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The success of present and future cosmological studies is tied to the ability to detect discrepancies
in complex data sets within the framework of a cosmological model. Tensions caused by the presence
of unknown systematic effects need to be isolated and corrected to increase the overall accuracy of
parameter constraints, while discrepancies due to new physical phenomena need to be promptly
identified. We develop a full set of estimators of internal and mutual agreement and disagreement,
whose strengths complement each other. These estimators take into account the effect of prior
information and compute the statistical significance of both tensions and confirmatory biases. The
estimators that we present optimally weight all parameter space directions that are either fully
constrained by the data or the prior allowing for complete and fair degree of freedom counting. We
apply them to a wide range of state of the art cosmological probes and show that these estimators
can be easily used, regardless of model and data complexity. We derive a series of results that
show that discrepancies indeed arise within the standard ΛCDM model. Several of them exceed the
probability threshold of 95% and deserve a dedicated effort to understand their origin.

I. INTRODUCTION

Since the discovery of cosmic acceleration [1, 2], the
description of our universe based on General Relativity
with a cosmological constant (Λ) and cold dark matter
(CDM) has provided a successful working model for cos-
mology. The success of the ΛCDM model relies on its
ability to describe a wide array of different cosmological
observations ranging from the spectrum of fluctuations in
the Cosmic Microwave Background (CMB) to the clus-
tering of galaxies and gravitational lensing observables.

Nevertheless discrepancies exist between the determi-
nation of ΛCDM parameters by different data sets [3–10].
Local measurements of the Hubble constant differ from
the value inferred from CMB observations of the Planck
satellite [11] by more than 3.4σ [12]. Measurements of
the galaxy weak lensing correlation function also show
disagreement with Planck CMB observations, involving
parameters that determine the amplitude of the weak
lensing signal, with a statistical significance that ranges
between 1.7σ and 2.3σ for the Dark Energy Survey [13]
and the Kilo Degree Survey [14] respectively. Further-
more the internal consistency of the Planck CMB spec-
tra in both temperature and polarization was analyzed
in [11, 15, 16] revealing some discrepancies between the
temperature spectrum and the reconstruction of its lens-
ing signal.

The existence of such discrepancies is in large part due
to the advent of precision cosmology and the low sta-
tistical errors of large surveys. When facing these and
other discrepancies, we have to understand whether they
can be attributed to residual systematic effects, an in-
correct modeling of the observables or new physical phe-
nomena. The next generation of cosmological probes,
like Euclid [17], LSST [18] and CMB-S4 [19], are ex-
pected to further raise experimental sensitivity. While
these may resolve current controversies, their increased
modeling complexity will also make it difficult to inspect
the data sets or the parameter posteriors to identify fu-

ture discrepancies. This will make it increasingly difficult
to understand whether data sets agree or not and a fail-
ure at doing so will compromise their scientific return.

In this paper we discuss several new concor-
dance/discordance estimators (CDEs) that can be used
to understand the internal consistency of a data set and
its agreement with other cosmological probes. First, in-
spired by the Bayesian evidence as a measure of goodness
of fit, we introduce a test that exploits the statistics of
the likelihood at maximum posterior. Its dependence on
the prior distribution allows a proper accounting of data
and prior constrained directions when counting degrees of
freedom, while being significantly easier in practical ap-
plications with respect to the evidence. Second, we study
the statistics of the evidence ratio test of data set com-
patibility in order to understand its biases. We show that
in practical applications the bias toward agreement of the
evidence ratio test is usually as large as its nominal value
making its interpretation on the Jeffreys’ scale unreli-
able in determining agreement or disagreement. Third,
we then define an estimator based on the ratio of like-
lihoods at maximum posterior, which maintains a close
relationship with the evidence ratio in limiting cases, but
allows for an easy assessment of statistical significance of
the reported results. Finally, we consider estimators that
quantify shifts in the parameters of two data sets, provid-
ing an implementation that works in arbitrary number of
dimensions and priors.

These tools can be straightforwardly applied, regard-
less of data and model complexity, and are based on a
Gaussian linear model for the data likelihood and the
posterior distribution that can be easily checked. In ad-
dition they are sensitive to both tensions between data
sets and the presence of confirmatory biases.

We illustrate their application on current data sets and
analyze known discrepancies between state of the art cos-
mological probes. More specifically, we investigate the
internal consistency of CMB measurements, establishing
a set of benchmark results for the next release of the
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Planck data and showing that: the cross correlation of
the CMB temperature and E-mode polarization is a bad
fit to the ΛCDM model due to the likely presence of resid-
ual, frequency dependent, systematics or foregrounds;
the discrepancy between the CMB spectra and lensing
reconstruction is present for both the temperature spec-
trum and the E-mode polarization spectrum, at about
the same statistical significance; the measurement of the
large angular scale CMB fluctuations is in tension with
the small scale temperature and E-mode spectra with
at a statistical significance of about the 95% confidence
level.

We recover the known tensions between CMB and lo-
cal measurements of H0 and weak lensing probes show-
ing that the latter are slightly larger than those re-
ported in the literature, when considering the Canada-
France-Hawaii Telescope Lensing Survey and the Kilo
Degree Survey on large linear scales. This tension is also
slightly larger than what we estimate by looking at the
S8 ≡ σ8Ω0.5

m parameter since this is not one of the princi-
pal components of both parameter covariances while our
estimator optimally weights all parameter space direc-
tions. We find that the CMB is in tension with probes of
the clustering of galaxies, which can be attributed to the
SDSS LRG DR4 survey being too good of an internal fit
to different values of cosmological parameters.

This paper is organized as follows. In Sec. II we discuss
the technical aspects of several CDEs and their applica-
tion to data. In particular the first part of the section
contains a review of the relevant statistical tools while the
second part contains the discussion of different estimators
and contains most of the theoretical results that are new
to this paper. In Sec. III we detail the cosmological model
and data sets and apply the CDEs to them in Sec. IV.
We summarize our conclusions in Sec. V. In a series of
Appendices A-G, we derive the statistical properties of
the CDEs and give details on their implementation.

II. CONCORDANCE DISCORDANCE
ESTIMATORS

In this section we introduce and review the Concor-
dance/Discordance Estimators (CDEs) that we later ap-
ply to cosmological data sets. This section is organized as
follows: in Sec. II A we discuss the requirements for and
limitations of the probabilistic interpretation of CDEs; in
Sec. II B we define the notation of subsequent sections;
in Sec. II C we review the Gaussian Linear Model; in
Sec. II D we apply it to quantify internal consistency of
data sets while in Sec. II E and Sec. II F we use it to
discuss pairwise CDEs.

A. CDE Measures

We loosely refer to a CDE as a statement about a data
set D or a collection of data sets D = D1∪· · ·∪Dn, within

a given modelM, that quantifies agreement or disagree-
ment between the data and the model. In case of a single
data set these statements should quantify internal consis-
tency (or self-consistency), in case of multiple data sets,
mutual consistency.

Since we regard data as random, CDEs are random
variables as well, distributed over the space of data D.
When defining a CDE:

• we must be able to compute the distribution of the
CDE over the space of data realizations D, where
D can be a single data set or the union of multiple
data sets D = D1 ∪ · · · ∪ Dn, depending on the
definition of the CDE.

• we report the probability P (CDE > CDEobs) so
that low (high) probabilities identify disagreement
(agreement) based on the observed value CDEobs.

The distribution over data space is usually high dimen-
sional and, though it is in principle possible to under-
stand it with Monte Carlo techniques, doing so is typi-
cally extremely computationally intensive. For this rea-
son we shall apply, and test the validity of, Gaussian
approximations to work out analytically the distribution
of these estimators.

