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We discuss the phenomenological imprints of modifications to gravity in the early universe with a
specific focus on the time of recombination. We derive several interesting results regarding the effect
that such modifications have on cosmological observables, especially on the driving and phasing of
acoustic oscillations, observed in the CMB and BAO, as well as the weak gravitational lensing of
the CMB and of galaxy shapes. This widens the pool of measurements that can be used to test
gravity with present and future surveys, in particular realizing the full constraining power of the
structure of the primary peaks of the CMB spectrum. We investigate whether such a phenomenology
can relax tensions between cosmological measurements and find that a modification of the gravi-
tational constant at recombination would help in reconciling measurements of the CMB with local
measurements of the Hubble constant.

I. INTRODUCTION

Since the discovery of cosmic acceleration [1, 2], un-
derstanding its physical origin has become one of the pri-
mary goals of experimental efforts to measure the cosmic
microwave background (CMB) and the large scale struc-
ture (LSS) of the Universe. In parallel it has been realized
that the same measurements can be used to study grav-
ity on cosmological scales including the possibility that
modified gravity (MG) could explain cosmic acceleration
(for reviews, see Refs. [3–5]).

Both CMB measurements and LSS data, probing the
universe mainly at early and late times respectively, have
proven to be extremely powerful in pursuing this pro-
gram. Current surveys already provide precision con-
straints [6–9] and future surveys, such as CMB-S4 [10],
Euclid [11] and LSST [12], are expected to greatly ex-
ceed their performance [13–16] and test General Relativ-
ity (GR) to unprecedented precision.

Most of the phenomenological effort in testing gravity
on cosmological scales has been focused on constraining
parameterized modifications to the Einstein equations re-
lating the matter density contrast to the lensing and the
Newtonian potentials [17–22] and has targeted the late
times, during the epoch of cosmic acceleration [23–27].

In this paper we discuss thoroughly for the first time
the phenomenology and observational imprints of such
modifications to gravity at early times and especially at
the time of recombination. By enforcing the conservation
of comoving curvature on superhorizon scales, we deter-
mine the initial conditions and evolution of perturbations
in the radiation dominated epoch, relating their ampli-
tude to inflationary perturbations. We implement this
approach in the Einstein-Boltzmann solver CAMB [28]
extending the range of applicability of the MGCAMB
code [13, 29] to early times.

Considering a parametrization for deviations from GR
that decouples early and late times, we discuss both an-
alytically and numerically the behavior of linear pertur-
bations at all epochs of the universe and their impact
on cosmological observables. In particular we focus on

the MG imprint left on the acoustic peaks of the CMB
power spectrum and baryon acoustic oscillations (BAO).
We complete this analysis with a discussion of the MG
effects on the clustering of LSS and on the lensing of the
CMB and galaxies. As a result we significantly enlarge
the pool of measurements that can be used to test grav-
ity, notably, with the inclusion of the full constraining
power of CMB observations.

These extensions allow us to investigate whether MG
effects at early times could explain existing discrepan-
cies between cosmological datasets [30] and in particular
tensions between CMB measurements and low redshift
probes (see also [31] and references therein for related
work on early dark energy). We show that a differ-
ent value for the effective gravitational constant at early
times can partially relax tensions internal to the CMB
dataset and between the CMB and local measurements
of the Hubble constant and weak lensing of galaxies. This
is achieved by changing the CMB temperature, polariza-
tion and lensing predictions in a compatible manner due
to the combined effect that MG has on the acoustic os-
cillations and on lensing and results in a preference for
a larger gravitational constant at early times at greater
than 98% C.L. We comment on why such a resolution is
not possible with only late time modifications to gravity.

This paper is organized as follows. In Sec. II we review
the parametrized framework to modified gravity that we
use and present initial conditions for superhorizon pertur-
bations. In Sec. III we discuss analytically and numeri-
cally the behavior of cosmological perturbations at differ-
ent epochs. In Sec. IV we present the effect of such mod-
ifications on the acoustic peaks of the CMB and other
cosmological observables. In Sec. V we review the tools
that we use in practical tests of MG at early and late
times. In Sec. VI we present the data constraints and
discuss parameter degeneracies and the coordination of
different physical effects to alleviate tensions. We con-
clude in Sec. VII.
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II. PARAMETRIZED DEVIATIONS FROM
ΛCDM

In Sec. II A we review the general parameterized ap-
proach to modifications of gravity for linear perturba-
tions employed in Ref. [29], which assumes a metric the-
ory of gravity with minimally coupled ordinary matter.
To extend this parametrization to early times, we derive
the superhorizon solutions to the perturbation equations
in Sec. II B and relate the amplitude of perturbations
above the horizon to the amplitude of curvature pertur-
bations set by inflation. We assume a given, but pos-
sibly modified, background Hubble expansion rate with
a constant effective equation of state parameter. These
general relations are applied to specific cases that isolate
the various aspects of the modifications in the following
sections.

A. Modified Gravity Equations

In conformal Newtonian gauge, metric perturbations
are specified by two gravitational potentials, the New-
tonian potential Ψ and the intrinsic spatial curvature
potential Φ, giving the line element in a spatially flat
background:

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + (1− 2Φ)δijdx
idxj ] , (1)

where a(τ) is the scale factor as a function of confor-
mal time τ . In addition the stress-energy tensor for the
matter species that we consider is given at first order in
perturbations by:

T 0
0 = − ρ− δρ ,

T 0
j = (ρ+ P )vj ,

T ij = (P + δP )δij + πij , (2)

where ρ and δρ are the average energy density and its
perturbation, P and δP are the average pressure and its
perturbation, vj is the fluid velocity and πij denotes the

traceless (πii = 0) component of the stress-energy ten-
sor perturbations. In Fourier space, the scalar compo-
nent of the velocity can be expressed as its divergence
θ ≡ ikjvj and the anisotropic stress by (ρ + P )σ ≡
−(k̂ik̂

j − δ ji /3)πij . We assume that matter is still co-
variantly conserved in the metric so that its equations of
motion follow

δρ′ + 3(δρ+ δP ) = −(ρ+ P )

(
θ

H − 3Φ′
)
, (3)

[(ρ+ P )θ]′ + 4(ρ+ P )θ =
k2

H
[
δP − (ρ+ P )σ

+ (ρ+ P )Ψ
]
, (4)

where ′ = d/d ln a here and throughout. The evolution
of anisotropic stress σ is given by the radiation Boltz-
mann equations and is also unmodified in form. Here

H ≡ ȧ/a = aH is the conformal Hubble rate where dot
denotes d/dτ here and throughout.

In GR, the Einstein equations determine the metric
given the matter fields as:

k2Φ = − 4πGa2∆ρ , (5)

k2[Φ−Ψ] = 12πGa2(ρ+ P )σ , (6)

where ∆ρ ≡ δρ + 3Hk2 (ρ + P )θ is the comoving-gauge
density perturbation. Following Ref. [29], we modify
these two Einstein equations with the addition of two
free functions of time and scale, µ(a, k) and γ(a, k), to
phenomenologically parametrize deviations from GR in
the two metric variables:

k2Ψ = −4πµGa2[∆ρ+ 3(ρ+ P )σ] , (7)

k2[Φ− γΨ] = 12πµGa2(ρ+ P )σ , (8)

where µ parameterizes the effective gravitational con-
stant as µG while γ encodes the ratio of the two poten-
tials. When both µ and γ are equal to unity, the model
reduces to GR and more generally we will refer to this
parameterization as MG .

Notice that we parameterize the Poisson equation (7)
with the lapse Ψ rather than the curvature potential Φ.
This convention highlights the fact that Ψ enters directly
into the dynamics of non-relativistic matter and makes
it easier to implement the condition that its evolution
given the background expansion depends only on Φ/Ψ
above the horizon if the comoving curvature is conserved
[19]. In this sense, µ scales the overall gravitational ef-
fect of all matter while γ encodes the difference between
the gravitational effects on non-relativistic and relativis-
tic matter.

Also note that µ and γ can in principle be arbitrary
functions of time and scale allowing us to encompass the
scalar sector of any metric theory of gravity where all
matter species are minimally coupled to the metric (see,
for example, Ref. [32] for a recent review).

B. Superhorizon Solutions and Initial Conditions

To utilize the MG parametrization described by
Eqs. (7, 8) at early times, we have to derive initial condi-
tions for perturbations when they are above the horizon.
We present the main results in this section and further
details on the specific case we consider in the next section
can be found in Appendix B.

In the standard cosmological scenario, initial condi-
tions for the perturbations are set by inflation. Using
the fact that comoving gauge curvature is still conserved
as k/H → 0 (see Appendix A) we can compute the ini-
tial conditions at the time when inflation ends and set
them for perturbations later on, before the given mode
re-enters the horizon.

