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We demonstrate how to obtain optimal constraints on a primordial gravitational wave component in lensed
Cosmic Microwave Background (CMB) data under ideal conditions. We first derive an estimator of the tensor-
to-scalar ratio, r, by using an error-controlled close approximation to the exact posterior, under the assumption
of Gaussian primordial CMB and lensing deflection potential. This combines fast internal iterative lensing
reconstruction with optimal recovery of the unlensed CMB. We evaluate its performance on simulated low-
noise polarization data targeted at the recombination peak. We carefully demonstrate our r-posterior estimate
is optimal and shows no significant bias, making it the most powerful estimator of primordial gravitational
waves from the CMB. We compare these constraints to those obtained from B-mode band-power likelihood
analyses on the same simulated data, before and after map-level quadratic estimator delensing, and iterative
delensing. Internally, iteratively delensed band powers are only slightly less powerful on average (by less than
10%), promising close-to-optimal constraints from a stage IV CMB experiment.

I. MOTIVATION

After the completion of the Planck Cosmic Microwave
Background (CMB) mission[1], the major target of the CMB
community has now become precise measurement of the
CMB polarization. The magnetic (B) part of the CMB po-
larization [2, 3] on degree scales is a unique signature of the
stochastic background of primordial gravitational waves pro-
duced during inflation [4, 5]. Constraints on the tensor-to-
scalar power spectrum ratio, r, are expected to increase by
two orders of magnitude in precision within the next decade:
CMB Stage IV (CMB-S41) has forecast sensitivity down to
r ∼ 5 · 10−4, using delensed B-mode band powers after fore-
ground cleaning [6]. Lensing of the CMB photons by large-
scale structures generates B polarization that effectively ap-
pears as an approximately white cosmic variance noise [7, 8].
In order to reach such tight constraints on the primordial sig-
nal, successful delensing of this 5µK-arcmin noise is manda-
tory. Currently and for the next few years, the most faith-
ful lensing tracer at the scales relevant for B-mode delensing
is the Cosmic Infrared Background(CIB) [9], able to achieve
40% delensing on 60% of the sky [10], and possibly more
in areas that are clean from galactic dust. It is also possi-
ble to combine the CIB with other large-scale structure trac-
ers [11, 12], or with the CMB internal reconstruction [10],
in order to increase its fidelity to the CMB lensing field.
Lensing estimates for CMB-S4 will be dominated by the in-
ternal reconstruction, using polarization quadratic estimators
[13] or more powerful iterative estimators, first introduced by
Ref. [14]. At the low instrumental noise levels expected for
CMB-S4, iterative internal estimation from CMB polarization
has been demonstrated on simulated data to give lensing re-
constructions that are more than 90% cross-correlated to the
true lensing [15, 16].

One may ask whether it could be possible, at least in princi-
ple, to do even better than these forecasts. The lensing deflec-
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tions introduce non-Gaussianities in the form of higher order
statistics in the CMB temperature and polarization [8], which
are used to reconstruct the lensing signal [17]. Delensing will
remove part of the non-Gaussianity, but only imperfectly, and
some amount of information must remain beyond the power
spectra. Hence, it is plausible that there may be room for alter-
native statistics that compress more information than delensed
B-mode band-powers.

This paper has two main purposes. The first is to demon-
strate how to obtain directly the posterior probability density
(PDF) for r, from lensed CMB data. The posterior contains all
the information on r, and constraints based on it are optimal.
The second is to compare this optimal method to band-power
likelihood analysis. Finding a posterior width in agreement
with naive expectations will confirm current forecasting meth-
ods and our understanding of how well CMB experiments can
constrain primordial gravitational waves.

Our approach uses an approximate, analytic marginaliza-
tion of the large-scale structure lensing to build the statistics
of interest, here the tensor-to-scalar ratio, r. This analytic
marginalization is a fairly natural choice, and has been used
already in a different context by Ref. [14], where the aim was
to obtain an optimal estimator of the lensing spectrum. In this
paper we generalize the analytic marginalization to an error-
controlled variational approximation and provide a rigorous
discussion of its accuracy, showing that corrections are neg-
ligible for our purposes and the experimental configurations
investigated. Variational principles have a long history in cos-
mology, at least dating back to J. Peebles minimum action
principle to reconstruct large scale motions[18].

We work in the flat-sky approximation. All our simula-
tions use the Planck 2015 cosmology [19], with power spectra
generated with the camb [20] software. We use square maps
of area 645 deg2, assuming periodic boundary conditions for
simplicity, with pixels of 1.5 arcmin on a side. Foreground
cleaning is a major challenge to the quest for primordial gravi-
tational waves. We do not consider these complications in this
paper, assuming throughout we are working with foreground-
cleaned maps with white noise power spectra. We always use
white Gaussian noise levels of

√
2 ·1.5µK-arcmin in polariza-

tion, a instrument beam of 3 arcminutes, and consider CMB
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multipoles below ` = 3000 only. The minimum multipole
we probe in our flat-sky implementation of the sky patches is
`min = 14, excluding the reionization peak. We consider 3
different levels of tensor modes, with tensor-to-scalar ratio rin

defined at the pivot scale k = 0.05/Mpc and a vanishing ten-
sor spectral index. The first has rin = 0.05, close to current
constraints r0.002 < 0.062 (95% c.f.) from BICEP2/KECK
array BK15 data in combination with Planck [21, 22]. For
the configuration just described, the nominal band powers are
enough for a strong detection. Second, rin = 0.01, in which
case the nominal band-powers cannot detect the waves deci-
sively but the delensed band-powers can. Third, a vanishing
amplitude rin = 0.0 where in all cases only upper limits can
be placed from the data.

The paper is built as follows. Sec. II describes our approx-
imation scheme to the exact posterior density function, and
Sec. III gives details on our numerical implementation. In
Sec. IV, we discuss our nominal and delensed band powers
likelihood and implementation. We present in Sec. V our re-
sults and summarise and conclude in Sec. VI. One appendix
details a couple of technical points for completeness.

