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We investigate nonlinear structure formation in the fuzzy dark matter (FDM) model using both
numerical and perturbative techniques. On the numerical side, we examine the virtues and limita-
tions of a Schrödinger-Poisson solver (wave formulation) versus a fluid dynamics solver (Madelung
formulation). On the perturbative side, we carry out a computation of the one-loop mass power
spectrum, i.e. up to third order in perturbation theory. We find that (1) in many situations, the
fluid dynamics solver is capable of producing the expected interference patterns, but it fails in sit-
uations where destructive interference causes the density to vanish – a generic occurrence in the
nonlinear regime. (2) The Schrödinger-Poisson solver works well in all test cases, but it is demand-
ing in resolution: suppose one is interested in the mass power spectrum on large scales, it’s not
sufficient to resolve structure on those same scales; one must resolve the relevant de Broglie scale
which is often smaller. The fluid formulation does not suffer from this issue. (3) We compare the
one-loop mass power spectrum from perturbation theory against the mass power spectrum from the
Schrödinger-Poisson solver, and find good agreement in the mildly nonlinear regime. We contrast
fluid perturbation theory with wave perturbation theory; the latter has a more limited range of
validity. (4) As an application, we compare the Lyman-alpha forest flux power spectrum obtained
from the Schrödinger-Poisson solver versus one from an N-body simulation (the latter is often used
as an approximate method to make predictions for FDM). At redshift 5, the two, starting from the
same initial condition, agree to better than 10% on observationally relevant scales as long as the
FDM mass exceeds 2× 10−23 eV. We emphasize that the so called quantum pressure is capable of
both enhancing and suppressing fluctuations in the nonlinear regime - which dominates depends on
the scale and quantity of interest.

I. INTRODUCTION

The fuzzy dark matter (FDM) model posits that dark
matter consists of an ultra-light boson with a macro-
scopic de Broglie wavelength [1–5]. A pseudo Nambu-
Goldstone boson is a fairly natural candidate for such a
particle, for instance an axion-like particle.1 The axion φ
is an angular field with a periodicity of 2πF , where F is
often called the axion decay constant. Non-perturbative
effects give rise to a potential, breaking the shift sym-
metry expected for a Goldstone boson to a discrete sym-
metry φ → φ + 2πF . Assuming a primordial value of
order F , the axion goes from being frozen in the early
universe to oscillating in the late universe, leading to a
relic abundance of [6–8]:

Ωaxion ∼ 0.1

(
F

1017 GeV

)2 ( m

10−22 eV

)1/2

, (1)
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1 For the purpose of this article, it is not crucial that FDM is an

axion or axion-like particle. The main ingredient we assume is
that the particle is bosonic, non-relativistic and can be approxi-
mated as free except for gravitational interaction. The advantage
of thinking of the FDM as an axion is that the relic abundance
naturally takes the desired value, under mild assumptions.

where m is the axion mass. The abundance is more sen-
sitive to the value of F than to m. Axion candidates
in string theory typically span F ∼ 1016 − 1018 GeV [9].
There is thus quite a wide range in m that gives the
desired abundance for dark matter. Interestingly, the
rather low m suggested by this argument predicts a num-
ber of astrophysical effects that are potentially observ-
able, spanning the linear regime (see the seminal paper
by Hu et al. [2] who coined the term fuzzy dark matter)
and the nonlinear one [8, 10–18].

For most applications, the non-relativistic approxima-
tion is adequate – a complex scalar ψ is introduced that
relates to the real axion field φ as follows:

φ =

√
~3

2m

(
ψe−imt/~ + ψ∗eimt/~

)
, (2)

where we set the speed of light c = 1, but keep ~ explicit.
Assuming |ψ̇| � m|ψ|, the Klein-Gordon equation2 for
the axion φ reduces to the Schrödinger equation for ψ:

i~
(
∂tψ +

3

2
Hψ

)
=

(
− ~2

2ma2
∇2 +mΦ

)
ψ , (3)

2 For most applications, the self-interaction of the axion can be ig-
nored. Thus, the predictions for structure formation are identical
to that of a light, free scalar.
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where t is proper time, the spatial derivative is with
respect to comoving coordinates, a is the scale factor,
H ≡ ȧ/a is the Hubble parameter and Φ is the gravita-
tional potential, obeying:

∇2Φ = 4πGa2ρ̄δ (4)

where ρ̄ is the cosmic mean mass density and δ is the
overdensity. We use ˙ to denote a derivative with respect
to proper time t. Note that:

ρ̄ = mψ̄2 , ρ = m|ψ|2 , δ ≡ (ρ− ρ̄)/ρ̄ , (5)

where ψ̄ is chosen to be real without loss of generality.
The Schrödinger-Poisson system of wave dynamics (3)

and (4) can be recast as fluid dynamics (known as the
Madelung formulation [19], see the Feynman lectures for
a discussion [20]). The field ψ is related to the fluid mass
density ρ as above, and the fluid velocity v as follows:

ψ ≡
√
ρ

m
eiθ , v ≡ ~

ma
∇θ . (6)

With this mapping, the conservation associated with the
U(1) symmetry of the Schrödinger equation (which orig-
inates from particle number conservation in the non-
relativistic limit) becomes mass conservation:

ρ̇+ 3Hρ+
1

a
∇ · (ρv) = 0 , (7)

and the conjugate part of the Schrödinger equation gives
the analog of the Euler equation:

v̇ +Hv +
1

a
(v · ∇)v = −1

a
∇Φ− ~2

2m2a3
∇p , (8)

where

p ≡ −∇
2√ρ
√
ρ

= −1

2
∇2 log ρ− 1

4
(∇ log ρ)

2
. (9)

The quantity p is often referred to as “quantum pres-
sure”. This is a bit of a misnomer (which we adopt
nonetheless, following convention) — it is in fact not a
pressure, but arises from some particular combination of
stress i.e. the stress tensor in general has non-vanishing
off-diagonal terms.3

In the fluid formulation, ~ can be grouped together
with m to define a length scale (the Compton scale ~/m),
after which ~ does not appear in the rest of the equa-
tions (7) and (8). In the applications we are interested
in, the relevant particle number occupancy is large, mak-
ing quantum fluctuations very small. The Schrödinger
equation, despite its appearance, should be interpreted
as an equation for a classical complex scalar ψ (though
we will adhere to the common terminology of ψ as the

3 The stress tensor takes a special form such that its divergence
divided by density takes the form of the spatial gradient of p.

wave function). Wave mechanics effects such as inter-
ference are still present, since ρ = m|ψ|2, but they are
classical in nature, much like the interference of waves in
classical electromagnetism.

In the literature, there are investigations of structure
formation in the FDM model using both the wave for-
mulation [10, 13, 15, 21, 22] and the fluid formulation
[12, 14, 18, 23]. Our goal is to build on and extend these
investigations in a number of ways. (1) We investigate
the strengths and weaknesses of solvers based on the wave
and fluid formulations by studying test cases. (2) We
carry out perturbative computations (in the fluid formu-
lation, for reasons that will become clear) up to third
order in perturbation theory, and compare the results
against numerical solutions. (3) As an application, we
numerically compute the Lyman-alpha forest flux power
spectrum in the FDM model, and compare the prediction
from solving the Schrödinger-Poisson system versus the
prediction from a pure gravity solver (starting from the
same initial conditions). Current constraints on the FDM
mass from the Lyman-alpha forest use N-body simula-
tions (i.e. a gravity solver) to approximate the dynamics
[24, 25]4, and we address the question of how the predic-
tions are sensitive to the presence/absence of quantum
pressure.

The paper is organized as follows. In Sec. II, we sum-
marize perturbation theory results that are presented in
more details in the Appendix. The perturbative com-
putation provides a number of insights that are useful
for interpreting the numerical results. In Sec. III, we de-
scribe our code SPoS, a second order Schrödinger-Poisson
solver and compare it with a grid-based fluid solver that
incorporates quantum pressure. We go over the pros and
cons of both, and show the fluid formulation fails in cases
where the density vanishes due to chance destructive in-
terference (which seem to generically occur in the highly
nonlinear regime). Certain details of the fluid solver are
relegated to the Appendix. In Sec. IV, we apply the
Schrödinger-Poisson solver to compute the Lyman-alpha
forest flux power spectrum, and quantify how the predic-
tions differ if one were to approximate the dynamics as
purely gravitational (i.e. FDM versus CDM dynamics,
from the same initial conditions).

In sample cosmological calculations, the parameters
used are: density parameters for dark matter Ωm,0 =
0.268, dark energy ΩΛ,0 = 0.732, the Hubble constant in
unit 100 /km/s/Mpc H0 = 0.704, the fluctuation ampli-
tude σ8 = 0.811, the spectral index ns = 0.961 and the
CMB temperature today TCMB = 2.726 K. Our cosmo-
logical numerical simulations start at z = 100.

As this article was under preparation, a paper by Nori
et al. [26] appeared that has some overlap with this one,
in particular regarding the Lyman-alpha forest.

4 An exception is [23] who incorporated quantum pressure in their
simulations. As we will see below, incorporating quantum pres-
sure in a fluid formulation has issues that need to be addressed.
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II. PERTURBATIVE COMPUTATIONS OF THE
FDM MODEL

There are two possible perturbative computations, one
in the fluid formulation and one in the wave formulation.
We summarize the main results in this section, and rele-
gate the details to Appendices A and B.