Once probabilities over data space are computed, if
P (CDE > CDEobs) is too low then this could point to-
ward the presence of tensions and if it is too high, the
presence of confirmatory biases. Note that confirmation
bias in this sense does not necessarily mean a voluntary
human action directed at confirming prior beliefs but in-
cludes any subtle assumption that can bias results to-
ward accepting a fiducial model. These could include, as
an example, overestimating data covariances, assuming a
fiducial cosmology in the data reduction (e.g. converting
angles and redshifts to distances), calibrating numerical
algorithms around a given cosmology, and others. As ex-
perimental precision increases, even subtle biases, if not
properly counterbalanced would damage the scientific re-
turn of the affected experiment.

Notice that the key point that allows us to define CDEs
in a frequentist-like fashion, from a Bayesian perspec-
tive, is that the problem of data set compatibility is not
a model selection problem. The statistical question of
whether two data set agree or not, within a model, is
asked at fixed model while accounting for the fact that
the parameters of the model are unknown.

Many of the commonly employed estimators are pre-
sented in the literature without computing their statistics
and rather interpreting their observed value as an indica-
tion of agreement/disagreement. This does not take into
account that CDEs can be biased, 〈CDE〉D 6= 0, toward
agreement or disagreement. Knowing the distribution
over the data space prevents us from being tricked into
thinking that there is agreement or disagreement when
it is not the case.

We next warn the reader about caveats in interpreting
CDEs. CDEs can indicate agreement or disagreement
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but do not reveal the cause. In particular in case of ten-
sions these could result from a problem with the data and
unknown systematic effects, a problem with the predic-
tions that stems from an incomplete modeling of the ob-
servable or a more fundamental problem with the model.
CDEs do not discriminate one from the other but rather
quantify the statistical level of unknowns in the given
theoretical and experimental situation.

Another limitation, common to all methods to quantify
agreement/disagreement within a model is that they do
not quantify the need for model extensions. It is always
possible to relax tension with the addition of extra pa-
rameters, that could be describing systematic effects or
new physical aspects of the model, but doing so carries
the danger of over-fitting. The methods that we describe
in this paper should not be used to justify model exten-
sions directly but rather motivate further studies with
the appropriate statistical tools, like Bayesian model se-
lection.

Just as no one CDE gives the probability of the model
given the data, not all CDEs result in the same assess-
ment of statistical significance for concordance or discor-
dance. There are multiple ways in which the model can
be in tension or agreement with the data. In fact if the
CDE is selected after looking at the data, one can al-
ways find some aspect of the data that deviates from the
model just by chance fluctuations. It is therefore advan-
tageous to select, before looking at the data, multiple
CDEs that correspond to meaningful quantities whose
values we would want to be probable given a model.

Finally, when looking at these multiple CDE results,
we should not naively combine them into a global prob-
ability. To assess that, we would need to know the joint
distribution of the multiple tests. For example the CDEs
might be correlated making multiple concordance or dis-
cordance results redundant. Even if the CDEs are un-
correlated we would expect that out of many tests, one
might fail due to chance fluctuations. We instead use the
CDEs to flag individual aspects of the data and model for
further study and multiple CDEs to assess the robustness
of conclusions from any single CDE.

B. Basic definitions

We now lay out some definitions to clarify the notation
of the subsequent sections.

We commonly employ the multivariate Gaussian dis-
tribution, over the space of θ, that we denote as:

NN (θ; θ̄, C) = (2π)−N/2|C|−1/2e−
1
2 (θ−θ̄)T C−1(θ−θ̄) , (1)

where det(·) ≡ | · |, N corresponds to the number of
dimensions, θ̄ is the mean of the distribution and C is
the covariance. Generally through this paper we denote
parameter covariances as C and data covariances as Σ.
Given a model M and data D, the probability of the N

model parameters θ after the data D is given by:

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
=
L(θ)Π(θ)

E , (2)

that we call the parameter’s posterior and where
P (θ|M) ≡ Π(θ) is the prior probability density (pdf),
normalized to unity over parameter space, P (D|θ,M) ≡
L(θ) is the likelihood and P (D|M) ≡ E is the evidence.
Usually the normalization of the posterior is not com-
puted and one has to work with the following:

P(θ) ≡ L(θ)Π(θ) , (3)

that we call un-normalized posterior. The normalization
factor of the un-normalized posterior is the evidence:

E ≡ P (D|M) =

∫
P(θ) dθ =

∫
L(θ)Π(θ) dθ . (4)

Notice that, within a given model M, the evidence de-
fines the prior probability for observing data D. This is
especially relevant in cosmology where we do not have
the possibility of having truly different data realizations.
Thus we have to fix the model that then predicts its dis-
tribution of data realizations that would be drawn from
its evidence. In this sense we can define functions of the
data D and, within a model M, we can compute their
distributions and, for example, their average over data
realizations as:

〈f(D)〉D =

∫
f(D)P (D|M)dD , (5)

where the measure over data space is the evidence of the
model. This aspect is key in the definition of CDEs as
frequentist-like statements, in a Bayesian context. Since
the problem of data set compatibility is posed at fixed
model (with unknown parameters) the evidence gives
the probability distribution of the data and allows us
to define statistics over data draws and study their dis-
tribution. As such the evidence is always involved in
frequentist-like tests.

As for the prior distribution, we use four different func-
tional forms, depending on the application of interest:

• Flat prior: given by a “tophat” function Π(θ) =
1/VΠ when all the n-th parameters components are

included between θ
(n)
max and θ

(n)
min. The prior volume

is VΠ =
∏N
n=1

[
θ

(n)
max − θ(n)

min

]
.

• Uninformative flat prior: a flat prior where the
range is chosen so that the prior is uninformative

with respect to the data, i.e. (θ
(n)
max − θ

(n)
min)2 �

Cθ(n)θ(n) .

• Gaussian prior: given by a multivariate Gaussian
Π(θ) = NN (θ; θΠ, CΠ) with mean θΠ and covariance
CΠ. These priors are normalized to unity and their
maximum value at θΠ is (2π)−N/2|CΠ|−1/2.
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• Delta prior: a Gaussian prior in the limit CΠ → 0
or Π(θ) = δ(θ−θΠ), a rather stubborn choice which
we use for pedagogical purposes.

Uninformative flat priors results can be related to the
Gaussian ones by appropriately setting the center pa-
rameter and in the limit CΠ � C. Moreover the Gaussian
prior volume, that is formally undefined, can be taken as
VΠ = (2π)N/2|CΠ|1/2 to retain the same normalization as
Π(θ) = 1/VΠ at the peak.

Flat priors are the ones that are used in most prac-
tical applications but, to the best of our knowledge, it
is not possible to derive simple analytic results in gen-
eral. For this prior choice some directions in parame-
ter space might be constrained by the data. When this
is the case they become uninformative flat priors where
analytic results can be derived. When they are much
more informative than the data, on the other hand, their
effect is closer to the delta prior case. For the inter-
mediate, partially informative, case we approximate flat
priors with Gaussian priors, taking into account that,
when the prior needs to be directly evaluated, it would
give Π(θ) = 1/VΠ. This allows us to appreciate the two
most important features of flat priors: the shift between
the maximum likelihood and the maximum likelihood as
constrained by the prior; the information content of the
prior, as modeled by the covariance of the bounded flat

distribution C = (θ
(n)
max − θ

(n)
min)2/12. For practical ap-

plications we discuss the Gaussian approximation of the
MCMC sampled posterior in Appendix E.