We can thus derive the superhorizon solutions and ini-
tial conditions for perturbations in any gauge assuming
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some background Friedmann-Robertson-Walker expan-
sion. If R is constant, Ref. [33] shows, using a separate
universe argument, that in any metric theory of gravity
1 with a spatially flat background

R ≈ −Φ +
H

H ′
(Ψ + Φ′). (9)

This equation has the formal solution

Φ = −
(

1− H

g

∫
d ln a

g′

H

)
R+ C

H

g
, (10)

where the integrating factor g = e
∫

(Ψ/Φ)d ln a and C is
an integration constant for what is generally a decaying
mode.

Assuming that the background expansion has a Hub-
ble rate H ∝ a−3(1+w)/2, we can solve this equation for
Ψ and Φ. If the Friedmann equation itself is modified,
w simply parameterizes the expansion history and is not
necessarily the equation of state parameter of the mat-
ter. For the case where Φ/Ψ does not vary on the Hub-
ble time scale or faster, which is true for most models
during an epoch when w = const., the growing mode of
Eq. (10) is solved by constant Φ and Ψ. Assuming that
the anisotropic stress of the matter is dominated by neu-
trinos, we can integrate their equation of motion to find
these constants. Since this equation is not modified in
form, the result is the same as in GR

σν =
8

45

1

1 + 4w + 3w2

(
k

H

)2

Ψ, (11)

so that

Φ− γΨ =
16

15

µRν
1 + 4w + 3w2

Ψ, (12)

where Rν = 8πGρν/3H
2. Combining this with Eq. (9),

we obtain

Ψ = − 15(1 + 4w + 3w2)

10 + 16µRν + 30w + 15γ(1 + 4w + 3w2)
R,

Φ = − 16µRν + 15γ(1 + 4w + 3w2)

10 + 16µRν + 30w + 15γ(1 + 4w + 3w2)
R. (13)

Our starting assumption that Φ/Ψ ≈ const. implicitly
requires constant γ and µRν , but does not place other
restrictions on whether the Friedmann equation is itself
modified. This suffices for our purposes since Rν is con-
stant for a radiation dominated expansion with w = 1/3
and the neutrino anisotropic stress becomes negligible in
other limits. For the more general case, one can solve for
the evolution of Φ and Ψ given the evolution of γ and
µRν by supplementing Eqs. (8) and (9) with their time
derivatives.

1 In comoving gauge of the metric as defined in Ref. [33], Eq. (9)
is exact and coincides with comoving gauge as defined by the
matter velocity as k/H → 0 (see Eq. A2).

III. PERTURBATION EVOLUTION

From this point forward, we focus on an illustrative,
but scale independent, parameterization of the param-
eters µ(a) and γ(a), which isolates either early time or
late time modifications to gravity, with the former being
new to this work. This is achieved by using a smoothed
step functional form for these functions, as discussed
in Sec. III A. Furthermore, we assume an unmodified
ΛCDM background to isolate the effect of the modifica-
tions to linear perturbation theory. We present analytic
results for perturbation evolution in Sec. III B and nu-
merical results in Sec. III C. Most of the analytic results
can be easily extended to the scale dependent case since
each k-mode evolves independently in linear theory.

A. Step Parameterization

In order to separate early time and late time effects
on perturbations, we shall consider a phenomenological
parametrization that models a transition between these
two regimes. Furthermore, to isolate the effects of the
modified perturbation equations from the influence of the
background expansion, we assume an unmodified ΛCDM
expansion history from this point forward.

In particular we parameterize µ and γ as step-functions
in e-folds N ≡ ln a with the following smooth step-like
form:

f(x) =
f0 + f∞

2
− f0 − f∞

2

x√
1 + x2

, (14)

where x = (N − NT )/∆T and f ∈ {µ, γ}. Here we
have four parameters: f∞ and f0 are the values of the
quantity well before and after the transition respectively,
NT ≡ ln aT denotes the e-folds of transition between the
two regimes, and ∆T is the e-fold width of the transi-
tion. In this paper, we set NT = −3.4, corresponding
to z ∼ 30 as it is approximately the median of the ∼ 6
e-folds between recombination and today. As such, the
transition happens at a time that is well after recombi-
nation, before the late time accelerated expansion and
beyond the reach of the next generation of large scale
structure surveys. We further choose ∆T = 1 to avoid a
sharp transition which would introduce spurious effects
on the CMB power spectrum.

We test the stability of our results to the choice of
transition width in Appendix C. The results depend only
weakly on ∆T if it is around 1, and become sensitive to
∆T when it is much larger since the transition would
affect physical processes around recombination. When
∆T is very small the results converge to a unique answer,
but produce spurious effects on the CMB power spectrum
which would not be present if the transition occurred on
the Hubble time scale or greater.

Thus, in addition to ΛCDM parameters, we have four
additional free parameters: µ0, µ∞, γ0, γ∞. While this
parameterization is meant to highlight early and late time
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phenomenology, it is in fact possible to have a model
with a transition between two distinct modifications to
gravity, see, for example, Ref. [34]. Note however that
in such models the phenomenological modified gravity
parameters µ and γ can be scale dependent.

B. Analytic Results

In this section we show some analytic results that
help interpret the novel features of perturbation evolu-
tion in MG at early times. We discuss the limiting cases
of superhorizon and subhorizon evolution in the various
epochs of a ΛCDM background expansion. Using the
step parameterization, we isolate the impact of a nearly
constant µ and γ at early and late times.

1. Superhorizon Solutions

On superhorizon scales, our general derivation in the
previous section applies before and after the step. In
particular, given our assumption that the background ex-
pansion history is unmodified, we have in the radiation
dominated epoch

Ψ = − 10

10γ + 5 + 4µRν
R ,

Ψ + Φ = −
(

1 +
5

10γ + 5 + 4µRν

)
R . (15)

where (Ψ + Φ)/2 is the Weyl potential that enters into
gravitational lensing and the integrated Sachs-Wolfe ef-
fect in the CMB. While both γ and µ larger than one
would result in a smaller amplitude of the initial gravi-
tational and Weyl potentials, their quantitative effect is
different. In particular, changing µ results in a smaller
change in the gravitational potentials, with respect to γ,
since it is multiplied by the neutrino fractional energy
density Rν . This is a consequence of the fact that, given
the background expansion, superhorizon potentials de-
pend only on Φ/Ψ which itself is determined by γ alone
in the absence of anisotropic stress. This behavior of the
Weyl potential plays an important role in understanding
the modified CMB power spectrum that we shall discuss
in Sec. IV A.

For modes that remain outside the horizon after radia-
tion domination, when Rν � 1, the solutions well before
or after the step reduce to

Ψ = − 3(1 + w)

2 + 3γ(1 + w)
R , (16)

Ψ + Φ = − 3(1 + w)

2 + 3γ(1 + w)
(1 + γ)R , (17)

and in particular in the matter dominated limit w = 0
and these relations further simplify. Notice that after
radiation domination the superhorizon solution does not

depend on µ but only γ. During the recent accelera-
tion epoch, well after the step, w is not constant and so
these solutions do not strictly apply but since Φ/Ψ = γ,
Eq. (10) implies

Ψ = −
(

1− H

γa1/γ

∫
d ln a

a1/γ

H

) R
γ
,

Ψ + Φ = (1 + γ) Ψ. (18)

This integral relation can be expressed in terms of the
hypergeometric function for the ΛCDM expansion his-
tory which shows that Eq. (16,17) qualitatively describe
the transition to Λ domination but predicts it to be more
rapid. A larger γ also causes a slower decay of the po-
tential during the acceleration epoch.

2. Subhorizon Solutions

In the subhorizon regime, the evolution of the matter
perturbations determines the evolution of the potentials
and vice versa. Since the equations of motion of matter
given the metric are not affected by MG, we first examine
its behavior given the metric.

Deep in the radiation dominated epoch, the baryon
density is negligible and the photon density, or monopole
perturbation Θ0 = 1

4δγ , can be formally expressed as (see

Eq. D-6 in Ref. [35]2):

[Θ0 − Φ](τ) = [Θ0 − Φ](0) cos(kcsτ) (19)

− k√
3

∫ τ

0

dτ ′[Φ + Ψ](τ ′) sin[kcs(τ − τ ′)] ,

where cs = 1/
√

3. Since the radiation density fluctua-
tion dominates the source of the Poisson equation, once
the photons enter into acoustic oscillations around sound
horizon crossing, the Weyl potential decays to zero. This
decay also provides a source to the acoustic oscillations
through the integral term in Eq. (19) which we refer to
as the radiation driving effect. This extra source can
carry a phase shift if the timing of the decay is modified.
This same effect causes the well-known phase shift due
to freestreaming neutrinos (e.g. [36]).