In the wave formulation, one expands in small pertur-
bation to the wave function: δψ/ψ̄. In the fluid formula-
tion, one expands in small overdensity δ ≡ (ρ− ρ̄)/ρ̄ and
peculiar velocity v. To linear order, they are related by:

δ = (δψ + δψ∗)/ψ̄ , (10)

and

v =
~

2iamψ̄
∇(δψ − δψ∗) . (11)

The latter in momentum space reads:

δψ − δψ∗
ψ̄

∼ amv

~k
. (12)

where k is the (comoving) momentum. The regime of va-
lidity in wave perturbation theory is thus different from
that in fluid perturbation theory. For fluid perturbation
theory, δ and v ought to be small. For wave perturba-
tion theory, the smallness of the real part of δψ/ψ̄ is
equivalent to the smallness of δ, but the smallness of the
imaginary part requires v � ~k/(am). Since the physical
length scale of interest a/k is generally longer than the
Compton scale ~/m, the latter requirement is more strin-
gent than simply requiring a small v. To put it in another
way, wave perturbation theory requires a/k � ~/(mv) i.e
the proper length scale of interest must be shorter than
the de Broglie scale:

λdeB.

2π
≡ ~
mv

= 1.92 kpc

(
10−22 eV

m

)(
10 km/s

v

)
.

(13)
This is a rather demanding requirement: for a given
comoving k, wave perturbation theory generally breaks
down at an earlier time than fluid perturbation theory
(see Appendix B).

We therefore focus on fluid perturbation theory in the
rest of the paper. We compute the predictions up to third
order in perturbation, and derive the one-loop corrections
to the mass power spectrum (Appendix A). Let’s consider
the right hand side of the Euler equation (8) - taking its
divergence and using the Poisson equation (4):

R.H.S. = −4πGρ̄aδ

+
~2

4a3m2
∇2
(
∇2δ − 1

4
∇2δ2 − 1

2
δ∇2δ +

1

8
∇2δ3 +

3

8
δ2∇2δ +

1

8
δ∇2δ2 + ...

)
(14)

To linear order in δ, as noted by [2], the quantum pres-
sure leads to a suppression of growth on small length

scales (large momenta). The characteristic momentum
where the quantum pressure term balances gravity is
kJeans, the (comoving) Jeans scale (Appendix A):

kJeans ≡
44.7

Mpc

(
6a

Ωm0

0.3

)1/4(
H0

70 km/s

m

10−22 eV

)1/2

.(15)

Eqn. (14) shows that the second order terms from the
quantum pressure could act in the same direction as grav-
ity, enhancing rather than suppressing fluctuations. Con-
sider the example of a density peak with δ > 0 a Gaussian
profile, it is straightforward to check that, at the peak,
the second order contributions to quantum pressure act
in an opposite way to the first order contribution. Of
course, once the second order terms become important,
one has to consider the higher order terms as well which
could yet reverse the sign of the effect – in such a case, the
perturbative expansion cannot be counted on to give the
correct predictions and one has to resort to numerical
computations. Nonetheless, this exercise shows that in
the nonlinear regime, it is by no means guaranteed that
quantum pressure leads to a suppression of fluctuations
(see further discussions in Appendix A).

Interestingly, the wave formulation offers useful in-
sights in the nonlinear regime. In a (non-solitonic) halo
which consists of a superposition of waves of different mo-
menta, the fact that ρ ∝ |ψ|2 sets up the opportunity for
interference effects. A chance superposition could lead
to local constructive or destructive interference, caus-
ing sizable density fluctuations on the de Broglie scale.
This is borne out by numerical simulations of FDM halos
[10, 11].

Let us close this section with a sample computation of
the mass power spectrum up to one-loop, that is, includ-
ing corrections to the power spectrum that are quadratic
in the linear power spectrum (Appendix A).

The tree (linear) power spectrum at redshift z = 5
for an FDM particle mass of 10−23 eV is shown in the
lower panel of Fig. 1 (the lower dashed blue line). The
tree power spectrum at the same redshift and with the
same initial condition but CDM dynamics is shown as the
lower solid blue line in the same panel. The fact that they
are very similar is due to the fact that the linear growth
factor Dk does not differ a whole lot between FDM and
CDM dynamics for k < 10 h/Mpc. (Recall from Eqn.
(15) that kJeans ∼ 14 Mpc−1 for a mass of 10−23 eV and
a = 1/6.) In other words, the suppression of power seen
in Fig. 1 at high momenta has nothing to do with the low
redshift FDM dynamics; it’s all in the initial condition.
Indeed, the scale at which the initial or primordial power
spectrum is suppressed by a factor of two is [2]:

k1/2 =
1.62

Mpc

( m

10−23 eV

)4/9

. (16)

This is substantially smaller (i.e. longer length scale)
than kJeans at z = 5. Thus, based on linear perturbation
theory alone, we do not expect CDM and FDM dynam-
ics to give vastly different power spectra starting from
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FIG. 1. Lower panel: the upper solid/dashed (black) lines
give the z = 5 total power (tree + 1-loop) under CDM/FDM
dynamics respectively. The initial condition is the same in
both cases, corresponding to an FDM mass of 10−23eV. The
lower solid/dashed (blue) lines gives the z = 5 tree power
under CDM/FDM dynamics. Upper panel: the dashed line
is the z = 5 total power under FDM dynamics (identical to
the upper dashed line in the lower panel); the dotted line
is the total power if the tree power spectrum is cut-off at
k < 2π/10 h/Mpc, which limits the transfer of power from
low momenta to high momenta through the loop integrals
(accounting for the effect of a finite box size of 10 Mpc/h).
Here, ∆(k)2 ≡ 4πk3P (k)/(2π)3 represents the dimensionless
power.

the same initial condition. The question is whether this
persists at higher order in perturbation theory.

Fig. 1 lower panel shows the total (tree + one-loop)
power: the upper solid (black) line uses CDM dynamics
while the upper dashed (black) line uses FDM dynamics
(same initial condition). The power is enhanced at high
momenta compared with the tree power spectrum (the
lower solid/dashed blue lines). The power at k ∼> k1/2

comes almost entirely from transferred power from large
scales (low momenta). Just as in the case of the tree
power, CDM vs FDM dynamics does not appear to make
a big difference in the total power. The total power with
FDM dynamics is slightly lower than that with CDM dy-
namics, except possibly at k ∼ 10 h/Mpc, though at that
point, the power spectrum is rather low in any case (due
to the suppression of high k power in the initial condi-
tion). One main goal of the following section is to inves-
tigate using numerical simulations to what extent these
conclusions remain valid in the fully nonlinear regime.

As we will see below, numerical simulations place twin
demands on resolution and box size that can be chal-
lenging to satisfy. Perturbative calculation is useful for
gauging the effect of a finite box size. Fig. 1 upper

panel compares the total power in two cases (both with
FDM dynamics): the dashed line is the same as the black
dashed line (power spectrum up to one-loop) in the lower
panel; the dotted line shows also the power up to one-
loop, except the loop integral is computed with an in-
frared cut-off at momentum 2π/10 h/Mpc. The latter
is chosen to mimic the effect of having a finite simula-
tion box of size 10 Mpc/h. One can see the transferred
power from large scales is diminished, because the rele-
vant large scale modes are absent in a finite box. We will
return to this issue of a finite box size in our numerical
computations.

III. NUMERICAL COMPUTATIONS OF THE
FDM MODEL

In this section, we turn to numerical computations.
Just as in the case of perturbative calculations, one can
integrate the Schrödinger-Poisson system Eqn. (3) and
(4) or the fluid-Poisson system Eqn. (4), (7) and (8).

The advantage of the fluid-Poisson system is that work-
ing hydrodynamics codes already exist. The quantum
pressure term p encodes the effects of wave dynamics,
such as interference. This is borne out by tests we have
performed, detailed in Appendix C (see e.g. Fig. 12).
Problems arise, however, in test cases where the the den-
sity vanishes at isolated points, which naturally occur due
to chance destructive interference in the wave language.
The quantum pressure is ill-defined in these regions. One
might hope that these isolated problematic points do not
affect the overall evolution, but they can, as illustrated in
the example of Fig. 13. It is conceivable that a fluid code
can be suitably modified to integrate across these regions
of vanishing density. We defer this to a future discussion.
We will instead largely focus on a numerical code that
solves the Schrödinger-Poisson system, though in a few
examples, we will contrast the performance of the fluid
and the wave codes. Let us also mention the possibil-
ity of a hybrid approach that combines the best features
of both formulations, for instance a fluid solver on large
scales and a wave solver on small scales (see further dis-
cussions below). An example is given by [17] who used
the combination of an N-body code and a Schrödinger-
Poisson solver.

A. Description of SPoS (Schrödinger-Poisson
Solver)

By defining a normalized wave function ψ̃ ≡ a3/2ψ, the
Schrödinger-Poisson equation for FDM dynamics takes
the following form

∂ψ̃

∂t
= (K + V )ψ̃ ≡

(
i

~
ma2
∇2 − im

~
Φ

)
ψ̃ , (17)

where K = i ~
ma2∇2 is the kinetic operator and V =

−imΦ/~ is the potential operator. Our SPoS code inte-
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grates Eqn. (17) using an operator split method similar
to [15, 21, 22]. The operator split method follows the ob-
servation that the unitary time evolution operator can be
split in the following way to give second order accuracy
in time (i.e. corrections are third order):

ψ̃(t+ ∆t) = e(K+V )∆tψ̃(t)

= eV∆t/2eK∆teV∆t/2ψ̃(t) +O(∆t3) . (18)

Therefore, for each time step ∆t, our SPoS code evolves
ψ̃ in the following three sub-steps. In the first sub-step,
ψ̃ is evolved with the gravitational potential operator for
∆t/2:

ψ̃ → exp

(
−im

~
Φ

∆t

2

)
ψ̃ . (19)

In the second sub-step, the kinetic operator is applied
to ψ̃ using the 4th order Runge-Kutta method for time
integration with a 4th order finite difference method for
spatial derivatives

ψ̃ → ψ̃ + i
~

ma2
∇2ψ̃∆t . (20)

Finally, ψ is evolved with the gravitational potential for
another ∆t/2 to finish a full time step of evolution.

The time step ∆t is set by respecting the Courant-
Friedrichs-Lewy (CFL) condition for a parabolic system
with cell size ∆x and requiring the phase change in the
gravitational potential step is smaller than unity i.e.

