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Different inflationary models predict oscillatory features in the primordial power spectrum. These
can leave an imprint on both the cosmic microwave background (CMB) and the large-scale structure
(LSS) of our Universe, that can be searched for with current data. Inspired by the axion-monodromy
model of inflation, we search for primordial oscillations that are logarithmic in wavenumber, using
both CMB data from the Planck satellite and LSS data from the WiggleZ galaxy survey. We find
that, within our search range for the new oscillation parameters (amplitude, frequency and phase),
both CMB-only and CMB+LSS data yield the same best-fit oscillation frequency of log

10
ω = 1.5,

improving the fit over ΛCDM by ∆χ2=−9 and ∆χ2=−13 (roughly corresponding to 2σ and 2.8σ
significance), respectively. Bayesian evidence for the log-oscillation model versus ΛCDM indicates
a very slight preference for the latter. Future CMB and LSS data will further probe this scenario.

I. INTRODUCTION

Cosmological inflation is the widely preferred paradigm
to explain the origin of primordial fluctuations [1–3]. In
the simplest implementations, a single scalar field slowly
rolling down a shallow potential (the inflaton) drives a
rapid stage of exponential accelerated expansion in the
early Universe, which imprints microscopic quantum fluc-
tuations onto cosmic scales, seeding the growth of the
large-scale structure.
An appealing class of inflationary models naturally re-

alized in string theory, known as axion monodromy [4, 5],
feature an inflaton field that is protected by a shift
symmetry, which prevents large quantum corrections.
These models generically predict the presence of oscil-
lations in the primordial power spectrum that are log-
arithmic in wavenumber [6, 7]. Analogous effects were
also discussed earlier in connection with Planck-scale or
trans-Planckian effects [8–12], as well as unwinding infla-
tion [13].
The primordial fluctuations sourced during inflation

induce curvature perturbations, which largely determine
the statistical properties of the cosmic microwave back-
ground (CMB) and large-scale structure (LSS) of our
Universe. Therefore, these tracers can provide useful
testbeds for distinguishing between possible models of in-
flation. In particular, CMB data has been used to search
for oscillatory features with WMAP [14, 15] and Planck
power spectra [16–18], as well as with measurements of
the CMB bispectrum [19–21]. Additionally, different au-
thors have carried out numerical analysis with the past
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CMB and LSS datasets [22, 23] and laid out forecasts for
constraints with future observations [24–29].
In this note, we present results from a search for log-

oscillations in the primordial power spectrum using both
CMB and LSS measurements, with the latest data from
the Planck 2015 release [30] and the WiggleZ galaxy sur-
vey [32]. We use a modified version of the standard
Boltzmann code (CLASS) [33] to calculate the observables
in the presence of oscillations, and we constrain the os-
cillation parameters with a Monte Carlo Markov Chain
(MCMC) analysis of the data, by implementing the Mul-
timodal Nested Sampling Algorithm (MultiNest) [34, 35]
via the Monte Python package [36]. Ours is the first
search for log-space oscillations in the primordial power
spectrum using nested sampling and joint CMB and LSS
measurements. We find that the addition of three os-
cillation parameters (amplitude, frequency and phase)
provides a significantly better fit to the data. However,
based on the Bayesian evidence, the log-spaced oscilla-
tions are not preferred over the bare ΛCDM model given
current CMB+LSS data.

II. OSCILLATIONS FROM AXION

MONODROMY

In single-field inflationary models, the primordial
power spectrum is directly related to the inflaton poten-
tial V (φ). We consider an axion-monodromy potential
given by [6]

V (φ) ≡ µ3φ+ Λ4cos
(φ

f

)

(1)

where µ3φ is the smooth potential in the axion model,
Λ4 is modulation amplitude, and f the periodicity in φ.
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The equation of motion that follows from this potential
is then

φ̈+ 3Hφ̇+ µ3 −
Λ4

f
sin

(

φ

f

)

= 0 . (2)