II. POSTERIOR FOR TENSOR-TO-SCALAR RATIO

Given CMB Stokes parameter polarization data Xdat =
(Qdat, Udat), and for a uniform prior on r, the posterior is
proportional to the likelihood

p(r|Xdat) ∝ p(Xdat|r). (2.1)

Owing to the lensing by large scale structures, the CMB prob-
ability density function on the right-hand side is non-Gaussian
inXdat and does not have a simple analytical description. We
may write, however, marginalising over possible lensing de-
flection maps,

p(Xdat|r) =

∫
Dφ pφ[φ]p(Xdat|φ, r), (2.2)

where pφ is the probability density of the lensing potential,
defined by the large-scale structure evolution. When the lens-
ing map is known, the lensed CMB is still Gaussian, since the
deflections just remap points on the sky to very good approxi-
mation [23]. Hence we can consider p(Xdat|φ, r) Gaussian in
Xdat, with covariance determined by the lensed spectra of the
CMB together with the specified amount of tensor mode, the
transfer function and noise covariance matrix. Neglecting for
simplicity the tiny cross-correlation between φ and the CMB
E-polarization [24], which is too small to impact our results2,
we can write explicitly,

ln p(Xdat|φ, r) = −1

2
Xdat,†Cov−1

φ Xdat − 1

2
ln det Covφ,

(2.3)

2 We do include properly all cross-correlations including CφE` in all our
simulations.

with pixel-space covariance matrix

Covφ = BDφC
unl,fidD†φB

† +N. (2.4)

Here, B is the transfer function including instrument beam,
Dφ is the lensing deflection operator that maps the unlensed
CMB Stokes parameters to the ones deflected by∇φ, Cunl,fid

is our set of unlensed fiducial CMB spectra, andN is the noise
matrix. In position space and on the flat-sky, Dφ has the ex-
plicit representation (DφX)(x) ≡ X(x+∇φ(x)).

The model specified by Eq. (2.3) neglects the very small ef-
fect of lensing of the polarization generated from reionization,
so that a single, common lensing deflection Dφ can be used.
The CMB spectra contains the dependence on tensor modes

Cunl,fid
` ≡ Cscal,fid

` + r Ctens.,fid
` (2.5)

We pick the prior on lensing maps pφ in Eq. 2.2 to be Gaus-
sian with powerCφφ,fid

L , calculated from the non-linear matter
power3. Owing to non-linear evolution in the late Universe, pφ
is not exactly Gaussian. However, non-linear effects are weak
at scales relevant for the lensingB-modes (the non-linear con-
tribution to the degree-scale lensing B-power is only a few
percent), and generally the effects of non-Gaussian lenses is
not expected to bias the lensing reconstruction from polariza-
tion [25, 26]. Hence this choice is unlikely to significantly
bias our results. In practice this assumption could simply be
explicitly tested performing the reconstruction of this paper
using lensing maps from realistic N -body simulations.

The integrand in Eq. 2.2 peaks at the most probable lensing
map, given the data and candidate value r for the tensor am-
plitude. Let φ∗(Xdat, r) be this most probable potential map.
We may then write

e−S[φ] ≡ pφ[φ] p(Xdat|φ, r) (2.6)

and expand the action S[φ] to second order around φ∗,

S[φ] ∼ S[φ∗(r)] +
1

2
(φ− φ∗(r))Hr[φ

∗(r)] (φ− φ∗(r)) .
(2.7)

Both the lensing potential φ∗ and the curvature Hr at this
point have explicit dependence on the data map, and explicit
(through the CMB spectra) and implicit (through φ∗(r)) de-
pendence on r. In the following we suppress the data depen-
dence for notational clarity.

The lensing map marginalization, Eq. 2.2, becomes trivial
under this approximation. The result is, up to terms indepen-
dent from r,

ln p(r|Xdat) ' −S[φ∗(r)]− 1

2
ln detHr[φ

∗(r)], (2.8)

which forms the basis of our investigations. Leading cor-
rections or alternative expansions are discussed below in
Sec. II A.

3 We follow standard practice of denoting lensing multipoles with L and
CMB multipoles with `.
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In the remainder of this subsection we just note how S[φ∗]
is related to the B-mode power, by looking at its dependence
on r. Let us introduce the Wiener-filtered CMB mapsXWF =
(EWF, BWF) through

XWF ≡ Cunl,fidD†φB
†Cov−1

φ Xdat. (2.9)

These are the most probable unlensed CMB maps given the
observed Stokes data and given the fiducial model entering
the covariance Covφ. In particular, since the scalar unlensed
B power vanishes, BWF is the most probable (maximum a
posteriori) map of the B tensor modes, assuming the fiducial
value of r and lensing map φ are the truth. By definition

δS[φ]

δφ

∣∣∣∣
φ=φ∗(r)

= 0, (2.10)

hence dS/dr = ∂S/∂r for this lensing map. For this reason,
the prior term does not contribute to the action r-derivative,
only the likelihood defined in Eq. (2.3). It then follows (ne-
glecting the tensor E contribution)

dS[φ∗(r)]

d ln r
=

1

2

∑
`

∣∣BWF
` (r)

∣∣2 − 〈∣∣BWF
` (r)

∣∣2〉
r CBB,tens

`

. (2.11)

The first term on the right-hand side comes from the quadratic
part in the CMB likelihood. The sum

∑
l runs over all 2D fre-

quencies of our sky patch. The second term (the average of the
first over data realizations) comes from the log-determinant
ln det Covφ r-derivative4.

All dependence on the lensing map prior in the recon-
structed r-posterior Eq. (2.11) is absorbed into the lensing
map reconstruction φ∗. If the lensing map were exactly
known, BWF is the properly delensed B-mode map, there is
no marginalization over the lensing map and Eq. (2.11) di-
rectly gives the (derivative of log)r-posterior by trivial com-
parison to the expected power.

A. Corrections and alternative approximations

Eq. (2.8) is an approximation of the posterior PDF, that re-
lies on the Gaussianity of the reconstructed lensing map. Lens
reconstruction from the CMB is non-linear in the data, and
some non-Gaussian features are expected, and visible, in stan-
dard lens reconstructions with perfectly Gaussian true input
lensing[27]. If the approximation is not good enough, result-
ing constraints might be biased, or suboptimal, possibly both.
Hence it is very useful to be able to assess the size of the lead-
ing corrections. We discuss now how corrections can be eval-
uated, also giving us alternative expansion schemes. Sec. III D

4 This term is most easily derived realizing that on average, the
likelihood variation vanishes,

〈
∂r ln p(Xdat|φ, r)

〉
Xdat =

∂r
〈
p(Xdat|φ, r)

〉
Xdat = 0, since p is a properly normalized probability

density for any value of r. Hence Eq. 2.11 must average to zero.

later on demonstrates using these tools that Eq. (2.8) is accu-
rate and unbiased.