C. Gaussian linear model

To understand the statistics of the CDEs discussed
in this section we need to make some simplifying as-
sumptions. We assume that the likelihood of the data
is Gaussian distributed in data space and we expand
our model predictions to linear order in their parameter
dependence. This results in the Gaussian linear model
(GLM), that was discussed in [7, 20], and whose treat-
ment we mostly follow. The assumptions of the GLM are
somewhat restrictive but find many applications in cos-
mology. Most of the available data likelihoods are Gaus-
sian distributions in the data and many probes, notably
the CMB, constrain the parameters of the ΛCDM model
sufficiently well that the linear approximation is valid.
Let us assume that we have d Gaussian distributed data
points x, with mean m and covariance Σ. Their likeli-
hood is a Gaussian distribution in data space:

L = Nd(x;m,Σ) . (6)

Our modelM would predict m as a function of N param-
eters θ. We thus expand in series the prediction around

a given parameter value θ̂:

m(θ) =m(θ̂) +
∂m

∂θ

∣∣∣∣
θ̂

(θ − θ̂) + . . .

Gaussian linear model

likelihood surface

full model

FIG. 1. Geometrical interpretation of the Gaussian linear
model. (x1, x2) represents data space and m(θ) a one dimen-
sional model, i.e. a curve in the (x1, x2) space. The figure also
shows the linearization of the model and how to decompose
differences between a data realization and the model (at fixed
parameters) in the direction that is parallel and orthogonal
to the model. m(θML) shows the model corresponding to the
best fit parameter values for the given data realization. The
dashed line shows a constant likelihood surface, where we as-
sumed for simplicity that data covariance is proportional to
the identity matrix.

≡ m̂+M(θ − θ̂) + . . . , (7)

where we defined our central value for the expansion θ̂,

the corresponding data prediction m̂ = m(θ̂) and the Ja-
cobian of the transformation between data and parame-
ter space M . The properties of the Jacobian are worth
commenting. Since the dimension of the parameter space
and data space is usually different, the Jacobian is not
square and thus not invertible. We can however define:

M̃ = (MTΣ−1M)−1MTΣ−1 , (8)

that has the following properties:

• M̃T = Σ−1M(MTΣ−1M)−1 given that MTΣ−1M
is symmetric;

• M̃M = MT M̃T = IN×N .

The two matrices M and M̃ can be used to define a
projector on the m(θ̂) tangent space:

P = MM̃ , (9)

with properties:

• P2 = P, i.e. P is a projector and its complement is
I− P;



5

• PMθ = Mθ, leaves the tangent space of m(θ̂) in-
variant;

• (I− PT )Σ−1P = 0 so that the complementary pro-
jectors are orthogonal in the metric defined by Σ−1.

By decomposing the data residual (x−m) in a component
that is projected along the model, P(x−m), and a com-
ponent that is orthogonal to the model, (I − P)(x −m),
we can now recast Eq. (6) into:

L = Lmax exp

[
−1

2
(θ − θML)TC−1(θ − θML)

]
, (10)

with maximum likelihood:

Lmax =
exp

[
− 1

2 (x− m̂)T (I− P)TΣ−1(I− P)(x− m̂)
]

(2π)d/2|Σ|1/2 ,

(11)

maximum likelihood parameters and covariance:

θML = θ̂ + M̃(x− m̂) ,

C = (MTΣ−1M)−1 . (12)

Notice that the maximum likelihood parameter value de-
pends on the data realization x. Fig. 1 summarizes the
geometrical meaning of the GLM in a two dimensional
data space with a one parameter model.

Having computed the likelihood we can get the poste-
rior of the data, for the GLM, with different prior choices.
In the case of Gaussian priors the posterior is still Gaus-
sian P (θ|D,M) = NN (θ; θp, Cp) with

Cp = (C−1
Π + C−1)−1 = (C−1

Π +MTΣ−1M)−1 ,

θp = Cp
[
C−1

Π θΠ + C−1θML

]
= Cp

[
C−1

Π θΠ +MTΣ−1(x− m̂+Mθ̂)
]
. (13)

If we consider uninformative flat prior, then the posterior
is Gaussian P (θ|D,M) = NN (θ; θML, C). In case of delta
prior instead the posterior is a delta function around the

chosen parameter value P (θ|D,M) = δ(θ − θ̂).
The evidence can now be computed in a given model

and for a given prior choice. In parameter space and for
Gaussian priors the evidence is given by:

ln E = lnLmax +
1

2
ln

|C|
|C + CΠ|

− 1

2
(θML − θΠ)T (C + CΠ)−1(θML − θΠ) , (14)

where the first line contains the familiar Occam’s razor
term and the second line a penalty for cases where the
prior center is not the maximum of the likelihood. We
can equivalently express this in terms of the likelihood
evaluated at the maximum posterior probability point
θ = θp

ln E = lnL(θp) +
1

2
ln |Cp|+

N

2
ln(2π) + ln Π(θp) . (15)

This form also highlights the limit which coincides with
the case of uninformative flat priors where θp = θML,
Cp = C and Π(θp) = 1/VΠ:

ln E = lnLmax +
1

2
ln |C|+ N

2
ln(2π)− lnVΠ . (16)

Likewise it highlights the delta prior limit, θp = θΠ where
ln E = lnL(θΠ), which is the limiting case of Gaussian
priors as the prior covariance goes to zero.

We can now write these results in data space by means
of the GLM. Fig. 2 shows the graphical interpretation
of the GLM evidence, for different prior choices, in our
two dimensional example. In the Gaussian prior case,
shown in panel a) of Fig. 2, the evidence is a Gaussian
distribution in data space E = P (D|M) = Nd(x;mΠ,Σ0)
with

mΠ =m(θΠ) ,

Σ0 = Σ +MCΠMT . (17)

In the uninformative flat prior case, the evidence is a
Gaussian distribution orthogonal to the projector

E ∝ e− 1
2 (x−m̂)T (I−P)T Σ−1(I−P)(x−m̂) , (18)

with a normalization factor such that the distribution
integrates to unity over the data space. Notice that we
have not defined this with the corresponding normal dis-
tribution since the projection operation is not invertible
so that the determinant of (I−P)TΣ−1(I−P) is singular.
If we consider delta priors, as in panel c) of Fig. 2, the
evidence is still Gaussian in data space E = Nd(x; m̂,Σ).

When studying the distribution of different quantities
over data realizations, the evidence provides the distri-
bution of the data. It is then a noteworthy result that,
within a given model M, regardless of the parameters,
for all the considered prior choices, the data realizations
provide an evidence that is a Gaussian distribution, with
different mean and covariance.

The last aspect of the GLM that we discuss is the de-

pendence of the results on the expansion point θ̂. When
using the GLM to compute the distribution of different
estimators the results do not depend on the arbitrary ex-
pansion point unless we purposely make that point spe-
cial by prior choice.

D. Goodness of fit type tests

The first application of the GLM consists in defining
goodness of fit (GoF) type measures. These are the only
CDEs that we consider that measure the internal consis-
tency of a single data set, within a model.

We first define the usual maximum likelihood GoF
measure as the quadratic form:

QML = (x− m̂)T (I− P)TΣ−1(I− P)(x− m̂) . (19)
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c) delta priorsb) uninformative flat priorsa) Gaussian priors

FIG. 2. Geometrical interpretation of the GLM evidence. In all panels (x1, x2) represents data space and m(θ) a one
dimensional model, i.e. a curve in the (x1, x2) space. The figure also shows the linearization of the model. The dashed lines
correspond to the evidence contours, for different prior choices, and different confidence levels. The contours are showing that,
when drawing data realizations from the evidence, these will be 68% of the time inside the 68% contour, 95% of the time inside
the 95% contour and so on. As in the previous figure we assumed, for simplicity, that data covariance is proportional to the
identity matrix. In the Gaussian prior case we also assumed that mΠ = m̂.

Note that

QML = −2 lnLmax + 2〈lnLmax〉D + 〈QML〉D , (20)

where the average is over data realizations and so up to
these constant offsets QML is equivalent to −2 lnLmax,
the familiar effective χ2 at its minimum. This quadratic
form therefore quantifies the distance between the data
and the model at its best parameter point. Taken as a
CDE, if P (QML > Qobs

ML) is too low then the data are
a bad fit to the model and conversely if it is too high
it is too good a fit to the data, possibly indicating the
presence of confirmatory biases.