In the absence of oscillations, the primordial scalar power
spectrum is given by As(k/k∗)

ns−1, where As is the am-
plitude, k∗ is the pivot wavenumber, and ns the scalar
spectral index. Solving for the power spectrum using
Eq. (2) leads to the appearance of log-spaced oscillations,

PR(k) = As

(

k

k∗

)ns−1 (

1 + ǫ cos

[

ω ln

(

k

k∗

)

+ φk

])

,

(3)
in the curvature power spectrum PR(k), with oscillation
frequency ω, phase φk, and perturbative amplitude ǫ. We
will vary these three parameters in our analysis below.

III. METHODOLOGY AND DATA SETS

Given the primordial power spectrum from Eq. (3),
we can calculate the observed angular power spectrum
of the CMB, and matter power spectrum of the LSS,
through transfer functions. We calculate these with the
standard Boltzmann CLASS, and modify the primordial
power spectrum according to Eq. (3) to obtain the CMB
and LSS observables. We sample the parameter space
for the six ΛCDM parameters plus the three new oscilla-
tion parameters using MultiNest and the MCMC sam-
pler Monte Python. As we shall see, the likelihood of the
oscillation frequency ω presents a large amount of local
maxima, which hampers exploration of the phase space
with standard MCMC samplers, as these tend to dwell
in each maximum and not explore the whole parameter
space. To circumvent this, we use MultiNest to establish
constraints over the entire ω range, and roughly identify
the global maximum-likelihood regions. We then obtain
the best-fit oscillation parameters and the corresponding
χ2 values by running short standard Metropolis-Hastings
chains with narrow priors on ω around the peaks of the
MultiNest runs. We set flat priors on all the model pa-
rameters except As and ω, which have log-spaced priors,
with ranges consistent with the analysis of Ref. [18], as
shown in Table I1.
The datasets we use are the Planck 2015 TT2 and

LowTEB3 likelihoods [31], as measurements of the CMB

1 We note that we had to augment the sampling precision

of the primordial power spectrum in CLASS by increasing the

k per decade primordial parameter, which determines the num-

ber of points per decade in the primordial logarithmic k space.

We set this parameter to 5000, as the standard value does not

resolve the oscillations of our model for large values of ω.
2 plik dx11dr2 HM v18 TT bin1.clik
3 lowl SMW 70 dx11d 2014 10 03 v5c Ap.clik

TABLE I. List of parameters with prior ranges for MultiNest.
Before using multimodal nested sampling, we sample ΛCDM
and the 14 foreground parameters using Monte Python. We
then fix the foregrounds to their best-fit values and perform
the MultiNest runs.

Model Parameter Range [min, max]
100Ωb [2.15, 2.30]
Ωcdm [0.115, 0.125]

ΛCDM 100θs [1.03, 1.05]
ln 1010As [3.00, 3.18]

ns [0.95, 0.98]
τreio [0.040, 0.125]
ǫ [0.00, 0.50]

Log-oscillation log
10

ω [0.00, 2.10]
φk [0.00, 6.28]

power spectrum, complemented by the WiggleZ final re-
lease data [32], based on the 238, 000 galaxies observed
with redshifts in the Southern sky between 2006 and 2011
by the 3.9-meter Anglo-Australian Telescope (AAT). For
the Planck data we maximize the sensitivity to very sharp
features in the frequency by using the unbinned (“bin1”)
versions of the TT and lowTEB likelihoods instead of the
standard binned versions. We simultaneously vary the
three oscillation parameters {ω, ǫ, φk} and the six ΛCDM
parameters {As, ns, ωc, ωb, θs, τ}, while we fix the 14 fore-
ground parameters to their best fits for ΛCDM, as in
Ref. [30]. For WiggleZ we use the likelihood implemented
in Monte Python for the low-redshift matter power spec-
trum, which should be sensitive to the oscillations that
we are after. Furthermore, the WiggleZ likelihood from
Monte Python marginalizes over the galaxy bias analyt-
ically at each redshift (see e.g. Ref. [28], Eq. (11)).
To compare the base ΛCDM model with our three-

parameter oscillatory extension, we compute the evidence
and the Bayes factor for both cases. The Bayesian evi-
dence can be expressed as

