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Cosmic microwave background (CMB) lensing is an integrated effect whose kernel is greater than
half the peak value in the range 1 < z < 5. Measuring this effect offers a powerful tool to probe the
large-scale structure of the Universe at high redshifts. With the increasing precision of ongoing CMB
surveys, other statistics than the lensing power spectrum, in particular the lensing bi-spectrum, will
be measured at high statistical significance. This will provide ways to improve the constraints
on cosmological models and lift degeneracies. Following on an earlier paper, we test analytical
predictions of the CMB lensing bi-spectrum against full-sky lensing simulations, and discuss their
validity and limitation in detail. The tree-level prediction of perturbation theory agrees with the
simulation only up to ` ∼ 200, but the one-loop order allows capturing the simulation results up
to ` ∼ 600. We also show that analytical predictions based on fitting formulas for the matter
bi-spectrum agree reasonably well with simulation results, although the precision of the agreement
depends on the configurations and scales considered. For instance, the agreement is at the 10%-level
for the equilateral configuration at multipoles up to ` ∼ 2000, but the difference in the squeezed limit
raises to more than a factor of two at ` ∼ 2000. This discrepancy appears to come from limitations
in the fitting formula of the matter bi-spectrum. We also find that the analytical prediction for the
post-Born correction to the bi-spectrum is in good agreement with the simulation. We conclude by
discussing the bi-spectrum prediction in some theories of modified gravity.

I. INTRODUCTION

The path of cosmic microwave background (CMB)
photons between the last scattering surface and an ob-
server is deflected by the gravitational potential of the
large-scale structure (LSS) of the Universe. This leads
to distortions of the observed CMB anisotropies, which
are correlated across scales. By extracting the lensing
effect in these anisotropies, we can directly probe the un-
derlying gravitational potential of the LSS, and constrain
cosmological properties which affect it, such as character-
istics of dark matter, dark energy, and massive neutrinos.
By its nature, the lensing of CMB is sensitive to higher
redshifts than most other cosmological observations of
LSS, and it offers one of the most powerful probes of
fundamental issues in cosmology and physics in the near
future.

Recent CMB experiments have already detected the
angular power spectrum of the lensing potential very pre-
cisely [1–5]. For instance, the Planck detection [3] has a
40σ significance. The detection and precise determina-
tion of the CMB lensing bi-spectrum is therefore an obvi-
ous and important next step in CMB scientific analyses.

Recent studies indeed showed that the lensing potential
bi-spectrum and other higher-order statistics due to non-
linearity are detectable in near future CMB experiments
[6–9].

In previous works [6, 7], the signal-to-noise ratio of the
bi-spectrum was obtained by using the fitting formulae
of Refs. [10, 11]. However, these fitting formulae were
tested in other contexts such as the skewness [12, 13],
and it is unclear how they perform in each configuration
of the bi-spectrum. This paper therefore assesses the
validity of these fitting formulae to calculate the CMB
lensing bi-spectrum by comparing with a full-sky CMB
lensing simulation. In addition to allowing refined expec-
tations, accurate analytic predictions for the bi-spectrum
are also necessary to reduce the computational cost when
analyzing real data.

This paper is organized as follows. Section II reviews
theoretical predictions of the bi-spectrum of CMB lens-
ing and Section III describes the simulations used in our
analysis. Section IV presents our main results. Section V
discusses theoretical predictions in modified gravity the-
ories. Section VI summarizes our work. Appendix A
verifies our bi-spectrum measurements. Appendix B
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briefly summarizes the fitting formulas of the matter bi-
spectrum. Appendix C explains the bi-spectrum in mod-
ified gravity theories. Appendix E further discusses the
discrepancy between fitting formulae and simulations ap-
pearing in the squeezed lensing bi-spectrum.

Throughout this paper we assume the fiducial flat
ΛCDM cosmology already used in [14]. The cosmolog-
ical parameters are Ωcdm = 0.233, Ωb = 0.046, h = 0.7,
σ8 = 0.82 and ns = 0.97. We also use natural units where
c = G = 1.

II. CMB LENSING BI-SPECTRUM

In this section, we review briefly the general formalism
of the bi-spectrum and the theoretical prediction of the
bi-spectrum of CMB lensing as shown in, e.g., Refs. [6, 7].

A. Bi-spectrum

Denoting the harmonic coefficients of the fluctuations
(e.g., the CMB temperature anisotropies) as a`m, the
(angular) bi-spectrum is in general given by (e.g., [15])

B`1`2`3 ≡
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
〈a`1m1a`2m2a`3m3〉 .

(1)

It is convenient to use the reduced bi-spectrum,

b`1`2`3 ≡ h−1
`1`2`3

B`1`2`3 (`1 + `2 + `3 is even) , (2)

which removes the geometrical factor

h`1`2`3 ≡
√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
.

(3)

In the flat-sky approximation, the bi-spectrum is given
by

〈a`1a`2a`3〉 = (2π)2δ(`1 + `2 + `3)B`1`2`3 , (4)

where a`i is a Fourier mode of fluctuations. The relation-
ship between the full- and flat-sky bi-spectrum is given
by [16],

B`1`2`3 ' h`1`2`3B`1`2`3 . (5)

This equation shows that the full-sky reduced bi-
spectrum is equivalent to the flat-sky bi-spectrum. In
the following, we use the flat-sky bi-spectrum to com-
pute the reduced bi-spectrum and compare it with the
results from the full sky simulation.

B. Bi-spectrum from CMB lensing

In a CMB lensing analysis, we measure the lensing
potential which is defined as (see, e.g., [17, 18])

φ(n̂) = −2

∫ χ∗

0

dχ W (χ, χ∗)Ψ(χ, n̂) . (6)

Here χ∗ is the comoving distance to the CMB last-
scattering surface and Ψ is the Weyl potential. The
lensing kernel, W (χ, χ∗), is defined (for a spatially flat
cosmology) as

W (χ, χ∗) =
χ∗ − χ
χχ∗

Θ(χ∗ − χ) , (7)

where Θ(x) denotes the Heaviside step function. The bi-
spectrum of the lensing potential is then given by Eq. (1).
Hereafter, instead of using the lensing potential, we fre-
quently use the lensing convergence, κ`m = `(`+1)φ`m/2.