We can proceed as follows. The exact posterior in Eq. (2.2)
integrates e−S[φ]. Using an arbitrary trial action St as an ap-
proximation to S, we may write the exact identity∫

Dφ e−S[φ] =

(∫
Dφ e−St[φ]

)〈
e−∆S[φ]

〉
t
, (2.12)

where the average is with respect to probability density e−St ,
and ∆S = S − St is the mismatch between the true and trial
actions. After taking the logarithm, and for St the natural ex-
pansion Eq. (2.7), the first term on the right-hand side (the
normalization factor of the density e−St ) is our approxima-
tion Eq. (2.8), and the second term encapsulates all errors.
The point is that whenever St is chosen quadratic in φ, this
error term is an average over Gaussian lensing maps. We can
simulate these maps, and estimate this term by averaging over
simulations. Unless the approximation is extremely good, in
practice we can never probe directly the exponential with a
reasonable number of Monte-Carlo’s, but we obtain in this
paper leading contributions. Using a standard cumulant ex-
pansion we can write the asymptotic expansion

ln
〈
e−∆S

〉
t
∼ 〈−∆S〉t +

1

2

(〈
(∆S)2

〉
t
− 〈∆S〉2t

)
+ ...

(2.13)
In particular, all expansions of the form

St[φ] = S[φ∗] +
1

2
(φ− φ∗)†H (φ− φ∗) , (2.14)

for an arbitrary H matrix results in (including here only the
leading cumulant corrections)

ln p(r|Xdat) ∼ −S[φ∗]− 1

2
ln detH − κ1 +

1

2
κ2, (2.15)

where κ1 and κ2 are the mean and variance of ∆S from a
Gaussian ensemble of lensing maps with inverse covariance
H . This provides alternative expansion schemes and useful
consistency checks, where some of the difficulties of dealing
with the exact curvature can be eliminated by using a sim-
pler matrix, at the cost of a larger cumulant correction (see
Sec. III D).

III. POSTERIOR EVALUATION

This section describes the implementation of the different
terms in the posterior, Eq. 2.8. Two large log-determinants
must be evaluated. The determinant of the CMB data covari-
ance matrix is discussed in III A, and is in fact fairly harmless.
The second, the determinant of the lensing curvature matrix,
discussed in III B, is more complex, and is the most expensive
step of the entire implementation. However, we find that its
dependence on the data realization is very weak, and can be
neglected. For this reason, it only needs to be calculated once
for a simulation suite. All terms must be evaluated at the best
lensing map φ∗. The production of this map together with the
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Wiener-filtered CMB maps XWF is described in Sec. III C.
Finally we give in Sec. III D details on our generation of Gaus-
sian lensing map samples with large and dense covariance ma-
trices, as required for evaluation of the cumulant corrections.

A. Data covariance determinant

How to estimate log-determinants of very large, dense ma-
trices like Covφ? There is no trivial diagonalization, so that
the large size of the matrix renders brute force methods totally
useless. Possibilities include integral representations com-
bined with Monte-Carlo evaluation of the diagonal [28]. We
are only interested in the r-dependence. This allow us to sim-
plify the problem quite a bit. We first note that

c(r) ≡ − ∂

∂r

1

2
ln det Covφ∗(r) =

1

2
Tr Cov−1

φ∗(r)∂rCovφ∗(r)

where ∂rCovφ only depends on the covariance matrix con-
structed from tensor CMB spectra5. Using Monte-Carlo sim-
ulations, we can write an unbiased estimator as

ĉ(r) =
1

2
X†Cov−1

φ∗(r)∂rCovφ∗(r) X (3.1)

where X are unit spectra random variables with
〈
XiX

†
j

〉
=

δij . It is easily seen that the estimator is unbiased. Its Monte-
Carlo noise variance (when using Gaussian X) is simply the
Fisher information on r, divided by the number of simulations
used. We can further reduce the variance with the help of a
reference ideal covariance matrix, denoted with a subscript 0,
for which we know the determinant: consider the modified
estimator

ĉ(r)− ĉ0(r) + c0(r), (3.2)

the last term c0(r) ≡ 〈ĉ0(r)〉 being known analytically. With
a good isotropic approximation to the covariance we might ex-
pect to be able to reduce the MC noise of the original estimate
substantially. Fig. 1 shows in the upper panel the Monte-Carlo
error ∆ĉ(r)/|c(r)| as a function of r, using the raw estimator
ĉ(r) (blue line) of Eq. (3.1), with the lensed spectra as refer-
ence (orange) in Eq. 3.2, and using unlensed spectra (green)
as reference. More specifically, neglecting again the tensor E
contribution, these last two choices correspond to

clen
0 (r) =

1

2

∑
`

(2`+ 1)CBB,tens.
`

rCBB,tens.
` + CBB,len

` + CBB,noise
`

(3.3)

in the lensed case, and

cunl
0 (r) =

1

2

∑
`

(2`+ 1)CBB,tens.
`

rCBB,tens.
` + CBB,noise

`

(3.4)

5 The derivative ∂r does not act on φ∗(r); we are interested in the explicit
r-dependence only, for the reasons explained at the end of Sec. II

in the unlensed case. In these two equations, 2` + 1 is short-
hand notation for the exact number of modes of our flat-sky
patch, and CBB,noise

` is the beam-deconvolved noise spec-
trum. In the unlensed case, it is apparent that with a single
simulation we can reach well below percent accuracy on the
log-determinant.

In fact, for our experimental configuration at least, the
isotropic, unlensed spectra determinant approximation is ex-
tremely accurate, and the small deviation from it can be very
well captured by the leading term of a perturbative expansion
in powers of φ. This is shown in the lower panel of Fig. 1,
which displays the relative deviation of the exact determinant
c(r) from its isotropic counterpart calculated with unlensed
spectra (blue points with error bars) and the perturbative pre-
diction (red line). More explicitly, the perturbative prediction
is

1

2
ln det Covφ =

1

2
ln det Covφ=0 +

1

2

∑
L

RL|φL|2, (3.5)

where the linear, mean-field response matrix R is obtained in
the appendix, and the first term on the right-hand side is eval-
uated with the unlensed CMB spectra. At first sight, it might
appear counter-intuitive that the unlensed spectra prediction is
so accurate, but this is easily explained. In the limit of vanish-
ing instrumental noise and perfect resolution, the data covari-
ance Eq. (2.3) reduces to

Covφ
low noise−−−−−→
high res.

DφC
unl,fidD†φ.