E(D|Mi) =

∫

dθijL(D|θij ,Mi)π(θij |Mi), (4)

where θij are the parameters defining the model Mi,
L(D|θij ,Mi) is the likelihood function for data D, and
π(θij |Mi) is the prior of the parameters given a model.
The ratio of plausibilities of the two models Ma and

Mb is used to define the Bayes factor between models a
and b as

P (Ma|D)

P (Mb|D)
=

E(D|Ma)π(Ma)

E(D|Mb)π(Mb)
≡ Bab. (5)

In practice, we compute the evidence Eq. (4) and Bayes
factor Eq. (5) by implementing MultiNest and calculat-
ing the posterior probabilities of the parameters of the
two models (ΛCDM and the oscillatory extension), and
we use the Jefferys’ scale [37] to interpret the Bayes factor
as strength of evidence.
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IV. RESULTS

We show in Fig. 1 the frequency modes identified by
MultiNest and in Fig. 2 the posteriors for the other two
oscillation parameters (amplitude ǫ and phase φk). The
likelihood for log10 ω is expected to be highly multimodal,
since the noise is comparable to the amplitude of the log-
oscillatory feature. This is indeed what we find in Fig. 1,
where every dot represents the improvement of χ2 at a
different frequency for the most likely modes. In this
paper, ∆χ2 refers to the χ2 of the log-oscillation model
subtract that of ΛCDM. We find that the MultiNest al-
gorithm finds modes with different improvement of χ2 at
approximately the same frequencies if these are within a
high-likelihood region. Using CMB data alone we find the
most significant mode at log10 ω ≈ 1.5, which is consis-
tent with the Planck result of Ref. [18]. Using WiggleZ
data alone several modes appear significant, especially
in the high-frequency region. Interestingly, combining
CMB and LSS power spectra results in the same high-
likelihood peak at log10 ω ≈ 1.5 with an increased likeli-
hood over CMB-only data. Additionally, the modes with
log10 ω ≈ 2.0 and 2.1 also become pronounced. To ensure
that our results are not extremely sensitive to our priors
we ran the same chains with a flat prior ω = [0, 125.89],
which we also show in Fig. 1. We find that the frequency
at log10 ω ≈ 1.5 remains the most likely mode, with com-

Planck15 WiggleZ Planck15+WiggleZ

Planck15+enlarged prior WiggleZ+enlarged prior

Planck15+WiggleZ+enlarged prior
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FIG. 1. The frequency modes constrained by “unbinned”
Planck 2015 TT+lowTEB, WiggleZ [32], and their combina-
tion using MultiNest. Each dot gives the ∆χ2 value at each
peak in the parameter space of log frequency. We simulta-
neously constrain all nine parameters while fixing the fore-
grounds for each dataset. Further validation is carried out by
setting a flat instead of a log-spaced prior on the frequency
with range ω = [0, 125.89] (darker squares) so as to poten-
tially remove any nested-sampling dependence on the prior.
With the complementary LSS data (blue dots), log

10
ω ≈ 1.5,

the frequency suggested by the Planck paper [18], remains the
most significant.

FIG. 2. 1D posteriors for oscillation amplitude ǫ and phase
φk with different datasets. We simultaneously constrain all
nine parameters while fixing the foregrounds for each dataset.

parable ∆χ2.