As we shall see, the phenomenology of acoustic oscil-
lations is then determined by two pieces: the initial su-
perhorizon conditions for Θ0−Φ, the Weyl potential and
the modification of the timing of the decay of the latter.
Since Θ0(0) = −Ψ(0)/2, MG does not change the initial
value of [Θ0 − Φ](0) = R, so the change of this solu-
tion comes from the integral of the Weyl potential. Since
the Weyl potential always decays to zero after horizon
crossing in the radiation dominated epoch, the ampli-
tude of the driving effect depends on its initial value. We

2 Note that Φ in Ref. [35] is −Φ in this paper and V = θ/k,
pΠ = 3(ρ+ P )σ/2.
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FIG. 1. The comparison of the Weyl potential evolution between our MG example models and GR. The four panels represent
models with µ∞ = 1.2, γ∞ = 1.2, µ0 = 1.2 and γ0 = 1.2 respectively. The three vertical dashed lines indicate, from left to
right respectively, matter-radiation equality, the transition of the MG parameters (here z = 30, see definition in Sec. III A), and
Λ-matter equality. Before horizon crossing, µ has a limited effect on the evolution of Weyl potential due to the small fraction of
neutrino energy density, while a larger γ decreases its amplitude in both radiation and matter dominated epochs and slows the
potential decay in the acceleration epoch. When crossing the horizon during radiation epoch, a larger µ delays the potential
decay significantly while the same change in γ leads to a small effect. After horizon crossing, a larger µ increases the amplitude
of the potential due to a larger effective gravitational constant µG, while γ does not affect the subhorizon evolution. For details
of the early and late time behaviors and the effect of the transition, see the discussion in Sec. III C.

see from Eq. (15) that a larger γ gives a lower value of
|Φ+Ψ|(0), which decreases the driving effect. The impact
of µ on the amplitude is smaller but it does influence the

timing of the decay. A larger µ provides a larger source
to the Weyl potential and delays the decay. This then
produces a phase shift in the acoustic oscillations as we
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FIG. 2. The fractional change in transfer functions relative to their GR values at redshift z = 0 due to MG of (a) the Weyl
potential and (b) the synchronous gauge matter density perturbations. Different colors represent different example models as
in Fig. 1, as shown in legend. The vertical lines show the scales, (kDE, kT, keq), corresponding to the modes crossing the horizon
at Λ-matter equality, transition in the MG functions, and matter-radiation equality respectively.

shall see in Sec. IV A.
Cold dark matter density perturbations δc evolve ac-

cording to:

δ̈c +
ȧ

a
δ̇c = −k2Ψ− 3Φ̈ . (20)

In the radiation dominated epoch, we can treat the right
hand side as an external driving force S(k, τ) = −k2Ψ−
3Φ̈. Given that the potentials decay at horizon crossing,
as discussed above, well after horizon crossing δc settles
into a logarithmic growing mode [37]:

δc(k, τ) = −AΨ(k, 0) ln(Bkτ) , (21)

where A and B are constants that can be determined
from

A = − 1

Ψ(k, 0)

∫ ∞
0

dτS(k, τ)τ , (22)

A lnB =
3

2
+

1

Ψ(k, 0)

∫ ∞
0

dτS(k, τ)τ ln(kτ) .

The MG effect therefore again comes from the initial con-
ditions and the timing of the decay. Recall also that
τ ∝ a in the radiation dominated epoch. Even though
A and B themselves have no k-dependence deep in the
radiation dominated regime, a change in B alters the
transition in k between the constant and ln(kτ) terms
in δc. A change in B occurs when the epoch of poten-
tial decay is shifted. This is especially pronounced for µ
whereas γ mainly changes the overall amplitude A.

After the Universe becomes matter dominated, the self
gravity of matter causes its density fluctuation to grow

due to k2Ψ whereas Φ̈ remains negligible. After recombi-
nation, the baryon density fluctuation also obeys Eq. (20)
and so the combined baryon and cold dark matter com-
ponent is

δ′′m +

(
2 +

H ′

H

)
δ′m +

k2

H2
Ψ = 0, (23)

as usual. The MG influence comes from the Poisson equa-
tion (7) for Ψ and involves µ whereas γ drops out of the
equations. A larger µ increases the amplitudes of the po-
tentials due to the larger effective gravitational constant
and therefore enhances the growth. During the matter
dominated epoch, neglecting the effect of massive neutri-
nos for simplicity, we have

δ′′m +
1

2
δ′m −

3

2
µδm = 0 (24)

and therefore for the growing mode

δm ∝ a
√

24µ+1−1
4 . (25)

When µ = 1, it reduces to the standard δm ∝ a solution.
When µ deviates from unity, the matter perturbation in-
creases as µ increases. Massive neutrinos slow the growth
rate in the same way below their freestreaming scale by
acting in the opposite sense as a component that mod-
ifies the background expansion but does not contribute
to the perturbations.

In the acceleration epoch, to good approximation δm ∝
D
√

24µ+1−1
4 where D is the GR linear growth function of

ΛCDM [38].
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C. Numerical Results

In this section we complement our analytical analysis
with results from numerical integration using the modi-
fied Einstein-Boltzmann code described in Appendix B.

In Fig. 1, we show the numerical solution for the Weyl
potential at different scales while in Fig. 2 we show the
relative comparison of the transfer functions of the Weyl
potential and synchronous gauge matter density pertur-
bations at redshift zero. We choose four example models
defined by µ∞ = 1.2, γ∞ = 1.2, µ0 = 1.2, γ0 = 1.2 while
keeping fixed all other cosmological parameters. We refer
to the scale factors at matter-radiation equality, MG pa-
rameter transition, and matter-dark energy equality as,
respectively, aeq, aT, and aDE. The wavenumbers of the
modes that enter the horizon at the corresponding times,
which are determined by ki = H(ai), are referred to as
keq, kT, and kDE.

As we can see from Fig. 1, before horizon crossing, as
expected from the analytic results, µ has a very limited
impact on the evolution of the Weyl potential, while a
larger γ decreases its amplitude in both radiation dom-
inated and matter dominated epochs and slows the po-
tential decay in the acceleration epoch.

At horizon crossing, for modes that cross during radi-
ation domination, an increase in µ delays the decay of
the Weyl potential while the same change in γ leads to
a much smaller effect. As we see in Eq. (19), this im-
plies that µ being different from its GR value through
recombination changes the phase of acoustic oscillations
in the CMB. Modes that enter the horizon before matter-
radiation equality (i.e. k > keq) still grow logarithmically
but if µ∞ 6= 1, the change in the decay epoch also changes
the constant vs. logarithmic coefficients that results in an
enhancement that grows with k, as shown in Fig. 1a. γ
mainly changes the overall amplitude of the decay and
therefore leads to much less scale dependence.

After horizon crossing, during the matter and accel-
eration epochs, a larger µ increases the growth rate of
perturbations due to a larger effective gravitational con-
stant µG. The relative change in growth is scale indepen-
dent during the matter and acceleration epochs, since we
assumed a scale independent parametrization for µ.

We now comment on the behavior of perturbations
when crossing the transition of the MG functions at
z = 30. For subhorizon modes, the time derivative term
Φ′ in the continuity equation (4) becomes negligible, so
that the density perturbations remain continuous even
when γ or µ change rapidly. From the Poisson equation
(7) we know that Ψ ∝ µ, and from Eq. (8) we have
Φ = γΨ ∝ µγ and hence (Ψ + Φ) ∝ µ(1 + γ). There-
fore, a transition in µ(1 +γ) results in a transition in the
Weyl potential that can be clearly seen for γ on subhori-
zon scales in Fig. 1. This feature is present but hidden
in the µ case due to the change in the growth of density
perturbations that overcomes this effect.

For superhorizon modes in the matter dominated limit,
µ is irrelevant for the two potentials and remains so dur-

ing the transition, we thus see zero impact in the µ∞ and
µ0 example models. For γ, on the other hand, the poten-
tials settle on the predictions from Eq. (17) before and
after the transitions since the conservation of comoving
curvature ensures that there is no memory of the transi-
tion once it is complete.

Combined these changes in growth lead to features in
the transfer functions at z = 0 displayed in Fig. 2. At
scales that are superhorizon at kDE, only γ0 shows a rel-
ative deviation from GR, in the Weyl potential. For
a transition from an unmodified to a modified gravity
model, µ = 1 → 1.2, the scale independent change in
growth appears as a scale independent increase in the
transfer function at k � kT. On the other hand with
a transition from a modified to an unmodified gravity
model µ = 1.2 → 1, this matter dominated growth only
happens between horizon crossing and aT so that its full
effect occurs for k � keq. In addition there is also a scale-
dependent component due to the modified logarithmic
growth during radiation domination.