In general, a non-zero bi-spectrum is induced by non-
Gaussian fluctuations, and in CMB lensing, it is sourced
by two effects. One source is the non-Gaussian matter
distribution induced by the nonlinear gravitational evo-
lution [6], and the other is the next-to-leading order cor-
rection to the Born approximation for computing the de-
flection of the path, which is referred to as the post-Born
correction [7]. We denote these contributions respectively
by BLSS and Bpb, and present their explicit expressions
below.

The bi-spectrum of the lensing convergence which
arises from the nonlinear growth of the density pertur-
bations is given in the flat-sky limit by [6]

BLSS
`1`2`3 =

∫ χ∗

0

dχ

[
3Ωm,0H

2
0

2a(χ)

]3

× χ2W 3(χ, χ∗)Bδ(k1,k2,k3, χ) , (8)

where ki = `i/χ. Here, Bδ is the matter bi-spectrum
which results from the nonlinear growth of structure. In
the weakly nonlinear regime, it can be obtained by using
perturbation theory. The result at the tree-level order is
of the general form

Bδ(k1,k2,k3, χ) = 2F2(k1,k2, z)Pδ(k1, z)Pδ(k2, z)

+ 2 perms. , (9)

where Pδ(k, z) is the matter power spectrum at redshift
z(χ), and the function F2 is the second-order perturba-
tion theory kernel (e.g., [19]). Writing k1·k2 = k1k2 cos θ,
it is given by

F2(k1,k2, z) =
5

7
a(k1, z)a(k2, z)

+
1

2

k2
1 + k2

2

k1k2
b(k1, z)b(k2, z) cos θ

+
2

7
c(k1, z)c(k2, z) cos2 θ , (10)
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where a(k, z), b(k, z) and c(k, z) are unity at the tree-
level in perturbation theory. In order to capture the de-
viation from the tree-level prediction, one may calculate
the correction at next-to-leading order (one-loop) to the
prediction. We will briefly discuss its validity in subse-
quent analysis (see Sec. IV C). In this paper, our primary
focus is to compare the lensing simulations with analyt-
ical predictions based on fitting formulae of the matter
bi-spectrum. These fits provide an analytical functional
form for a(k, z), b(k, z) and c(k, z). We will assess the
most recent results for these fitting formulae, as given by
Gil-Marin et al. in Ref. [11], hereafter denoted by “GM”,
and the earlier results of Scoccimaro and Couchman [10],
denoted below by “SC”.

Furthermore, the post-Born correction to the CMB
lensing bi-spectrum, Bpb is expressed, as in [7], by

Bpb
`1`2`3

= 2
`1 · `2

`21`
2
2

[`1 · `3M`1`2 + `2 · `3M`2`1 ]

+ cyc.perm. , (11)

where

M``′ = (``′)4

∫ χ∗

0

dχ
[W (χ, χ∗)]

2

χ2
PΨ

(
`

χ
, χ

)
×
∫ χ

0

dχ′
W (χ′, χ)W (χ′, χ∗)

(χ′)2
PΨ

(
`′

χ′
, χ′
)
, (12)

PΨ(k, χ) being the power spectrum of the Weyl potential
at a comoving distance χ.

Fig. 1 shows the theoretical predictions of the CMB
lensing bi-spectrum given by Eqs. (8) and (11), assuming
either the GM or SC fitting formulae, for the following
four specific configurations:

C1. equilateral, with `1 = `2 = `3 = `,

C2. folded, with `1 = 2`2 = 2`3 = `,

C3. squeezed, with `1 = 50, `2 = `3 = `, and

C4. isosceles, with `1 = `, `2 = `3 = 1000.

We also show the contribution from the matter bi-
spectrum alone. This figure clearly shows that the post-
Born correction is important and changes the shape of
the bi-spectrum in all of the above configurations.

The figure also shows the effect of multipole binning,
which is discussed further in Sec. III B. Binning is not
necessary to constrain cosmological parameters, but in
practice, it is rather essential, e.g., to reduce the compu-
tational cost. Here, we adopt binning in order to reduce
the dispersion of the simulation measurements, as fol-
lows:

bb1b2b3 ≡
∑bi
`i
h2
`1`2`3

b`1`2`3∑bi
`i
h2
`1`2`3

, (13)

where
∑bi
`i

(i = 1, 2, 3) means the summation over `i
within the multipole bin, bi. As shown in Fig. 1, the

binned bi-spectrum (dot-dashed) can be very different
from the unbinned bi-spectrum (solid). For example, the
equilateral binned bi-spectrum, b ≡ b1 = b2 = b3, con-
tains not only the unbinned equilateral bi-spectrum but
also all of the other bi-spectra which satisfies `1, `2, `3 ∈ b.
The figures show that the binning effect is not significant
in the equilateral case but crucial in other configurations.

The sensitivity of the bi-spectrum to the multipole bin-
ning comes from the dependence of the bi-spectrum on
the angle, cos θij = `i · `j/`i`j = ki · kj/kikj , where
the second equality assumes the flat sky approximation,
` = kχ. The θij dependence of the matter bi-spectrum is
given in Eq. (10). In the squeezed case (k1 � k2 ' k3),
angles θ12 and θ13 are very sensitive to ki values. For
example, if k1 � k2 = k3, then θ12 = θ13 ' π/2 and the
second and third terms of the F2 kernel vanishes. How-
ever, if k2 slightly increases, the angles are significantly
changed, i.e., θ12 ' 0 and θ13 ' π, and the bi-spectrum
has contributions from the second and third terms of the
F2 kernel. On the other hand, in the equilateral case,
the F2 kernel is not sensitive to side lengths ki if they
are much larger than the bin width. Therefore, the co-
sine terms in the F2 kernel are very sensitive to slight
changes in ki = `i/χ. The discussion above can be also
applied to the post-Born bi-spectrum (see Eq. (11)).

