. Lagrangian correlators and q-functions in MG

Having derived the expressions for the scalar functions
Qn(k) and Rn(k) in MG cosmologies, we will now derive the
integral formulas for the Lagrangian correlators (58), that are
the building blocks of the 2-point statistics in CLPT. We will
adopt the notation of [56] in this section and will show how the
functions in their Appendix B will change for our MG mod-
els. To illustrate how the connection between the functions
(58) and the ones presented in the previous section is drawn
and also to show how these calculations are performed, we
pick a reprsentative example of one these functions, U(2)

11 and
show the derivation below. Starting with the definition:

U(2)
11 (q) = q̂i〈δ(1)

1 δ(1)
2 ∆

(2)
i 〉c, (A19)

we plug in the Fourier space representation of the field ∆i =

Ψi(q2) − Ψi(q1), as well of the linear overdensities and get:

U(2)
11 (q) = q̂i×〈 ∫

d3 p
(2π)3

d3 p1

(2π)3

d3 p2

(2π)3 eip2·q2 eip1·q1
(
eip·q2 − eip·q1

)
δ̃(p2)δ̃(p1)Ψ̃(2)(p)

〉
c

= q̂i
∫

d3 p
(2π)3

d3 p1

(2π)3

d3 p2

(2π)3 eip1·q1 ei(p+p2)·q2

〈
δ̃(p2)δ̃(p1)Ψ̃(2)(p)

〉
c

− q̂i
∫

d3 p
(2π)3

d3 p1

(2π)3

d3 p2

(2π)3 eip2·q2 ei(p+p1)·q1

〈
δ̃(p2)δ̃(p1)Ψ̃(2)(p)

〉
c
.

(A20)
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This expression contains two terms, which turn out to be
equal. For this reason, we focus on the first one and notice
that the cumulant can be expressed as a polyspectrum, through
(A9). The substitution gives:

q̂i
∫

d3 p
(2π)3

d3 p1

(2π)3

d3 p2

(2π)3 eip1·q1 ei(p+p2)·q2

〈
δ̃(p2)δ̃(p1)Ψ̃(2)(p)

〉
c

=

− i
∫

d3 p1

(2π)3

d3 p
(2π)3 eip1·qq̂iC(2)

i (p1,p; p1 − p) =

− i
∫

d3 p1

(2π)3 q̂ieip1·q
∫

d3 p
(2π)3 C(2)

i (p1,p; p1 − p)︸                             ︷︷                             ︸
IC

.

(A21)
In the last line, we defined the integral IC , that can be calcu-
lated by using the definitions (A10):

IC =

∫
d3 p

(2π)3 C(2)
i (p1,p; p1 − p) =

−

∫
d3 p

(2π)3 L(2)
i (p1 − p)PL(p1)PL(p) =

= −
3
7

p1i

p2
1

∫
d3 p

(2π)3 p1i
(p1i − pi)
|p1 − p|2

¯D(2)PL(p1)PL(p)

= −
3
7

p1i

p2
1

p3
1

4π2 PL(p1)
∫ ∞

0
drPL(p1r)

∫ 1

−1
dx

r2 (1 − rx)
1 + r2 − 2rx

D̄(2)︸                                                             ︷︷                                                             ︸[
R1(p1) + R2(p1)

]
MG

= −
3
7

p1i

p2
1

[
R1(p1) + R2(p1)

]
MG ,

(A22)
where we made use of the previous result (A11). Plugging the
result (A22) into (A21) and relabelling p1 as k, we have

q̂i
∫

d3 p
(2π)3

d3k
(2π)3

d3 p2

(2π)3 eik·q1 ei(p+p2)·q2

〈
δ̃(p2)δ̃(k)Ψ(2)(p)

〉
c

=

i
∫

dkdx
4π2 eix(kq)xk

3
7

[
R1(k) + R2(k)

]
MG =

1
2π2

∫
dkk

(
−

3
7

) [
R1(k) + R2(k)

]
MG j1(kq),

(A23)
where we made use of the Bessel function identity
1
2

∫ 1
−1 dxxeixkq = i j1(kq). In exactly the same way, the second

term in (A21) is equal to the first, which finally gives:

U(2)
11 (q) =

1
2π2

∫
dkk

(
−

6
7

) [
R1(k) + R2(k)