For both γ0 and γ∞, the transition produces a step in
the Weyl potential for modes k > kT and hence a step
in the Weyl transfer function. For γ∞ there is an addi-
tional change in the logarithmic growth during radiation
domination that partially compensates for this step.

This discussion is tightly connected with the behavior
of matter density perturbations whose scale dependence
at z = 0 can be seen in Fig. 2. There we show the rela-
tive comparison of the synchronous gauge matter density
perturbations with respect to their GR behavior.

For both γ∞ and µ∞ the behavior is very close to that
of the Weyl potential (for more detail, see above dis-
cussion). For the late time models, µ0 and γ0, some
differences appear. In the µ0 model, the amplitude on
superhorizon scales decreases because µ does not affect
the evolution of Ψ at such scales, thus δc ∝ 1/µ. In the
γ0 model, the amplitude on superhorizon scales decreases
because its impact on Ψ and hence δc differs from Φ + Ψ,
see Eq. (16). For the modes that enter the horizon well
before z = 30, the amplitude remains unchanged because
γ does not affect the subhorizon matter perturbation evo-
lution.

IV. IMPACT ON OBSERVABLES

In this section we study the impact of MG on cosmolog-
ical observables, including the CMB power spectrum, the
BAO scale, gravitational lensing and the matter power
spectrum.

A. CMB temperature power spectrum

As we have seen in the previous sections, early time
MG affects both initial conditions and the evolution of
perturbations. Therefore we expect a change in the
physics of photon-baryon acoustic oscillations that will
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FIG. 3. The CMB anisotropy source functions in k-space in units of amplitude of primordial comoving curvature perturbation
in two MG example models with µ∞ = 1.2 and γ∞ = 1.2 and GR. Different lines correspond to different physical effects and
models, as shown in figure and legend. The vertical dashed line shows mode that crosses the horizon at recombination (z∗).
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γ∞ = 1.2 relative to the GR spectrum. The vertical solid lines indicate the angular position of the GR peaks of the unlensed
CMB spectrum. Notice that the variations are mainly out of phase with the peaks.

have a significant impact on the CMB power spectra.
Since the Boltzmann equations remain unchanged in
form, if we treat the gravitational potential as an exter-
nal driving force for the photon-baryon fluid, the impact
of MG can be understood from these changes in the po-
tential evolution in the same way as in GR [35].

To aid our interpretation of these effects, we start with
the impact on the sources of CMB anisotropy in k-space
in Fig. 3. There we show Θ0 +Ψ, the monopole corrected
for the ordinary Sachs-Wolfe effect, and the dipole Θ1 at

the redshift of recombination z∗. We also show the differ-
ence in Weyl potential between recombination and today
(Φ + Ψ)|z=0

z∗ as a proxy for the integrated Sachs-Wolfe
(ISW) effect, including its early time contribution. Fig. 3
shows these three quantities in GR and in two example
models with µ∞ = 1.2 and γ∞ = 1.2 respectively. In ad-
dition we can see in Fig. 4 the un-lensed scalar part of the
CMB temperature spectrum for the two example mod-
els compared to the GR scalar spectrum in the harmonic
domain.
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As we can see µ∞ induces a significant phase shift of
both the temperature monopole and dipole. This phase
shift comes from the shift in the epoch that the Weyl po-
tential drives the oscillations as discussed in the previous
section, see Eq. (19), and shown in the top left panel of
Fig. 1. This is the leading effect that we see, with respect
to GR, in Fig. 4(a).

In the angular power spectra, this phase shift corre-
sponds to a shift of the scale of the acoustic peaks to
higher multipole with µ∞ = 1.2 vs. 0 of ∆` ' 18, where
the exact number is calibrated on the third peak. In
Fig. 4 this is visible as oscillatory fractional changes to
the spectrum that are out of phase with the peaks them-
selves (vertical lines). This should be contrasted with a
change in the fundamental angular scale of the acous-
tic peaks θs which causes a shift ∆` ' −`∆θs/θs. As we
shall see, the two parameters µ∞ and θs are consequently
partially degenerate, with the degeneracy broken by the
measurement of multiple acoustic peaks.

A smaller effect induced by a change in µ∞ is a differ-
ence in baryon modulation. As we can see in Fig. 3 there
is an amplitude change for modes that reach the oscilla-
tion minimum, as opposed to maximum, at recombina-
tion. This is caused by the fact that increasing µ∞ in-
creases the gravitational potential and hence the baryon
modulation effect. At about the same relevance we can
also see the effect of the change in the epoch of Weyl po-
tential decay on the efficiency of radiation driving. The
latter two effects are difficult to see in Fig. 4 as they are
sub-leading with respect to the phase shift. They can be
uncovered by cancelling the shifts due to µ∞ and θs at a
fiducial multipole, e.g. the third acoustic peak.

A larger γ∞, on the other hand, shows three effects on
the CMB power spectrum: a decrease in the amplitude
of the acoustic peaks, a further decrease at scales larger
than the first acoustic peak, 10 . ` . 100, and a phase
shift. First of all, the overall amplitude change comes
from the driving effect. As we see in Eq. (19), a larger
γ∞ gives a lower initial value of |Φ + Ψ|, which decreases
the value of Θ0 +Ψ, hence the overall amplitude of CMB
temperature fluctuation. Notice that the integral part in
Eq. (19) has opposite sign and approximately twice the
amplitude of the initial part in GR, so the fractional dif-
ference of CTTl is approximately 4 times as the fractional
difference of the initial Weyl potential Eq. (15) and an-
other factor of 2 comes from the square in the calculation
of power spectrum.

On intermediate scales just larger than the first acous-
tic peak, the reduction in the amplitude of the Sachs-
Wolfe and Doppler effects further suppresses power in
Fig. 4. Above the horizon in the matter dominated epoch
Θ0 + Ψ = Ψ/3 and so Eq. (15) and the photon conserva-
tion equations predicts the rough amplitude with some
reduction in the effect due to the ISW effect. At large
scales where fluctuations are above the horizon at the
transition, the SW and ISW effects from the transition
add coherently and since µ = 1 after the transition, they
cancel leaving temperature power spectrum differences
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FIG. 5. The CMB lensing potential power spectrum in the
harmonic domain. Different colors correspond to different
models as shown in legend.

that vanish as `→ 0.
Finally a deviation of γ∞ from unity also induces a

small phase shift. Calibrated to the third peak, the shift
for γ∞ = 1.2 is ∆` ' 3 and remains nearly constant
throughout the acoustic peaks. We shall see that this
phase shift causes a partial degeneracy between µ∞ and
γ∞.

MG at late time, conversely, does not affect acoustic
oscillations but rather changes the spectrum of un-lensed
CMB temperature fluctuations through the ISW effect.
At the transition, the time derivative of the Weyl po-
tential causes an enhancement of the temperature power
spectrum that is dependent on the width of the tran-
sition. As we show in Appendix C, if the transition is
much sharper than ∆T ∼ 1 efold, the ISW effect makes
the CMB highly sensitive to the difference between µ and
γ at early and late times.3 Since such a transition is un-
realistic for a model whose deviations from GR evolve on
the Hubble timescale, we fix ∆T = 1.

Both early times MG models modify the Weyl poten-
tial, as shown in Fig. 2a, and thus change the lensing
potential of the CMB accordingly in Fig. 5. Raising ei-
ther µ∞ or µ0 raises the amplitude of the lensing po-
tential whereas µ∞ also causes a notable change in its
shape as a result of the scale dependent enhancement of

3 Furthermore as discussed in Appendix C, MGCAMB implements
the switch between GR at early times and potential deviations at
late times instantaneously and produces inconsistent, not merely
overly sensitive, results if the parametrization is not designed to
go smoothly to zero on the low redshift side of the transition
(cf. [6] Planck 2015 paper).
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modes that entered the horizon during radiation domi-
nation as shown in Fig. 2a. Raising γ∞ or γ0 decreases
and increases the lensing potential respectively with lit-
tle change in the shape. These changes to the lensing
potential produce observable effects in the smoothing of
the acoustic peaks and CMB lens reconstruction.

B. Weak Lensing

Measurements of the galaxy weak lensing (WL) shear
correlation function provide a powerful way of studying
MG models. In this section we discuss the impact of MG
on weak lensing observables through the Weyl potential.

As we discussed in the previous sections, in GR,
anisotropic stress is negligible at late times so the Weyl
potential power spectrum is just a re-scaling of the mat-
ter power spectrum, but this is not generally true in MG.
The difference between the two can be clearly seen com-
paring the two panels of Fig. 2. For this reason it is
important to build lensing observables starting from the
Weyl potential power spectrum.