Averaged over lensing maps this gives the CMB spectra
lensed by Cφφ. However, taking the determinant one expects
the factorization (for example after imposing a sufficiently
high band-limit making all these operators square matrices)

ln det Covφ
low noise−−−−−→
high res.

ln detDφD
†
φ + ln detCunl,fid.

The first determinant has no dependence on r and is an irrele-
vant constant. Hence, usage of the unlensed spectra gives un-
der these conditions the exact result irrespective of the amount
of lensing in the data. Fig. 1 demonstrates that in our instru-
mental configuration, the mean-field response R in Eq. (3.5)
captures very well the tiny residual coupling between these
terms, the transfer function and the noise matrix.

B. Hessian determinant

The Hessian H is defined as the second variation of the
log-posterior S of the lensing map, Eq. (2.7). Operationally
speaking there are three termsH ≡ Hdat+HCov+HPri. The
first originates from the quadratic piece of the CMB likelihood
and is data realization dependent,

Hdat
LL′ ≡

1

2

δ2

δφLδφ̄L′
XdatCov−1

φ Xdat

∣∣∣∣
φ=φ∗(r)

(3.6)
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FIG. 1. Upper panel: The three curves show the Monte-Carlo noise
∆ĉ(r)/c(r) (one simulation equivalent) root variance for three es-
timators ĉ(r) of the lensed data covariance r-derivative, Eq. (3.2).
The estimator accelerated by the isotropic reference estimator using
unlensed spectra and neglecting lensing (green), is already accurate
to well below a percent with a single Monte-Carlo estimate. Lower
panel: The red curve shows the relative deviation of the analytic per-
turbative prediction to the isotropic, unlensed approximation cunl0 (r)
to ĉ(r) (multiplied by a factor 100), Eq. (3.4). Blue points show esti-
mates of the exact c(r) from independent Monte-Carlo simulations at
each r point, where the iterative lensing solution φ∗(r) was obtained
using 10 iterations starting from the quadratic estimator. it is appar-
ent that the exact result is both very close to the isotropic estimation,
and correctly captured by the analytical perturbative expansion. The
error bars, independent from point to point, are the empirical stan-
dard deviations across 9 Monte-Carlo simulations. The figure was
built using a data realization with input rin = 0.05 where the r-grid
is densest.

the second also comes from the likelihood but is data-
independent,

HCov
LL′ ≡

1

2

δ2

δφLδφ̄L′
ln det Covφ

∣∣∣∣
φ=φ∗(r)

, (3.7)

and the third is the lensing map prior curvature, dominant on
small scales where the data does not constrain the lensing de-
flection field. Under our choice of Gaussian statistics for φ,
this prior term is trivially given by

HPri
LL′ =

δLL′

Cφφ,fid
L

. (3.8)

The calculation of the total Hessian determinant is the main
difficulty to get the r-posterior. It plays a key role in shap-
ing the final posterior and cannot be neglected, but is difficult
to obtain exactly. However, as shown further below, the de-
pendence of log-determinant on the data realization can be
neglected for all practical purposes. Hence, this calculation
only needs to be performed once for each model.

In general, we solve for ln detH by coupling the same trace
probing method described in Sec. III A to a double layered

conjugate gradient inversion. We use for HCov our accurate
approximation from Sec. III A for the covariance determinant,
with the trivial result

HCov
LL′ = δLL′RL. (3.9)

The main operational difficulty lies in the application of Hdat

to an arbitrary lensing potential map φ. The details of this
calculation are deferred to the appendix. There, it is shown
that one can apply the Hessian matrix to a lensing potential
vector at the cost of Wiener-filtering one pair of Stokes Q,U
maps. This operation is itself performed via conjugate gra-
dient inversion. Using a simple diagonal preconditioner for
the outer conjugate gradient inversion, we found that we need
slightly above 10 iterations and thus the inverse filtering of the
same number of polarization maps to conservatively solve for
φ†H−1∂rHφ to five significant figures. The same operations
must then be repeated for each Monte-Carlo φ used to probe
the trace, and at each point r of interest. For the area of∼ 645
square degrees and the resolution of 1.5 arcminutes dealt with
in this paper, a single probe of the trace at some r point takes
a couple of minutes. The final Monte-Carlo error on the PDFs
depends on the r-density of trace-probing MC’s, rather than
the number of MC’s per r point. Hence it can be advanta-
geous to use a dense r-grid where each point is sparsely trace-
probed. For the PDFs shown in this work, where we recon-
struct accurately the entire PDF shape, we typically use 64
r points, denser near the peak, and 4 MC’s per point, which
gives a crude but still reasonable estimate of the local error.

Figure 2 shows a couple of posterior reconstructions on
simulated data. One pair with input rin = 0.01 (orange), and
one pair with rin = 0.05 (blue). The filled colours shows
the reconstructions using the realization-dependent Hessian
estimate, where the width displays the 2σ uncertainties re-
sulting from the Monte-Carlo determinant evaluation. These
errors are independent only for the estimation of the poste-
rior r-derivative: after normalization to build the posterior it-
self, this produces a strong anti-correlation of errors between
points on opposite side of the peak on this figure. The black
lines show the corresponding curves, but with Hessian estima-
tion swapped between the two realizations. Summary statis-
tics are virtually identical, and this demonstrates that for all
practical purposes, we can neglect the data dependence of the
log-determinant. However, the dependence on the lensing po-
tential φ∗ remains, and we do not offer in this work a trivial,
fully isotropic approximation.

C. Iterative lens estimation

The first step in the r-posterior reconstruction is always
the calculation of the iterative solution φ∗ together with the
Wiener-filtered CMB maps XWF. We follow Ref. [16] very
closely, maximizing the lensing map posterior probability for
the lensing deflections using a quasi-Newton iterative descent.
At each iteration step, the current lensing estimate induces a
mean-field (〈φ〉, in standard lensing estimation terminology)
term to subtract from the quadratic estimate, originating from
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FIG. 2. Data dependence of the Hessian log-determinant. Compar-
ison of the r-posterior reconstruction on two simulated data maps
spanning 645 deg2 with 2.1µK-arcmin. polarization sensitivity. The
filled colors use the expensive, realization-dependent curvature de-
terminant estimate. The width shows the 2σ Monte-Carlo uncertain-
ties from the determinant derivative calculation. For each realization,
errors on opposite sides of the peak of the posterior are strongly anti-
correlated. The black lines show the same reconstructions but swap-
ping the log-determinant between the two realizations (black lines),
with virtually identical results. For the cases we investigated, the
determinant needs only be calculated on a single data realization.

the first variation (with respect to φ) of the covariance ma-
trix determinant. This term is small on all scales for lens re-
construction from polarization, and we use the same accurate
analytical approximation discussed in Sec. III A and in the ap-
pendix instead of simulations.