]
MG j1(kq). (A24)

This is the MG equivalent of equation (B28) in Appendix B
of [56], which is obviously recovered in the GR limit. In a
similar manner, but after lengthy calculations, we get the ex-

pressions for all the correlators:

V (112)
1 (q) =

1
2π2

∫
dk
k

(
−

3
7

) [
R1(k)

]
MG j1(kq),

V (112)
3 (q) =

1
2π2

∫
dk
k

(
−

3
7

) [
Q1(k)

]
MG j1(kq),

S (112) =
3

14π2

∫
dk
k

[
2 [R1]MG + 4R2 +

[
Q1

]
MG + 2Q2

] j2(kq)
kq

,

T (112) =
−3

14π2

∫
dk
k

[
2 [R1]MG + 4R2 +

[
Q1

]
MG + 2Q2

]
j3(kq),

U(1)(q) =
1

2π2

∫
dkk (−1) PL(k) j1(kq),

U(3)(q) =
1

2π2

∫
dkk

(
−

5
21

)
R1(k) j1(kq),

U(2)
20 (q) =

1
2π2

∫
dkk

(
−

6
7

)
Q8(k) j1(kq),

U(2)
11 (q) =

1
2π2

∫
dkk

(
−

6
7

) [
R1(k) + R2(k)

]
MG j1(kq),

X(12)
10 (q) =

1
2π2

∫
dk

1
14

2 (
[R1]MG − R2(k)

)
+ 3 [R1]MG j0(kq)

− 3
[
[R1]MG + 2R2 + 2

[
R1(k) + R2(k)

]
MG + 2Q5

] j1(kq)
kq

,
Y (12)

10 (q) =
1

2π2

∫
dk

(
−

3
14

) [R1]MG + 2R2

+ 2
[
R1(k) + R2(k)

]
MG + 2Q5

 × [
j0(kq) − 3

j1(kq)
kq

]
,

X(q) =
1

2π2

∫
dk a(k)

[
2
3
− 2

j1(kq)
kq

]
,

Y(q) =
1

2π2

∫
dk a(k)

[
−2 j0(kq) + 6

j1(kq)
kq

]
,

(A25)
where we defined a(k) = PL(k) + 9

98 Q1(k) + 10
21 R1(k) and, fol-

lowing [56], we decomposed the matter terms as

Amn
i j (q) = Xmn(q)δi j + Ymnq̂iq̂ j

Wi jk(q) = V1(q)q̂iδ jk + V2(q)q̂ jδki + V3(q)q̂kδi j + T (q)q̂iq̂ jq̂k.
(A26)

Now that the basic framework has been laid out, let us finish
this section by briefly summarizing the steps followed to cal-
culate the two point statistics for a given model: after calcu-
lating the necessary MG growth factors, (22), (25) and (A5),
using our Mathematica notebook, we feed our modified ver-
sion of the code in [144] with tabulated values of the growth
factors for the various values of k, r and x needed at a given
cosmological redshift z, as well as with the MG linear power
spectrum given by:

PL
MG(k, z) =

D1
MG(k, z)

D1
GR(k, 0)

2

PL
GR(k, 0). (A27)

The linear power spectrum for the background ΛCDM cos-
mology is calculated using the publicly available code CAMB
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[112]. The PYTHON module computes the various Qn(k) and
Rn(k) functions through equations (A17) and (A18), which are
then used to calculate the various components of the CLPT
power spectrum PX(k), through the integrations (A25) and
(40). To calculate (A25), the q−function module is modified
accordingly. The k functions can then be simply combined to
give the SPT and LRT power spectra, by equations (64) and
(65), respectively. Finally, the modified C++ counterpart fol-
lows a similar procedure to compute the configuration space
two-point correlation function given by CLPT, through (37).