∆t < min

[
ma2

6~
∆x2,

~
mΦ

]
. (21)

The SPoS code is built as a module into the ENZO code
[27] for cosmological simulations with existing modules
to calculate the cosmological expansion and gravitational
potential; some analysis below is carried out with the yt
package [28].

B. Tests of SPoS (and Comparisons with a Fluid
Solver)

The Schrödinger-Poisson solver is very demanding in
terms of resolution. Recall that the velocity is related
to the gradient of the phase of the wave function, i.e. a
given velocity translates into a phase that varies on the
scale of the de Broglie wavelength. It is thus important
the de Broglie scale is resolved; otherwise the velocity
field is not represented correctly. This is true even if the
scale of interest is much larger than the de Broglie scale.
This is illustrated in Fig. 2.

The matter (mass) power spectrum is shown for FDM
dynamics corresponding to a mass of 10−23 eV and 10−22

eV on the left and right panel of Fig. 2 respectively.5 In

5 Both simulations use the same initial power spectrum [2] corre-
sponding to an FDM mass of 10−22 eV.

both cases, the simulation box size is 10 Mpc/h comov-
ing, with a 10243 grid (the Nyquist frequency is about
600 h/Mpc comoving). The resolution is adequate to re-
solve the de Broglie scale for the case of 10−23 eV but
not for 10−22 eV. One can estimate the de Broglie scale
by using the velocity dispersion on the scale of the box
(comoving) 10 Mpc/h. At z = 5, this is about 100 km/s,
giving a (physical or proper) de Broglie scale of about
2 kpc for m = 10−23 eV and 0.2 kpc for m = 10−22 eV
(Eqn. 13). Contrast this with the simulation resolution,
which is about 2 kpc (proper) at z = 5. Thus the de
Broglie scale is marginally resolved for m = 10−23 eV
but certainly not for m = 10−22 eV.

In Fig. 2, we divide the power spectrum by the square
of the linear growth factor D(z) (where D(z) is the CDM
growth factor, which matches the FDM linear growth fac-
tor at low k). The normalization of D(z) is chosen such
that at z = 100, the ratio ∆2(k, z)/D(z)2 is unity at
the lowest comoving k ∼ 0.7 h/Mpc. With this con-
vention, the fact that on the left panel of Fig. 2, the
power spectrum at all redshifts (solid lines) converges to
unity at low k’s means the large length scale power is
evolving correctly i.e. in accordance with linear pertur-
bation theory expectation. The same is not true on the
right panel, where the de Brogile scale is not resolved.
The large length scale growth of the power spectrum is
slower than it should be i.e. at low redshifts, the ra-
tio ∆2(k, z)/D(z)2 falls short of unity at low k’s (solid
lines). This occurs despite the fact that those scales (say
comoving k ∼< 1 h/Mpc) are well resolved.

The Schrödinger-Poisson code thus behaves very dif-
ferently from an N-body code or a fluid code. For an
N-body or fluid-formulation code, the correct evolution of
power on some large scale requires only that large scale to
be resolved. For a wave-formulation code, there is the ad-
ditional requirement that the de Broglie scale be resolved,
which is often more demanding.

Also plotted in Fig. 2 are the results of a fluid-
formulation solver that incorporates quantum pressure
(dashed lines). One can see that the low k (large length
scale) power spectrum evolves correctly in both cases
i.e. a fluid solver is less demanding in terms of spa-
tial resolution if one is only interested in large length
scales. Note that the wave-formulation solver and the
fluid-formulation solver differs in their predictions at high
k’s (small length scales); the fluid solver predicts gen-
erally more power at high k’s. We interpret this as a
by-product of the fluid code’s failure to evolve correctly
past regions of destructive interference (see Fig. 13 in
Appendix C).

Fig. 3 shows a density slice of the wave-formulation
simulation on the left and fluid-formulation simulation
on the right (color coded for density) at z = 5, for the
case of m = 10−23 eV. One can see that the structures
on large scales are broadly consistent. However, the halo
structure on small scales are very different. The wave-
formulation simulation shows wave-like structure around
the collapsed halo with pockets of vanishing density from
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FIG. 2. Power spectrum evolution in a 10 Mpc/h box. Here, ∆2(k, z) ≡ 4πP (k, z)/(2π)3 represents the dimensionless power.
It is normalized by the linear growth factor D(z)2 (according to CDM, which coincides with that for FDM at low k’s). The
normalization of D(z) is chosen such that the ratio ∆2(k, z)/D(z)2 should be unity at low k’s if the power spectrum is evolving
correctly. The solid lines represent the outputs from SPoS. The dashed lines represent the outputs from a fluid-Poisson solver
that incorporates quantum pressure. The power spectrum extends to smaller scales (larger k) as redshift z decreases. Left –
FDM (dynamics) mass m = 10−23 eV. Right – FDM (dynamics) mass m = 10−22 eV. The failure of the solid lines to converge
to unity at low k’s for z = 10 and z = 5 is a sign that SPoS does not give the correct power spectrum evolution, because it is not
resolving the de Broglie scale. On the other hand, the fluid-Poisson solver with quantum pressure gives the correct behavior at
low k.

the destructive interference. The fluid simulation suffers
from too much collapse and fewer interference structures
on small scales. This is due to its inaccuracy in evolving
past regions of destructive interference (see discussion in
Appendix C, around Fig. 13) – the density structure
becomes inaccurate on small scales, which compromises
also the computation of quantum pressure. The advan-
tages and disadvantages for SPoS and the fluid solver are
compared in the table below.

SPoS Fluid Solver

Advantage
Correct dynamics
of the interference
pattern

Correct large scale
dynamics without
resolving the de
Broglie wavelength

Disadvantage

The de Broglie
wavelength must be
resolved to obtain
the correct large
scale dynamics

Incorrect dynamics
past regions of van-
ishing density

As a further test, we compare the predictions of third-
order perturbation theory (specifically, the mass power
spectrum including the one-loop corrections) with out-
puts from SPoS. The top panel of Fig. 4 shows the mass
power spectrum for the case of an FDM mass of 10−23

eV, with a 10 Mpc/h comoving box and a 10243 grid.6

6 For Fig. 4, the initial condition uses an FDM mass that is con-

One can see that the one-loop power spectrum matches
the numerical power spectrum up to a comoving k ∼ 3
h/Mpc. The agreement is far from perfect, especially
on large scales because only one realization was used in
the numerical computation. We also show the numeri-
cal power spectrum with the same initial condition, box
size and resolution, but with CDM dynamics (i.e. a pure
N-body simulation with an initial power spectrum that
corresponds to that of an FDM model). CDM dynamics
appears to predict more power at high k’s compared to
FDM dynamics.

The middle panel of Fig. 4 shows the same but with
a 20 Mpc/h comoving box. One can see that the FDM
numerical predictions fall short at low k because of the
failure to resolve the de Broglie scale, while the CDM
numerical predictions seem fine (at least at low k). The
bottom panel of Fig. 4 shows the analog for an FDM
mass of 10−22 eV. In this case, in order to resolve the de
Broglie scale, the box size has to be lowered to 3 Mpc/h
comoving (the grid remains 10243). The lack of large
scale power in the initial condition due to the small box
size means the predicted matter power spectrum is lower
than it should be. This should be kept in mind in appli-
cations of the code; we will return to this point below in

sistent with the FDM dynamics i.e. 10−23 eV for the top and
middle panel, and 10−22 eV for the bottom panel. In all cases,
FDM predictions are computed with SPoS. The one-loop power
spectrum is computed with an infra-red cut-off in the loop inte-
gral that corresponds to the box size in each case.
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FIG. 3. A slice at z = 5 depicting density from simulations with m = 10−23 eV (corresponding to Fig. 2). Left – wave-
formulation simulation. Right – fluid-formulation simulation.

the application to the Lyman-alpha forest.

IV. APPLICATION TO THE LYMAN-ALPHA
FOREST

The Lyman-alpha forest consists of hydrogen absorp-
tion lines in the spectra of distant quasars. They provide
useful constraints on the matter power spectrum at red-
shift z = 2−6 on scales down to about 0.1 Mpc comoving
[29–33]. The small scale linear matter power spectrum is
sensitive to assumptions about the nature of dark mat-
ter. For instance, warm dark matter causes a suppres-
sion of power on scales below its free-streaming scale, and
can be constrained by the Lyman-alpha forest observa-
tions [34]. The warm dark matter constraint [34] can
be roughly translated into a constraint on FDM which
also suppresses power on small scales e.g. [8]. More re-
cently, Lyman-alpha forest constraints on FDM were ob-
tained by [24, 25], who simulated the FDM model using
N-body simulations; the effect of “fuzziness” is accounted
for purely through the initial conditions. In other words,
the assumption was that CDM dynamics (with FDM ini-
tial condition) is sufficient to capture accurately the pre-
dictions of the FDM model. We are in a position to check
this assumption, by comparing the outputs of an N-body
code (CDM dynamics) and SPoS (FDM dynamics), start-
ing from the same initial condition. Let us stress that
physical effects that cause additional sources of fluctu-
ations, such as fluctuations in the ionizing background,
are not addressed in this paper, even though they are
probably important in assessing the reliability of the for-
est constraints on FDM or warm dark matter (see e.g.
[8]).