In Fig. 3, we show the CMB TT power spectrum
residuals of Planck 2015, when compared to the best-
fit ΛCDM model (third row of Table II), as well as the
change to said model when adding parameters given by
the last row of Table II. The featured model induces os-
cillatory modulations in the CMB spectrum with largest
offset around the first acoustic peak. These modulations
are then greatly suppressed on small scales, although re-
main visible up to ℓ = 2000.
Based on the peaks on ∆χ2 from the MultiNest sam-

plings on Fig. 1, we run short Metropolis-Hastings chains
around each mode to estimate the best-fit parameter val-
ues for each model-dataset combination, which are shown
in Table II. We find that including the three extra oscil-
lation parameters in Eq. (3), with log10 ω ≈ 1.5 yields
fit improvements corresponding to an effective ∆χ2 =
−8.67, and −12.68 for the best fits of two datasets (CMB
and CMB+LSS, respectively). The additional LSS data
yields the best fit for nearly the same frequency as for the
CMB data alone, showing that indeed the combination of
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FIG. 3. The temperature power spectrum residuals of Planck
2015 [31] and the log-oscillation model (last row of Table II),
each with respect to the ΛCDM best fits (Table II, third row).
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TABLE II. The Bayes factor, improvements of χ2, and best-fits for different model-dataset combinations. The likelihoods in the
second column are given at the best-fit values, determined with an MCMC run around the peaks in the MultiNest results. M0

and M1 represent ΛCDM and the featured model, respectively. We confine the prior range of ǫ to [0, 0.075] when calculating
the Bayes factor. A small negative Bayes factor indicates a very slight preference (nearly no preference) for ΛCDM.

Models ∆ logE,∆χ2 100ωb ωcdm 100θs ln 1010As ns τreio ǫ log
10

ω φk/2π
M0(CMB) 2.21 0.120 1.0421 3.07 0.963 0.069
M1(CMB) −0.312± 0.180, −8.67 2.23 0.118 1.0421 3.09 0.973 0.078 0.0248 1.50 0.651

M0(CMB+LSS) 2.22 0.118 1.0420 3.05 0.966 0.061
M1(CMB+LSS) −0.060 ± 0.186,−12.68 2.24 0.118 1.0422 3.04 0.974 0.056 0.0291 1.50 0.698

datasets reinforces the presence of this oscillatory mode,
corresponding to 2.8σ significance. Out of the three oscil-
lation parameters, the major contribution to ∆χ2 comes
from the frequency ω and the amplitude ǫ, while the ef-
fect of φk is negligible. The remaining ΛCDM parameters
are not dramatically changed, as demonstrated in Figs. 4
and 5, which show the one- and two-dimensional poste-
riors with different model-dataset combinations, respec-
tively. As expected, WiggleZ only marginally improves
the constraints on the six ΛCDM parameters.
Although the fit of both CMB-only and CMB+LSS

data is improved in the featured model, this does not
necessarily represent a statistically significant result. We
have to account for the larger volume of the oscilla-
tory parameter space when computing the evidence E.
For our choice of priors in Table I, the corresponding
Bayes factors between ΛCDM and the featured model
are B = −2.061± 0.186 (CMB) and B = −1.655± 0.192
(CMB+LSS). The Bayes factor for the CMB-only con-
straint is consistent with the Planck Collaboration’s re-
sult −1.9 [18], where the negative value indicates that the
standard ΛCDM scale-invariant power spectrum is pre-
ferred over log-oscillation. We note, though, that from
Fig. 2 the posterior of ǫ only spans a small range of the
default prior [0, 0.5], so the Bayes factor may be overly
suppressed by our prior choice. As a test, we confine the
prior range to the [0, 0.075] range, which is more repre-
sentative of the oscillations preferred by the data, and
obtain Bayes factors of B = −0.312± 0.180 (CMB) and
B = −0.060± 0.186 (CMB+LSS) as shown in Table II.
Even when decreasing the prior on ǫ, we find a slight pref-
erence for ΛCDM over log-oscillation, both with CMB-
only and CMB+LSS data, albeit much less pronounced
than in the wide-prior case.