III. CMB LENSING BI-SPECTRUM IN
SIMULATIONS

A. Full-sky ray-tracing simulations

In this subsection, we briefly describe the full-sky ray-
tracing simulations which we used to construct the lens-
ing maps. Details may be found in Ref. [14]. First, we
performed cosmological N -body simulations of dark mat-
ter to produce an inhomogeneous mass distribution in
the Universe, which properly describe the non-Gaussian
character of the matter distribution. The simulations
followed the gravitational evolution of 20483 particles in
cubic simulation boxes by using the public code Gad-
get2 [20, 21]. The cubic boxes have side lengths of
450, 900, 1350, . . . , 6300h−1Mpc from low to high red-
shift (z ≤ 7.1). We chose an arbitrary point in the box
as the observer’s position and constructed spherical lens
shells with a thickness of 150h−1 Mpc around the ob-
server (who is located at the center of the shells). We
construct three lens shells (having a 450h−1 Mpc total
thickness) in each box. The inner shell is taken from
the smaller box at lower redshift. Then, we projected
the N -body particles onto each lens shell, and calculated
the surface mass density and deflection angle. For higher
redshifts (z = 7.1 − 1100), we prepared the lens shells
based on the Gaussian fluctuations (instead of the N -
body method), which is a good approximation in the
linear regime. Light rays, emitted from the observer,
are deflected at each lens shell, and these ray paths are
numerically evaluated up to the last scattering surface.
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FIG. 1. Reduced bi-spectra, as computed from Eqs. (8) and (11), in various configurations. Equilateral ( Top Left), folded (
Top Right), squeezed ( Bottom Left) and isosceles ( Bottom Right). The dashed lines show the contribution from the matter
bi-spectrum alone Eq. (8). The dot-dashed lines show the binned bi-spectrum defined in Eq. (13) with 20 multipole bins
between ` = 1 and 2048.

Therefore, the simulation includes the post-Born correc-
tion. We used the public code GRayTrix1 [22, 23] for
this ray-tracing computation. The code relies on the
Healpix scheme [24]. We adopt the angular resolution of
Nside = 4096 in our main results (but we also increase the
resolution to Nside = 8192 in order to see the dependence
of our results on the map resolution). We numerically ob-
tain the CMB deflection angle d(n̂) on the full sky maps,
and then compute the harmonic coefficients of the lens-
ing potential, φ`m, using the spin-1 harmonic transform.
The harmonic coefficients of the lensing convergence are
finally obtained by κ`m = `(` + 1)φ`m/2. We prepared

1 http://th.nao.ac.jp/MEMBER/hamanatk/GRayTrix/

108 such maps in total. We checked that the angular
power spectrum of the lensing potential agrees with the
theoretical prediction calculated by CAMB [25] within 5%
up to ` = 3000 (see Section 3.5 of Ref. [14]).

In addition to the full-sky CMB lensing maps which
include both the nonlinear growth and the post-Born ef-
fect, we also created CMB lensing maps only including
the latter. Such maps are useful to study each contribu-
tion separately. To create the maps, we construct lens
shells based on the Gaussian fluctuations without modi-
fying the density power spectrum. Then, we performed
the ray-tracing simulation, and repeated the same simu-
lation with a different realization to obtain 10 maps.

http://th.nao.ac.jp/MEMBER/hamanatk/GRayTrix/
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B. Measurement of the lensing bi-spectrum

Next we describe how we measure the binned lensing
reduced bi-spectrum in practice. The full-sky reduced
(unbinned) bi-spectrum, b`1`2`3 , is rewritten with

b`1`2`3 = h−1
`1`2`3

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
〈κ`1m1

κ`2m2
κ`3m3

〉

= h−1
`1`2`3

∑
m1m2m3

h−1
`1`2`3

∫
d2n̂ Y`1m1

(n̂)Y`2m2
(n̂)Y`3m3

(n̂)〈κ`1m1
κ`2m2

κ`3m3
〉

= h−2
`1`2`3

〈∫
d2n̂ κ1(n̂)κ2(n̂)κ3(n̂)

〉
, (14)

where κi(n̂) is obtained by the inverse harmonic trans-
form of δ``iκ`m. From the first to the second line, we

use the formula of the Gaunt integral shown in Eq. (A3).
The square of the geometrical factor is rewritten as

h2
`1`2`3 =

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)2

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

∫
d2n̂ Y`10(n̂)Y`20(n̂)Y`30(n̂)

=
1√
4π

∫
d2n̂ h1(n̂)h2(n̂)h3(n̂) , (15)

where hi(n̂) is given by the inverse harmonic transform
of
√

2`i + 1δ``iδm0.
To reduce the simulation error from the cosmic vari-

ance, we measure the binned reduced bi-spectrum of
Eq. (13) from the simulation data. Substituting Eqs. (14)
and (15) into Eq. (13), we find

bb1b2b3 '
√

4π

∑
p κ1(n̂p)κ2(n̂p)κ3(n̂p)∑
p h1(n̂p)h2(n̂p)h3(n̂p)

, (16)

where p is the pixel index, and
∑
p is the sum over all

pixels. The discretization of the sphere applied to the
above equation is tested in Appendix A.

IV. RESULTS

In this section, we compare analytic predictions of the
lensing bi-spectrum with measured results from lensing
simulations, focusing mainly on the predictions based on
fitting formula. We first present the results of the to-
tal lensing bi-spectrum in Sec. IV A. Then, the contribu-
tion from post-Born correction is measured separately
and compared with analytic predictions in Sec. IV B.

Based on this, possible reasons for the discrepancy seen
in Sec. IV A are discussed. In Sec. IV C, we examine the
perturbation theory calculation, and the applicable range
of higher-order (one-loop) predictions is discussed.

A. Total contributions

Fig. 2 compares theory and simulations for the same
four configurations presented in Fig 1 (equilateral, folded,
squeezed and isosceles). The analytic prediction is com-
puted based on Eqs. (8) and (11). Note that, in the
simulation, we compute the bi-spectrum of the lens-
ing convergence instead of the lensing potential. The
top panel in each figure shows the bi-spectrum, the
middle panel shows the fractional difference, ∆b/b ≡
(bsim − btheory)/btheory, and the bottom panel shows the
difference against the simulation dispersion, ∆b/σ ≡
(bsim − btheory)/σ.

