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Accurate determination of gravitational wave source parameters relies on transforming between
the source and detector frames. All-sky searches for continuous wave sources are computationally
expensive, in part, because of barycentering transformation of time delays to a solar system frame.
This expense is exacerbated by the complicated modulation induced in signal templates. We in-
vestigate approximations for determining time delays of signals received by a gravitational wave
detector with respect to the solar system barycenter. A highly non-linear conventional computation
is transformed into one that has a pure linear sum in its innermost loop. We discuss application of
these results to determination of the maximal useful integration time of continuous wave searches.
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I. INTRODUCTION

The hunt for the first detection of continuous gravita-
tional waves (CW) is under way with many searches pub-
lished [1–28] or in progress. Some searches target known
potential sources, such as the Crab Pulsar, but other
searches look for unknown sources over a broad frequency
band and cover large parameter spaces. These algorithms
make use of substantial computational resources, so any
reduction in computational demands is helpful. In this
paper, we examine one aspect of the searches amenable
to simplification: calculation of the time delays of signals
received by a gravitational wave detector with respect to
the solar system barycenter for an ensemble of assumed
source sky positions.

The barycentric time corrections play an important
part in the signal-space geometry because the signal tem-
plates have the general form A(t, p) exp(iΦ(t, p)), where
amplitude terms A(t, p) are slowly varying, but the phase
Φ(t, p) can vary rapidly. Accurate determination of the
phase relies on precise positioning of the detectors in
space and time, as this dictates the signal arrival time.
Thus most of the influence of sky position mismatch
comes through barycentric corrections that act mostly
on phase.

We investigate approximate models for time delays,
characterized here by “emission time”, the inferred time
of signal emission in the solar system barycenter frame
for a given signal reception time at the detector and
the distance to the source. In addition, our semi-
analytic formula provides an efficient way to compute
sets of barycentric corrections for nearby templates using
piece-wise polynomial approximations. The analysis of
barycenter timing corrections for the Earth-Sun system
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serves in addition as a model for a general circularized
binary with small modulation depth. As the modula-
tions of source and detector add independently, such an
analysis could, in principle, be applied to a binary source
simply by doubling the number of terms for an assumed
signal model.

A recently published paper [29] explored reduced or-
der modeling with respect to time of barycentering for a
targeted search of a single sky location. To simplify com-
putation the authors of the paper did not model Shapiro
delays which add considerable non-linearity to emission
time correction. Our approach addresses spatial depen-
dence of barycentering for discrete time intervals, includ-
ing all terms, in particular Shapiro delays, and produces
models with corrections smaller than any practical toler-
ances in the wide-parameter searches. We specify our ba-
sis vectors explicitly, in terms of well-understood time pe-
riods and explicit sky-position dependent functions. The
decomposition is performed with factor analysis. Our
ability to tackle highly-nonlinear corrections is largely
due to modeling of differential emission times.

Traditional computation of emission times involves
trigonometric functions, square roots, and divisions
which are very expensive operations on any modern hard-
ware. The decomposition presented in this paper trans-
forms this computation into a bilinear product of a few
hundred precomputed terms. This computation is per-
formed using only addition and multiplication and is eas-
ily vectorized. While our algorithm involves fewer op-
erations than traditional computation, the fact that no
trigonometric or other special functions are used places
it in a class of its own, with speed not dependent on
the efficiency of system libraries, resulting in speedup of
barycentering calculations of potentially several orders of
magnitude for applications to all-sky searches.

While this improved computational efficiency is most
welcome, the most expensive all-sky broadband searches
have inner loops that iterate over frequency and spin-
down, and the cost of computing barycentric corrections
is largely amortized away. In these situations the al-
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gorithm’s greater contribution is enabling Loosely Co-
herent methods. The Loosely Coherent algorithms [30–
32] used in recent CW searches [33–35] are constructed
to process sets of signal templates close in sky position,
spindown and frequency. In the limit of infinitely dense
placement these template sets form a manifold, the ge-
ometry of which influences the efficiency of the algorithm
and, of course, its technical implementation. The model
discussed here provides explicit expressions for the type
of degeneracies exploited by the Loosely Coherent algo-
rithms.

Lastly, the explicit identification of basis vectors, in
particular the dependence of phase on sky position mis-
match, permits us to show that fully coherent single-
interferometer large-parameter-space searches are not op-
timal. Rather, a semi-coherent search maximizes detec-
tion efficiency, and increasing integration time further
can actually decrease detection efficiency.