V. CONCLUSIONS

In this work, we used recent CMB and LSS data re-
leases to constrain oscillation parameters in the primor-
dial power spectrum. The main motivation to modify
the form of the primordial power spectrum relies on the
fact that small modulation to the nearly scale-invariant
form may suggest the presence of an underlying symme-
try obeyed by the inflaton field. Specifically, we consid-
ered an alternative form of the power spectrum which is

FIG. 4. Comparison of the six parameters in ΛCDM (blue
and green) and log-oscillation (black and red) posteriors with
broad prior range of ω. Legends on the top show the different
model-dataset combinations. The foreground parameters are
fixed to the best-fits in the Monte Python results, and we vary
the nine parameters simultaneously. z

modulated by log-spaced oscillation features, generically
sourced by models such as axion-monodromy inflation.

We have found, using CMB-only data, a preference
for oscillations with a frequency log10 ω ≈ 1.50, at the
∆χ2 = −9 level, in agreement with previous studies.
Interestingly, the addition of LSS data from the Wig-
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FIG. 5. 2D posteriors for the ΛCDM parameters under the oscillation-based model, jointly constrained by CMB and LSS data
using MultiNest. We vary the nine parameters simultaneously.

gleZ survey reinforces that frequency as the best-fit mode
and improves the fit by ∆χ2 = −13, corresponding to
2.8σ significance. Nonetheless, comparing the Bayesian
evidences for the featured and standard ΛCDM models
shows that current data has no strong preference for ei-
ther, given the large amount of freedom in the three new
oscillatory parameters. In the future, it will be promis-
ing to revisit this analysis by using a combination of
data from upcoming experiments such as CMB-S4 [38]

or the Simons Observatory [39] on the CMB side, and
the Large Synoptic Survey Telescope (LSST) [40], Dark
Energy Spectroscopic Instrument (DESI) [41], and Eu-
clid [42] on the LSS front.



6

ACKNOWLEDGMENTS

We thank Mario Ballardini, Liang Dai, Cora Dvorkin,
Deanna Hooper, Tanvi Karwal, Georges Obied, Vivian
Poulin, Sunny Vagnozzi and Hao-Yi Wu for very helpful
discussions. This work was supported by NSF grant no.

0244990, NASA NNX17AK38G, NSFC grant 11633004,
NSFC-11773031, NSFC-11822305, CAS grant QYZDJ-
SSW-SLH017, as well as the Simons Foundation. CZ
thanks Cora Dvorkin and the Harvard Physics Depart-
ment for hospitality during its completion.

[1] A. H. Guth, “The Inflationary Universe: A Possible So-
lution To The Horizon And Flatness Problems,” Phys.
Rev. D 23, 347 (1981).

[2] A. D. Linde, “A New Inflationary Universe Scenario: A
Possible Solution Of The Horizon, Flatness, Homogene-
ity, Isotropy And Primordial Monopole Problems,” Phys.
Lett. B 108, 389 (1982).

[3] A. Albrecht and P. J. Steinhardt, “Cosmology For Grand
Unified Theories With Radiatively Induced Symmetry
Breaking,” Phys. Rev. Lett. 48, 1220 (1982).

[4] E. Silverstein and A. Westphal, “Monodromy in the
CMB: Gravity Waves and String Inflation,” Phys. Rev.
D 78, 106003 (2008) [arXiv:0803.3085 [hep-th]].

[5] L. McAllister, E. Silverstein and A. Westphal, “Grav-
ity Waves and Linear Inflation from Axion Monodromy,”
Phys. Rev. D 82, 046003 (2010) [arXiv:0808.0706].

[6] R. Flauger, L. McAllister, E. Pajer, A. Westphal and
G. Xu, “Oscillations in the CMB from Axion Monodromy
Inflation,” JCAP 1006, 009 (2010) [arXiv:0907.2916].

[7] S. R. Behbahani, A. Dymarsky, M. Mirbabayi and
L. Senatore, “(Small) Resonant non-Gaussianities: Sig-
natures of a Discrete Shift Symmetry in the Effective
Field Theory of Inflation,” JCAP 1212, 036 (2012)
[arXiv:1111.3373].