In the equilateral case, the analytic prediction with the
SC fitting formula agrees with the simulation result, at
least, up to ` = 2048 within the simulation error. The
analytic result with the GM fitting formula slightly over-
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FIG. 2. Equilateral (Top Left), folded (Top Right), squeezed (Bottom Left) and isosceles (Bottom Right) configurations
of the reduced bi-spectra measured from simulation (solid points) compared with theoretical models using either the SC (blue)
and GM (red) fitting formulae. The top panels show the bi-spectra with the simulation points in black, the middle panels show
the fractional differences, ∆b/b of the simulations points, coloured according to the reference model they are compared to, and
the bottom panels rather show difference normalised by the simulation uncerrtainties, ∆b/σ.

estimates the simulation results. In the folded case, the
analytic results with both the SC and GM fitting formu-
las overestimate the simulation at almost all scales. The
most significant discrepancy is found in the squeezed con-
figuration. The analytic predictions start to overestimate
the simulation results as we go to small scale and the dis-
crepancy is much larger than the simulation error. The
fractional difference is roughly 30 − 40% at small scales
(` ≥ 1000). In the isosceles case, the analytic predic-
tion becomes consistent with the simulation if `1 becomes
close to `2 = `3 = 1000. Following Ref. [26], we also com-
pute the lensing bi-spectrum with the 3-shape formula of
the matter bi-spectrum originally proposed by Ref. [27],
and compare it with the simulation results. The 3-shape
formula predicts much smaller amplitudes of the lensing
bi-spectrum at small scales than the GM or SC formula,
and does not agree with the simulation results.

In order to see the dependence on the size of the multi-

pole bins, Fig. 3 shows the bi-spectrum with an increased
number of multipole bins. If the number of multipole bins
increases, the binned bi-spectrum is less contaminated by
different configurations of the bi-spectrum while the sim-
ulation error increases. The consistency between the an-
alytic and simulated bi-spectrum is improved compared
to the case with 20 multipole bins, mostly due to the in-
crease of the error bars. However, a huge discrepancy in
the squeezed configuration still remains at small scales,
and its size is almost the same as that shown in Fig. 2
(see also Fig. 13 in Appendix E).

B. Post-Born correction

As shown in Refs. [7, 28], the post-Born correction
changes the shape of the bi-spectrum. Nevertheless,
their discussions are based on the leading-order contri-
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FIG. 3. Same as Fig. 2 but employing 40 multipole bins instead of 20.

butions to the bi-spectrum, and the validity and accu-
racy of their predictions have not yet been tested ex-
cept in the CMB angular power spectra [14, 29] and
skewness [13]. Here, we compare the leading-order an-
alytic prediction for the lensing bi-spectrum with the
post-Born simulation. Fig. 4 shows the bi-spectrum mea-
surements from the post-Born simulation to check the
consistency between the analytic predictions and simu-
lation results. The analytic prediction of the post-Born
bi-spectrum is given by Eq. (11), with P (k) computed
using the HALOFIT prescription [30, 31]. The leading-
order predictions are indeed in good agreement with the
simulation results, and no notable discrepancy is found
over all scales, suggesting that the leading-order contri-
bution is sufficient to describe post-Born correction to
the lensing bi-spectrum.

As we discuss in Sec. IV A, although the prediction by
the analytic fitting formula is consistent with the simu-
lation results in most configurations and scales, we find
a significant discrepancy in the squeezed configuration
(a similar result was found in Ref. [32] using a flat-sky

simulation). The good match of the post-Born predic-
tion with simulation measurements seen in Fig. 4 sug-
gests that the discrepancy mostly comes from the LSS
contribution, as theoretically predicted by Eq. (8). Fur-
ther, the close match of the post-Born prediction and
simulation measurements also suggests the discrepancy
observed is not a failing of the Limber approximation. In-
deed, we find a discrepancy between the squeezed matter
bi-spectra obtained from simulation and fitting formula
especially at low z, i.e., the fitting formula is not accurate
in the squeezed limit. This may be because of the con-
figurations and scales the formula was fit to. This may
also be partly because the fitting formula is derived us-
ing the unbinned calculation while the binning effect sig-
nificantly changes the squeezed bi-spectrum prediction.
Ref. [32] found that the poor resolution of the simulation
map leads to a discrepancy in the small-scale squeezed
bi-spectrum, but our results are not significantly affected
by the map resolution. While a thorough exploration of
the discrepancy requires the validation of the fitting for-
mula at all redshifts and scales and is beyond the scope
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FIG. 4. Same as Fig. 2 but for the contributions only from the post-Born effect. We average over the 10 realizations of the
post-Born simulation.

of this paper, we further discuss possible sources of the
discrepancy in Appendix E.

C. Comparison with perturbation theory

The analytic predictions of the lensing bi-spectrum
have up to this point been computed with fitting formula
for the matter bi-spectrum. Here, we examine the range
of validity of perturbation theory calculations, specifi-
cally we compare the prediction based on one-loop order
calculations with our simulation measurements. Fig. 5
shows the results for the equilateral and squeezed config-
urations. Note that only the LSS contribution as given
by Eq. (8) is shown, with the black points being com-
puted by subtracting the post-Born correction from the
simulation measurement. The analytic predictions for
the equilateral configuration (left panel) are computed
without the binning effect since the impact of the multi-
pole binning is negligible in this case as shown in Fig. 1.
We find the one-loop prediction agrees with the simula-
tion up to ` ∼ 600 and does substantially better than
linear theory although valuable non-linear information is
still missing from this prediction. In the right panel, the

predictions for the squeezed limit configuration are plot-
ted, with the binned predictions depicted as dot-dashed
lines. We find that all predictions fail to trace the simula-
tion measurements for 300 ≤ ` (see Appendix E for more
details). While the binned predictions from the fitting
formula and one-loop calculation are indistinguishable in
the binned case at ` ≤ 1000, the unbinned results show
a significant discrepancy at higher ` when unbinned.

Albeit its limited applicability range, one advantage of
the perturbation theory approach is its flexibility. Within
the framework of perturbative calculation, one can con-
struct predictions for general theories of gravity and dark
energy with relatively few assumptions thrown into the
modelling. In the next section, based on the range of
applicability deduced here, we use one-loop perturbation
theory to investigate the signal of modified gravity on the
CMB lensing bi-spectrum.