3. SPT and LRT Power spectra

In the main text, it was stated that the SPT and LRT power
spectra, given by (64) and (65), correspondingly, are produced
when one expands the resummed terms in the exponent of re-
lation (40). Here we show how this derivation takes place, a
process that once again shares a lot of similarities with the cor-
responding one in GR. When fully expanding the resummed
Lagrangian correlator AL

i j in (40), one gets:

PX(k) =

∫
d3qeik·q

×

1 − 1
2

kik jAi j −
i
6

kik jkkWi jk + b1

(
2ikiUi − kik jA10

i j

)
+ b2

(
ikiU20

i − kik jU
(1)
i U(1)

j

)
+ b2

1

(
ξL + ikiU11

i − kik jU
(1)
i U(1)

j

)
+

1
2

b2
2ξ

2
L + 2b1b2ξLikiU

(1)
i

.
(A28)

As done previously, we pick one of terms that is modified,
that is the term b2

1ikiU11
i , and perform the integration as an

example. Plugging in U11
i from (A25):

i b2
1

∫
d3qeik·qq̂ikiU11 =

−i b2
1

2π2

6
7

∫
d3qdpeikqxkxp

[
R1(p) + R2(p)

]
MG j1(pq) =

−i b2
1

π

6
7

∫
dqdpkpq2 [

R1(p) + R2(p)
]

MG j1(pq)
∫ 1

−1
dxeikqxx =

b2
1

π

12
7

∫
dq dp kpq2 [

R1(p) + R2(p)
]

MG j1(pq) j1(kq) =

b2
1

π

12
7

∫
dp kp

[
R1(p) + R2(p)

]
MG

∫ ∞

0
dqq2 j1(pq) j1(kq) =

b2
1

6
7

∫
dp

kp
k p

δD(p − k)
[
R1(p) + R2(p)

]
MG =

b2
1
[
R1(k) + R2(k)

]
MG ,

(A29)
where we also used the identity

∫ ∞
0 dqq2 j1(pq) j1(kq) =

π
2pkδD(p − k). Similar computations for the rest of the terms
give (64). In the LRT case, we expand everything but the
q-independent, “zero-lag” piece of AL

i j, which is equal to
2σ2

Lδi j, with σ2
L = 1

6π2

∫ ∞
0 dkPL(k). Since this term is scale-

independent, it can be pulled out of the q integral and all the
other integrations can be performed in the same manner as
above, resulting in (65), that differs from (64) only in terms of
the resummed exponential factor.

Appendix B: PBS biases in MG

In this section, we will explain the derivation of the La-
grangian PBS biases (78) in MG models with environmen-
tally dependent gravitational collapse. The PBS argument is
commonly employed in conjunction with the halo approach
[60, 101, 102], where one states that the conditional halo
mass function n̄h(M,∆), modulated by a long-wavelength den-
sity perturbation ∆, is modeled by the universal mass func-
tion prescription (47), with the collapse threshold shifted as
δcr → δcr −∆. The same result was also derived in [63], based
on the rigorous definition (52), following a separate universe
approach: with regards to galaxy clustering, a large-scale den-
sity perturbation, ∆, can be viewed as a modification of the
mean physical density %̄m by an offset, that is [58]

%̄′m = (1 + ∆)%̄m, (B1)

where %̄m should not be confused with the mean comoving
density ρ̄m and in a similar manner, the fractional overdensity
at a point x, δm(x), is shifted as:

δ′m(x) = δm(x) + ∆. (B2)

This reasoning can be employed to calculate the conditional
halo mass function n̄h(∆), by noticing that (47) depends solely
on comoving quantities (that will not change), with the only
exception of the density threshold δcr, through the peak sig-
nificance

νc =
δcr

D(1)(z)σ(M)
=

%cr − %̄m

D(1)(z)σ(M)%̄m
, (B3)

that quantifies how rare a fluctuation above the density barrier
%cr = (1+δcr)%̄m is, given an RMS amplitute at the time of col-
lapse z, δ%RMS = D(1)(z)σ(M)%̄m. Now following Birkhoff’s
theorem, the critical density for collapse, %cr, will be unaf-
fected in the presence a density perturbation ∆, since a col-
lapsing overdensity will not depend on the external spacetime.
Combining this fact with equation (B1), relation (B3) gives
[63]

ν′c(M) =
(1 + δcr)%̄m − (1 + ∆)%̄m

D(1)(z)σ(M)%̄m
=

δcr − ∆

D(1)(z)σ(M)
. (B4)

The conditional halo mass function n̄h(M,∆) is now given by
the universal prescription (47), but with the peak significance
ν′c(M) in (B4). Combining this fact with the rigorous defini-
tion of the bias (52), gives the known PBS biases (53) for GR.