D. Higher-order cumulants calculation

Evaluation of the correction terms in Eq. (2.13) requires
sampling Gaussian lensing maps with inverse covariance
given by the curvature matrix chosen for the posterior ex-
pansion. This matrix is very large and has no trivial struc-
ture, hence is difficult to sample from, and standard generic
methods such as Cholesky decomposition are useless. It is
possible, however, to apply this matrix to a lensing map in
reasonable time, and powerful methods can be used to con-
struct samples with the correct covariance structure using this
property. We proceed by deforming continuously the inverse
square root of H as follows[29]. We connect H to the identity
matrix I defining

Ht ≡ I + t(H − I), (3.10)

and introduce φt ≡ H
−1/2
t φ0 where φ0 is a unit variance

Gaussian vector of the appropriate dimensionality. By defini-
tion, Ht=1 = H and φt=1 has covariance H−1. Differentiat-
ing gives the following ordinary differential equation (ODE)
for φt:

dφt
dt

= −1

2
(H − I)H−1

t φt (3.11)
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FIG. 3. Corrections to posterior and alternative expansion. Tensor-
to-scalar ratio r posterior estimates for one data realization (with in-
put value rin = 0.05), without any cumulant correction (solid blue),
including first (solid orange) and second (solid green) cumulant cor-
rections. The dashed lines show the same curves, but using a dif-
ferent posterior expansion scheme, with a less accurate but simpler
curvature matrix neglecting the lensing. The agreement between the
two methods is very good and provides a good consistency check, but
in the latter case the inclusion of the cumulant corrections becomes
mandatory. The dashed bands contain 68% of the probability.

The solution of this ODE at t = 1 is then by construction
the desired Gaussian sample6. We have used this machinery
to test corrections to our posterior approximation Eq. (2.8) on
one data realization. In this case,

HLL′ =
δ2S[φ]

δφLδφ̄L′

∣∣∣∣
φ=φ∗(r)

. (3.12)

As a consistency check we also checked the alternative choice
of curvature where the lensing deflections are neglected,

HLL′ =
δ2S[φ]

δφLδφ̄L′

∣∣∣∣
φ≡0

. (3.13)

The second case considerably speeds-up the calculation of the
curvature log-determinant, but the posterior is expected to be
less accurate. Figure 3 shows the different r-posterior esti-
mates, for one data realization with input rin = 0.05. The
solid lines shows our baseline approximation, without correc-
tions (blue), with first cumulant (orange) and with first two
cumulants (green). We have used 4 Monte-Carlo samples per
r-point, on a grid devised as just described in Sec. III B. We
use in all cases a standard low order Bulirsch-Stoer algorithm
[32] to solve the ODE defined in Eq. (3.11). The bracketed
inverse is solved with conjugate-gradient descent. The cor-
rections have a completely negligible effect on the posterior.
The dashed lines show the same curves with the choice of un-
lensed curvature. The agreement, including the corrections,

6 After discretization, the algorithm is reminiscent of the Van Cittert decon-
volution of image analysis [30, 31].
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is very good. However, the leading approximation is clearly
worse and the corrections are essential in bringing the two ex-
pansion schemes in agreement. In the remainder of this paper
we stick to the lensed curvature matrix, and safely neglect the
cumulant corrections.

IV. NOMINAL AND DELENSED B-MODE BAND POWERS

We now describe our reconstruction of r from raw and de-
lensed band powers. The likelihood of CMB data temperature
and polarization band powers has been discussed at length in
several places already, and efficient parameterizations both at
low and high multipoles are well known [e.g. 33, 34]. Only
preliminary work exists, however, for delensed band pow-
ers [35]. After performing consistency checks described in
the next section, we decided to use the Hamimeche and Lewis
(HL) likelihood [34], using analytical band-power predictions
and covariance matrices as described below. We note that
other possibilities such as the parametrization of Ref. [36]
seem to work just as well. We consider B-mode multipoles
only up to `max = 200, and use as baseline the maximal num-
ber of bins (74) that our flat-sky mode structure allows when
building the r-posteriors.

All of our B-spectra likelihoods may eventually be written

− 2 ln p(r|ĈBB) ≡ g(x`)Ĉ
BB
` Σ−1

``′ Ĉ
BB
`′ g(x`′)

with g(x) ≡ sign(x − 1)
√

2(x− lnx− 1) and x`(r) =

ĈBB` /CBB` (r). These power spectra include tensor contri-
bution, residual lensing power and beam-deconvolved noise.
The predictions of the spectra CBB` (r) are evaluated analyt-
ically, using the perturbative expression for the lensing B-
mode power to linear order in the appropriate lensing spec-
trum. For the nominal band powers we use the fiducial
lensing spectrum Cφφ,fid

L . In the case of the quadratic es-
timator or iteratively delensed band powers, we first empir-
ically measure the cross-correlation coefficient squared ρ2

L
of the reconstructed lensing maps to the true input from a
small set of simulations. We then use as lensing spectrum
Cφφ,fid
L

(
1− ρ2

L

)
. We neglect the tiny lensing effects on the

tensor spectra. The lensing maps themselves are obtained as
described in Sec. III C, with the difference that we exclude the
tensor modes scales ` ≤ 200 to build the tracers. Including
these modes would dramatically complicate the analysis: if
the delensed data and lensing tracer contain common multi-
poles, the delensed B-modes would contain very strong, spu-
rious delensing signature that originate from disconnected 4-
points and 6-points statistics of the CMB [37–39]. The reason
is that the lensing estimator cannot distinguish between true
and random lensing signatures in the data (such as shear or
magnification) and all of these signatures are removed after
delensing, leading to a spuriously unlensed-looking CMB at
the two-point level. The loss of signal to noise in the lensing
tracer by excising the largest angular scales is small: the de-
lensing efficiency ρ2

L is reduced by roughly 1% on the most
relevant scales L ∼ 500.