A. The 1D Flux Power Spectrum - Methodology
and Convergence Tests

The main observationally relevant quantity in the con-
text of the Lyman-alpha forest is the one-dimensional
(1D) flux power spectrum. The transmitted flux f is
related to the optical depth τ by f = e−τ (ignoring
the continuum). The optical τ is strictly speaking an
integral along the line of sight of the neutral hydrogen
density field. Here, we employ a simple approximation
(sometimes known as the local Gunn-Peterson approx-

imation): τ = A(1 + δ̃)2 where A is a constant. The
quadratic power in density assumes ionization equilib-
rium and an isothermal equation of state. The symbol δ̃
is a smoothed version of the overdensity δ i.e. in Fourier
space:

δ̃(k) = exp

[
−
(
k

kf

)2
]
δ(k) (22)

where the smoothing is motivated by considerations of
the effects of baryon pressure and the filtering scale is
chosen to be kf = 40 h/Mpc comoving [35]. 7 The con-
stant A is determined by requiring that the mean flux 〈f〉
agree with the observed value at the redshifts of interest
[34] 〈f(z)〉 = exp[−τeff(z)] with

τeff(z) = 2.26

(
1 + z

6.2

)4.91

(23)

7 A number of quantities (such as the intergalactic medium tem-
perature, which affects kf , and the equation of state [36]) are im-
plicitly kept fixed in our simple model for τ . Varying them within
observational bounds is not expected to significantly change our
conclusions below.
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FIG. 4. Comparison of mass power spectrum between simu-
lations and perturbative calculations. The top (orange) line
is from an N-body simulation i.e. CDM dynamics but from
the same initial condition. The next lower (blue) line is from
SPoS. The next two lines (red and purple) are the one-loop
predictions form FDM and CDM dynamics respectively. The
lowest (green) line is the linear (tree) FDM power spectrum.
Top – FDM mass 10−23 eV in a 10 Mpc/h box. Middle –
FDM mass 10−23 eV in a 20 Mpc/h box. Bottom – FDM
mass 10−22 eV in a 3 Mpc/h box.

for z > 4.5. The three-dimensional (3D) flux power

spectrum P f3D is computed in the usual way: by Fourier
transforming the field f in the simulation box. The 1D

flux power spectrum P f is obtained by integrating P f3D:

P f (k) =

∞∫
k

k′ dk′

2π
P f3D(k′) . (24)

From previous study [37], the Jeans smoothing (Eqn.22)
has a similar effect on P f (k) as thermal broadening,
which we do not explicitly model.

We carry out a number of convergence tests to gauge
the accuracy of our computation of P f (k) from the
(Schrödinger-Poisson) simulations. We focus on results
at z = 5, where most of the FDM constraints come from
[24]. The left panel of Fig. 5 shows the ratio of P f (k)
from two simulations with different resolution: one with
a 5123 grid and the other with a 10243 grid, both in a
box of size 10 Mpc/h comoving. Each line represents the

ratio P f512/P
f
1024 with a different FDM mass.8 At low k’s,

the two different resolutions give fairly close results, sug-
gesting convergence. Even at k ∼ 0.1 s/km (the highest
k accessible in the relevant data [24]), all simulations give
results accurate at the 5% level or better except for the
red line (with FDM mass 2× 10−23 eV). The 10243 grid
simulations (in a 10 Mpc/h box i.e. a resolution of about
0.01 Mpc/h comoving) should give results accurate at the
5% level or better as long as the FDM mass . 10−23 eV.

Since our interest is mainly in exploring the difference
in implications between FDM and CDM dynamics, we
show in the right panel of Fig. 5 another version of the
resolution convergence test. Plotted in the figure is the

ratio P fCDM (from N-body simulations i.e. CDM dynam-

ics) to P fFDM (from Schrödinger-Poisson simulations i.e.
FDM dynamics), starting from the same initial condition
in a 10 Mpc/h box. The solid and dashed lines represent
the results from simulations with a 10243 grid and a 5123

grid respectively. It appears P fCDM/P
f
FDM is accurate at

the few percent level, for k ∼< 0.1 s/km, as long as the

FDM mass is less than ∼ 2×10−23 eV and the resolution
is about 0.01 Mpc/h comoving (roughly that of a 10243

grid in a 10 Mpc/h box).
It is worth noting that even though the CDM and FDM

dynamics are identical on large scales, and thus the pre-
dicted mass power spectrum agrees between the two (see

8 In the test cases in this sub-section (IV A), the FDM mass refers
to the FDM mass used in evolving the Schrödinger-Poisson sys-
tem i.e. the dynamics mass. The initial conditions were chosen
to be identical i.e. the initial power spectrum corresponds to
that of an FDM mass of 10−22 eV. By doing this, we perform
tests more stringently with more initial small scale fluctuations
in the computational box. Otherwise if initial conditions consis-
tent with small dynamical FDM mass are used, the initial small
scale power will be more suppressed. We expect the small scale
overdensity to stay longer in the stage of linear growth, and the
results to be better than our test simulations.
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FIG. 5. Convergence test of 1D flux power spectrum at z = 5 in a comoving box of 10 Mpc/h. Left – Ratio of the 1D flux
spectrum P f at z = 5 from Schrödinger-Poisson simulations with a 5123 grid to P f from simulations with a 10243 grid, for
various FDM dynamics masses. As the FDM mass increases, the ratio deviates from unity at smaller k. Right – The 1D flux
spectrum P f with CDM dynamics divided by P f with FDM dynamics, for different resolutions and various FDM masses. Solid
and dashed lines represent the resolution of a 10243 grid and a 5123 grid respectively. As the FDM mass increases, the solid
lines exceeds unity at larger k. The solid and dashed lines agree except for the lines with FDM mass 2× 10−23 eV.

Sec. III), the flux power spectrum P f does not agree
between the two on large scales (low k’s). There are two
reasons for this: (1) the very nonlinear transformation
from density to flux mixes scales, and (2) the 1D flux
power spectrum P f is itself an integral of the 3D flux
power spectrum that receives contributions from high k’s

(see Eqn. 24). If the ratio P fCDM/P
f
FDM were scale inde-

pendent, then the fact that the ratio differs from unity is
not so important, since there are free parameters, such as
σ8 and A or the level of the ionizing background, that can
be adjusted in the Lyman-alpha forest model to produce
roughly the same effect (i.e. moving P f up and down).
From the right panel of Fig. 5, we see that this ratio is
dependent on k—indeed it rises with increasing k—and
it is important to ensure it does not become too large if
one were to use N-body dynamics to approximate FDM
dynamics, as is commonly done.

The effect of a finite box size is shown in Fig. 6.
On the left panel, we compare the flux power spectrum

from simulations with different box sizes: P f10Mpc from a

10 Mpc/h box and P f20Mpc from a 20 Mpc/h box. The

resolution is kept fixed: a 5123 grid is employed for the
10 Mpc/h simulations while a 10243 grid is used for the

20 Mpc/h simulations. We see that P f20Mpc and P f10Mpc

differ by more than 10% across a wide range of scales,9

suggesting non-negligible box size effects; in other words,
a 10 Mpc/h box is too small to reliably predict the flux
power spectrum. It might thus seem impossible to satisfy

9 Note however that the difference between big and small box at k
around 10−3 s/km mostly reflects the difference in realizations.

the twin demands of high resolution and large box size,
given that the largest grid we can practically simulate is
about 10243.

Fortunately, for the present purpose, what we care
about is the difference between CDM and FDM dynam-

ics, exemplified in the ratio P fCDM/P
f
FDM . This is shown

on the right panel of Fig. 6. We see that the different
box sizes (solid lines for a 10 Mpc/h box, dashed lines
for a 20 Mpc/h box) give fairly similar results for this
ratio, as long as the FDM mass is small enough i.e. the
de Broglie scale is resolved – the case of 2 × 10−23 eV
is one where the de Broglie scale is not resolved, as we
already know from the resolution tests discussed earlier
(i.e. a grid of 10243 is inadequate for a box as big as 20
Mpc/h).

Henceforth, for a given FDM mass, we choose a box
size small enough so that a 10243-grid simulation can re-
solve the de Broglie wavelength. This in general means
the flux power spectrum P f has large finite-box cor-
rections. However, since such corrections affect the
CDM-dynamics and FDM-dynamics simulations in simi-

lar ways, the ratio P fCDM/P
f
FDM is actually reliable and

sufficiently accurate for our purpose.

B. The 1D Flux Power Spectrum – CDM versus
FDM Dynamics

Adopting the methodology laid out above, we carry
out a series of simulations of different FDM masses where
the de Broglie scale is resolved (by adjusting the box size
and always using a 10243 grid). Here, the initial power
spectrum has the same FDM mass as that used in the
dynamics. Our aim is to determine the scales at z = 5
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FIG. 6. Test of finite box size correction of the 1D flux power spectrum at z = 5. Left – Ratio of P f from simulations with a
box size of 10 Mpc/h to P f from simulations with a size of 20 Mpc/h, for various FDM masses, keeping the resolution fixed.
Right – The 1D flux spectrum P f with CDM dynamics divided by P f with FDM dynamics, for different box sizes and various
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the solid lines exceeds unity at larger k. The solid and dashed lines agree except for the lines with FDM mass 2× 10−23 eV.

where P fCDM from N-body simulations can be used to ap-

proximate P fFDM from FDM dynamics, as a function of
FDM mass. We run simulations with FDM masses rang-
ing from 10−23 eV to 10−22 eV and adjust the box size
by requiring that the large scale matter power spectrum
follows the linear evolution. By doing this, we can make
sure the de Broglie wavelength is resolved, otherwise the
evolution of large scale mass power spectrum will deviate
from the linear evolution as demonstrated in Sec. III B.
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FIG. 7. The 1D flux spectrum P f at z = 5 with CDM dynam-
ics divided by P f with FDM dynamics for realistic simulation
with consistent FDM mass in the initial condition and the
dynamics. Each line represents a simulation with different
FDM mass and box size adjusted to resolve the de Broglie
wavelength. FDM mass increases for the lines from left to
right.