V. SIGNAL OF MODIFIED GRAVITY

In this section, we investigate the impact of modified
gravity on the CMB lensing bi-spectrum. Beyond GR,
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FIG. 5. Equilateral (left) and squeezed (right) LSS contributions to CMB lensing bi-spectrum measured from simulation (black
points) compared with tree (orange), one-loop (green) and Gil-Marin fitting formula (red) predictions. The solid lines depict
the unbinned result while the dot-dashed lines depict the binned result using 20 linearly spaced bins in the range 1 ≤ ` ≤ 2048.
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FIG. 6. Ratio of equilateral LSS contribution to the CMB lensing bi-spectrum in DGP model (left) and f(R) gravity
(right) to the GR prediction for various theoretical predictions. For DGP we assume Ωrc = 0.438, and for f(R) we assume
|f̄R0| = 2.5× 10−6.

currently available predictions of lensing bispectrum, es-
pecially for LSS contribution, are from the perturbation
theory calculation through the prediction of matter bi-
spectrum that has been recently extended by Ref. [33],
based on the general framework of perturbation theory
treatment ([34–36]). No fitting formula for matter bi-
spectrum has been calibrated from modified gravity sim-
ulations. Nevertheless, a simple treatment proposed by
Ref. [9] is to stick to the the fitting formula of matter
bi-spectrum in Eq. (9) with the kernel function given
by Eq. (10), but introducing some freedoms in the ker-
nel function. With this modification, the fitting formula
allows us to predict the lensing bi-spectrum in a rather
wide class of modified theories of gravity, including Horn-
deski theory[37] and beyond-Horndeski class theory [38–
41]. Indeed, Ref. [33] has checked with modified gravity
simulations that this treatment provide a reasonable de-
scription of matter bi-spectrum at large scales in several
modified gravity models.

Here, we restrict our analysis to two representative
models of modified gravity, both with distinct screening
mechanisms which are essential theoretical implementa-
tions that recover GR at small scales. This allows them to
be consistent with solar system tests of gravity. The rep-
resentative models we choose are the Vainshtein-screened
DGP model of gravity [42] and the chameleon-screened
Hu-Sawicki f(R) model of gravity [43]. The DGP model
also serves as a representative of the Horndeski class of
models and so we may look at two distinct predictions,
that given by perturbation theory and that given by the
fitting formula described in Ref. [9]. On the other hand,
the f(R) case has no non-linear matter bi-spectrum fit-
ting formula available in the literature, and so only a
perturbative treatment will be considered. For the per-
turbative treatment we consider both the tree level and
one-loop prediction (see Appendix C). The theory param-
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eters we choose are Ωrc = 0.4382 and |f̄R0| = 2.5× 10−6

which is a recent constraint coming from the LSS obser-
vations [44].

In Fig. 6, we show the ratio of the LSS contribution (to
the CMB lensing bi-spectrum) in DGP (left) and f(R)
gravity (right) to the prediction of GR. We consider the
equilateral configuration as it has been shown to offer the
largest signal of modified gravity in the representative
models chosen [33] as well as the theoretical predictions
giving good consistency with simulation measurements
(see Fig. 2). In both models, the linear power spectrum
is identical to GR at large scales.3 For the DGP case,
the deviation shown here comes only from non-linear
screening effects while for f(R) gravity we have effects
both from screening and scale-dependent modifications
to the linear growth of structure. In both panels, we
show the tree-level prediction (orange) and one-loop pre-
diction (green).4 For the DGP case we also show the
prediction coming from the non-linear fitting formula of
Ref. [9] (red).

Note that the effect of screening mechanism is pertur-
batively incorporated into the perturbation theory pre-
dictions through the modified higher-order kernels. Be-
cause of this, the screening effect is ineffective at tree-
level order, and the predictions do not approach unity
(i.e., GR) at small scales. On the other hand, the one-
loop predictions depicted as green curves include the
screening effect up to the fourth-order kernels in pertur-
bation theory. These higher-order corrections give dis-
tinct scale-dependent shapes and dominate the signal at
` > 100. They also work to reduce the linear modifica-
tion. This is not evident in the DGP case (left panel)
as we have normalized the linear growth of DGP to that
of GR. Rather, this is clearer in the f(R) case (right).
Additional orders in perturbation theory would work to
complete the screening at small scales. On this point, the
fitting formula shown for the DGP case deviates from the
one-loop calculation noticeably at smaller scales. This
can be expected as the effect of screening mechanism is
not fully incorporated into the fitting formula.

Fig. 6 indicates that the impact of the modification
to gravity we considered is of the order of a few percent
at most. The CMB Stage-IV experiments would not be
able to probe such small signals of modified gravity at the
multipoles considered [9]. However, this is only the case if
we restrict the scales to the applicable range of one-loop
perturbation theory. At smaller scales, a rather notable
deviation from GR is still allowed in beyond-Horndeski

2 A common parametrization of the cross-over scale, see [36] for
example.

3 Note that in the DGP case we also have a modification to the lin-
ear growth factor which we normalize to that of GR. This factor
is completely degenerate with σ8 and so such scale independent
modifications to the linear power spectrum are not very useful
to test modified gravity unless one can break such a degeneracy
using other probes.

4 The noise seen in the plots is numerical.

class theory [45]. In any case, for a decisive detection of
modified gravity signal, small-scale information will be
key. In doing so, additional complication may arise from
the post-Born correction (Eq.11), for which we must also
rely on a non-linear prescription for the power spectrum
in order to get an accurate prediction. For DGP model,
a good approximation is to use the fitting formula in
GR (i.e., HALOFIT) and simply replace the linear power
spectrum in GR with that in DGP. For f(R) gravity, no
such a simple treatment can work well, but there exists
an extension of HALOFIT formula [46]. Since such ex-
tensions are not readily available in general models, one
may alternatively consider the prediction based on per-
turbation theory [35, 36], although it would not capture
accurately the small-scale behaviors.

Another interesting point is that in the DGP case (left
plot of Fig. 6) we find the fitting formula gives a signifi-
cantly different prediction from the one-loop. This may
hint at a lack of screening effect included in the fitting
formula as only the second-order kernel is modified in
this case. To investigate this further, one would require
modified gravity simulation measurements and is beyond
the scope of this work.

VI. SUMMARY

The CMB lensing bi-spectrum will be soon detected
from upcoming CMB experiments, and will become
an important observable, complementary to the lensing
power spectrum. In this paper, making use of full-sky
lensing simulations, we have tested the analytic predic-
tions of the CMB lensing bi-spectrum based on exist-
ing fitting formulae of the dark matter bi-spectrum and
on perturbation theory. We found that the agreement
between the simulation and fitting formulae depends on
the configuration and scales of the bi-spectrum. In the
equilateral case, the bi-spectrum obtained from the sim-
ulation is in good agreement with that derived from
the fitting formulae. On the other hand, the squeezed
bi-spectrum from the simulation deviates significantly
from that predicted by the fitting formulae. We also
found that a significant discrepancy also appears in the
squeezed matter bi-spectrum at low z, indicating that the
discrepancy in the squeezed lensing bi-spectrum prob-
ably comes mostly from the inconsistency between the
analytic prediction and simulation results of the matter
bi-spectrum. We have also compared the measured equi-
lateral and squeezed configurations with one-loop pertur-
bation theory. For the equilateral case we find that one-
loop perturbation theory gives a much better prediction
than tree-level calculation, but the scales of applicability
is still restricted to rather low multipoles (` ≤ 600). A
notable point may be that the one-loop prediction be-
comes comparable to the fitting formula for the squeezed
configuration up to ` ≤ 1000, though both fail to model
the measured bi-spectrum as previously mentioned.