To delens the CMB, we use a simple remapping technique.
From the Wiener-filtered lensing deflection estimate α, we
simply remap the Stokes parameter (after beam deconvolu-
tion, and discarding multipoles higher than 2000) according
to the lensing inverse deflection field α−1, defined through
the condition that deflected points x + α(x) get remapped
back to themselves

x +α−1(x +α(x)) ≡ x. (4.1)

This inversion is performed exactly following Ref. [16], us-
ing a fast-converging Newton-Raphson solver. This delens-
ing technique differs operationally and conceptually from the
template method used for instance by the SPTpol team on
their polarization data [40], which uses a Wiener-filtered E-
mode map to build a B template, then subtracted from the
data. The filters of the template method are optimized to min-
imize the resulting B-power at linear order [9]. While the
remapping method naturally contains higher-order terms, the
noise is also remapped, which can result in higher total B
power if this is high such as for Planck data [10, 38]. However,
we found that there is basically no difference between the two
methods for the low levels of noise here. By default we in-
clude the noise remapping into our delensed B-power predic-
tions, but this is very small. Finally, there are no E/B sep-
aration complications [41, 42] since we use periodic patches
throughout this paper and the spectra estimator ĈBB

` are trivial
to build from the delensed or nominal Stokes maps.

For the covariance matrix, we use the simple approximation
[43, 44] combining the Gaussian part with corrections accord-
ing to the lensing kernels:

Σ`1`2 = δ`1`2σ
2
`1(CBB)

+
∑
`

∂CBB`1
∂CEE,unl

`

σ2
` (CEE,unl)

∂CBB`2
∂CEE,unl

`

+
∑
L

∂CBB`1
∂CφφL

σ2
L(Cφφ)

∂CBB`2
∂CφφL

(4.2)

with Gaussian spectrum variance

σ2
` (CXX) ≡

2
(
CXX`

)2
2`+ 1

(4.3)

where 2` + 1 really stands for the number of multipoles in
our flat-sky patch. The derivatives are evaluated to first or-
der in Cφφ,fid

L , or in Cφφ,fid
L (1 − ρ2

L) for the delensed band
powers. On the relevant scales ` ≤ 200, the covariance cor-
relation coefficients are small and of minor importance, and
the perturbative expansion is accurate enough. Collecting re-
constructions from simulations, we checked that the diagonal
of the covariance matrices matches the prediction to within a
couple of percent at least.

V. RESULTS

We have performed our baseline posterior reconstruction,
including realization-dependent determinant calculation, on
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FIG. 4. Posterior constraints on the tensor-to-scalar ratio r for dif-
ferent reconstruction methods on one data realization with an input
rin = 0.05, 0.01 and 0 from top to bottom. The black line shows
our new estimator. The green, orange and blue lines show the con-
straints from nominal, quadratic estimator delensed and iteratively
delensed B-mode band powers respectively, with likelihood built as
described in the text. For comparison, the red line shows the case of
perfect knowledge of the input lensing map, with posterior given by
Eq. (5.1). In the upper two panels, the dashed bands contain 68% of
the probability.

21 CMB simulations for each of the 3 different levels rin =
0.05, 0.01, 0 of tensor modes advertised in the introduction.
For each realization, we also performed likelihood analyses
from the quadratic-estimator delensed, iteratively delensedB-
mode band powers and with no delensing. Fig. 5 shows our
main results. For each simulation the constraints obtained

TABLE I. Summary statistics comparison on tensor-to-scalar ra-
tio constraints averaged over our data realizations, for the different
methods tested in this work and three input values of tensor modes as
indicated in the first row. The reconstructions are performed on maps
of 645 deg2 with 2.12µK-arcmin. polarization noise. The first three
rows show the results of B-mode band powers likelihood analysis,
without delensing, with quadratic estimator delensing and with iter-
ative delensing. The next row shows the constraints from the exact
posterior density function on r, obtained as described in this work.
The last row shows the case of a perfectly known lensing map for
comparison. We quote twice the standard deviation for the first two
columns where r is well constrained, and the 95% confidence limit
in the last column.

100 rin 5.0 1.0 0.0
band powers, no delensing 1.65 (2σ) 0.83 (2σ) 0.75 (95% c.f.)
band powers, φQE-delensing 1.27 0.56 0.40
band powers, φMAP-delensing 1.18 0.49 0.31
Exact posterior 1.14 0.46 0.29
φ-known posterior 0.87 0.30 0.12

from either our posterior p(r|Xdat) approximation are dis-
played (black), together with those obtained from the differ-
ent band-power analyses (coloured lines). Blue shows the re-
sults from the nominal (no delensing) band-power likelihood,
orange after delensing with the Wiener-filtered quadratic esti-
mator (φQE), and green after delensing with the iterative (for-
mally, the maximum a posteriori (MAP) solution φMAP) lens-
ing solution . Finally, for comparison the red line shows the
constraints achievable if the lensing deflections were known
perfectly. Up to irrelevant constants, this latter case is given
by

ln p(r, |Xdat, φin) ∝ −1

2
Xdat,†Cov−1

φinXdat−1

2
ln det Covφin ,

(5.1)
where φin is the lensing potential input to data realization
Xdat. The three panels shows rin = 0.05, 0.01 and 0 from
top to bottom. In the first two panels the quoted numbers are
the 2σ width of the PDF, and the lowest panel shows the 95%
confidence upper limit. The grey area around the black line
shows the 2σ uncertainty originating from the Monte-Carlo
measurement of the Hessian determinant. We evaluate these
errors simply by sampling an ensemble of posteriors from
the Monte-Carlo log-determinant’s errors. Fig. 4 shows ex-
plicitly the r posterior PDF for one of the realizations using
the same colour scheme. As visible there, all reconstructions
show skewness and other non-Gaussian features, hence these
summary statistics are only an imperfect representation of the
constraints on r.

All of our exact posterior estimates mean value lie within
1.8σ (rin = 0.05) of the true value. The series of rin = 0.01
simulations shows a single outlier, with recovered posterior
mean 100 〈r〉 = 0.53 formally lower than the input by 2.5σ,
but with a pdf showing substantial skew with no strong evi-
dence of an anomaly. We can try and isolate a possible sys-
tematic bias in our posterior approximation by combining all
posteriors as if they were independent measurements of r. Do-
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FIG. 5. Comparison of constraints on the tensor-to-scalar ratio r obtained from band-power analysis and the r posterior obtained in this work
(black), for 21 simulated data maps. Shown are constraints from nominal B-mode band powers (blue), quadratic estimator delensed band
powers (orange), and iteratively delensed band powers (green). The red curves show the constraints when the lensing deflection potential is
perfectly known for comparison. The grey shaded area shows the 2σ uncertainty on the constraint due to the Monte-Carlo evaluation of one of
the deflection Hessian curvature determinant in the posterior. The three panels use maps with different input tensor amplitudes rin = 0.05, 0.01
and 0 (top to bottom). We quote 2 standard deviations (multiplied by 100) in the first two panels, where the tensor modes are well constrained,
and the 95% confidence limit (also multiplied by 100) in the lowest panel with vanishing input tensor amplitude. All reconstructions are
performed on 645 deg2, with a white polarization noise level of 2.12µK-amin.

ing so, we obtain the constraints

100 r̂ = 5.15± 0.12 (100 rin = 5, combined) (5.2)

100 r̂ = 1.04± 0.05 (100 rin = 1, combined), (5.3)

both perfectly consistent with the input values. This con-
strains a systematic bias to a small fraction of a standard devi-
ation. The same test on all the band-power likelihoods or the
known-φ likelihood (Eq. 5.1) also shows consistency.