Eq. (19) defines a quadratic form over data space and
its distribution in general depends on the evidence, as
the probability of data given the model, which in turn
depends on the prior. However in this case the projection
I−P in QML makes its statistical properties independent
of the prior and given by QML ∼ χ2(d−NL) (see App. B;
here and below ∼ denotes distributed as). Here NL =
rank[P] to take into account the fact that the likelihood
might not be sensitive to some parameters if ∂m(θ)/∂θ =
0. If there are no irrelevant parameters NL = N .

Implicit in the use of QML as a goodness of fit statis-
tic is that the likelihood is maximized over all the rele-
vant parameters without reference to or bounds from the
prior. However, once the allowed model parameters are
constrained by priors, we must adopt a different goodness
of fit statistic.

The prior distribution usually encodes physical re-
quirements on the model, like Ωm ≥ 0, or a vague in-
tegration of previous experimental knowledge, like 20 ≤
H0 [km s−1Mpc−1] ≤ 100. We would not be interested in
a model that fits well the data while violating physical

requirements or accepted previous results. The effect of
the prior is to penalize such situations.

To define a GoF measure that takes the effect of the
prior into account we start from the evidence. To see
why, allow us to consider a one parameter (θ) model and
a data set that is directly measuring that parameter. The

evidence is then E =
∫ +∞
−∞ L(D|θ)Π(θ) dθ. Under the

simplifying assumption that the likelihood depends on
the difference between the parameter and the data (that
in this example is just the measured value of the param-
eter) the evidence, as a function of the data, becomes

E =
∫ +∞
−∞ L(θ − D)Π(θ) dθ. This is the convolution in-

tegral that gives the probability density of the difference
between the prior and the data.

The evidence GoF is then defined by analogy to
Eq. (20) as

QE ≡ −2 ln E + 2〈ln E〉D + 〈QE〉D . (21)

Unlike QML, the specific quadratic form QE describing
the data dependence of the evidence depends on the prior
and so we give its explicit form for the various cases be-
low. This statistics quantifies the compatibility between
the prior and the likelihood, defining a goodness of fit
statistics that is effectively conditioned on the prior. We
then apply the GLM to Eq. (21) and for different prior
choices.

If we consider uninformative flat priors, the evidence
quadratic form is given by:

QE = (x− m̂)T (I− P)TΣ−1(I− P)(x− m̂) , (22)

just like QML and is chi square distributed with d −NL
degrees of freedom. This means that the evidence and
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maximum likelihood GoF statistics are identically dis-
tributed in case of uninformative flat priors as one might
expect.

At the other extreme are delta priors. The evidence
goodness of fit is determined by:

QE = (x−mΠ)TΣ−1(x−mΠ) , (23)

where x ∼ Nd(x;mΠ,Σ) so that QE ∼ χ2(d). Notice
that degrees of freedom counting is different than in the
uninformative flat prior case because the model cannot
be optimized over the parameter space.

For Gaussian priors we have that:

QE = (x−mΠ)T (Σ +MCΠMT )−1(x−mΠ) . (24)

Since the distribution of data draws is Gaussian, x ∼
Nd(x;mΠ,Σ + MCΠMT ), QE ∼ χ2(d) just like the
delta prior case. Although the model can now be opti-
mized over the parameter space, QE pays a compensating
penalty from the prior.

These results for the evidence highlight two aspects
that are worth commenting. The first is that the evi-
dence GoF is the optimal estimator to weight differences
between the prior and the data. In both the delta and
Gaussian prior cases the difference between the model
with priors and the data draws x−mΠ is weighted with
its inverse covariance. We discuss in App. D what makes
inverse covariance weighting optimal. In case of uninfor-
mative flat priors, where there is no sense of preferred
model parameters, this reduces to usual maximum like-
lihood GoF. The second aspect is that there is a direct
relationship between the evidence GoF and maximum
likelihood based GoF that is the result of a hidden sym-
metry. We can always regard priors as external data so
that the evidence GoF for Gaussian priors is the same
as the maximum likelihood GoF if we add an additional
data point for each Gaussian prior. With Gaussian pri-
ors on all N parameters, the maximum likelihood GoF
would be distributed with (d + N) − N = d degrees of
freedom, as the evidence GoF.

In practical applications we want to define a GoF mea-
sure that retains the best properties of both the maxi-
mum likelihood GoF and the evidence GoF. As the for-
mer measure we want it to be easy to compute while
accounting for limitations that the prior places on opti-
mizing parameters, that the latter measures.

Similar considerations in the literature for assessing
Bayesian goodness of fit, for the purpose of model se-
lection, has led to the use of the deviance information
criterion (DIC), which measures the improvement of the
likelihood, within the region of support of the prior, rel-
ative to the number of effective parameters that the data
constrain. The DIC is defined as [21–25],

DIC ≡ −2 lnL(θp) + 2Neff , (25)

where θp is an estimate of the true parameters. Neff is
the Bayesian complexity:

Neff ≡ 2 lnL(θp)− 2〈lnL〉θ , (26)

where the average is over the posterior. θp could be fixed
to be the parameter means or the maximum point of the
posterior. Note that with the commonly used flat priors,
the maximum likelihood point within the prior range is
the maximum of the posterior. We therefore take the
latter case for generality.

Now we can define by analogy to Eq. (20) a new GoF
statistic

QMAP = − 2 lnL(θp) + 2〈lnL(θp)〉D + 〈QMAP〉D, (27)

for the likelihood at the maximum a posteriori (MAP)
point. Since the specific quadratic form for QMAP de-
pends on the prior, we now consider each case separately.

In both the delta and uninformative flat prior cases
the likelihood at maximum posterior is distributed as the
evidence QMAP = QE . In the Gaussian prior case it
defines a quadratic form in data space:

QMAP = (x−mΠ)T
[
(I− P)TΣ−1(I− P)

+ M̃TC−1
Π CpC−1CpC−1

Π M̃

]
(x−mΠ) . (28)

This case also illuminates the meaning of Neff . If some
directions in parameter space are not constrained by the
data, as it happens in many practical applications, the
quadratic form defined by Eq. (28) is lower rank, i.e. the
model cannot invest all its nominal parameters in im-
proving the goodness of the fit. QMAP is distributed as
a sum of Gamma distributed variables and its distribu-
tion can be conservatively approximated by that of a chi
squared distributed variable with d − tr[(CΠ + C)−1CΠ]
degrees of freedom. The trace term is Neff under GLM
with Gaussian priors

Neff = N − tr[C−1
Π Cp]. (29)

It can be interpreted as the effective parameters that a
data set is constraining. To see why, consider the limiting
cases. If the prior covariance is much wider than the
data covariance, this expression returns the full number
of parameters N whereas in the opposite limit where all
parameters are prior limited it returns zero. Thus for any
type of prior, 0 ≤ Neff ≤ N making the uninformative
flat and delta cases bounds on Neff and limits of the
statistics of QMAP.

For the case of flat priors which may be informative we
can follow a similar procedure of identifying the effective
number of parameters using Eq. (29). While this approx-
imation is not exact, it tends to be conservative. Further-
more, being conservative for directions that are weakly
constrained by the data mitigates non-Gaussianity in the
posterior. Along these directions, it is more likely that
the posterior is non-Gaussian and with slowly decaying
tails.

To summarize, our procedure gives the exact distribu-
tion of QMAP for all parameter space directions that are
either completely constrained by the prior or the data
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and in these limiting cases reduces to the evidence GoF.
Moreover in case of completely data constrained param-
eters it further reduces to the maximum likelihood GoF
measure.