Using one-loop perturbation theory, we have also dis-
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cussed the effects of modified gravity on the lensing bi-
spectrum. Considering DGP and f(R) gravity mod-
els, we find that the signal of possible modification in
the equilateral configuration is small at multipoles ` .
800, with a maximum of ∼ 1% deviation from GR in
DGP model and ∼ 4% in f(R) gravity. Such a sig-
nal cannot be distinguished even with stage-IV surveys,
however, a large deviation from GR is still allowed in
beyond-Horndeski class theory. Accurately modeling bi-
spectrum in general theories of gravity is thus crucial
especially at small scales.

We discussed the accuracy of the lensing bi-spectrum
predictions while leaving aside possible practical issues
in measuring the lensing bi-spectrum with real data. For
example, with the quadratic estimator to reconstruct the
lensing convergence, the measured bi-spectrum is a six-
point correlation in CMB anisotropies. Similar to the
lensing power spectrum measurement, an accurate sub-
traction of the disconnected six-point correlation is re-
quired. More practical issues on the lensing bi-spectrum
measurement will be investigated elsewhere.

Another interesting direction would be to revise the fit-
ting formula of the matter bi-spectrum as we see the dis-
crepancy between the simulated and analytic matter bi-
spectrum in the squeezed configuration. The current fit-
ting formula of the matter bi-spectrum is derived within
a limited range of scale, configuration, and cosmological
parameters. Since the bi-spectrum contains additional

information on cosmology, an accurate fitting formula of
the matter bi-spectrum will be necessary for a fast com-
putation of the bi-spectrum prediction in future cosmo-
logical implications. The updated fitting formula will be
also useful for studies on not only the CMB lensing but
also, e.g., the galaxy weak lensing and galaxy clustering.
We leave these for our future work.

ACKNOWLEDGMENTS

TN acknowledges the support from the Ministry of Sci-
ence and Technology (MOST), Taiwan, R.O.C. through
the MOST research project grants (no. 107-2112-M-
002-002-MY3). This research used resources of the Na-
tional Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231. BB acknowledges support from JSPS In-
ternational Research Fellowship PE17043 and from the
Swiss National Science Foundation (SNSF) Professor-
ship grant No.170547. This work was supported in part
by MEXT/JSPS KAKENHI Grant Number JP15H05899
(AT), JP16H03977 (AT), 15H05893 (RT) and 17H01131
(RT). Numerical computations were in part carried out
on Cray XC50 at Center for Computational Astrophysics,
National Astronomical Observatory of Japan.

Appendix A: Measurement of the bi-spectrum from full-sky simulation

Here we show the verification of our pipeline for measuring the bi-spectrum from the simulated CMB lensing
convergence map. To test the algorithm of Eq. (16), we consider the following non-Gaussian fluctuations:

a(n̂) ≡ g(n̂) + [g2(n̂)− 〈g2〉] , (A1)

where g(n̂) is a random Gaussian map generated by a power spectrum, C`. We use the lensing convergence power
spectrum to generate g(n̂). The harmonic coefficients at ` > 0 are obtained as

a`m = g`m +

∫
d2n̂′ Y ∗`m(n̂′)g2(n̂′)

= g`m +

∫
d2n̂′

∑
`′`′′m′m′′

Y ∗`m(n̂′)Y`′m′(n̂
′)Y`′′m′′(n̂

′)g`′m′g`′′m′′

= g`m + (−1)m
∑

`′`′′m′m′′

G``
′`′′

−m,m′,m′′g`′m′g`′′m′′ , (A2)

with g`m being the harmonic coefficients of g(n̂). The Gaunt integral is defined as

G`1`2`3m1m2m3
≡
∫

d2n̂ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂)

= h`1`2`3

(
`1 `2 `3
m1 m2 m3

)
, (A3)

where h`1`2`3 is defined in Eq. (3). The Gaunt integral vanishes if `1 + `2 + `3 is an odd integer. Taking the complex

conjugate of the above equation, we obtain G`1`2`3m1m2m3
= (−1)m1+m2+m3G`1`2`3−m1,−m2,−m3

. By definition, the Gaunt
integral satisfies the following symmetric property:

G`1`2`3m1m2m3
= G`2`3`1m2m3m1

= G`3`1`2m3m1m2
. (A4)



12

Using the properties of the Wigner 3j symbol,∑
m1m2m3

[G`1`2`3m1m2m3
]2 = h2

`1`2`3 . (A5)

The expected reduced bi-spectrum is decomposed into the contribution from the four and six point correlations.
The contribution from the four point correlation is given by

bggg
2

`1`2`3
= h−2

`1`2`3

∑
mi

G`1`2`3m1m2m3
〈a`1m1

a`2m2
a`3m3

〉

= h−2
`1`2`3

∑
mi

G`1`2`3m1m2m3
(−1)m3

∑
`′`′′m′m′′

G`3`
′`′′

−m3,m′,m′′
〈g`1m1

g`2m2
g`′m′g`′′m′′〉+ (2 perms.) . (A6)

Since g`m is a random Gaussian fields, the four point correlation, 〈g`1m1
g`2m2

g`′m′g`′′m′′〉, is decomposed into the
three terms by the Wick theorem. However, the term 〈g`1m1

g`2m2
〉〈g`′m′g`′′m′′〉 provides the disconnected three-point

correlation (〈a`1m1
a`2m2

〉〈a`3m3
〉), and should be ignored in the above equation. Then we obtain

bggg
2

`1`2`3
= h−2

`1`2`3

∑
mi

G`1`2`3m1m2m3
(−1)m3

∑
`′`′′m′m′′

G`3`
′`′′

−m3,m′,m′′

× (−1)m1+m2C`1C`2 [δ`1`′δ`2`′′δm1,−m′δm2,−m′′ + δ`1`′δ`2`′′δm1,−m′δm2,−m′′ ] + (2 perms.)