Even for analysis of data from multiple interferometers
this result still holds in cases for which there are addi-
tional search parameters, such as frequency derivatives.
For example, when data from two interferometers is ana-
lyzed the dimension of the fully coherent data considered
as a vector space over real numbers is four. Any search
iterating over initial signal phase, right ascension, dec-
lination, and first frequency derivative (spindown) will
have four independent parameters to fit to the fully co-
herent data. In other words, the effective bandwidth of
the signal is larger than is naively assumed in a fully
coherent search.

In the following, section II summarizes the exact math-
ematical model we use for barycentering and the moti-
vation for an approximate version. Section III outlines
the structure of a practical implementation of the ap-
proximation procedure. Section IV describes in detail a
particular demonstration example of an approximation
implementation. Section V summarizes results from ap-
plying the example implementation to the time span of
the first Advanced LIGO data run. Section VI discusses
the implications of the results.

II. MATHEMATICAL MODEL

Precise barycentering has been important to pulsar as-
tronomy for decades. A widely used expression for emis-
sion time in the pulsar frame (tpsre ) is given by Edwards,
et al. as [36, Eq. 7]

tpsre = tobsa −∆� −∆IS −∆B, (1)

where tobsa is the arrival time at the observatory, ∆� is the
time delay from transforming from the detector frame to
the SSB, ∆IS is the travel time in the interstellar medium,
and ∆B includes transformation to the pulsar frame for
binary systems.

We reframe this in terms of searches for continuous
gravitational waves:

T (t, u, p) = t−∆�(t, u)−∆IS −∆B(t, p). (2)

The emission time T is a function of detector local time t,
source location u and intrinsic source parameters p (for
a source in motion). Because modern computer archi-
tectures are vector-based, it is typically more efficient to
compute arrays of values of T (t, u, p) for sets of times
T = {ti} and templates S = {(uj , pj)}.

For a single template (u0, p0) the function T (t, u0, p0)
has a very non-trivial behaviour due to several nearly
periodic influences from the Sun, planets, and the Moon
as well as contributions from General Relativity.

Because any analysis method must overlap templates
(u, p) closely enough to provide sufficient detection cov-
erage, we can expect to compute arrays T (T , u, p) for
nearby (u, p).

Therefore, we separate the problem into two parts:
computation of T (T , u0, p0) for a fixed template (u0, p0);
and computation of differences ∆(T , u, p;u0, p0) =
T (T , u, p) − T (T , u0, p0). When sets T and S are finite
the isomorphism of vector spaces R[T×S] and R[T ]⊗R[S]
implies there exists the following decomposition:

∆(ti, uj , pj) =

N∑
k=1

fk(ti)gk(uj , pj) (3)

where fk(ti) and gk(uj , pj) are, in general, arbitrary
single-valued functions. Such decompositions in more
general situations such as continuous or algebraic func-
tions have been studied extensively. The work goes back
to the 13th problem by Hilbert, with one of the main
results being the Kolmogorov-Arnold representation the-
orem [37, 38]. These decompositions are often used for
data compression and work well even in the case of very
wideband signals such as compact binary coalescences
[39].

The key to our approach is that it is possible to find
an approximate version of Equation 3 with a number of
terms N much smaller than the dimensionality of space
spanned by ∆(ti, uj , pj). The well-understood equations
of motion of the Solar system allow us to use explicit time
and space dependent factors and perform a simple linear
regression to find the coefficients.

Besides providing computational efficiency this analy-
sis identifies analytical functions fk and gk, paving the
way for developing advanced Loosely Coherent [30–32]
semi-analytic statistics.

III. PRACTICAL IMPLEMENTATION

We wish to find a function approximating ∆(ti, uj , pj),
which varies smoothly in time and sky coordinates. In
this section, we outline a procedure for finding such a
function using terms commonly applicable to astronom-
ical analysis.

We describe sky mismatch using small shifts in right
ascension and declination. For right ascension these
shifts correspond to rotations about the Earth’s equa-
torial axis. A shift in declination is not a rotation, but
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is a flow diverging from one pole and converging to the
other. Because we use finite shift values, the declination
flow is not defined in the pole vicinity, so a negligible
region around each is excised from the input data. We
define the following procedure:

1. Pick a set of signal arrival times T .

2. Construct a coarse sky grid Gt with minimum point
separation of ε in spherical distance. Add to these
a grid of points in a neighborhood B� around the
Sun’s position at each time t ∈ T .