E. Evidence ratio type tests

We next proceed to the application of the GLM to
estimators that aim at quantifying the compatibility of
data set couples. One that has been applied in literature
is the evidence ratio estimator of data set compatibil-
ity [6, 13, 26–35].

With the posterior distribution of two different data
sets we want to test whether they can be described with
the same set of cosmological parameters. This amounts
to comparing the probabilities of two different state-
ments:

• I0: the two data sets are described by the same
choice of unknown parameters;

• I1: the two data sets are described by independent
choices of unknown parameters;

then we compute their probabilities and compare them:

C =
P (D1 ∪D2|I0,M)

P (D1 ∪D2|I1,M)

=
P (D1 ∪D2|M)

P (D1|M)P (D2|M)
, (30)

where P (D1 ∪ D2|M) is the joint evidence of the two
data sets while P (D1|M) and P (D2|M) is the evidence
for the single ones. Since we are working with two data
sets, D1 and D2, we use the subscript 1, 2 and 12 to
indicate quantities referring to the first, the second and
the joint data sets respectively.

Used in the form of Eq. (30) the evidence ratio does
not provide an estimate of the statistical significance of
the reported results. It is common in the literature to in-
terpret the outcome on a Jeffreys’ scale [36, 37]: ln C < 0
indicates tension between the data sets and ln C > 0
agreement; 3 : 1 odds one way or the other is “substan-
tial”, 10 : 1 is “strong”, 30 : 1 is “very strong”, 100 : 1 is
“decisive”. This has the disadvantage that the Jeffreys’
scale is not calibrated on the specific application at hand
and using it might give misleading results [29, 38, 39].

In case of uninformative flat priors the Gaussian ap-
proximation for the evidence ratio can be immediately
read from Eqs. (14,16):

ln C = lnL12
max − lnL1

max − lnL2
max

+
1

2
ln
|C12|
|C1||C2|

+ ln
V (Π1)V (Π2)

V (Π12)

− N1 +N2 −N12

2
ln(2π) , (31)

and this shows that, when averaging this quantity over
D1∪D2 realizations, several terms would not cancel out,

i.e. this CDE is biased. In the case of uninformative flat
priors the calculation explicitly gives:

〈ln C〉12 = − N1 +N2 −N12

2
[1 + ln(2π)]

+
1

2
ln
|C12|
|C1||C2|

+ ln
V (Π1)V (Π2)

V (Π12)
. (32)

Notice that, in practical applications, the Occam’s razor
factors in the second line of Eq. (32), are much larger
than the first line, thus making the evidence ratio biased
toward agreement since I1 effectively involves two Oc-
cam’s factors compared with one for I0. Priors are in
fact generally chosen to be as uninformative as possible,
so that the posterior is almost always localized in a small
fraction of the prior volume making the Occam factor due
to prior volume very large. This makes the application
of the evidence ratio likely to be misleading in practical
applications, generally underestimating discrepancies. In
literature a positive evidence ratio, ln C > 0, was usually
used as a sufficient criterion to claim consistency of two
different probes. We stress that one should really expect
a very large value of ln C if the data are truly consis-
tent and that discrepancies might be hidden by the bias
computed in Eq. (32). A smaller value, but still positive,
only shows that the data are possibly inconsistent but
that the preferred parameter values for the two subsets
differ by an amount that is small in comparison with the
prior range.

We define the debiased evidence ratio test as:

∆ ln C = −2 ln C + 2〈ln C〉12 . (33)

If ∆ ln C is significantly greater than zero, this indicates
tension, if it is smaller than zero it indicates confirma-
tion bias. The confidence level of the statement can be
computed using the GLM. The proofs of the results of
this section can be found in App. C.

In case of uninformative flat priors, ∆ ln C is, up to
an additive constant, chi squared distributed with N1 +
N2 −N12 degrees of freedom and the observed value can
be read from Eqs. (31,32). In case of delta priors the
evidence ratio is trivially distributed as ∆ ln C = 0 for all
data draws.

For Gaussian priors, the distribution is more compli-
cated and is, in general, a sum of independent variance-
gamma distributed variables, see App. C. Notice that in
this case, to obtain the distribution of the Gaussian prior
evidence ratio from that of the maximum likelihood ra-
tio, treating the prior as additional data, we need to take
into account the fact that we add the prior to the analy-
sis of both D1, D2 and D12. If we now regard the prior
as data, since the prior is not changing in the analysis of
the different data sets, data draws of D1 and D2 would
be correlated by the prior. The evidence in the Gaussian
prior case is then in correspondence with the maximum
likelihood ratio of correlated data sets.

As with GoF in the previous section, we aim at defining
a CDE that retains ease of use as the ratio of maximum
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likelihoods, that does not require heavy use of numerical
integration to compute the statistical significance, like
the evidence ratio, but at the same time encodes the
effect of the prior. This suggests that we again examine
the statistics of the various likelihoods at their maximum
posterior point.

We therefore consider the difference of log-likelihoods
at their MAP point

QDMAP ≡ −2 lnL12(θ12
p )+2 lnL1(θ1

p)+2 lnL2(θ2
p) . (34)

Note that in this case the normalization factors in L,
which provide the offset mean values in Eq. (20), drop
out of the difference so long as 1 and 2 are independent
data sets. If data are drawn from the evidence with un-
informative flat priors and delta priors the distribution
of QDMAP is the same as the distribution of the evidence
ratio. In the Gaussian prior case its distribution is con-
servatively approximated with a chi squared distribution:

QDMAP ∼ χ2(N1
eff +N2

eff −N12
eff ) . (35)

Its exact distribution in terms of a sum of Gamma dis-
tributed variables, can be found in App. C.

This estimator quantifies the loss in goodness of fit
when combining two data sets. When considering sin-
gle data sets, the model parameters can be separately
optimized within the prior; when joining them, there is
less freedom in model parameter optimization. The ratio
of likelihoods at maximum posterior tell us whether this
decrease in goodness of fit is consistent with expectation
from statistical fluctuations or not.

The statistics of QDMAP is the same as the evidence
ratio, once Occam’s factors are removed, for completely
data or prior constrained directions, while it differs over
partially constrained directions. Over these the statisti-
cal significance of agreement/disagreement is underesti-
mated as a mitigation strategy against non-Gaussianities.

This discussion allows us to shed light on the deviance
information criterion (DIC) ratio estimator, as intro-
duced in [33] to assess the agreement between CFHTLenS
and Planck. Using Eq. (25), we can define the DIC ratio

ln I = −1

2

[
DIC(D1∪D2)−DIC(D1)−DIC(D2)

]
. (36)

Similarly to the evidence ratio, Eq. (36) is expected to in-
dicate agreement or disagreement between two posterior
distributions if it is found negative or positive respec-
tively. Depending on the evaluation point θp for DIC,
the statistics of the DIC ratio changes accordingly. If
lnL(θp) in the DIC statistic is evaluated at the maxi-
mum posterior then twice the DIC ratio is distributed as
QDMAP, up to a data independent constant. If the max-
imum likelihood is taken without regard for the prior,
the distribution is chi squared, with N1 + N2 − N12 de-
grees of freedom, similarly to the maximum likelihood
ratio and the evidence ratio in the uninformative flat
prior case. This clarifies the relationship between the

evidence ratio, the DIC ratio and QDMAP. When the
data are either informative or completely uninformative
these three quantities measure the same aspect of agree-
ment/disagreement with different mean values over data
space.

F. Parameter differences

The next application of the GLM is to understand
the distribution of quadratic forms in model parame-
ters. These are natural generalizations of the usual rule
of thumb estimator for tension and contain, as sub-cases,
other estimators that have been proposed in literature.