Fig.7 shows the ratio of P fCDM/P
f
FDM with each line

representing a different FDM mass. The ratio follows the
same trend as the test simulations: on large scales, P f

from CDM and FDM dynamics are close to each other

(differ less than 10%) and on small scales, P fCDM overes-

timates P fFDM . The scale k at z = 5 where P fCDM starts

to overestimate P fFDM moves to smaller scales with in-
creasing FDM mass. 10 To quantify this effect, we define

kd to be the smallest k where P fCDM exceeds P fFDM by
10%. Fig.8 shows the the relation between the scale kd as
a function of FDM mass. Black triangles are the numer-
ical data which closely follow a power law relation given
by the blue line

kd ≈ 0.23 s/km
( m

10−22 eV

)0.56

. (25)

For general FDM masses, we can read from the power

law relation the scales where P fCDM from N-body sim-

ulations is a good approximation of P fFDM at z = 5.
For example, for FDM masses larger than 2× 10−23 eV,

P fCDM differs from P fFDM by less than 10% on our current
observational scale of Lyman-alpha forest k . 0.1 s/km
[29–33]. Therefore, one can avoid running expensive large
scale FDM simulations where the small de Broglie wave-
length has to be resolved, but perform relatively cheap N-

body simulations to obtain good approximation of P fFDM

10 The fact that P f
CMD and P f

FDM have smaller deviations on large
scales than the test simulations is consistent with what we dis-
cussed before. Fewer initial small scale fluctuations leave the
system longer in the linear growth stage and yield better agree-
ment.
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and compare with observations. It is worth emphasizing
though that for other applications, such as investigating
galactic sub-structure, correctly simulating the FDM dy-
namics is crucial (see discussion in Sec. III B).

10−2 10−1 100

m [10−22 eV]

10−2

10−1

100

k
d
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m
]

FIG. 8. Relation between kd and FDM masses. Black trian-
gles are measured data points. The solid line is the best fit

line following kd = 0.23 s/km
(
m/10−22 eV

)0.56
.

V. DISCUSSION

In this paper, we present numerical and perturbative
computations of the FDM model.

Perturbative calculations are carried out for both the
fluid and wave formulations. For fluid perturbation the-
ory, this is done up to third order, focusing in partic-
ular on the one-loop mass power spectrum (Appendix
A). Wave perturbation theory (Appendix B) has a more
limited regime of validity compared to fluid perturbation
theory; namely the former requires the physical length
scale of interest be smaller than the de Broglie wavelength
(Eqn. (B7)) i.e. simply requiring small density fluctua-
tion δ is not sufficient. Wave perturbation theory thus
breaks down rather early in cosmic history, even when
fluid perturbation theory is safely in the linear regime.
The wave description might still be useful for analytic
understanding in the highly nonlinear regime, especially
in the context of complex inteference structures— a sub-
ject we hope to return in the future.

On the numerical side, we perform cosmological simu-
lations of FDM using both a Schrödinger-Poisson solver
and a fluid solver. The fluid solver integrates the
Madelung formulation of the Schrödinger equation and
is able to produce the correct structures on large scales.
However, small scale oscillatory features (from wave in-
terference) observed in the Schrödinger-Poisson simula-
tions are not reproduced by the fluid simulations. In
particular, the fluid solver fails to simulate the correct
dynamics when the local density vanishes due to the de-

structive interference of waves, as demonstrated in Ap-
pendix C 3. This is understandable because the quan-
tum pressure in the fluid formulation becomes ill-defined
where the fluid density vanishes (Eqn. (9)). The failure
of the fluid solver to give the correct quantum pressure in
regions of complex interference results in artificially en-
hanced gravitational collapse, and over-predicts the mass
power spectrum on small scales. Whether Lagrangian
fluid codes like the SPH method [18] suffer from the same
problem is not clear, and we recommend similar tests to
those in Appendix C 3 be carried out.

Our Schrödinger-Poisson solver SPoS, on the other
hand, is able to simulate the correct dynamics on small
scales. We obtain good agreement with third order per-
turbative calculations up to the mildly nonlinear scale.
However, SPoS is demanding in resolution in that it re-
quires the (typically small) de Broglie wavelength to be
resolved, even if one is primarily interested in structures
on much larger scales. There is a recent development
by [17] using a hybrid method which involves a N-body
solver on the root grid and a Schrödinger-Poisson solver
at the refined level. This method would be useful in ap-
plications where enhanced resolution is desired in regions
of high density. For the application to the Lyman-alpha
forest, we are mostly interested in regions of moderate
density and therefore SPoS is sufficient.

As an application, we compare the 1D Lyman-alpha

flux power spectrum P fCDM from N-body simulations

with that computed from FDM dynamics, P fFDM , us-
ing the same FDM initial conditions and determine the

scales where P fCDM is a good approximation to P fFDM .
Though P f from both CDM and FDM dynamics suffer
from non-negligible finite box corrections, we find the ra-

tio P fCDM/P
f
FDM is reliable and independent of box size

as long as the de Broglie wavelength is resolved. The ratio

P fCDM/P
f
FDM is close to unity on large scales with devi-

ation less than 10% , but it eventually grows much larger
on small scales. We quantify the scales of agreement be-
tween the two flux power spectra by measuring the small-

est kd (largest length scale) where P fCDM/P
f
FDM > 1.1,

and our results suggest kd increases with FDM mass as
kd ∝ m0.56. For FDM masses larger than 2 × 10−23 eV,

kd > 0.1 s/km, therefore P fCDM is a good approxima-

tion to P fFDM on our current observational scales of the
Lyman-alpha forest . 0.1 s/km [29–33].

There have been a number of efforts to constrain FDM
properties using Lyman-alpha forest observations, in-
cluding [24] using XQ-100 and HIRES/MIKE data, and
[25] using SDSS data. Both groups employed N-body
simulations with initial conditions modified by FDM and

use P fCDM to approximate P fFDM . Our results confirm
the validity of their approximation. However, a number
of astrophysical effects likely play a role in interpreting
the Lyman-alpha forest data, such as the spatial fluctua-
tions of the ionizing background and temperature at high
redshifts, and galactic winds at low redshifts. It is un-
clear if current attempts to model these effects faithfully
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capture the range of possibilities (e.g. see discussion in
[8]). More work remains to be done in this direction.

Appendix A: Fluid Perturbation Theory

The fluid formulation of the dynamics takes the form:

∂ηδ +∇i[(1 + δ)vi] = 0 , (A1)

∂ηv
i +

∂ηa

a
vi + vj∇jvi = −∇iΦ +

1

2m̄2a2
∇i
∇2
√

1 + δ√
1 + δ

,

(A2)

∇2Φ = 4πGa2ρ̄δ , (A3)

where δ is the overdensity defined by ρ ≡ ρ̄(1 + δ), with
ρ̄ being the mean density. Here ∂η denotes derivative
with respect to conformal time η. The conformal time
η is related to proper time t by a dη = dt, where a is
the scale factor. We introduce the symbol m̄ ≡ m/~ to
suppress factors of ~. The last term of Eqn. (A2) is
often referred to as quantum pressure, though it strictly
speaking arises from a stress tensor that has off-diagonal
terms.

Assuming gradient flow, defining Θ ≡ ∇ivi and using
δ(k) to denote the Fourier transform of δ(x) i.e.

δ(x) =

∫
d3k

(2π)3
δ(k)eik·x (A4)

Following standard perturbation theory techniques (e.g.
[38–42]), the fluid equations can be rewritten as

∂ηδ(k) + Θ(k) = −
∫
d3k1d

3k2

(2π)3
δD(k− k12)

k · k2

k2
2

δ(k1)Θ(k2) , (A5)

∂ηΘ(k) +
∂ηa

a
Θ(k) + 4πGa2ρ̄δ(k)− k4

4a2m̄2
δ(k) =

−
∫
d3k1d

3k2

(2π)3
δD(k− k12)

[1

2
k2k1 · k2

k2
1k

2
2

Θ(k1)Θ(k2)

+
k4

16a2m̄2

(
1 +

k2
1 + k2

2

k2

)
δ(k1)δ(k2)

]
+

∫
d3k1d

3k2d
3k3

(2π)6
δD(k− k123)δ(k1)δ(k2)δ(k3)

k4

32a2m̄2[
1 +

k2
1 + k2

2 + k2
3

k2
+
k2

12 + k2
23 + k2

31

3k2

]
+... , (A6)

where the symbols k12 and k123 denote respectively k1 +
k2 and k1 +k2 +k3. The symbol δD represents the Dirac
delta function. The ellipsis on the right hand side of Eqn.
(A6) represents higher order terms O(δ4).

For simplicity, we consider a matter-dominated flat
universe (a very good approximation at redshift 1000 >

z > 1) i.e. a = H̄0
2η2/4. Here, H̄0 is an effective Hub-

ble constant, and is related to the actual Hubble constant
H0 by H̄0 = H0Ωm0

1/2 (where Ωm0 is the matter density
today). It is helpful to define η̄ ≡ H̄0η and Θ̄ ≡ Θ/H̄0,
and rewrite the equations as:

∂η̄Ψa(k) + Ωab(k)Ψb(k) =∫
d3k1d

3k2

(2π)3
δD(k− k12)γabc(k,k1,k2)Ψb(k1)Ψc(k2)

+

∫
d3k1d

3k2d
3k3

(2π)6
δD(k− k123)Γabcd(k,k1,k2,k3)

Ψb(k1)Ψc(k2)Ψd(k3)

+... (A7)

where repeated indices e.g. b, c are implicitly summed,
and all quantities are functions of time η̄. The two-
component vector Ψ represents:[

Ψ1

Ψ2

]
≡
[
δ
Θ̄

]
. (A8)

The matrix Ω(k) represents:[
Ω11 Ω12

Ω21 Ω22

]
≡
[

0 1
6
η̄2 −

b2k
η̄4

2
η̄

]
, (A9)

where

bk ≡
2k2

m̄H̄0
. (A10)

The matrix γabc(k,k1,k2) is defined by:[
γ111 γ112

γ121 γ122

]
≡ −

[
0 k·k2

2k22
k·k1

2k21
0

]
, (A11)

[
γ211 γ212

γ221 γ222

]
≡ −

 b2k
4η̄4

(
1 +

k21+k22
k2

)
0

0 k2k1·k2

2k21k
2
2

 ,
(A12)

and all components of Γabcd(k,k1,k2,k3) vanish except
for:

Γ2111 ≡
b2k

8η̄4

(
1+

k2
1 + k2

2 + k2
3

k2
+
k2

12 + k2
23 + k2

31

3k2

)
(A13)

Examining Eqn. (A6), the scale k at which the last
two terms on the left balance each other can be thought
of as the Jeans scale i.e. when b2k = 6η̄2:

kJeans =
44.7

Mpc

(
6a

Ωm0

0.3

)1/4(
H0

70 km/s

m

10−22 eV

)1/2

.