The amplitude of the WL power spectrum is usually
parametrized in terms of σ8, the rms amplitude of linear
matter density fluctuations ∆m convolved with a spher-
ical tophat of radius 8h−1 Mpc at z = 0, and the matter
density parameter Ωm, in their combination S8 ≡ σ8Ω0.5

m .
When considering MG models we need to take into ac-
count the difference between the Weyl potential and mat-
ter density perturbations. For this reason we replace the
matter density fluctuations ∆m with ∆WL where

∆WL ≡ −
k2(Φ + Ψ)

8πGa2ρm
, (26)

and define σWL
8 using this field. Eq. (26) is normalized

such that, in GR and in absence of matter anisotropic
stresses σWL

8 → σ8. In MG it is easy to see that, in
absence of matter anisotropic stresses:

σWL
8 =

1 + γ

2
µσ8 (27)

so that its general definition extends the definition in [8]
and reduces to it when matter anisotropic stresses are
negligible.

We show in Fig. 6 the fractional change in σWL
8 as a

function of the four MG parameters around the GR value
with all other parameters fixed. As we can see this closely
resembles the amplitude change of the Weyl potential at
small scales, shown in Fig. 2. Raising µ∞, µ0, or γ0 all
raise the lensing observable, whereas raising γ∞ lowers
it. Furthermore, for the γ0 case, the amplitude of the
matter power spectrum on sub-horizon scales does not
change while the amplitude of the Weyl potential tracks
the change in γ0 and illustrates why it is important to
use Eq. (26) as the parameter controlling WL. Notice
that the definition of σWL

8 only addresses one aspect of
the difference between GR and MG by incorporating the
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FIG. 6. The fractional change in σWL
8 from its the GR value.

Different colors correspond to different models as shown in
legend.

dependence on MG of the redshift zero calibration. The
amplitude of the lensing signal at a given redshift de-
pends on the growth of perturbations and scale of the
measurements. In GR these are addressed by consider-
ing the combination σ8Ω0.5

m while in MG there would be a
residual dependence on µ and γ due to the scale and red-
shift dependent sub horizon growth. For compatibility
with this convention we use σWL

8 Ω0.5
m as a simple proxy

for the WL observable in MG but test its fidelity in the
µ0 − γ0 space directly (see Fig. 10).

C. Matter power spectrum

The clustering of galaxies provides another powerful
and complementary probe of MG. The modifications in-
duced on the underlying CDM power spectrum that it
traces follow closely what we discussed for the transfer
functions in Sec. III C. Galaxies are biased tracers of the
CDM and as shown in [39, 40], bias in the linear regime
is expected to be scale dependent if the linear growth
is also scale dependent as it is in MG. Precise model-
ing within parametrized approaches requires cosmologi-
cal simulations but one would expect that it qualitatively
follows the response of the local growth to the linear den-
sity perturbation treated as a local background density
[40].

An observable that is more robust to these compli-
cations is the location of the BAO peak in the galaxy
correlation function. However, in case of early modified
gravity, we have to take into account the fact that an
acoustic phase shift induced by the decay of the gravita-
tional potential would also shift the position of the BAO
peak.

In Fig. 7 we can clearly see this effect. We compare
the CDM spatial linear correlation function in GR to the
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legend. Vertical lines represent the BAO peak which are
slightly shifted by early time MG parameters.

two early MG models that we consider, keeping all other
cosmological parameters fixed. The phase shift induced
by µ∞ shows as a shift in the BAO peak of the corre-
lation function. In our test case of µ∞ = 1.2 we have
that ∆rpeak = 1.9 Mpc corresponding to ∆rpeak/r

GR
peak =

1.2%.
Since γ∞ also induces a phase shift we can observe a

corresponding shift in the BAO peak also in the case of
γ∞ = 1.2, with ∆rpeak = 0.35 Mpc and ∆rpeak/r

GR
peak =

0.2%. The relative sizes of the γ∞ and µ∞ shift in the
BAO peak is the same as that of the phase shift in the
CMB peaks.

Notice that the shape of the correlation function is also
modified in these two cases, especially in the µ∞ case
where the there is a substantial enhancement of high-k
power in Fig. 2. This would provide a powerful way of
testing these models once bias is understood.

We warn the reader that the measured peak position in
the galaxy correlation function is usually compared to the
acoustic-scale distance ratio DV (z)/rdrag, as measured
by a LSS survey with effective redshift z. While this
holds in GR, it is not strictly true in early MG models
so that one has to check whether the difference is within
the experimental error bars.

V. ANALYSIS METHODS

In this section we discuss cosmological constraints and
parameter dependencies by performing MCMC param-
eter estimation with different datasets using a modi-
fied version of the Einstein-Boltzmann solver CAMB de-
scribed in the Appendix B. All of the cosmology models

we test have the six standard ΛCDM parameters plus
the MG parameters which vary in different tests. The
six ΛCDM parameters have standard priors and we fix
the sum of neutrino masses to the minimal value [41].

Since the MG parameters are introduced as phe-
nomenological triggers for new physics in the datasets,
our strategy for dataset and parameter choices is to look
for datasets that are in tension with the well-measured
CMB temperature power spectrum under the ΛCDM
model and to investigate the simplest MG case that might
relax that tension.

Since the leading tensions under ΛCDM involve H0

and galaxy Weak Lensing (WL), we highlight these in
the studies below. If MG parameters can relax these
tensions, we proceed to add other cosmological datasets
to see if they can provide a consistent solution. We also
consider joint variation of MG parameters to see if to-
gether they can resolve tensions better than individually.

This procedure employs several datasets. We be-
gin with the measurements of the high multipole CMB
temperature power spectrum from the Planck satel-
lite [42, 43] supplemented by the low multipole TEB
data which mainly constrains the optical depth τ . We
refer to this baseline dataset as CMBTT. To this we add
the high multipole EE and TE Planck data which we
call CMBpol. We further employ the Planck 2015 full-
sky lensing potential power spectrum [44] in the multi-
pole range 40 ≤ ` ≤ 400. At smaller angular scales CMB
lensing is strongly influenced by the non-linear evolution
of dark matter perturbations, we thus exclude multipoles
above ` = 400. We refer to this dataset as CMBlens. We
indicate the dataset joining all Planck CMB datasets as
CMBall = CMBTT+CMBpol+CMBlens .

The H0 tension is realized by the dataset consisting
of local measurements of the Hubble constant derived by
the “Supernovae, H0, for the Equation of State of dark
energy” (SH0ES) team [45] and their best estimation is
H0 = 73.24 ± 1.74 (in units of km s−1 Mpc−1 here and
throughout). We refer to this dataset as H0.

On the other hand the WL tension leverages on the
measurements of the galaxy weak lensing shear cor-
relation function as provided by the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) [46, 47].
This dataset is referred to as WL. We applied ultra-
conservative cuts, that make CFHTLenS data insensi-
tive to the modelling of non-linear evolution. We call the
combination of CMBall+H0+WL = CMBtension.

Finally we include: BAO and RSD measurements of
BOSS DR12 [9], SDSS Main Galaxy Sample [48] and
6dFGS [49]; the “Joint Light-curve Analysis” (JLA)
Supernovae sample [50]. We call the combination of
CMBtension + BAO + SN = All.

VI. RESULTS

We begin with the discussion of late times modifica-
tions to gravity, parametrized with µ0 and γ0, and review
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why the preference for non-GR values appears for the
CMB temperature spectrum but disappears once CMB
lensing reconstruction is included. This case has been
previously considered in the literature but we correct for
a problem in some of the previous implementations. We
then consider the early times modifications to gravity, as
parametrized by µ∞ and γ∞, which constitute the truly
new aspect of this work. We show that µ∞ in particu-
lar can relax the tension with H0 and WL by changing
all CMB theoretical predictions in a compatible manner
due to its combined effect near recombination and on
lensing. However in our implementation where the back-
ground expansion is unmodified with respect to ΛCDM,
BAO data in particular do not favor such a resolution.
Finally we consider combinations of early and late time
MG parameters to test whether non-trivial degeneracies
appear and find that none of these combinations help to
further reduce tensions.

A. Late time modified gravity

We first consider the joint effects of µ0 and γ0 since
their individual effects are quite similar resulting in a
strong degeneracy between the two parameters shown in
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FIG. 9. The Planck TT residuals for the best fit late
time modified gravity model, relative to the best fit ΛCDM
CMBTT model. The foreground parameters are fixed to the
ΛCDM best fit values for compatibility with the foreground
model removed from the data. Different colors correspond
to different combination of datasets, as shown in legend. The
residuals are normalized to σCV, the cosmic variance per mul-
tipole of the best fit ΛCDM CMBTT model (see text). The
vertical solid lines indicate the angular position of acoustic
peaks of the unlensed spectrum in the ΛCDM model.

Fig. 8. Our constraints on late time MG parameters are
weaker than some of the results in the literature, espe-
cially in the degenerate direction, due to our more real-
istic and consistent treatment of the transition from GR
at early times to these MG parameters, as discussed in
Appendix C.