If we consider two independent random variables θ1

and θ2 the probability density of their difference, in one
dimension, ∆θ ≡ θ1 − θ2, is given by the convolution
integral of the two probability densities, Pθ1 and Pθ2 , as:

P (∆θ) =

∫ +∞

−∞
Pθ1(θ̃)Pθ2(θ̃ −∆θ) dθ̃ . (37)

Tension between the measurements would be indicated if
P (∆θ) has most of its support at very negative or positive
∆θ. For the former case, there would be a low probability
for the difference to be greater than zero:

P (∆θ > 0) =

∫ ∞
0

P (∆θ) d∆θ . (38)

To account for the possibility that the observed ten-
sion could be in either direction, we take the smaller of
P (∆θ > 0) and P (∆θ < 0). The probability of obtaining
a 1D parameter shift, T1, more extreme than the data,
in either direction, is then

P (T1 > T obs
1 ) = 2 min [P (∆θ > 0), P (∆θ < 0)] . (39)

We refer to this as the 1D parameter shift tension statis-
tic. This holds for any two independent probability dis-
tributions and can be easily evaluated numerically.

If we assume that the two distributions, Pθ1 and Pθ2 ,
are Gaussian then we can evaluate this probability ana-
lytically. Since the convolution of two Gaussians is an-
other Gaussian, with a variance given by the sums of
the individual Gaussians, the tension statistic becomes
the usual “rule of thumb difference in mean”. This con-
sists in comparing the difference in the best fit values,
or means, of one parameter for two different data sets to
the quadrature sum of the parameters’ variances:

T1(θ) ≡ |θ(D1)− θ(D2)|√
σ2
θ(D1) + σ2

θ(D2)
, (40)

where θ(Di) is the parameter best fit (or mean), for a
given model and data set Di, σ

2
θ(Di) denotes its variance.

The statistical significance of the 1D parameter shift then
becomes P (T1 > T obs

1 ) = erf(T1/
√

2), where erf is the
error function.
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Because of its simplicity, this estimator is an easy and
intuitive proxy to understand tensions between data sets
and is also accurate if differences in a parameter are man-
ifest at the posterior level. However, there is no guaran-
tee that the overall consistency of two generic data sets
is properly signaled: the method needs to pick up the
“right” parameter where all tension is expressed; it would
not work right away in the multidimensional case; it does
not take into account the effect of priors.

When considering more than one dimension we can
turn to the GLM to understand the statistics of ten-
sion estimators that, like the “rule of thumb difference
in mean”, are defined in parameter space.

We consider differences in the posterior means of two
different data sets:

∆θ̄ ≡ θp1 − θp2 , (41)

that can be easily computed, from the results of Sec. II C,
as:

∆θ̄ = Cp1
[
C−1

Π θΠ + C−1
1 θML

1

]
− Cp2

[
C−1

Π θΠ + C−1
2 θML

2

]
,

(42)

for Gaussian priors, and:

∆θ̄ = θML
1 − θML

2 , (43)

in case of uninformative flat priors. Note that under the
GLM, the parameter means are the same as the param-
eters at the maximum posterior point.

Notice that both Eqs. (42) and (43) are defined in
terms of the parameters that D1 and D2 have in common,
so that, when there are additional parameters describing
systematic effects in one data set the corresponding dis-
tributions has to be marginalized over them. When treat-
ing Gaussian priors, we assume that the prior center is
the same for both data sets and equal to the prior cen-
ter of their combination, as we assumed in the previous
sections.

Since the posterior means depend on the data, we now
turn to the computation of the statistics of their differ-
ences over the space of joint data draws from D1 and
D2.

Since ∆θ̄ is a linear combination of correlated Gaussian
variables, it is Gaussian distributed. Furthermore, it can
be shown that, for both Gaussian and uninformative flat
priors:

〈∆θ̄〉12 = 0 . (44)

Notice that this holds if the prior center is fixed (to an
arbitrary value) for D1, D2 and D12. If this is not the
case and the prior center is different for the different data
sets, the expectation value of the parameter difference is
non-zero.

We are then left with computing the covariance of ∆θ̄.
In case of uninformative flat priors this reads:

C(∆θ̄) = Cp1 + Cp2 , (45)

while in case of Gaussian priors, direct computation from
the GLM gives:

C(∆θ̄) = Cp1 + Cp2 − Cp1C−1
Π Cp2 − Cp2C−1

Π Cp1 . (46)

These results can be directly obtained by means of the
covariance of the joint data draws reported in App. C.

Having computed the distribution of ∆θ̄, we can com-
pute the distribution of a related quantity that carries
the same information but has useful properties when ap-
plied in practice to data sets with non-Gaussian posteri-
ors. This is the difference between the mean parameters
of one data set and the mean parameters of the joint data
set.

We refer to this quantity as the update difference in
mean since it quantifies the differences in parameters of
one data set when updating it with another one. If we
assume that the GLM applies to D1 and D2 then it also
applies to D12 and we can write the update difference in
mean as:

∆θ̄U ≡ θp1 − θp12 = Cp1(Cp1 + C2)−1(θp1 − θ2) , (47)

that still has zero mean and covariance:

C(∆θ̄U ) = Cp1 − Cp12 , (48)

for both uninformative flat priors and Gaussian priors.
Since the CDEs discussed in this section are defined in
terms of the parameter space posterior only, it is simple
to derive all of the above results on parameter differences
by considering the two data sets and the prior as inde-
pendently measuring θ directly in parameter space using
the projected covariances C.

Notice that the previously discussed covariances have
to be positive definite or positive semi-definite. While
this is true when all distributions are well defined Gaus-
sian in the application to real data, with covariances from
MCMC sampling, it might not be strictly true. We shall
come back to the problem of computing this estimator in
Sec. IV D.

We are now in a position to define CDEs based on
quadratic forms of parameter differences. Given a pos-
itive semi-definite matrix A we define two types of
quadratic estimators, depending on the vector that we
use to define them.

If we consider ∆θ̄ we have difference in mean quadratic
CDEs defined as:

QDM = (∆θ̄)TA (∆θ̄) , (49)

while if we use ∆θ̄U we have update difference in mean
quadratic CDEs defined as:

QUDM = (∆θ̄U )TA (∆θ̄U ) . (50)

All these quadratic forms are central and some times de-
generate, depending on the rank of A.

Belonging to this family of CDE we have two estima-
tors that have been previously studied. The first one is
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the difference in mean ∆θ̄ with A = C−1(∆θ̄) (e.g. [40–
42]). The second one is the surprise, that was introduced
in [20] and used in [7, 39, 43], and corresponds to ∆θ̄ with
A = C−1

1 which is related to the Gaussian approximation
of the Kullback-Leibler divergence [44] between differ-
ent data sets’ posteriors. The consideration of quadratic
forms for the update ∆θ̄U is new to this work as far as
we are aware.

For either ∆θ̄ or ∆θ̄U , the optimal choice of A is the
inverse covariance of the parameter difference that is be-
ing considered. Other measures, provided that their dis-
tribution is properly calculated, can only underestimate
rare events by not weighting them properly compared to
an optimal measure. We discuss the criterion that makes
inverse covariance weighting optimal in App. D. This also
clarifies why the “rule of thumb difference in mean” in
one dimension works so well when all the tension is man-
ifest in one parameter where the choice in weighting of
multiple dimensions is absent.

We therefore consider only A = C−1 in the following.
With this choice the quadratic forms of Eqs. (49,50) are
chi squared distributed with degrees of freedom 〈QDM〉 =
rank[C(∆θ̄)] and 〈QUDM〉 = rank[C(∆θ̄U )] respectively.