Let us now turn to the MG case. Following the discussion
in Section III A 2, it is now clear how the density threshold
will not be scale and redshift independent anymore, but will
depend on the comoving halo mass M, as well as the envi-
ronmental density δenv, that is, a function δcr(M, δenv). As a
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consequence, the peak significance in MG will now become:

νcMG =
δcr(M, δenv)
D(1)(z)σ(M)

=
%cr(M, δenv) − %̄m

D(1)(z)σ(M)%̄m
. (B5)

In the presence of a long-wavelength density perturbation ∆,
%̄m will again change according to (B1), but also δenv will now
change as dictated by (B2), and so will δcr that depends on
it, which will become δ′cr(M, δ′env) = δcr(M, δenv + ∆). From
the equivalent of (B4), the MG peak significance will now
become:

ν′cMG(M) =
(1 + δ′cr)%̄m − (1 + ∆)%̄m

D(1)(z)σ(M)%̄m
=
δcr(M, δenv + ∆) − ∆

D(1)(z)σ(M)
.

(B6)
As in the GR case, the conditional halo mass function
n̄h(M,∆) for MG is now given by the universal prescription
(47), but with the peak significance ν′cMG(M) given by (B6).
Calculating, now, the first and second order derivatives that
we need in (52), we will have, starting with the linear order:

dn̄h(M,∆)
d∆

∣∣∣∣∣∣∣
∆=0

=
dν′cMG

d∆

∣∣∣∣∣∣∣
∆=0

dn̄h(M,∆)
dν′cMG

∣∣∣∣∣∣∣
∆=0

=

1
D(1)(z)σ(M)

d
[
δcr(M, δenv + ∆) − ∆

]
d∆

∣∣∣∣∣∣∣
∆=0

dn̄h(M, 0)
dνcMG

=[
dδcr(M,δenv)

dδenv
− 1

]
D(1)(z)σ(M)

dn̄h(M, 0)
dνcMG

,

(B7)

where we used the chain rule a few times and also the fact that
ν′cMG(M) = νcMG(M) at ∆ = 0. The definition (52), combined
with the result (B7) and the universal prescription (47), gives:

b1
MG(M, δenv) =

[
dδcr(M,δenv)

dδenv
− 1

]
D(1)(z)σ(M)

1
νcMG f

[
νcMG

] d
(
νcMG f

[
νcMG

])
dνcMG

,

(B8)
Similarly, the second order derivative will be:

d2n̄h(M,∆)
d∆2

∣∣∣∣∣∣∣
∆=0

=
d

d∆

dn̄h(M,∆)
d∆

∣∣∣∣∣∣∣
∆=0

=
d

d∆


[

dδcr(M,δenv)
dδenv

− 1
]

D(1)(z)σ(M)
dn̄h(M, 0)

dνcMG

 ,
=

d2δcr(M, δenv)
dδ2

env

1
D(1)(z)σ(M)

dn̄h(M, 0)
dνcMG

+[
dδcr(M,δenv)

dδenv
− 1

]2[
D(1)(z)σ(M)

]2

dn̄2
h(M, 0)

dν2
cMG

,

(B9)

which will give the expression for the second order bias factor:

b2
MG(M, δenv) =

d2δcr(M,δenv)
dδ2

env

D(1)(z)σ(M)
1

νcMG f
[
νcMG

] d
(
νcMG f

[
νcMG

])
dνcMG

+[
dδcr(M,δenv)

dδenv
− 1

]2[
D(1)(z)σ(M)

]2

1
νcMG f

[
νcMG

] d2
(
νcMG f

[
νcMG

])
dν2

cMG

.

(B10)

Equations (B8) and (B10) give the Lagrangian PBS biases of
first and second order in MG, for any universal mass function
f
[
νcMG

]
. Applying these to the particular ST form (50), we

arrive at the relationships (78) and (79) in the main text. The
derivatives of the form dδcr(M,δenv)

δenv
can be easily calculated nu-

merically, as soon as the function δcr(M, δenv) is known from
integrating equation (68). In MG models that still possess a
scale and redshift independent barrier, like the nDGP model
(and possibly other models in the Vainshtein family), these
derivatives will vanish and we recover the standard GR ex-
pressions for the PBS biases (53), but with a different δcr.
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