= 2C`1C`2h
−2
`1`2`3

∑
mi

G`1`2`3m1m2m3
(−1)m1+m2+m3G`3`1`2−m3,−m1,−m2

+ (2 perms.)

= 2[C`1C`2 + (2 perms.)]h−2
`1`2`3

. (A7)

From the second to the third equation, we use Eq. (A5).
The contribution from the six point correlation contains the product of the three angular power spectrum. Thus, we

choose the amplitude of the angular power spectrum so that the terms involving the six point correlation is negligible.
Fig. 7 shows the validity of our code for measuring the reduced bi-spectrum from simulations. The binned analytic

bi-spectrum is obtained from Eq. (16) where the reduced bi-spectrum at each multipole is given by Eq. (A7). In
measuring the bi-spectrum from simulations, a resolution parameter, Nside, in obtaining κi(n̂) and hi(n̂) in Eqs. (14)
and (15) is chosen for each i (multipole bin). We show the cases with Nside = `imax or 3`imax where `imax is the
maximum multipole at the ith bin.

Appendix B: Fitting formulas of the matter bi-spectrum

Here we briefly summarize the fitting formulas of the matter bi-spectrum used in this paper. Ref. [10] obtains the
fitting formula of the matter bi-spectrum as

a(k, z) =
1 + {σ8(z)}a6

√
0.7Q(neff)(qa1)neff+a2

1 + (qa1)neff+a2
(B1)

b(k, z) =
1 + 0.2a3(neff + 3)(qa7)neff+3+a8

1 + (qa7)neff+3.5+a8
(B2)

c(k, z) =
1 + [4.5a4/(1.5 + (neff + 3)4)](qa5)neff+3+a9

1 + (qa5)neff+3.5+a9
, (B3)

with Q(x) = (4 − 2x)/(1 + 2x+1). Here, q = k/kNL with kNL where 4πk3
NLP

lin
m (kNL) = 1. The quantity σ8(z) is

the variance of the matter density fluctuations smoothed with a top-hat sphere of radius 8h−1Mpc at redshift z.
neff ≡ d lnP lin

m (k)/d ln k, is the effective spectral index of the linear power spectrum, P lin
m (k). We apply the smoothing

to compute neff in order to remove un-physical oscillation as discussed in Ref. [11]. The parameters, ai, are determined
by fitting results of N-body simulations, which yields [10]

a1 = 0.250 a2 = 3.50 a3 = 2.00 a4 = 1.00 a5 = 2.00 a6 = −0.200 a7 = 1.00 a8 = 0.00 a9 = 0.00 . (B4)

Later on, Ref. [11] proposed an improved fit given by

a1 = 0.484 a2 = 3.74 a3 = −0.849 a4 = 0.392 a5 = 1.01 a6 = −0.575 a7 = 0.128 a8 = −0.722 a9 = −0.926 .
(B5)
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FIG. 7. The reduced bi-spectrum obtained from the simple non-Gaussian simulation compares with the analytic formula. The
binned analytic bi-spectrum is obtained from Eq. (A7). The simulation results are shown for two cases with different values
of the numerical parameter, Nside (see text). Note that in the lower panel we take the difference between the analytic and
simulated bi-spectrum and then divide it with the 1σ simulation error.

Appendix C: One-loop matter bi-spectrum

The one-loop matter bi-spectrum is defined as

B1−loop(k1, k2, θ; a) =B112(k1, k2, θ; a)

+ [B222(k1, k2, θ; a) +B321(k1, k2, θ; a) +B114(k1, k2, θ; a)], (C1)

where θ = cos−1 (k̂1 · k̂2). The tree level (B112) and one-loop terms (terms in square brackets) are defined in the
usual way

〈δn1(k1)δn2(k2)δn3(k3)〉 = (2π)3δD(k1 + k2 + k3)Bn1n2n3(k1,k2,k3), (C2)

where we must add all permutations of the over-density perturbations, δn, on the LHS, n denoting the order of the
perturbation. The angled brackets denote an ensemble average and under the assumptions of perturbation theory
these averages can be decomposed into a product of linear power spectra convolved with perturbative kernels (see [19]
for a review). These kernels are determined by solving energy and momentum conservation equations order by order.
We direct the reader to [33] for a full description of this procedure for general models of gravity, including the nDGP
and f(R) models considered in this paper.
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FIG. 8. The dependence of the analytic prediction of the reduced bi-spectrum on the fitting formula of the nonlinear matter
power spectrum. We show the analytic bi-spectrum using the original HALOHIT formula derived by Ref. [30] (blue, S02)
compared with that using our fiducial fitting formula (red, T12) [31]. The GM fitting formula is used in both cases to compute
the modified F2 kernel.

Appendix D: Dependence of the bi-spectrum on the nonlinear matter power spectrum

We use the nonlinear matter power spectrum derived by Ref. [31] to compute the lensing bi-spectrum. Here, we
briefly summarize the impact of the uncertainty in the calculation of the nonlinear matter power spectrum on the
prediction of the lensing bi-spectrum.

To see the dependence of the bi-spectrum on the nonlinear matter power spectrum, Fig. 8 shows the comparison of
the analytic bi-spectra with different model of the nonlinear matter power spectrum. The bi-spectrum from simulation
is also shown. The GM fitting formula is used to compute the modified F2 kernel. S02 denotes the case using the
HALOFIT formula derived by Ref. [30] while T12 is our fiducial model. The difference depends on configuration and
scales. The amplitude decreases by up to 10% at small scales in the equilateral shape, but is almost unchanged in
the folded case. We also check the impact on the post-Born bi-spectrum and the difference is found to be very small
compared to our simulation error.

Appendix E: Discrepancy in the squeezed lensing bi-spectrum

Here we discuss possible sources for the huge discrepancy which we found in the squeezed configuration between
the theory based on fitting formulae and the direct simulation measurements
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FIG. 9. Contours showing the ratio of the non-linear prediction for the LSS contribution to the CMB lensing bi-spectrum
(GM on left and 1-loop on right) to the tree level prediction. In both contours `2 = 500, with `23 = `21 + `22 − `2`1 cos(θ) by the
triangle condition.