When the CMBTT dataset is considered alone, the late
time parameters can also broaden its constraints on H0

and σWL
8 Ω0.5

m as shown in Fig. 8. In fact a deviation from
µ0 = γ0 = 1 is preferred at the 95% C.L., as can be seen
in Fig. 8.

These results are related to coherent features in the
data residuals with respect to the ΛCDM best fit model
to the CMBTT dataset (see Fig. 9). Here and below, we
scale residuals to the cosmic variance per multipole

σTTCV =

√
2

2`+ 1
CTT` , (28)

σTECV =

√
1

2`+ 1

[
CTT` CEE` + (CTE` )2

]
, (29)

with CTT` , CEE` and CTE` fixed to the best fit ΛCDM
CMBTT model. The data exhibit residuals that are
nearly in phase with the acoustic peaks at ` & 1000 which
indicate smoother acoustic peaks in the data [51–53].
This smoothness is also what is responsible for changing
the inferences for a higher H0 at ` < 1000 and a lower H0

beyond, and conversely for σWL
8 Ω0.5

m given that in ΛCDM,
the acoustic peak positions fix Ωch

3 approximately. Fur-
thermore the ` < 1000 residuals are dominated by the
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low power glitch in the CMBTT data at ` . 30, shown
in Fig. 9, which explains their preference for a lower Ωch

2

to enhance driving and a higher H0. This preference was
also seen in the WMAP dataset which was comparably
limited by instrumental resolution [51].

It is well known that these oscillatory residuals can
be better fit with a higher CMB lensing amplitude than
ΛCDM implies [42] and this explains the preference for
MG at about the same statistical significance. In Fig. 9,
we can see that the best fit MG parameters better ac-
commodate the oscillatory residuals while not decreasing
the agreement of the model with data below ` . 1000.
Here and below, when showing the Planck CMB best fit
MG models we fix foreground parameters to their best fit
ΛCDM values for compatibility with the data points that
have that model subtracted. On the other hand, all con-
straints on MG parameters have the standard foreground
parameters marginalized over.

Because of these oscillatory residuals, MG allows for
a lower Ωch

2, which also fits better the low power glitch
at ` . 30, to be compatible with CMBTT and hence
accommodates a higher H0 and higher σWL

8 Ω0.5
m , where

the latter reflects the fact that raising CMB lensing tends
to raise WL as well.

However it is also well known that CMBlens data do
not favor raising the lensing amplitude to explain the os-
cillatory residuals in CMBTT [42] and in fact no changes
in the amplitude or shape of the lens power spectrum

Cφφ` can reconcile them [54, 55]. Consequently, once the
CMBlens data are added the constraints on µ0 and γ0

become compatible with the GR values and the ability
to raise H0 is diminished (see Fig. 8). Likewise the ability
to fit the oscillatory residuals in Fig. 9 also goes away.
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Furthermore, the WL dataset also favor lowering not
raising lensing and so would also counter the ability of
MG to fit the CMBTT oscillatory residuals. We can see
this more directly in Fig. 10 where we consider the con-
straints from the CMBlens and WL datasets alone but
fix the ΛCDM parameters to their best fit CMBTT val-
ues for ΛCDM. Note that the CMBlens and WL constrain
nearly the same combination of µ0 and γ0 with WL favor-
ing somewhat lower values and hence somewhat less lens-
ing. The CMBlens data are fully consistent with the GR
values whereas the WL data prefer lower values, reflect-
ing the tension between the CMBTT and WL datasets.
Therefore the tensions between CMBTT, CMBlens and
WL data sets cannot be resolved by raising lensing with
late time MG parameters alone. Notice also that con-
tours of σWL

8 Ω0.5
m track the degenerate direction of the

WL constraints and justify its use as a proxy for the WL
lensing observable.

B. Early time modified gravity

The oscillatory residuals in the CMBTT data vs. a
high H0 solution cannot be explained by introducing
new physics through MG to change the smoothing of the
peaks by gravitational lensing since the CMBlens dataset
forbids it. This leaves the possibility that the early time
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data.
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the 95% C.L. The dashed lines indicate the value of µ∞ in
GR limit.
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legend. Again µ∞ compensates the changes due to the larger
H0 value.
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FIG. 15. TE residuals relative to the best fit ΛCDM CMBTT
model, similar to Fig. 12 but with TE spectrum. Again µ∞
compensates the changes due to the larger H0 value especially
around the first minimum where the data also fluctuate low
(leftmost vertical line).

MG can change the intrinsic shape of the peaks and re-
solve these tensions. Furthermore since the study of the
early time parameters µ∞ and γ∞ is new to this work,
we conduct a more thorough examination of their indi-
vidual effects than in the previous section on late time
parameters.

We start with µ∞ alone and the CMBTT dataset in
Fig. 11. Here µ∞ is strongly correlated with θ∗. This is
because µ∞ leads to a phase shift in the acoustic peaks
and its effect on the well-measured peak locations is par-
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in the γ∞ only model with the CMBTT dataset. The darker
and lighter shades correspond respectively to the 68% C.L.
and the 95% C.L. The dashed lines indicate the value γ∞ in
GR limit where nearly the same range in H0 is allowed.

tially degenerate with a change in the angular scale of
the sound horizon (see Sec. IV A). Since the CMBTT
dataset measures multiple peaks, the degeneracy is not
perfect and indeed the measurement of the peak loca-
tions provides the strongest constraint on µ∞. Note also
that within ΛCDM the best fit value of θ∗ shifts between
` . 1000 and the full dataset to lower values by ∼ 1σ
[52]. In the µ∞ model, this shift in peak locations can

be accommodated by a change in both the angular scale
and phase of the acoustic peaks.

A larger value for µ∞ also allows a larger value of H0.
In GR with the ΛCDM H0 = 67.26 ± 0.99. Within
the bounds on µ∞ allowed by the phase shift, H0 =
67.80± 1.27. This comes about since µ∞ allows another
way of changing the amount of low to high ` TT power,
especially around the first few acoustic peaks, and so is
partially degenerate with radiation driving effects from
Ωch

2 and also another way of compensating the reduc-
tion in lensing due to a lower Ωch

2. Notice that the
the correlation of the latter with H0 remains largely un-
changed since the background expansion remains identi-
cal to ΛCDM and θs remains well constrained. This has
implications for BAO and SN as we shall see, since rais-
ing H0 requires the same reduction in Ωm as in ΛCDM.
Note that as in ΛCDM a higher H0 solution also gives a
lower σ8Ω0.5

m which is favored by WL data.

We can see these effects in Fig. 12. Here we show
how µ∞ compensates for changes in the cosmological
parameters of a high H0 = 69.9 best fit solution to
the CMBTT+H0+WL datasets. Notice that with the
same cosmological parameters but reverting µ∞ = 1, the
model exacerbates the oscillatory residuals in the data at
` & 1000, the well-known problem with raising H0 under
ΛCDM.

While this broadening and raising of H0 values allowed
by CMBTT with µ∞ is small but significant in that it
places H0 = 70 well within the CMBTT 2σ bound, the
main benefit of µ∞ over the late time parameters is that
CMBlens and CMBpol data somewhat favor rather than
disfavor such a deviation from GR. In Fig. 13, we show
the result of the CMBall combination. Notice that the
errors on µ∞ shrink but the central value remains the
same. After adding H0 and WL datasets, we end at
H0 = 69.35 ± 0.80. and a preference for µ∞ > 1 at the
98.2% C.L. This preference comes about since the effect
of raising µ∞ and lowering Ωch

2 nearly compensate each
other in their effect on the CMB lens power spectrum as
shown in Fig. 14 for the same model as in Fig. 12. For
the polarization, in ΛCDM a low H0 value is preferred in
large part due to the low TE datapoint around the first
minimum (` ∼ 165) [53]. This too is compensated with
µ∞ and together with changes at higher multipole in fact
brings about a better fit than ΛCDM in Fig. 15.

On the other hand since in our parameterization the
background expansion remains ΛCDM, the lower Ωm
implied by a higher H0 causes tension with the BAO
dataset. After adding BAO dataset, H0 = 68.57 ± 0.50,
disfavoring high values, and the preference for µ∞ > 1 is
reduced to 95.7% C.L. (see Fig. 16). In a physically mo-
tivated MG theory, we would typically expect both the
background and the perturbations to be modified and
so in principle this problem with BAO could be amelio-
rated by changing the expansion rate in a manner similar
to adding extra relativistic degrees of freedom under GR.