3. For every time t ∈ T and every point in the
coarse sky grid Gt, compute the emission times
te ∈ T (t, Gt), where T is a function returning a
vector of emission times corresponding to each ar-
rival time and source location.

4. Introduce a displacement grid ∆G of small sky ro-
tations.

5. Compute emission times T (t, Gt,r) for each grid
Gt,r displaced by rotation r ∈ ∆G.

6. Compute the difference ∆(t, Gt, r) ≡ T (t, Gt,r) −
T (t, Gt,0) in emission times for each rotated and
unrotated point at each time. This function varies
smoothly in time and sky-direction.

7. Define a function ∆̃(t, Gt, r) ≡
∑
k akxk with a set

of coefficients {ak} for parameters {xk}, and use
least-squares fitting to compute {ak}. Ideally, we

would want to find {ak} such that max(|∆̃(t, Gt, r)−
∆(t, Gt, r)|) is minimized, but the computational
costs of such a search are too high. The parameters
{xk} can be chosen for implementation convenience
and are usually derived from easily computed (or
pre-computed) quantities (see appendix A).

IV. APPLICATION EXAMPLE

We now illustrate the algorithm with an application to
real data. The regression factors are listed explicitly. We
group them into several categories for ease of exposition.
The grid parameters and other static inputs are listed in
Table I.

The categories group terms with similar composition:

• Direction-independent terms depending on GPS
time and shift in sky position

• Direction difference-independent terms depending
on source sky position and GPS time

• Time-independent terms depending on source sky
position and shift in position

In a practical implementation the direction-independent
and time-independent terms could be precomputed, as
the arrays needed to store them are relatively small. The
direction difference-independent terms can be easily fac-
torized into a product of precomputed arrays. All the
terms are listed in appendix A.

The algorithm was applied to the time range covered
by O1 data [40–42] for 40 separate 250 000 second chunks,
overlapping by 50 000 seconds each. As reference data,
we use the tools included in the LIGO Analysis Library
[43], which have been checked by comparison with the
widely used radio astronomy timing package, TEMPO2
[36, 44].

As a maximum acceptable error on timing, we used a
30-degree phase difference for a 2-kHz signal, or 42 µs,
in order to lose no more than ∼15% SNR in all-sky CW
searches reaching as high as 2 kHz. The SNR loss is less
than 8% for a 1.5 kHz signal.

An explicit fit formula for one of the chunks is listed
in appendix B. This fit has the largest maximum error
among the fits, 20.3 µs. The fit expression is a bilinear
product of precomputed fit coefficients and monomials
in ∆α, ∆δ and ∆t. In a practical implementation the
grid of displacements, and thus monomial coefficients,
is kept static inside the loop that computes ∆t. The
actual computation of ∆t easily vectorizes and takes
few instructions on modern computers. Note that it is
not necessary to keep the grid static with respect to all
variables. For example, the grid can be static in ∆δ and
depend on t and α — the monomial grid recomputation
cost will be amortized away.

Some fitting factors were necessary only because de-
modulation of high-frequency (≈ 2 kHz) signals demands
fine time resolution. Their influence on fit error is sum-
marized in Table II. For lower-frequency signals the time
resolution requirements are much looser, and some terms
can be omitted from the fit.

V. RESULTS

The fits were tested using the following procedure. We
chose 16 × 8 = 128 points on the sky, evenly spaced in
right ascension and declination, to serve as patch centers.
For each patch, we shifted the central point by a random
value in [−0.01, 0.01] for right ascension, and another for
declination. A total of 50 shifted points were generated
for each patch. The even spacing of test points resulted
in overcoverage at the poles, but this was tolerated in
favor of code simplicity.

We divided the span of the first Advanced LIGO data
run (∼4 months), O1, into 200 000 second chunks, and
took time points from each chunk at 30-minute intervals.
We obtained reference values for all points, then applied
the fit model to each patch’s points as a deflection from
its center.