(A14)
The quantum pressure becomes important at k > kJeans.
We stress that the Jeans scale is a linear perturbation
theory concept. In fact, it is worth briefly commenting
on how the quantum pressure behaves beyond linear the-
ory. For a qualitative understanding, it’s helpful to revert
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back to position space in which the Euler equation (or the
divergence thereof) takes the form:

∂ηΘ +
∂ηa

a
Θ + ∂i(v

j∇jvi) = −4πGρ̄a2δ

+
1

4a2m̄2
∇2

(
∇2δ − 1

4
∇2δ2 − 1

2
δ∇2δ + ...

)
.(A15)

The first line of the equation is exactly the Euler equa-
tion in the usual CDM case (pressureless fluid), where the
term on the right accounts for the effect of gravity – it
tends to make Θ negative (i.e. convergent flow). The sec-
ond line represents the effect of quantum pressure. Its lin-
ear contribution (i.e. ∝ ∇2∇2δ) counteracts the effect of
gravity. As an illustration, consider a density peak with
δ > 0 such as the one shown in Fig 9; the sign of the linear
quantum pressure term (i.e. −∇2p ∝ ∇2∇2δ) is oppo-
site to that of the gravity term (i.e. −4πGρ̄a2δ) at the
top of the peak. This is precisely the Jeans phenomenon
in linear theory. On the other hand, the quadratic terms
from the quantum pressure acts in the same direction as
gravity! As demonstrated in Fig. 9, the linear order
of −∇2p (dashed line) is positive at the center which
counteracts the gravity. However, the exact evaluation
of nonlinear −∇2p (solid line) is actually negative and
enhances the gravitational collapse (close to the density
peak). The density profile chosen is admittedly artificial,
but it serves to illustrate the point that quantum pressure
needs not always oppose fluctuation growth. Thus while
the fuzziness of dark matter leads to a suppression of the
linear power on scales smaller than the Jeans scale (see
below), the reverse could happen in the nonlinear regime.
This is borne out by numerical simulations, showing that
nonlinear halos often have large density fluctuations due
to the accidental interference of waves (references). In
this section, we have a relatively narrow goal: compute
the one-loop perturbative corrections to the linear (tree)
power spectrum, which requires following the perturba-
tion evolution up to cubic order. We will see that the
quantum pressure in the end leads to a suppression of
power for this particular quantity.

Eqn. (A7) can be solved perturbatively, assuming

small perturbations. Suppose Ψa = Ψ
(1)
a +Ψ

(2)
a +Ψ

(3)
a +...

where Ψ
(2)
a is of the same order as [Ψ

(1)
a ]2, etc. The first

order (linear) solution is[
Ψ

(1)
1 (k, η̄)

Ψ
(1)
2 (k, η̄)

]
=

[
Dk(η̄)
−∂η̄Dk(η̄)

]
δ(1)(k, η̄in) , (A16)

where we have made the time dependence explicit, and
η̄in is some early time (that can be sent to 0). The linear
growth factor Dk(η̄) satisfies the equation:

∂2
η̄Dk +

2

η̄
∂η̄Dk −

(
6

η̄2
− b2k
η̄4

)
Dk = 0 , (A17)

and is given by:

Dk(η̄)=

√
η̄in

η̄

J−5/2(bk/η̄)

J−5/2(bk/η̄in)
, (A18)
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∇
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FIG. 9. −∇2p for a density profile ρ = [1 + (1 +
0.85 expx2)−1]2. The plot is drawn with 4πG, a and m̄ all set
to unity. The exact value of −∇2p is negative at the center,
so the quantum pressure actually enhances gravitational col-
lapse (around the center). However, the linear perturbative
term is positive and acts to slow down the collapse.

where J−5/2 is the Bessel function:

J−5/2(z) ≡
√

2

πz

[
3 cosz

z2
+

3 sinz

z
− cosz

]
. (A19)

Replacing J−5/2 by J5/2 would have given the decaying
mode, with

J5/2(z) ≡
√

2

πz

[
3 sinz

z2
− 3 cosz

z
− sinz

]
. (A20)

The small z limit of the Bessel functions is:

J−5/2(z)→
√

2

π

3

z5/2
, J5/2(z)→

√
2

π

z5/2

15
, (A21)

and thus Dk ∝ η̄2 in the small k limit, as expected.
The argument of the Bessel function bk/η̄ determines
the importance of quantum pressure: when it is large
(i.e. k ∼> kJeans), quantum pressure is important and
the growth factor Dk(η̄) is oscillatory with a decaying
amplitude.

For an accurate evaluation of the Bessel function, it
is best not to use these explicit expressions but rather
use recurrence relations (see Numerical Recipe). Going
beyond linear theory requires a solution to Eqn. (A17)
with a non-vanishing right hand side i.e. the following
equation for u(η̄) for some general source g(η̄):

∂2
η̄u(η̄) +

2

η̄
∂η̄u(η̄)−

(
6

η̄2
− b2k
η̄4

)
u(η̄) = g(η̄) (A22)
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can be solved by (up to the addition of a homogenous
solution):

u(η̄) =

∫ η̄

η̄in

dsg(s)Gk(s, η̄) , (A23)

where Gk(s, η̄) is the propagator:

Gk(s, η̄) =
πs2

2

[
s−1/2J5/2(bk/s)η̄

−1/2J−5/2(bk/η̄)

−η̄−1/2J5/2(bk/η̄)s−1/2J−5/2(bk/s)
]
. (A24)

It is useful to note that Gk(η̄, η̄) = 0 and:

∂η̄Gk(s, η̄)
∣∣∣
s=η̄

= 1

∂sGk(s, η̄)
∣∣∣
s=η̄

= −1

Gk→0(s, η̄) =
1

5

(
η̄2

s
− s4

η̄3

)
. (A25)

With these definitions in place, Eqn. (A17) has the fol-
lowing formal solution:

Ψa(k, η̄) = Ψ(1)
a (k, η̄)

+

∫
d3k1d

3k2

(2π)3
δD(k− k12)∫ η̄

η̄in

dsWabc(k,k1,k2; s, η̄)Ψb(k1, s)Ψc(k2, s)

+

∫
d3k1d

3k2d
3k3

(2π)6
δD(k− k123)∫ η̄

η̄in

dsUabcd(k,k1,k2,k3; s, η̄)

Ψb(k1, s)Ψc(k2, s)Ψd(k3, s)

+... , (A26)

where the ellipsis represents terms with products of four
Ψ’s or more. The kernels W and U are defined by:

W1bc(k,k1,k2; s, η̄) ≡
(
− γ1bc(k,k1,k2; s)∂s

−γ2bc(k,k1,k2; s) +
2

s
γ1bc(k,k1,k2; s)

)
Gk(s, η̄) ,

W2bc(k,k1,k2; s, η̄) ≡
(
γ2bc(k,k1,k2; s)

−2

s
γ1bc(k,k1,k2; s) + γ1bc(k,k1,k2; s)∂s

)
∂η̄Gk(s, η̄) ,

U1bcd(k,k1,k2,k3; s, η̄) =

−Γ2bcd(k,k1,k2,k3; s)Gk(s, η̄) ,

U2bcd(k,k1,k2,k3; s, η̄) =

Γ2bcd(k,k1,k2,k3; s)∂η̄Gk(s, η̄) , (A27)

where the implicit time dependence of γ and Γ is made
explicit for clarity. Eqn. (A26) can be used to obtain the
perturbative solution iteratively: plugging in Ψ = Ψ(1)

to the right gives Ψ(1) + Ψ(2) (ignoring third order terms
and higher); plugging in Ψ = Ψ(1) + Ψ(2) to the right

gives Ψ(1) + Ψ(2) + Ψ(3) (ignoring fourth order terms and
higher).

We are primarily interested in the density (equal-time)
power spectrum P (k, η̄):

〈Ψ1(k, η̄)Ψ1(k′, η̄)〉 ≡ (2π)3δD(k + k′)P (k, η̄) . (A28)

The linear (or tree) power spectrum P (11) is given by

〈Ψ(1)
1 (k, η̄)Ψ

(1)
1 (k′, η̄)〉 ≡ (2π)3δD(k + k′)P (11)(k, η̄) ,

(A29)
and can be expressed in terms of the initial tree power
times the growth factors:

P (11)(k, η̄) = P (11)(k, η̄in)Dk(η̄)2/Dk(η̄in)2 . (A30)

The tree power spectrum at redshift z = 5 for an FDM
particle mass of 10−23 eV is shown in the lower panel of
Fig. 1 (the lower dashed line). The tree power spectrum
at the same redshift and with the same initial condition
but CDM dynamics is shown as the lower solid line in the
same panel. The fact that they are very similar is due
to the fact that the growth factor Dk does not differ a
whole lot between FDM and CDM dynamics for k < 10
h/Mpc. (Recall from Eqn. (A14) that kJeans ∼ 14/Mpc
for a mass of 10−23 eV.) In other words, the suppression
of power seen in Fig. 1 at high momenta has nothing to
do with the low redshift FDM dynamics; it’s all in the
initial condition. Indeed, the scale at which the initial
power spectrum is suppressed by a factor of two is:

k1/2 = 1.62/Mpc
( m

10−23 eV

)4/9

. (A31)

This is substantially smaller (i.e. larger scale) compared
to kJeans at z = 5. Thus, based on linear perturbation
theory alone, we do not expect CDM and FDM dynam-
ics to give vastly different power spectra starting from
the same initial condition. The question is whether this
persists at higher order.