Next, we discuss the results with γ∞ as the only MG
parameter. With the CMBTT dataset, similar to µ∞,
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different combination of datasets, as shown in legend. The
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C.L. and the 95% C.L. The dashed lines indicate the values
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γ∞ also causes a phase shift, so it is also constrained by
the locations of acoustic peaks. However, γ∞ only shows
a very weak correlation with H0 in Fig. 17 and cannot
move H0 much higher than in ΛCDM. Its effects at re-
combination share some similarity to µ∞ in that raising
it alters the power between low and high multipoles and
accommodates a lower Ωch

2 and higher H0. However
raising γ∞ also lowers the CMB lens power spectrum as
shown in Fig. 5 and exacerbates the oscillatory residual
problem at ` & 1000.

Finally, with both µ∞ and γ∞ as MG parameters, a
strong correlation between µ∞ and γ∞ shows up when
CMBTT data is considered. This also come from the
phase shift effect. Since both µ∞ and γ∞ shift the phase
in the same direction and µ∞ to compensate each other,
they show a negative correlation with a direction consis-
tent with the amplitudes of their phase shifts discussed
above. Because of this anti-correlation their joint abil-
ity to ameliorate H0, CMBlens and WL tensions is not
significantly greater than that of µ∞ alone.

C. Combined early and late times MG

At last we consider combinations of MG parameters to-
gether to check whether non-trivial degeneracies appear.
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FIG. 19. The marginalized joint posterior for γ∞ and γ0
in the γ∞ + γ0 model with the CMBTT dataset. The darker
and lighter shades correspond respectively to the 68% C.L.
and the 95% C.L. The dashed lines indicate the values of the
MG parameters in the GR limit.

When we use both µ∞ and µ0 as MG parameters, the
H0 tension can be further reduced when CMBTT data is
considered. But for the same reasons that we discussed in
Sec. VI A, this resolution is also disfavored by CMBlens
because of the enhancement of the lensing potential, see
Fig. 18.

On the other hand, when we use both γ∞ and γ0 as
the MG parameters, we find that there is no correlation
between them, see Fig. 19. Both parameters affect the
CMB temperature spectrum in independent ways and
both parameters are then not favored by the data as we
discussed in the previous sections.

VII. DISCUSSION

We study the impacts of MG on cosmological per-
turbation evolution and CMB power spectrum under a
phenomenological parameterization of the Poisson equa-
tions (7, 8). We implement this parameterization into
the Einstein-Boltzmann code CAMB.

New aspects of this work include the treatment of ini-
tial conditions in the radiation dominated epoch and the
effect of MG on the CMB and matter evolution prior to
recombination. In particular, we illustrate the MG effects
using step functions of time for the two MG perturba-
tion parameters with an unmodified ΛCDM background
to isolate their effects at early and late times.

This study is partially motivated by the existence of
tensions between CMB and low redshift observables in
ΛCDM. For the late time MG parameters µ0 and γ0, the
non-GR values are favored by CMBTT data because the
MG parameters raise the lensing potential and smooth
the acoustic peaks while also raising the Hubble constant
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H0. However, this preference disappears once CMBlens
data is included because the lensing reconstruction does
not favor such an enhancement. We conclude that late
time modifications alone are unlikely to resolve tensions
with ΛCDM.

Parameter tensions in ΛCDM rely heavily on the inter-
pretation of acoustic observables in the CMB and BAO
at recombination. By changing the evolution of gravi-
tational potentials, MG parameters at early times can
in principle be more effective. While changing γ∞ can
not help to reduce tensions, changing µ∞ can relax ten-
sions internal to the CMB datasets and between CMBTT
and H0 and weak lensing. This is achieved by changing
CMB temperature, polarization and lensing predictions
in a compatible manner due to its combined effect on
the acoustic oscillations and on lensing and results in a
preference for µ∞ > 1 at greater than 98% C.L. and
H0 = 69.35± 0.80 when combined with Hubble constant
and weak lensing datasets. BAO data however do not
favor such a resolution since the background expansion
remains unchanged compared to ΛCDM in our imple-
mentation and therefore requires a lower Ωm for a higher
H0. Combinations with other MG parameters do not
further help resolve tensions.

In a physically motivated modification of gravity, we
would generally expect changes to both the background
and the perturbations, leaving open the possibility that
once combined this tension with BAO can be ameliorated
as well (see e.g. Ref. [56] for such a example in an early
dark energy context). Moreover, our simple parameteri-
zation of MG in the perturbations with a step function
in time is itself only meant to be illustrative and not a
prediction based on a fundamental theory. Instead this
study serves as a guide to the construction of physically
motivated models that might resolve tensions in ΛCDM.
We leave such studies to a future work.
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Appendix A: Comoving Curvature Conservation

In order to take the initial comoving curvature per-
turbation R from inflation as initial conditions for the
radiation dominated universe as usual, we need to show

that it is conserved outside the horizon

lim
k/H→0

R′
R = 0 (A1)

for any type of matter or modified gravity parameters µ
and γ. In this Appendix we derive the conditions under
which this is true.

Starting from the definition of the comoving curvature
in terms of Newtonian gauge variables in a spatially flat
universe

R = −Φ− H
k2
θ, (A2)

we use the modified gravity equations (7,8) to obtain

R =
4πGa2µ

k2
[γ∆ρ+ 3(γ − 1)(ρ+ P )σ]− H

k2
θ. (A3)

Taking the derivative of this equation and using the mat-
ter conservation equations (4), we obtain

R′ = R′GR +
4πGa2µ

k2 + 12πGa2γµ(ρ+ P )

×
{
C1∆ρ+ C2(ρ+ p)

θ

H + C3(ρ+ P )σ

+ C4[(ρ+ P )σ]′
}

(A4)

where

C1 = 1− γ + γ′ + γ
µ′

µ
,

C2 = −γ − HH ′

4πGµ(ρ+ P )
,

C3 = 3(γ − 1)

(
1 +

µ′

µ

)
+ 3γ′,

C4 = 3(γ − 1), (A5)

Under GR all of the Ci coefficients vanish leading to

R′GR = −δP − (H/k2)P ′θ − (ρ+ P )σ

ρ+ P
. (A6)

Note that the numerator of Eq. (A6) is the total stress
fluctuation in comoving gauge so that under GR, R is
generally conserved if stress fluctuations are negligible,
i.e. above the sound horizon.

Assuming µ, γ, µ′, γ′ = O(1) and the background only
has small fluctuations from GR as well, the Ci = O(1)
and the main difference in MG is that even without mat-
ter stress fluctuations the comoving curvature can evolve.
However, the extra terms in R′/R are still suppressed by
(k/H)2 above the horizon as long as there are no strong
cancellations in the contributions to R. Note that even
if the MG parameters evolve on a time scale much more
rapid than the expansion time, they just act as a superlu-
minal sound speed with R′/R suppressed by (ceffk/H)2

with c2eff = O(µ′/µ, γ′/γ). As k/H → 0, even these cases
conserve comoving curvature. This generalizes the proof
in Ref. [13] for arbitrary forms of matter and makes ex-
plicit the connection with the horizon scale.
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Appendix B: Boltzmann Code

The calculations in this paper employ a modified ver-
sion of the Einstein-Boltzmann solver CAMB. Unlike the
treatment in the main text, CAMB uses synchronous
gauge to represent perturbations. In this Appendix we
detail our modifications to CAMB that mostly extend the
MGCAMB implementation to early times and recombi-
nation.

1. Synchronous Gauge

The synchronous gauge of the cold dark matter, in the
notation of Ref. [57], has two spatial metric potentials,
the curvature η and the perturbation the trace of the
spatial metric h. These are related to the Newtonian
potentials by the gauge transformation

Ψ = H(α′ + α),

Φ = η −Hα , (B1)

where α = H(h′+6η′)/2k2. Hence, the modified Einstein
equations in synchronous gauge are

α′ + α = −4πGa2µ

k2H [∆ρ+ 3(ρ+ P )σ], (B2)

η − γHα′ − (γ + 1)Hα =
12πGa2µ

k2
(ρ+ P )σ. (B3)

The combination of these two equations gives the first
equation we use to modify CAMB

Hα = η +
4πGa2µ

k2
[γ∆ρ+ 3(γ − 1)(ρ+ P )σ], (B4)

to replace the Einstein equation for h′. Constructed
out of matter density fluctuations in synchronous gauge
∆ρ = δρ+ 3H(ρ+ P )θ/k2 and retains the same form as
when constructed out of Newtonian gauge fluctuations
while σ is gauge invariant. From this point forward in
this Appendix, all matter perturbation variables are in
synchronous gauge. The synchronous matter fluctuations
obey the usual conservation laws

δρ′ + 3(δρ+ δP ) = −(ρ+ P )

(
θ

H +
h′

2

)
,

[(ρ+ P )θ]′ + 4(ρ+ P )θ =
k2

H
[
δP − (ρ+ P )σ

]
. (B5)

These equations also apply to individual matter species
in the absence of interactions. We refer the reader to
e.g. Ref. [57] for the equations for baryons and photons
separately in presence of Thomson scattering. Note that
the joint photon-baryon system obeys Eq. (B5) which is
all we require below.