[8] X. Wang, B. Feng, M. Li, X. L. Chen and X. Zhang,
“Natural inflation, Planck scale physics and oscillating
primordial spectrum,” Int. J. Mod. Phys. D 14, 1347
(2005) [astro-ph/0209242].

[9] J. Martin and R. H. Brandenberger, “The TransPlanck-
ian problem of inflationary cosmology,” Phys. Rev. D 63,
123501 (2001) [hep-th/0005209].

[10] R. Easther, B. R. Greene, W. H. Kinney and G. Shiu,
“A Generic estimate of transPlanckian modifications to
the primordial power spectrum in inflation,” Phys. Rev.
D 66, 023518 (2002) [hep-th/0204129].

[11] U. H. Danielsson, “A Note on inflation and transPlanck-
ian physics,” Phys. Rev. D 66, 023511 (2002) [hep-
th/0203198].

[12] V. Bozza, M. Giovannini and G. Veneziano, “Cosmo-
logical perturbations from a new physics hypersurface,”
JCAP 0305, 001 (2003) [hep-th/0302184].

[13] G. D’Amico, R. Gobbetti, M. Kleban and M. Schillo,
“Unwinding Inflation,” JCAP 1303, 004 (2013)
[arXiv:1211.4589].

[14] C. Pahud, M. Kamionkowski and A. R. Liddle, “Oscilla-
tions in the inflaton potential?” Phys. Rev. D 79, 083503
(2009) [arXiv:0807.0322 [astro-ph]].

[15] P. D. Meerburg, D. N. Spergel and B. D. Wandelt,
“Searching for oscillations in the primordial power spec-
trum. I. Perturbative approach,” Phys. Rev. D 89, no. 6,
063536 (2014) [arXiv:1308.3704 [astro-ph.CO]].

[16] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013
results. XXII. Constraints on inflation,” Astron. Astro-

phys. 571, A22 (2014) [arXiv:1303.5082 [astro-ph.CO]].
[17] P. D. Meerburg, D. N. Spergel, and B. D. Wandelt.

“Searching for oscillations in the primordial power spec-
trum. II. Constraints from Planck data,” Phys. Rev. D
89, no. 6, 063537 (2014) [arXiv:1308.3705 [astro-ph.CO]].

[18] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015
results. XX. Constraints on inflation,” Astron. Astro-
phys. 594, A20 (2016) [arXiv:1502.02114 [astro-ph.CO]].

[19] M. Münchmeyer, P. D. Meerburg, and B. D. Wandelt,
“Optimal estimator for resonance bispectra in the CMB,”
Phys. Rev. D 91, no. 4, 043534 (2015) [arXiv:1412.3461
[astro-ph.CO]].

[20] J. R. Fergusson, H. F. Gruetjen, E. P. S. Shellard, and
M. Liguori, “Combining power spectrum and bispectrum
measurements to detect oscillatory features,” Phys. Rev.
D 91, no. 2, 023502 (2015) [arXiv:1410.5114].

[21] Y. Akrami et al. [Planck Collaboration], “Planck 2018
results. X. Constraints on inflation,” [arXiv:1807.06211
[astro-ph.CO]].

[22] M. Aich, D. K. Hazra, L. Sriramkumar, T. Souradeep,
“Oscillations in the inflaton potential: Complete numer-
icaltreatmentand comparison with the recent and forth-
coming CMB datasets,” Phys. Rev. D 87, no. 10, 083526
(2013) [arXiv:1106.2798 [astro-ph.CO]].

[23] D. K. Hazra, “Changes in the halo formation rates due to
features in the primordial spectrum,” JCAP 1303, 003
(2013) [arXiv:1210.7170 [astro-ph.CO]].

[24] Z. Huang, L. Verde and F. Vernizzi, “Constraining infla-
tion with future galaxy redshift surveys,” JCAP 1204,
005 (2012) [arXiv:1201.5955 [astro-ph.CO]].