III. MODEL AND DATA SETS

Our baseline model is the six parameter ΛCDM model
as defined by: cold dark matter density Ωch

2; baryon
density Ωbh

2; the angular size of the sound horizon θMC;
the spectral index of the primordial spectrum of scalar
fluctuations ns and its amplitude ln(1010As); the reion-
ization optical depth τ . We also include in the model
massive neutrinos, fixing the sum of their masses to the
minimal value allowed by flavor oscillation measurements∑
νmν = 0.06 eV [45]. We discuss in Appendix F the

priors that we use throughout this work.
We analyze the level of agreement of several, pub-

licly available, cosmological data sets within the ΛCDM
model. The first data set that we consider consists of
the measurements of CMB fluctuations in both temper-
ature (T) and polarization (EB) of the Planck satel-
lite [11, 46]. We further consider the Planck 2015 full-
sky lensing potential power spectrum [47] in the multi-
poles range 40 ≤ ` ≤ 400. We exclude multipoles above
` = 400 as CMB lensing, at smaller angular scales, is
strongly influenced by the non-linear evolution of dark
matter perturbations.

We include the “Joint Light-curve Analysis” (JLA)
Supernovae sample [48], which combines SNLS, SDSS
and HST supernovae with several low redshift ones. We
also use BAO measurements of: BOSS in its DR12 data
release [49]; the SDSS Main Galaxy Sample [50]; and
the 6dFGS survey [51]. We include the galaxy cluster-
ing power spectrum data derived from the SDSS LRG
survey DR4 [52] and the WiggleZ Dark Energy Survey
galaxy power spectrum as measured from 170, 352 blue
emission line galaxies over a volume of 1 Gpc3 [53, 54].

For both data sets we exclude all the data points with
k > 0.08h/Mpc.

We consider the measurements of the galaxy weak
lensing shear correlation function as provided by
the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS) [55] in their reanalyzed version of [33] and
the Kilo Degree Survey (KiDS) [14]. We applied ultra-
conservative cuts, that make both CFHTLenS and KiDS
data insensitive to the modelling of non-linear evolution
and we included uncertainties in the modelling of intrin-
sic galaxy alignments, as in [14, 33]. A posteriori we no-
tice that, when considering ultra-conservative data cuts
intrinsic alignment parameters are weakly constrained.

We use local measurements of the Hubble constant de-
rived by the “Supernovae, H0, for the Equation of State
of dark energy” (SH0ES) team [12] with the calibration
of [56]. In addition we employ measurements derived
from the joint analysis of three multiply-imaged quasar
systems with measured gravitational time delays, from
the H0LiCOW collaboration [57].

We combine the previously discussed data sets into
families probing similar physical processes: a CMB fam-
ily composed by CMB temperature, polarization and
CMB lensing reconstruction; a “background” family join-
ing supernovae and BAO measurements; the combination
of SDSS LRG and WiggleZ measurements probing the
clustering of galaxies; CFHTLenS and KIDS joined to-
gether in a Weak Lensing probe; Hubble constant’s mea-
surements from SH0ES and H0LiCOW.

Notice that the “background” family is not measuring
the Hubble constant as SN measurements are analyti-
cally marginalized over intrinsic luminosity. The galaxy
clustering data set is not measuring the present day am-
plitude of CDM perturbations σ8 as both power spec-
trum measurements are separately marginalized over the
power spectrum amplitude. The H0LiCOW data set in
turn does not only measure H0 but a combination of H0

and Ωm since we implemented the full non-Gaussian like-
lihood described in [57].

Table III summarizes the data sets, acronyms and lit-
erature references for all the data sets used in this work.
We use the CAMB code [58] to compute the predictions
for all the cosmological observables described above and
we Markov Chain Monte Carlo (MCMC) sample the pos-
terior of the previously discussed experiments with Cos-
moMC [59].

Our results rest on two assumptions: linear theory
modeling of the observables and the accuracy of the
GLM. As a sanity check of the former, we compare the
parameter posterior and best fit prediction of the data,
as obtained by neglecting and including non-linear mod-
eling of the matter distribution, described by Halofit [60],
with the updated fitting formulas described in [61, 62].
We find that, with the above discussed set-up, the param-
eter posterior and best fits are not noticeably different.

All the techniques considered in this work rely on the
applicability of the Gaussian approximation to either the
likelihood or the posterior of the considered data set.
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Acronym Data set Year Reference

lowl Planck low-` TEB 2015 [46]

CMBTT Planck high-` TT 2015 [46]

CMBEE Planck high-` EE 2015 [46]

CMBTE Planck high-` TE 2015 [46]

CMBL Planck CMB Lensing 2015 [47]

SN JLA 2014 [48]

BAO BOSS DR12

+ SDSS MGS + 6dFGS

2011-15 [50, 51, 63]

LRG SDSS LRG survey DR4 2006 [52]

WiggleZ WiggleZ survey 2012 [53, 54]

CFHTLenS CFHTLenS survey 2016 [33]

KiDS KiDS survey 2016 [14]

H SH0ES 2016 [12, 56]

HSL H0LiCOW 2016 [57]

CMB lowl + CMBTTTEEE

+ CMBL

2015 -

BG SN + BAO 2011-15 -

GC LRG + WiggleZ 2006-12 -

WL CFHTLenS + KIDS 2016 -

H0 H + HSL 2016 -

TABLE I. Summary of data sets and data sets combinations
used in this work.

Most of the considered data sets have Gaussian likeli-
hoods, with the exception of the HSL and lowl data sets
that we exclude from tests requiring Gaussianity of the
data likelihood. We build the Gaussian approximation
of the parameter space posterior and we check whether
we can reliably use it, as discussed in Appendix E. We
find that the posterior of all combinations of data sets
containing the CMB power spectrum can be well ap-
proximated by Gaussian distributions in the parameters.
Single weakly constraining data sets, on the other hand,
usually result in non-Gaussian parameter posteriors.

IV. APPLICATION AND RESULTS

In this section we discuss the application of the CDEs
in Sec. II to cosmological data. This section is organized
as follows: in Sec. IV A we discuss our recommended suite
of CDE tests for assessing internal and pairwise data con-
sistency; in Sec. IV B we present the results of internal
consistency tests; in Sec. IV C we show the results of the
application of compatibility tests for data sets couples.

A. Methodology

To assess the internal consistency of a data set we con-
sider the likelihood at maximum posterior as a goodness

of fit measure:

QMAP ≡ −2 lnL(θp)− d ln(2π)− ln(|Σ|)
∼ χ2(d−Neff) ,

Neff ≡ N − tr(C−1
Π Cp) . (51)

To test the compatibility of data sets couples, D1 and
D2, we consider the ratios of likelihoods at their maxi-
mum posterior:

QDMAP ≡ − 2 lnL12(θ12
p ) + 2 lnL1(θ1

p) + 2 lnL2(θ2
p)

∼χ2(N1
eff +N2

eff −N12
eff ) , (52)

that measures the decrease in, prior constrained, good-
ness of fit when combining two data sets.

This is paired with parameter shifts in their update
form:

QUDM ≡ (θ1
p − θ12

p )T (Cp1 − Cp12)−1(θ1
p − θ12

p )

∼χ2(rank[Cp1 − Cp12]) . (53)

When possible we apply these CDEs to every data set
alone and to sets that define families of physical probes,
to test their internal consistency. Then we move to test-
ing the consistency of different families by probing all
their possible combinations.

Different tests applied to the same data sets provide
complementary information that is helpful in singling out
possible problems. Goodness of fit type tests inform us
of the internal consistency of the data sets but do not
specifically highlight confirmation biases or tensions that
look like parameters changes. The ratios of likelihoods
at their maximum posterior and parameter shifts tests
on the other hand are designed to isolate problems along
parameter modes. In particular the former estimator is
sensitive to shifts in all the parameters that two data set
jointly constrain while the latter is sensitive to shifts in
the constraints that one of the data set improves over the
other.