A plot of the maximum absolute residual for each ∆t
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TABLE I. Input parameters used in fits

Parameter Value

T Every hour between tmin and tmax

tmin From start to end of O1, spaced every 200 000 seconds

tmax tmin + 250 000 seconds

ε 0.1040524 rad

∆G All combinations of ∆α and ∆δ

Gt,r Random subset of Gt with 7.5× 105 points

∆α {−0.01,−0.00667,−0.00333, 0, 0.00333, 0.00667, 0.01}
∆δ {−0.01,−0.00667,−0.00333, 0, 0.00333, 0.00667, 0.01}
ε� 0.001 rad

N� 5

S(t) Sun position at time t

B� A grid of N� ×N� points centered on S(t), evenly spaced in α and δ with step ε�

TABLE II. Term significance analysis. The max error column
shows errors when the specified terms are omitted.

Term Group Equation Max Fit Error (s)

2nd Order Sinusoids A12 3.4319967642

1st Order Sinusoids A11 0.4335595581

∆t A8 0.0235629364

∆t2 A9 0.0010017764

Sun Direction A10 0.0002486640

Sidereal Rotation A7 0.0001820357

Direction-difference A6 0.0001655650

and ∆φ is shown in Figure 1. The maximum absolute
residual for each reference time is shown in Figure 2.
All points fell below the error threshold. We also show
a histogram of all errors in Figure 3. The bulk of the
errors are well below the threshold, and for a search of
this length, any particular point would spend only a small
fraction of time in a high-error region.

A prototype implementation of the method was opti-
mized using SSE vector instructions, and a test was per-
formed to compare the speed of the new method to the
existing implementation in the LAL library. The older
SSE instruction set was chosen to demonstrate gains
even on older computing hardware. We observed a 10x
speedup relative to LAL implementation. An implemen-
tation based on newer AVX512 instructions should show
an additional 4x speedup. The prototype code computed
sums

∑
k akxk for each template. In realistic search codes

much of this computation can be reused, resulting in still
larger speed improvements.

VI. DISCUSSION

The Loosely Coherent method of detecting signals an-
alyzes sets of templates. For the set based on nearby sky
locations it is important to understand the evolution of

FIG. 1. Maximum absolute residual over all test patches.
Angular distance is calculated as

√
(∆α)2 + (∆δ)2.

signal phases for nearby templates. The fit described in
this paper explicitly demonstrates that relatively few pa-
rameters are needed to describe time arrival differences
between nearby templates. While the benefits of reduced
parameter count are clear for loosely coherent searches,
the reduced count also has implications for conventional
fully coherent searches.

It is well known that a mathematically optimal detec-
tion statistic consists of a linear filter followed by a power
detector [45]. The linear filter is chosen to match ex-
pected signal properties and to reject noise outside of the
signal bandwidth. The presence of sky position difference
terms in the example (appendix B) shows that the sky po-
sition mismatch is equivalent to phase modulation of the
incoming signal and the corrections span a 2-dimensional
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FIG. 2. Maximum absolute residuals. Each point represents
the fit for a 250 ksec interval. The fact that no periodicity is
evident suggests that the fits are able to match the function
behavior piecewise.

FIG. 3. Distribution of residual magnitude. For large-
timebase searches, only the bulk of the distribution matters,
which is well below the error threshold.

vector space. Thus for any search where sky position un-
certainty requires multiple templates, the bandwidth of
signals searched for is wider than the inverse of the in-
tegration time, and the fully coherent search is not the
most efficient [30] detection statistic from both compu-
tational and detection viewpoints.

For example, if such a search uses one year’s worth of
data from a single interferometer, the maximal sensitiv-
ity is reached at 6 months integration time, or even ear-
lier if parameters other than sky position are uncertain.
For a search using many interferometers a fully coherent
search can be more sensitive, but the gain in sensitivity
is smaller than predicted from the increase of integration
time alone.

This development provides an efficient method to com-
pute emission time corrections, provides a basis for ex-
tension of the PowerFlux cache to longer integration
times and lays the groundwork for future development

of Loosely Coherent algorithms.
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Appendix A: Regression factors

In this section we list factors used in the regression fit.