1. Role of non-linearity

The first check we perform is to see which configurations encode the most non-linear information. Those con-
figurations with the most non-linearity will naturally be modelled the worst by the theoretical predictions. Fig.9
shows a contour of the ratio of the non-linear prediction to the tree level prediction for the LSS contribution to the
CMB lensing bi-spectrum for various configurations. Specifically we show the GM (left) and 1-loop (right). We fix
`2 = 500 and vary `1 and the angle between `1 and `2. The equilateral configuration has a good deal of non-linearity
(`1 = 500, cos(θ) = −0.5) which is expected as all modes are at their maximum multipole. We find in this case we
have a 45% enhancement and 33% enhancement over the tree level prediction for GM and 1-loop respectively. In the
squeezed limit we also find a lot of non-linear information (`1 = 50, cos(θ) = 0.05) with a 33% and 30% enhancement
for GM and one-loop respectively. Further, in the very squeezed limit (`1 → 10) we get enhancements up to 60%.
When binning, as the simulation measurement is, these highly non-linear configurations will be included and so failure
in the theoretical predictions is likely to become an issue. Finally, we also note that the GM formula systematically
predicts significantly more non-linearity than the one-loop for these limits which further suggests inaccuracy of the
fit when considering the bottom left plot of Fig.2.

Of course to perform a more accurate investigation one would ideally plot the same contour but with simulation
measurements in the numerator of the ratio, but this would be very computationally expensive. Despite this, this
does serve as a good indication as to which configurations are the most non-linear.

2. Matter bi-spectrum

Given the good match of the post-Born prediction with simulation measurements seen in Fig.4), it is strongly
suggested that the discrepancy comes from the LSS contribution, theoretically predicted by Eq. (8). To investigate
this issue we first have plotted the kernel of Eq. (8) as a function of redshift in Fig.10 for the equilateral (left) and
squeezed (right) configurations. Each curve denotes a different multipole with the dashed lines being the tree level
prediction and the solid the GM prediction. We find that in the squeezed limit the kernel with the GM fitting formula
peaks in the range z ∼ 0.5, and for multipoles ` ≥ 600 the peak is an order of magnitude larger than the equilateral
shape. Given this we check the consistency of the squeezed matter bi-spectrum obtained from simulation and fitting
formula at z ∼ 0.5. Figs. 11 and 12 plot the matter bi-spectra at z = 0.541 and 0.990 measured from the N-body
data used to construct the CMB maps. The box-sizes are L = 1800h−1Mpc (for z = 0.541) and 2700h−1Mpc
(for z = 0.990) with 20483 particles. The matter bi-spectrum at z ∼ 0.5 gives the most contribution to the CMB
bi-spectrum from Fig. 10. The black circles with bars are mean with errors from 6 realizations. The GM fitting
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FIG. 10. Equilateral (Left) and squeezed (Right) kernel of Eq.8 as a function of redshift. Each curve denotes a different
multipole ` = `2 = `3. For the equilateral case `1 = ` and for the squeezed case `1 = 50. The solid lines show the GM fitting
formula prediction while the dashed lines show the tree level prediction.

FIG. 11. Matter bi-spectrum comparisons at z = 0.541 for equilateral (left, k1 = k2 = k3 = k) and squeezed (right, k3χ ∼ 50,
k = k1 = k2) cases. The x-axis is the wavenumber k times the comoving distance χ, representing a multipole `. The squeezed
vector magnitude quoted is the weighted average of the smallest bin, k3 = 0.021hMpc−1, where we take 20 linearly spaced
bins from 1 ≤ k3χ ≤ 2000. The errors quoted in the figure are the variance over 6 realizations of the simulations.

formula gives a good agreement for equilateral case but slightly over predicts for the squeezed case at small scales.
This discrepancy is seen even for half k-bin width. This trend seems consistent with the CMB lensing bi-spectrum.
Such a discrepancy can lead to the significant over-prediction noted at small scales in Fig. 2 once we integrate over
all redshifts. The discrepancy noted at large scales in Fig. 2 could be a combination of effects including post-Born
effects.

As mentioned in the main text this discrepancy may be ascribed to an inaccuracy in the GM fitting formula. Indeed,
the formula is not fit to very squeezed configurations and was only fit in the range of 0.03hMpc−1≤ k ≤ 0.4hMpc−1

[11], corresponding to 46 ≤ ` ≤ 570 at z = 0.541. Further, the squeezed limit considered here for 100 ≤ ` has
0.9 ≤ θ/π, θ being the angle between the ‘non-squeezed’ wave vectors, while the formula is only fit for θ/π ≤ 0.9.
Despite this possibility, we perform a number of further tests to clarify the issue.

3. Resolution of simulation

As discussed in Ref. [32], the resolution of the simulation map also changes the small scale behavior of the squeezed
lensing bi-spectrum. In the main text, we show the measurements of the bi-spectrum from the simulation of Nside =
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FIG. 12. Same as Fig.11 but at z = 0.990.

FIG. 13. Difference of the bi-spectrum measured from simulations with different resolution. We plot the fractional difference,
∆b/b ≡ bNside=8192/bNside=4096 − 1 where bNside=4096 and bNside=8192 are measured bi-spectra obtained from the simulations of
Nside = 4096 and 8192, respectively.

4096. Here we check how the results depend on the simulation map resolution, Nside.
Fig. 13 shows the fractional difference of the bi-spectrum at each configuration, ∆b/b, where ∆b/b ≡

bNside=8192/bNside=4096 − 1 is the fractional difference between the bi-spectra measured from the simulation of
Nside = 8192 and Nside = 4096. In the squeezed case, the increase of the resolution enhances the amplitude of
the bi-spectrum by 5 − 10% at smaller scales. This increase is, however, too small compared to the discrepancy we
found.

4. Other possibilities

Fig. 14 shows the dependence of the discrepancy in the squeezed bi-spectrum on the multipole bin for `1. As
the multipole range of `1 goes to smaller scales, the discrepancy between the analytic and simulated bi-spectrum is
reduced. However, the analytic prediction always overestimates the simulation. Indeed, the discrepancy is still large
when we choose a larger multipole bin to `1 which is much less effected by sample variance or possible large scale
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FIG. 14. Squeezed bi-spectrum, b`1``, with varying the multipole bin for `1.

FIG. 15. Fractional difference of squeezed bi-spectrum, ∆b/b, with varying the number of multipole bins (red: 20 bins, blue:
40 bins, green: 60 bins).

systematics.
Fig. 15 plots the fractional difference of the bi-spectrum with varying the number of multipole bins (20, 40 and 60).

The discrepancy is almost independent from the number of multipole bins.
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