It is apparent that there is significant spread in the summary
statistics displayed on Fig. 5. As expected, this is more pro-
nounced for the nominal band-power analysis which has the
weakest constraints. While the different methods constrain-
ing power do rank as expected on average, the results using
the iteratively delensed band powers in green and our full
posterior reconstruction in black are very close, with a few
reconstructions showing nominally slightly worse summary
statistics from the posterior reconstruction. These cases seem
compatible with the errors on the posterior. Also, since the
exact band-power likelihood is intractable, it is very difficult
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to assess precisely the impact of our band power-likelihood
approximation on each realization. In all cases, iterative de-
lensing does perform better than quadratic estimator delens-
ing, but the improvement shows substantial realization depen-
dence as well, and in a couple of cases can be absolutely min-
imal. Table I shows the summary statistics averaged across
all these simulations. We find that the exact posterior outper-
forms the iteratively delensed band powers by 3%, 6% and 8%
for rin = 0.05, 0.01 and 0 respectively.

VI. SUMMARY

Unless the primordial B-mode power produced during in-
flation is very large, sophisticated analysis techniques such
as delensing will be essential to provide best constraints on
primordial gravitational waves. We have presented a new es-
timator, based on a close approximation to the exact poste-
rior of the tensor-mode amplitude. By careful Monte-Carlo
investigations of corrections to the approximation, we have
demonstrated that it is unbiased and very close to optimal,
providing the tightest possible constraints on primordial grav-
itational waves from CMB data. The estimator uses fast, joint
estimation of the best lensing deflection map and of the un-
lensed CMB.

This first investigation used a simplified setting, including
periodic sky patches, no analysis mask, and usage of homo-
geneous noise, facilitating both the iterative lens reconstruc-
tion and the unlensed E-B recovery from the observed lensed
Stoke polarization data. These assumptions did not play a key
role in obtaining our results, since the presence of the lens-
ing deflections and data realization dependence break isotropy
and prevent the existence of trivial basis to work with. Us-
age of Monte-Carlo simulations and inversion methods akin
to conjugate-gradient seem unavoidable. Lens reconstruc-
tion and Wiener-filtering on masked data have already been
demonstrated successfully [16] with the same methods, at the
cost of a manageable increase in execution time.

The posterior reconstruction has dependency on two as-
pects of the cosmological model used to define the CMB like-
lihood: the unlensed CMB scalar perturbations spectra and
the lensing potential power spectrum. Changes in the lensing
spectrum (or lensing deflection map prior) impacts slightly the
optimal lens reconstruction, and changes in the scalar spec-
tra the unlensed E and B polarization field reconstruction.
Hence, formally, usage of a slightly different fiducial model
might lead to a slightly different result. However, all these
power spectra are extremely well constrained in practice from
observations, including the lensing spectrum, so this is un-

likely to bring significant biases. Furthermore, if necessary
it is possible to include the uncertainty in the power spectra
in the posterior, by obtaining the linear response to the spec-
tra and extending in this way the posterior density, in analogy
to the way state-of-art lensing spectrum reconstruction likeli-
hoods are built [45, 46]. One can also go a step further and
marginalize directly over these using the empirical spectra, as
demonstrated by Ref. [10]. We also restricted our analysis
to the extraction of the tensor-to-scalar ratio assuming a fixed
template shape of the tensor spectrum. However, this is not
a limitation of this approach; using high-quality observations
the obvious generalization of this framework will be able to
distinguish features as well.

We have compared the performance of our estimator to that
of more traditionally planned B-mode band powers extrac-
tion. We found standard, well-demonstrated analytical likeli-
hood models are able to describe meaningfully the delensed
band powers, and we have used these likelihoods on nominal,
quadratic estimator delensed and iteratively delensed band
powers. The performances of these delensed band powers
do match naive expectations. For the configuration studied
here, targeting the recombination peak of the B-mode spec-
trum with noise levels in line with expectations from a CMB
stage-IV experiment, our new estimator does outperform the
iteratively delensed band powers by a realization-dependent
amount, also depending on the exact value of r, reaching 8%
on average for small values. Producing the posterior PDF for r
as we did is more expensive numerically than producing band
powers. Nevertheless, we demonstrated in this paper that the
analysis was possible, providing constraints optimal by con-
struction, and improving prospects on detecting a tantalizing
component of modern cosmology.
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Appendix A: Lensing map posterior curvature

This appendix describes in more details the lensing map posterior curvature matrix H = Hr[φ
∗(r)], defined as the matrix of

second variation of the lensing map log-posterior,

HLL′ ≡
δ2S[φ]

δφLδφ̄L′

∣∣∣∣
φ=φ∗(r)

, with S[φ] ≡ 1

2
XdatCov−1

φ Xdat +
1

2
ln det Covφ +

1

2

∑
L

|φL|2

Cφφ,fid
L

. (A1)

where the first two terms on the right-hand side come from the lensing map likelihood, and the last term from the Gaussian prior.
In particular, in this appendix we obtain the result that the data-dependent part of the matrix can be applied in linear time to a
vector (at the cost of one CMB Wiener-filtering). This makes the calculation of its log-determinant and inverse possible. The
data-independent part poses no particular problems. The Gaussian prior curvature is trivial, and for the second term in Eq. (A1)
we adopt the same very accurate approximation as in Sec. III A,

1

2
ln det Covφ '

1

2
ln det Covφ≡0 +

1

2

∑
LL′

φLφ̄
′
L

δ2 1
2 ln det Covφ
δφLδφ̄L′

∣∣∣∣
φ≡0

≡ 1

2
ln det Covφ≡0 +

1

2

∑
L

RL |φL|2 , (A2)

where RL is the φ-induced mean-field linear response (hence also the desired curvature term), obtained analytically following
Ref. [16] and reproduced briefly at the end of this appendix.