1. Definitions of Variables

The sky position variables are defined as

e1 = cos(δ) cos(α)

e2 = cos(δ) sin(α)

e3 = sin(δ)

(A1)

with α ∈ [−π, π] and δ ∈ [−π2 + 0.01, π2 − 0.01]. The ad-
justment by 0.01 radians prevents flow over the poles,
which would lead to ambiguous right ascension. The
change in ei for a shift in right ascension ∆α, and in
declination ∆δ can be approximated via Taylor expan-
sion:

∆e1 = (− 1
2∆α2 cosα cos δ − 1

2∆δ2 cosα cos δ

+ 1
4∆α2∆δ2 cosα cos δ −∆α cos δ sinα

+ 1
2∆α∆δ2 cos δ sinα−∆δ cosα sin δ

+ 1
2∆α2∆δ cosα sin δ + ∆α∆δ sinα sin δ)

∆e2 = (∆α cosα cos δ − 1
2∆α∆δ2 cosα cos δ

− 1
2∆α2 cos δ sinα− 1

2∆δ2 cos δ sinα

+ 1
4∆α2∆δ2 cos δ sinα−∆α∆δ cosα sin δ

−∆δ sinα sin δ + 1
2∆α2∆δ sinα sin δ)

∆e3 = (∆δ cos δ − 1
2∆δ2 sin δ)

(A2)

For each time point we define,

~S Vector pointing from Sun to Earth

~v Detector velocity vector

∆t Time since reference point

Ω⊕ 2π/sidereal day.

(A3)

We also define an array of the sin/cos of the reference
point’s right ascension and declination:

z = {sinα, sin δ, cosα, cos δ} (A4)

and the second-order terms, excepting sin2 terms because
they can be expressed as 1− cos2:

z′ = {cos2 α, cos2 δ, sinα sin δ, sinα cosα,

sinα cos δ, sin δ cosα, sin δ cos δ, cosα cos δ}
(A5)
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2. Direction-independent terms

The following terms are constant in sky-direction, and
can be precomputed for every GPS time, and direction
difference.

∑
i

a1,i∆ei (A6)

3. Difference-independent terms

The following terms are constant in direction-
difference.∑

i

a2,i sin(Ω⊕∆t)z′i + b2,i sin(Ω⊕∆t)z′i (A7)

a3,1∆t cos δ + a3,2∆t2 cos δ + a3,3∆t cos2 δ (A8)

∑
i

a4,i∆t
2z′i (A9)

∑
i

a5,iSiei (A10)

4. Time-independent terms

The following terms vary only in sky-direction.

∑
i

a6,izi (A11)

∑
i

a7,iz
′
i (A12)

Each of the terms in equations A6-A12 is multiplied
by ∆α,∆δ,∆α2,∆δ2,∆α∆δ. In addition, we include
direction-time differential terms

∑
i

a8,i∆t∆ei (A13)

without ∆α/∆δ factors. Each term goes to zero when
the rotation angle goes to zero. Note that Sun-Earth and
detector velocity vectors are those for the saved points.
In each term, any parts greater than order 3 in ∆α and
∆δ are removed. The effects of removing sets of terms
are shown in Table II.

Appendix B: Example Fit

As an example, we list below the resulting formula from a fit for GPS time 1127833121. The expression is a bilinear
product between precomputed fit coefficients and monomials in ∆α, ∆δ and ∆t. Only significant terms are shown.
This fit has the largest maximum error among the fits, 20.3 µs.

∆T = [−1.69]10−5∆t∆e1 + [8.98]10−5∆t∆e2 + [−495e2 + 71.2e1]∆α+

[30.8 cos(δ)− 71.2e3 sin(α)− 495e3 cos(α)]∆δ + [3.89 cos(δ)]10−5∆δ∆t + [8.14e2 + 83e1]∆α2+

[0.0132e2 − 0.00634e1] sin(Ω⊕∆t)∆α+ [0.00644e2 + 0.0132e1] cos(Ω⊕∆t)∆α+

[−35.6e2 − 248e1 − 0.5e3S3]∆δ2 + [0.00634e3 sin(α) + 0.0132e3 cos(α)] sin(Ω⊕∆t)∆δ+

[0.0972e2 − 0.0157e1]10−10∆α∆t2 + [−0.0132e3 sin(α) + 0.00644e3 cos(α)] cos(Ω⊕∆t)∆δ+

[−0.00686 cos(δ) + 0.0157e3 sin(α) + 0.0972e3 cos(α)]10−10∆δ∆t2 + [43.7]∆α∆e1 + [−331]∆α∆e2+

[83.2]∆α2∆e1 + [−82.2]∆δ2∆e1 + [165e3 sin(α)− 27.4e3 cos(α)]∆α∆δ + [−0.0972e3 sin(α)]10−10∆α∆δ∆t2
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