For the second equation, CAMB uses the time-space
Einstein equation. Its modification can be derived from

the derivative of Eq. (B4) using Eq. (B2,B5)

η′ =
4πGa2µ

k2 + 12πGa2γµ(ρ+ P )

×
{(

1− 3
a2HH ′

k2

)
γ(ρ+ P )

θ

H − C1∆ρ

−C2(ρ+ P )
k2

H α− C3(ρ+ P )σ

−C4[(ρ+ P )σ]′
}
, (B6)

where the Ci coefficients are defined in eq. (A5). Notice
that in GR only the θ source remains and that this source
converts Eq. (B4) to a direct relation between h′ and δρ
removing the velocity dependence in ∆ρ.

Eq. (B6) corrects an error in [29]. The correction term
is proportional to (γ − 1)σ, so it affects the results when
both γ 6= 1 and σ is important. At the late times the
anisotropic stress σ is very small, so the impact of this
correction is limited. However, at the early times the
anisotropic stress is non-negligible, this correction has
considerable influence. We also generalize the result for
time-varying equations of state which is necessary for the
treatment of massive neutrinos.

We also find some bugs in the publicly available Feb
2016 version of MGCAMB code. The bugs will affect the
massive neutrino effects and the calculation of the deriva-
tives of anisotropic stresses. Care should be used when
employing MGCAMB in regimes where massive neutri-
nos or anisotropic stresses become important. These
bugs are in the process of being fixed in the public version
of the MGCAMB code [58]. On the other hand, in the
regime where MGCAMB was mostly employed in liter-
ature, for modifications of gravity at late times, we find
that such bugs have close to no effect on cosmological
results.

2. Initial Conditions

Here we derive the initial conditions for cosmological
perturbations in synchronous gauge when the perturba-
tions in each k-mode are well outside the horizon. In this
section we assume that µ and γ are constant near the ini-
tial conditions. We also assume that the background ex-
pansion is radiation dominated with an unmodified Fried-
mann equation.

Since CAMB solves equations in conformal time τ in
this section we switch from ln a to τ as the time variable.
Under the background assumption, the relationship be-
tween the two at the initial epoch is

τ =
2

ω

(√
1 +

Ωm
Ωr

a− 1

)
, (B7)

where

ω ≡ H0Ωm√
Ωr

(B8)
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FIG. 20. The comparison of the unlensed large scale CMB temperature spectrum in several MG example models with different
transition widths relative to the GR spectrum. Left: early time MG example models (µ∞ = 1.2). Right: late time MG example
models along the degeneracy direction (µ0 = 0.9, γ0 = 1.7). Here we also show the erroneously large effect predicted from the
inconsistent implementation of an instantaneous transition employed in MGCAMB.

with ρb + ρc = Ωmρcrit/a
3 as the sum of the baryon and

cold dark matter densities and ργ + ρν = Ωrρcrit/a
4 in

units of the present critical density ρcrit = 3H2
0/8πG.

Note that ω scales τ to its value around matter radiation
equality so that both kτ � 1 and ωτ � 1 at the initial
conditions.

Using Eq. (B5) individually for the separately con-
served photon-baryon, neutrino, and cold dark matter
fluids as well as the unmodified neutrino Boltzmann
equation for its anisotropic stress

σ̇ν =
4

15
θν +

2

15
ḣ+

4

5
η̇. (B9)

and the modified Einstein equations, we can now solve
for the initial conditions in a series expansion in kτ and
ωτ . In general we keep the terms that are sufficient to
determine the next to leading order correction in η and
ḣ following the CAMB conventions. Because ḣ is derived
from the modified equation (B4) which involves θ we need
to keep an extra ωτ order in its initial condition relative
to the GR result.

For adiabatic initial conditions

δγ = δν =
4

3
δc =

4

3
δb, (B10)

we obtain

η

R = −1 +
15− 10µ+ 4µRν

12µ(10γ + 5 + 4µRν)
(kτ)2 +A1(ωk2τ3),

δγ
R =

15 + 4µRν
3µ(10γ + 5 + 4µRν)

(kτ)2 +A2(ωk2τ3),

θγ
R =

15 + 4µRν
36µ(10γ + 5 + 4µRν)

(k4τ3) +A3(ωk4τ4),

θν
R =

15 + 4(2 +Rν)µ

36µ(10γ + 5 + 4µRν)
(k4τ3) +A4(ωk4τ4),

σν
R = − 2

3(10γ + 5 + 4µRν)
(kτ)2 +A5(ωk2τ3) (B11)

with

A1 =
1

4
A2 +

5

4
A5,

A2 = −30(γ + 1) + 4(13γ − 7)µRν + 32
15 (µRν)2

µ(45γ + 15 + 8µRν)(10γ + 5 + 4µRν)
,

A3 =
1

16
A2 −

Rb(15 + 4µRν)

48µ(1−Rν)(10γ + 5 + 4µRν)
,

A4 =
1

16
A2 −

1

4
A5,

A5 =
5(γ + 1)− 8µRν

3(45γ + 15 + 8µRν)(10γ + 5 + 4µRν)
, (B12)

where Rb = ρb/ρm and Rν = ρν/ρr given our assump-
tion of an unmodified expansion history. Together with
ḣ = −2δ̇c, these also define the initial conditions for
α. Note that by definition θc = 0 and by virtue of the
tight coupling between photons and baryons, θb = θγ and
σγ = 0.
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FIG. 21. The CMBTT constraints on late time MG parame-
ters with different transition treatments from GR to MG. The
darker and lighter shades correspond respectively to the 68%
C.L. and the 95% C.L. The dashed lines indicate the values
of MG parameters in GR limit. With a sharp transition the
ISW effect shown in Fig. 20 breaks the degeneracy between
parameters leading to unrealistically strong constraints. The
inconsistent instantaneous transition gives even stronger, but
incorrect, constraints.

The initial comoving curvature R from inflation co-
incides with η since synchronous gauge and comoving
gauge approximately coincide outside the horizon where
the density perturbations are negligible. Note that we
have kept an ωk2τ3 correction to η for clarity and com-
pleteness even though this correction does not contribute
dynamically at the desired order in either metric fluctu-
ation and may be omitted from the code.

Appendix C: Impact of The Transition Width

In this appendix we comment on the impact of the
transition width on the CMB temperature spectrum and
hence all results involving the CMBTT dataset. For the
analysis in the main text we use ∆T = 1 which we will
now show leads to robust results.

In Fig. 20, we show the result of varying this width.
Around ∆T = 1, there is little impact from varying it by
factors of a few up or down. When the transition width
is much larger, ∆T > 3, the transition will start affect-
ing the physics of recombination and the results become
highly dependent on this parameter. When the width is
very small the results are stable, but a sharp transition
will introduce a relatively large effect on the CMB power
spectrum through the ISW effect, see for example the
lines with ∆T = 0.05, 0.005 in Fig. 20. Since a tran-
sition that is much sharper than an efold would not be
expected in a model where modifications evolve on the
Hubble time, this effect would cause the CMBTT dataset

to be unrealistically sensitive to the MG parameters.
Furthermore results in the literature often use MG-

CAMB which implements an instantaneous transition at
the start of the MG epoch. If a MG parametrization is
built to have deviations from GR right after the transi-
tion time, MGCAMB will return inconsistent and pos-
sibly incorrect results. The ISW effect depends on the
time derivative of the Weyl potential and simply joining
the GR and MG equations of motion at the transition
neglects the part of its source which is the derivative of
a step, i.e. a delta function source. In Fig. 20b, we show
the impact of this inconsistency on the CMB temperature
power spectrum. Note that unlike in Fig. 20a, the incon-
sistent instantaneous solution is not the limiting case of
∆T → 0 but rather has a spuriously large ISW effect.
To use MGCAMB consistently, one must ensure that the
MG functions would go back to their GR value smoothly
before the transition.

For example, in [6], the authors used MGCAMB to
implement MG without demanding that the MG param-
eters smoothly relax to the GR values. This leads to
overly tight constraints on the MG parameters. On the
other hand, the parametrization used in [8] smoothly ap-
proaches the GR limit and by the time of the transi-
tion and leads to negligible deviations from GR so that
the MGCAMB switching strategy produces consistent re-
sults.

In Fig. 21, we show the impact on a µ0-γ0 MG
model. Note that the inconsistent treatment provides
much tighter constraints, especially on γ0, than the limit
of a sharp transition. Furthermore a consistently imple-
mented sharp transition also provides tighter constraints
than a smooth transition. For these reasons, we imple-
ment the smooth ∆T = 1 transition for the analysis in
the main text.
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