[25] X. Chen, C. Dvorkin, Z. Huang, M. H. Namjoo and
L. Verde, “The Future of Primordial Features with
Large-Scale Structure Surveys,” JCAP 1611, 014 (2016)
[arXiv:1605.09365 [astro-ph.CO]].

[26] M. Ballardini, F. Finelli, C. Fedeli, L. Moscardini,
“Probing primordial features with future galaxy sur-
veys,” JCAP 1610, 041 (2016) [arXiv:1606.03747 [astro-
ph.CO]].

[27] M. Ballardini, F. Finelli, R. Maartens, L. Moscardini,
“Probing primordial features with next-generation pho-
tometric and radio surveys,” JCAP 1804, 044 (2018)
[arXiv:1712.07425 [astro-ph.CO]].

[28] M. Escudero, O. Mena, A. C. Vincent, R. J. Wilkin-
son and C. Bœhm, “Exploring dark matter micro-
physics with galaxy surveys,” JCAP 1509, 034 (2015)
[arXiv:1505.06735 [astro-ph.CO]].

[29] G. Palma, D. Sapone, S. Sypsas, “Constraints on infla-
tion with LSS surveys: features in the primordial power
spectrum,” JACP 1806, 004 (2018) [arXiv:1710.02570
[astro-ph.CO]].

[30] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015
results. XIII. Cosmological parameters,” Astron. Astro-
phys. 594, A13 (2016) [arXiv:1502.01589 [astro-ph.CO]].



7

[31] N. Aghanim et al. [Planck Collaboration], “Planck 2015
results XI. CMB power spectra, likelihoods, and robust-
ness of parameters,” Astron. Astrophys. 594, A11 (2016)
[arXiv:1507.02704 [astro-ph.CO]]

[32] David Parkinson, Signe Riemer-Sorensen, Chris Blake,
Gregory B. Poole, Tamara M. Davis et al., “The Wig-
gleZ Dark Energy Survey: Final data release and cosmo-
logical results,” Phys. Rev. D 86, no. 10, 103518 (2012)
[arXiv:1210.2130 [astro-ph.CO]].

[33] J. Lesgourgues, “The Cosmic Linear Anisotropy Solving
System (CLASS) I: Overview,” [arXiv:1104.2932 [astro-
ph.IM]].

[34] F. Feroz and M. P. Hobson, “Multimodal nested sam-
pling: an efficient and robust alternative to MCMC meth-
ods for astronomical data analysis,” Mon. Not. Roy. As-
tron. Soc. 384, 449 (2008) [arXiv:0704.3704 [astro-ph]].

[35] F. Feroz, M. P. Hobson, and M. Bridges, “MULTINEST:
an efficient and robust Bayesian inference tool forcosmol-
ogy and particle physics,” Mon. Not. Roy. Astron. Soc.
398, 1601 (2009) [arXiv:0809.3437 [astro-ph]].

[36] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet,
“Conservative Constraints on Early Cosmology: an illus-
tration of the Monte Python cosmological parameter in-
ference code,” JCAP 1302, 001 (2013) [arXiv:1210.7183
[astro-ph.CO]].

[37] H. Jeffreys, “Theory of Probability,” first edn, The
Clarendon Press, Oxford.

[38] K. N. Abazajian et al., “CMB-S4 Science Book, First
Edition,” [arXiv:1610.02743 [astro-ph.CO]].

[39] J. Aguirre et al. [Simons Observatory Collaboration],
“The Simons Observatory: Science goals and forecasts,”
[arXiv:1808.07445 [astro-ph.CO]].

[40] P. A. Abell et al., “LSST Science Book, Version 2.0,”
[arXiv:0912.0201 [astro-ph.IM]].

[41] A. Aghamousa et at., “The DESI Experiment Part I: Sci-
ence,Targeting, and Survey Design” [arXiv:1611.00036
[astro-ph.IM]].

[42] R. Laureijs et al., “Euclid Definition Study Report”
[arXiv:1110.3193 [astro-ph.CO]].