There are two lowest order perturbative corrections
(the so called loop corrections) P (22) and P (13), i.e.

P (k, η̄) = P (11)(k, η̄) + P 1−loop(k, η̄) , (A32)

with P 1−loop ≡ P (22) + P (13), are given by:

〈Ψ(2)
1 (k, η̄)Ψ

(2)
1 (k′, η̄)〉 ≡ (2π)3δD(k + k′)P (22)(k.η̄) ,

(A33)

〈Ψ(1)
1 (k, η̄)Ψ

(3)
1 (k′, η̄)〉+ 〈Ψ(3)

1 (k, η̄)Ψ
(1)
1 (k′, η̄)〉

≡ (2π)3δD(k + k′)P (13)(k, η̄) .(A34)

It can be shown the loop correction P (22) takes the
form:

P (22)(k, η̄) = 2

∫
d3k1d

3k2

(2π)3
δD(k− k12)FII(k1,k2, η̄)2

P (11)(k1, η̄)P (11)(k2, η̄) , (A35)
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where the kernel FII is defined by

FII(k1,k2, η̄) ≡
∫ η̄

η̄in

dsW1bc(k12,k1,k2; s, η̄)

fb(k1, s, η̄)fc(k2, s, η̄) , (A36)

with fb, fc defined by

f1(k, s, η̄) ≡ Dk(s)/Dk(η̄)

f2(k, s, η̄) ≡ −∂sDk(s)/Dk(η̄) . (A37)

This FII is often referred to as F2 in the literature (or
the symmetrized version thereof) and matches that in the
k → 0 limit (or m̄→∞). Numerically, it is advantageous
to compute P (22) by rewriting the integral in Eqn. (A35)
as:

P (22)(k, η̄) = 4

∫
k1≤|k−k1|

d3k1

(2π)3
FII(k1,k− k1, η̄)2

P (11)(k1, η̄)P (11)(|k− k1|, η̄) , (A38)

where the restriction of k1 ≤ |k−k1| implies a restriction
on the angle between k and k1 if k1 > k/2. This way of
integrating avoids divergent terms in F that go as k2/|k−
k1|2 when |k−k1| becomes small [43]. Terms that diverge
as k2/k2

1 as k1 becomes small are harmless because of the
integration measure d3k1. (In fact, even O(k/k1) terms
in F can be avoided by a further rewriting. ) It is also
to note that FII(k1,k2, η̄) = 0 if k1 + k2 = 0, because
the corresponding kernels γabc’s vanish in that case.

The other loop correction to the power spectrum P (13),
which is of the same order as P (22), is given by

P (13)(k, η̄) =

∫
d3k2

(2π)3

(
4FIII(k2,−k2,k, η̄) +

+2HIII(k,k2, η̄)
)
P (11)(k, η̄)P (11)(k2, η̄) ,

(A39)

where the kernel FIII is defined by

FIII(k2,k
′
1,k
′
2, η̄) ≡ 2

∫ η̄

0

dsW1bc(k12,k1,k2; s, η̄)∫ s

0

ds′Wbb′c′(k1,k
′
1,k
′
2; s′, s)fb′(k

′
1, s
′, η̄)

fc′(k
′
2, s
′, η̄)fc(k2, s, η̄) , (A40)

where k1 = k′1 + k′2. Note that FIII(k2,k
′
1,k
′
2, η̄) = 0

if k′1 + k′2 = 0 because Wabc(k12,k1,k2; s, η̄) = 0 in
the case k12 = 0. This is why a term that goes like
FIII(k,k2,−k2, η̄) is absent from Eqn. (A39). A com-
mon convention in the literature is to use a fully sym-
metrized version of FIII in which case such a term would
be present. 11

11 In other words, the general structure should be to replace
4FIII in Eqn. (A39) by 2FIII(k2,−k2,k) + 2FIII(k2,k,−k2) +

The kernel HIII is given by:

HIII(k,k2, η̄) ≡ fa(k, η̄, η̄)

∫ η̄

η̄in

ds(
Uabcd(k,k2,−k2,k; s, η̄)fb(k2, s, η̄)fc(k2, s, η̄)fd(k, s, η̄)

+Uabcd(k,k2,k,−k2; s, η̄)fb(k2, s, η̄)fc(k, s, η̄)fd(k2, s, η̄)

+Uabcd(k,k,k2,−k2; s, η̄)fb(k, s, η̄)fc(k2, s, η̄)fd(k2, s, η̄)
)
.

(A41)

Fig. 1 lower panel shows the total power (P 11 +P 22 +
P 13) computed this way: the upper solid line uses CDM
dynamics while the upper dashed line uses FDM dynam-
ics (same initial condition). The power is enhanced at
high momenta compared with the tree power spectrum
(the lower solid/dashed lines). The power at k ∼> k1/2

comes almost entirely from transferred power from large
scales (low momenta). Just as in the case of the tree
power, CDM vs FDM dynamics does not appear to make
a big difference in the total power. The total power with
FDM dynamics is slightly lower than that with CDM dy-
namics, except possibly at k ∼ 10 h/Mpc, though at that
point, the power spectrum is rather low in any case.

Fig. 1 upper panel compares the total power in two
cases (both with FDM dynamics): the dashed line is the
same as the black dashed line in the lower panel; the dot-
ted line shows the power computed using Eqn. (A38) and
(A39) with an infrared cut-off of the loop momentum at
2π/10 h/Mpc. The latter is chosen to mimic the effect of
having a finite simulation box of size 10 Mpc/h. One can
see the transferred power from large scales is diminished,
because the relevant large scale modes are absent in a
finite box.

Lastly, let’s note that the bispectrum B, defined by

〈Ψ1(k1, η̄)Ψ1(k2, η̄)Ψ1(k3, η̄) ≡
(2π)3δD(k1 + k2 + k3)B(k1,k2,k3, η̄) , (A42)

is given, to the lowest order in perturbation theory, by:

B(k1,k2,k3, η̄) =

2FII(k1,k2, η̄)P (11)(k1, η̄)P (11)(k2, η̄) +

2FII(k2,k3, η̄)P (11)(k2, η̄)P (11)(k3, η̄) +

2FII(k3,k1, η̄)P (11)(k3, η̄)P (11)(k1, η̄) . (A43)

2FIII(k,k2,−k2). The last contribution vanishes as ar-
gued above. The second term matches the first i.e.
FIII(k2,−k2,k) = FIII(k2,k,−k2), which is guaranteed by the
fact that Wbb′c′ (k1,k′1,k

′
2) = Wbc′b′ (k1,k′2,k

′
1). If one were to

use a fully symmetrized version of the kernel, one would have
replaced 4FIII by 6F symm.

III .
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Appendix B: Wave Perturbation Theory

Instead of the fluid equations, one could instead con-
sider the wave formulation:

i

(
∂tψ +

3

2
Hψ

)
=

(
− ∇

2

2m̄a2
+ m̄Φ

)
ψ , (B1)

supplemented by the Poisson equation (A3). Here, t is
the proper time, and H is the Hubble constant ∂ta/a.

The density δ is related to ψ by

δ =
|ψ|2 − |ψ̄|2
|ψ̄|2 , (B2)

where ψ̄ is the cosmic mean and can be taken to be real.
The velocity v can be deduced from

(1 + δ)v =
1

2iam̄|ψ̄|2 (ψ∗∇ψ − ψ∇ψ∗) . (B3)

Let us constrast wave perturbation theory with fluid
perturbation theory. For the latter, we assume δ is small,
in which case the linearized mass conservation equation
tells us, in momentum space:

v ∼ k−1(∂ηDk/Dk)δ ∼ aH

k
δ (B4)

where, in the last equality, we assume the growth factor
Dk ∼ a, appropriate for low momenta. Thus, as long as
the wavelength of interest is sub-Hubble (k > aH) which
is almost always the case, a small δ implies a small v as
well.

For wave perturbation theory, we assume δψ ≡ ψ − ψ̄
is small. It turns out this breaks down earlier (at higher
redshift) than the break down of small δ and v. Let us
relate δ and v to the first order perturbation in ψ:

δ = (δψ + δψ∗)/ψ̄ , (B5)

and

v =
1

2iam̄ψ̄
∇(δψ − δψ∗) (B6)

The smallness of δ is thus equivalent to the smallness
of (δψ + δψ∗)/ψ̄. It does not automatically guarantee
that (δψ − δψ∗)/ψ̄ is also small. In momentum space,
(δψ − δψ∗)/ψ̄ can be written as

δψ − δψ∗
ψ̄

∼ am̄v

k
∼ a2m̄H

k2
δ , (B7)

where we have used linearized mass conservation in the
last equality. We see that the smallness of (δψ− δψ∗)/ψ̄
is much more demanding than the smallness of v: we
need a2m̄H < k2 which is roughly kJeans < k. In other
words, for wave perturbation theory to work, it is not
sufficient for δ to be small; one needs (kJeans/k)2δ to be
small. If the length scale of interest is above Jeans scale

k < kJeans, one would need a very small δ to compensate
(i.e. by going to an earlier time). 12

Thus it appears wave perturbation theory has a rather
limited range of applicability. A corollary of the above
reasoning is that a numerical simulation of the wave equa-
tions is also very demanding on resolution: suppose one
is interested in simulating structure growth on some large
length scale (small k ∼ k0). The typical velocity on such
a scale is v ∼ (aH/k0)δ. Accounting for the typical power
spectrum for δ, this velocity generally becomes larger as
k0 becomes smaller. The velocity shows up in a wave sim-
ulation as the gradient of the phase of ψ. It is important
that the wave simulation resolves the de Broglie wave-
length associated with this velocity i.e. kresolution ∼ am̄v.
Thus, a wave simulation requires high resolution even if
the length scale of interest is large.