To obtain the data-dependent part of the curvature, we calculate for convenience the curvature Hab
dat(x,y) with respect to the

two position-space deflection components αa(x), αb(y) of the flat sky, where α = ∇φ. Once this is done, it is straightforward
to apply the matrix to a lensing potential vector by expanding it into these two components, applying Hab, and re-projecting
eventually onto the potential Fourier harmonics. The data-dependent curvature splits into two terms which we describe next:

Hab
dat(x,y) =

1

2
Xdat · Cov−1

φ

δCovφ
δαa(x)

Cov−1
φ

δCovφ
δαb(y)

Cov−1
φ Xdat + (a,x↔ b,y)

(
≡ 2Hab

F (x,y)
)

− 1

2
Xdat · Cov−1

φ

δ2Covφ
δαa(x)δαb(y)

Cov−1
φ Xdat

(
≡ Hab

det(x,y)
)
.

(A3)

When the data covariance precisely matches Covφ (that is, for our simulations, for fiducial r values close to the true value in
Xdat). the termHF coincides, on average, with the Fisher information matrix on the displacement field. Under these conditions,
and setting φ ≡ 0, it is precisely the isotropic inverse lensing reconstruction noise N (0)

L for the deflection angle calculated with
the unlensed CMB spectra in the weights[13]. The second term Hdet is subdominant: on average, and again when the data
covariance matches Covφ, this term would be cancelled by a contribution from RL. This term RL would also cancel one of the
two HF factors in Eq. (A3). The complete relation Eq. A1 for the lensing potential Fourier modes under these conditions is

〈HLL′〉Xdat = δLL′

(
1

N
(0)
L

+
1

Cφφ,fid
L

) (
when φ ≡ 0, and

〈
XdatXdat,†〉 = Covφ=0

)
, (A4)

which can serve as a useful consistency check of the data-dependent curvature calculation.
To proceed, we need the first and second derivatives of the covariance. To simplify notation, we introduce

ξφ ≡ DφC
unlD†φ, ξφ,a ≡ Dφ∇aCunlD†φ, and ξφ,ab ≡ Dφ∇a∇bCunlD†φ (A5)

where the operator∇aCunl is defined by the block-diagonal matrix Fourier representation δll′ila

(
CEE,unl
` 0

0 r CBB,tens.
`

)
, and

similarly for∇a∇bCunl with an additional factor ilb. The following relations hold

δCovφij

δαa(x)
= B(xi,x)(ξφ,aB†)(x,xj)− (Bξφ,a)(xi,x)(B†)(x,xj), (A6)
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and

δ2Covφij

δαa(x)δαb(y)
= B(xi,x)(ξφ,abB

†)(y,xj)δ
D(x− y)− B(xi,x)(ξφ,ab)(x,y)(B†)(y,xj)

− (B)(xi,y)(ξφ,ab)(y,x)(B†)(x,xi) + (Bξφ,ab)(xi,y)(B†)(x,xj)δD(x− y).

(A7)

There are implicit sums over Stokes indices in the above equations. We introduce further the following notation for the inverse-
variance weighted CMB maps

(
X̄
)

and Wiener-filtered CMB
(
XWF
φ

)
X̄ ≡ B†Cov−1

φ Xdat and XWF
φ ≡ ξφB†Cov−1

φ Xdat = ξφX̄. (A8)

The subscript φ on the Wiener-filtered CMB is present to emphasize that these are the lensed Wiener-filtered delensed CMB
maps, in contrast to Eq. (2.9). With this we may write (full indices)[

δCovφ
δαb(y)

Cov−1
φ Xdat

]
(xj) = B(xj ,y)XWF

,b (y)−
(
Bξφ,b

)
(xj ,y)X̄(y) (A9)

The Fisher-like terms contract two such vectors, with an inverse covariance in the middle. When doing the contraction, the
operator B†Cov−1

φ B ≡ Kφ appear, and derivatives of ξ on the left-hand side gets a minus sign because the first derivative is
anti-symmetric. The result is

Hab
F (x,y) =

1

2
XWF
φ,a (x)Kφ(x,y)XWF

φ,b (y)− 1

2
X̄(x)(ξφ,aKφξ

φ
,b)(x,y)X̄(y)

− 1

2
XWF
φ,a (x)(Kφξ

φ
,b)(x,y)X̄(y) +

1

2
X̄(x)(ξφ,aKφ)(x,y)XWF

,b (y)

(A10)

This matrix is positive definite for any model. To apply this a vector v, we can do as follows∫
d2y Hab

F (x,y)vb(y) = XWF
φ,a (x)(V −W )(x) + X̄(x) (ξ,a(V −W )) (x) (A11)

with

V = Kφ X
WF
φ,b vb W = Kφ ξ

φ
,b X̄ vb. (A12)

There is thus only one set of maps to inverse filter, the difference between (ξ,bX̄)(x)vb(x) and (ξ,b(X̄v
b))(x). There remains

the term Hdet, which comes from the second derivative of the covariance in Eq. (A3). It is also a contraction of these types of
maps. Explicitly,

Hab
det(x,y) = X̄(x)ξφ,ab(x,y)X̄(y)− δD(x− y)X̄(x)XWF

,ab (x), (A13)

which is easily applied to input vectors. The full H matrix, after rescaling by a simple isotropic approximation, is close enough
to unity that its inverse can be applied to a vector with conjugate gradient inversion without much difficulty.

Finally, we reproduce for completeness the expression for the mean-response RL used in several places in this work, defined
above in Eq. (A2). Again, we state the result Rab(x,y) for the two components of the displacement field, defined as

Rab(x,y) ≡
δ2 1

2 ln det Covφ
δαa(x)δαb(x)

∣∣∣∣
φ≡0

. (A14)

Since this is evaluated for vanishing deflection, the matrix is only a function of r = x− y. The result follows straightforwardly
from the covariance first and second variations, Eqs. (A5) and (A7):

−Rab(r) =
(
ξ0
,aK0

)
(r)
(
ξ0
,bK0

)
(r) +K0(r)(ξ0

,aK0ξ
0
b )(r)−K0(r)ξ0

ab(r) + δD(r)(K0ξ
0
,ab)(r). (A15)

A contraction on Stokes indices is implicit in this equation. Contracting Rab after Fourier transformation with La Lb gives the
lensing potential response RL. All terms are easily calculated with 2-dimensional FFT methods.
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