The wave description is perhaps more useful in the
highly nonlinear regime, where δ is large but v remains
modest. The velocity information is repackaged into the
phase of the ψ in such a way that the wave equation is lin-
ear in the absence of gravity. Contrast this with the fluid
equations which are nonlinear even if gravity is turned
off. How to take advantage of the fluid-wave mapping to
gain insight into nonlinear clustering is a topic for further
investigation.

Appendix C: FDM with a Fluid Solver

Our fluid solver for FDM dynamics is implemented in
the ENZO code [27] by modifying the built-in 3D Zeus
code [44, 45] to incorporate the quantum pressure. The
built-in Zeus method is an explicit method that solves the
fluid transport on a Cartesian grid using an operator-
split scheme. The whole method contains two steps:
source and transport. In the source step, only velocities
are updated due to the gravitational acceleration (and,
in the non-FDM implementation, the pressure gradient
terms). Artificial viscosity, which is used in the origi-
nal fluid solver to smooth shock fronts, is not needed for
FDM dynamics, as the quantum pressure strongly dis-
favors sharp gradients. In the transport step, the mass
and momentum fluxes are constructed and used to up-
date the density and velocity through the conservative
form of the fluid equations.

The quantum pressure term for FDM is included in the
source step as an extra term for the acceleration. The
quantum pressure p = − 1

2∇2 log ρ− 1
4 (∇ log ρ)

2
is com-

puted with a 4th-order accurate finite difference method.
Apart from the existing time step constraints already in
ENZO, the time step must also respects the CFL condi-
tion for parabolic systems: ∆t ≤ (∆x)2ma2/(6~).

Below we describe a number of one-dimensional tests.

12 We thank Michael Landry and Alberto Nicolis for discussions
regarding wave perturbation theory.
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All the tests are performed without gravity and cosmo-
logical expansion (i.e. a = 1).

One obvious worry is that the quantum pressure be-
comes ill-defined when ρ vanishes. Of course, numeri-
cally, the density ρ never vanishes exactly (nor does it go
negative in all cases we check); the question is whether
the large quantum pressure associated with regions of
low density leads to unacceptable inaccuracies (see Test
3 below).

1. A Test with a Gaussian Density Profile

The evolution of a Gaussian wave packet admits a sim-
ple analytical solution for the 1D free Schrödinger equa-
tion without an external potential:

ψ(t, x) =

√
1

α+ i~tm
exp

(
− x2

2(α+ i~tm )

)
, (C1)

where α is a constant and can be set to be real for sim-
plicity. The density and velocity follow from the wave
function as

ρ =
1√

α2 + ~2t2

m2

exp

(
− αx2

α2 + ~2t2

m2

)
, (C2)

v =
x

α2 + ~2t2

m2

~2t

m2
. (C3)
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FIG. 10. Comparison of analytical and numerical results for
the density evolution of a Gaussian wave packet. Solid lines
represent the exact solutions while dots represent the numeri-
cal results from a fluid simulation. The times shown are from
top to bottom t = 0, 0.1, 0.2 in code units (see text).

Fig.(10) and (11) show the comparison between analyt-
ical solutions and numerical results (using the modified
ENZO fluid code). We start at t = 0 where v = 0 in
the simulation box. The parameters are chosen to be

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5
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1.5

v

t = 0

t = 0.1

t = 0.2

FIG. 11. Comparison of analytical and numerical results for
the velocity evolution of a Gaussian wave packet. Solid lines
represent the exact solutions and dots represent the numerical
results from a fluid simulation. The flat line corresponds to
t = 0. Of the tilted lines, the steeper one corresponds to
t = 0.2 while the other is at t = 0.1.

α = 1/100 and ~/m = 0.0626 in the code’s internal unit
system. Solid lines represent analytical solutions and col-
ored dots are numerical results at different time. We can
see the numerical values follow closely to the analytical
solutions. The discrepancies of velocity near the bound-
aries are due to the periodic boundary condition we use
for our finite box size.

2. A Test with a Density Jump

One might worry that the fluid solver could miss non-
trivial wave interference effects. Here we demonstrate
that the quantum pressure term, when properly incorpo-
rated in a fluid code, is capable of reproducing intricate
interference patterns expected in certain solutions. In
particular, let us focus on a self-similar solution of the
free Schrödinger equation [8]:

ψ(t, x) =
A
2

+ B − A
2

(1∓ i)C
(
x

√
m

π~|t|

)
−A

2
(1± i)S

(
x

√
m

π~|t|

)
, (C4)

where the upper/lower sign is for a positive/negative t
and A, B are constants. The functions C and S are the
Fresnel integrals

C(θ) =

∫ θ

0

cos(
πξ2

2
)dξ , (C5)

S(θ) =

∫ θ

0

sin(
πξ2

2
)dξ . (C6)

The density profile ρ = |ψ|2 given by this solution
asymptotes to (A+B)2 as x→ −∞ and B2 as x→∞. At
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t = 0, the density profile becomes a step function with
constant value (A + B)2 and B2 for x < 0 and x > 0.
There is a singularity at x = 0, where a sharp density
jump exists, while the velocity remains regular and is
zero everywhere.
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FIG. 12. Snapshots of density evolution from the density
jump. Solid (black) lines represent the exact solutions. The
(red) dots represent numerical results from a fluid simulation.

The analytical evolution of the solution can be under-
stood through the Fourier transform of the wave func-
tion. The initial step function of density profile contains
the waves of all wavelengths with the dispersion rela-
tion derived by the Schrödinger equation ω ∝ k2. Those
waves do not couple with each other and evolve indepen-
dently. Waves with short wavelength have larger speed
but smaller amplitude. They propagate faster and leave
the longer wave modes behind, leading to an intricate
interference pattern.

Fig.(12) presents snapshots of the density evolution
starting from a step-function at t = 0. The constants
are chosen such that ~/m = 0.0626, B =

√
6 and

A =
√

5 −
√

6, so the initial density has value 6 and
5 on the right and left side of the origin. The initial
density jump at the origin launches waves which propa-
gate away from it. At the front of the wave propagation,
the wavelength and amplitude of oscillations are getting
smaller. The numerical results agree well with the an-
alytical results, as long as the relevant oscillations are
resolved.

3. A Failed Test: Collision of Two Wave Packets

A particular demanding test of the fluid formulation
is to investigate a case where the density vanishes in iso-
lated places. The quantum pressure p becomes ill-defined
and the fluid solver might not yield the correct evolution.
On the other hand, one might hope that inaccuracies
at isolated points do not affect significantly the overall
global evolution. This turns out not to be the case in
this example.

The free Schrödinger equation admits a solution where
a single Gaussian wave packet moves with momentum ~k

ψ(x, t) =

√
α

α+ i ~m t
exp

[
− (x+ x0 − ikα)2

2(α+ i ~m t)

]
exp

(
−αk

2

2

)
.

(C7)
The linearity of the Schrödinger equation allows two
meeting wave packets to evolve on their own and pass
through each other, for instance:

ψ(x, t) =

√
α

α+ i ~m t
exp

[
− (x+ x0 − ikα)2

2(α+ i ~m t)

]
exp

(
−αk

2

2

)

+

√
α

α+ i ~m t
exp

[
− (x− x0 + ikα)2

2(α+ i ~m t)

]
exp

(
−αk

2

2

)
. (C8)

The density and velocity can be deduced in this situation

ρ = m|ψ|2 , v =
~

2im

ψ∗∇ψ − ψ∇ψ∗
ρ

. (C9)

Fig.13 shows the comparison between the analytical
and numerical solutions (using the fluid code). In this nu-
merical test, we take α = 1/500, k = 20π and x0 = 0.1.
As the two wave packets move towards each other, at
some point the interference between two waves results
in vanishing density in certain locations. In the snap-
shots, the numerical solution follows the analytical evo-
lution very well until the vanishing density region from
interference first appears (middle panel). After that, the
numerical solution deviates from the analytical solution.

The local densities at the position of destructive inter-
ference in the fluid code are very small, but remain pos-
itive and never reach zero. The error of density in those
regions can not be smaller than machine error which ef-
fectively acts as a density floor. On the other hand, the
true quantum pressure (Eqn. 9) is proportional log ρ and
diverges at the region of destructive interference diverges.
However small the error of the local density is, the error
of the quantum pressure is always infinite where the true
density is zero. Therefore, the simulated dynamics de-
viates from the analytical solution after the destructive
interference shows up. We have verified that this result
is independent of the spatial or temporal resolution em-
ployed.

Where the density is very low in the numerical sim-
ulations, the quantum pressure is large and susceptible
to sizable numerical errors. The velocity suffers from a
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similar problem. One might think evolving the momen-
tum density (as opposed to velocity) could alleviate this
problem. This is partly true: the momentum density in
fact vanishes in these places where the density vanishes.
The issue is that one still needs to advect the momentum
density by a suitable velocity field: the ill-defined nature
of the velocity (or its very large value) in such locations
remains a problem.

Destructive interference like that depicted in Fig. 13
might seem like a rather artificial situation, but it turns
out to be a fairly generic occurrence in the nonlinear
regime (see discussion in Sec. III). The fact that the fluid
code fails to evolve correctly past regions of destructive
interference cause it to over-predict the amount of power
on small scales (see Fig. 2 and 3 in Sec. III). One can
circumvent this problem by switching to a wave code,
or by developing some kind of a hybrid code (fluid on
large scales, wave on small scales) which could combine
the best features of both formulations. We have checked
that the wave code successfully evolves past these regions
of vanishing density (a plot of the numerical solution
against the analytical one would not be too instructive,
as they lie on top of each other).
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FIG. 13. Snapshots of density evolution for the collision of two
Gaussian wave packets. Solid (black) lines represent the exact
solution. Dashed (red) lines represent the numerical results
from a fluid simulation. A wave simulation, on the other
hand, reproduces the exact solution very closely; the wave
simulation results essentially lie on top of the solid (black)
lines.
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