As an example, the goodness of fit test for a data set
might fail, indicating a tension. Still parameter devia-
tions, probed by the other two tests, might not be sta-
tistically significant, indicating that possible systematic
effects or new physics is not mimicking the effect of a
change in parameters. In a cosmological context the mat-
ter power spectrum could be indicating the presence of
an additional physical scale resulting in a scale dependent
growth. With sufficient experimental accuracy this will
fail goodness of fit tests, as growth in the ΛCDM model
is scale independent. On the other hand this may not
fail parameter shift tests as none of the nominal ΛCDM
parameters can exactly describe this effect. Conversely,
a smooth dark energy component will generally result in
a scale independent modification to the growth of struc-
tures that might mimic the effect of a change in As or
other cosmological parameters. This will not show up
at goodness of fit level but might show up at parameter
level when we compare two probes that are differently
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sensitive to the amplitude of perturbations, for example
measuring it at different redshifts. In this case also the
joint goodness of fit test is not guaranteed to fail as it
might be dominated by the data set with larger number
of data points.

In addition to these aspects, different tests, when ap-
plied in practice, have different responses to the presence
of non-Gaussianities in the data and parameter spaces
and thus have different failure modes. Testing multiple
ones ensures that these are easily identified. In particular
if the posterior of a given experiment is non-Gaussian be-
cause the low probability tails decay slower than a Gaus-
sian distribution the evidence ratio and parameter shift
estimator have, different, opposite responses. While the
first one would overestimate tensions and underestimate
confirmation the second one is built to mitigate this and
may underestimate tensions.

In Appendix G we report, in table format, the full re-
sults of the application of the CDEs that we discuss to
data. In addition, we also report the results that can be
obtained with the 1D parameter shifts and “rule of thumb
difference in mean” statistics, when evaluated with our
data configuration and analysis pipeline, to recover some
known results that we use as a benchmark for our esti-
mators.

B. Goodness of fit type tests

In this section we present the application of the good-
ness of fit measures that were discussed in Sec. II D.

In applying these estimators to real data there are two
major challenges. The first one consists in obtaining ac-
curate best fit estimates. This involves global optimiza-
tion of the posterior and is complicated by the large num-
ber of parameter space dimensions usually involved in
cosmological studies. What proves particularly challeng-
ing in this respect is the presence of mostly unconstrained
parameters that can create multiple local maxima in the
posterior. This can be mitigated by having well con-
verged MCMC parameter chains whose sample best fit
estimate provides a good starting point to eventually find
the global minimum with appropriate algorithms.

The second challenging aspect is to estimate correctly
the number of parameters that a data set is constrain-
ing, Neff . Prior distributions are in practice often non-
Gaussian, for example when some direct or derived pa-
rameter is limited to be in a certain range. Nonetheless
in all cases, we adopt Eq. (29) for its calculation. This
is a reasonable approximation in that the comparison of
the prior covariance CΠ to the posterior covariance Cp al-
ways provides a criteria for when the prior is informative
and the parameter cannot be optimized to the data. As
a concrete example, consider the tophat prior on a sin-
gle parameter where CΠ = (θmax − θmin)2/12. Eq. (29)
tells us that Neff = 1/2 when the prior variance equals
the data variance. For the tophat prior, this occurs when
the half-width is

√
3 times the rms of the data constraint,

i.e. between 1σ and 2σ of a Gaussian data constraint.

Therefore Eq. (29) suffices for an estimate even for this
highly non-Gaussian prior so long as we allow for errors
in each partially constrained direction at the level of a
few tenths of a parameter. We have verified this error
estimate with numerical simulations in one dimension,
noticing that the error depends on the value of Neff : it
is small in the two limits Neff = 0 and Neff = 1 where
the distribution is exact; increases as Neff decreases from
Neff = 0.9 to Neff = 0.1 approximately ranging from 0.1
to 0.4; in this same range of Neff the distribution of the
QMAP estimator is increasingly conservative.

Evaluating Eq. (29) for Neff also requires well sam-
pled parameter distributions to limit errors in parameter
covariance estimates. We thus require the Gelman and
Rubin R test [64, 65] to satisfy R − 1 < 0.005 for the
worst constrained covariance eigenvalue. We can then
check sampling errors on the number of effective param-
eters as their variance across different MCMC chains and
we find that these are usually of the same order as R−1.

In order to have a reliable estimate of Neff we also need
a good knowledge of the prior covariance. This is built by
joining different blocks. We directly MCMC sample the
prior on the base ΛCDM parameters because of priors on
derived parameters. Flat priors on nuisance parameters
are uncorrelated with priors on the base parameters and
their diagonal entry in the prior covariance is built out
of the covariance of the flat distribution. Some nuisance
parameters have Gaussian priors that are uncorrelated
with other priors. Their covariance entry can be easily set
with the variance of the Gaussian prior. Further details
about the modeling of the prior distribution can be found
in Appendix F.

Once these technical aspects have been properly ad-
dressed we can check the estimate of the number of ef-
fective parameters that a data set is constraining against
physical intuition. We list in Table II the values of Neff

and the number of nominal parameters for the data sets
that we consider.

Data set Neff N

CMBTT 14.3 21

CMBEE 8.1 13

CMBTE 7.9 15

CMBL 2.5 7

SN 3.0 8

BAO 3.1 6

LRG 2.5 6

WiggleZ 1.9 6

CFHTLenS 1.8 7

KiDS 1.8 7

TABLE II. The number of effective parameters, Neff , and the
number of nominal parameters, N , for the different data sets
that we consider.
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As we can see the primary CMB spectra have seven,
five and seven parameters for CMBTT, CMBEE and
CMBTE respectively that are not constrained by the
data. These are nuisance parameters describing fore-
grounds and are instead constrained by informative
Gaussian priors [46]. CMB lensing has four uncon-
strained parameters τ , ns, Ωbh

2 and a calibration pa-
rameter. A combination of the other cosmological pa-
rameters, mainly As and Ωch

2, is well constrained by the
lensing amplitude whereas the directions constraining the
shape of the potential are only partially constrained. SN
constrain three parameters, the total matter density Ωm
and two nuisance parameters, the intrinsic supernovae
color and stretch. The BAO data set constrains three
parameters as it includes redshift space distortions mea-
surements, so that only τ and ns are unconstrained while
As is mostly unconstrained. The LRG and WiggleZ data
sets constrain slightly more than two parameters, that
are combinations of Ωm, Ωb and H0, thanks to the detec-
tion of the BAO feature in the matter power spectrum.
Both CFHTLenS and KiDS constrain two parameters,
the amplitude of the weak lensing signal and the ampli-
tude of intrinsic alignment. The latter, while not being
detected, is slightly constrained over the prior and thus
enters in degree of freedom counting.

The number of effective parameters that combinations
of these data sets constrain is consistent with what we
would expect from these results. Notice that no physical

knowledge was input to get the results of Table II that
automatically and accurately recover the physical results
to a fraction of a parameter.

We can now turn to the probabilities associated with
the values of QMAP in the various cases, as displayed
in Fig. 3. In applying these estimators to the data we
cannot use the lowl and HSL data sets as their likelihood
is not Gaussian in the data points. We have to exclude
the H data set as the full data likelihood is not provided
and we just have the parameter likelihood.

As we can see from both Fig. 3 and Table V the
CMBTT, CMBEE, CMBL, SN, BAO, WiggleZ data set
are a reasonable fit to the data showing no tension nor
confirmation at high statistical significance. The CMBL
result showcases the use of the maximum posterior as a
goodness of fit measure. This data set has no irrelevant
parameters and if we were to count all its parameters as
being optimized this would indicate the presence, at a
5% probability to exceed, of tensions. Since the ΛCDM
model cannot use all its nominal parameters due to the
priors, it is actually still a good fit to the CMBL data.

The CMBTE data set in turn is not a good fit at high
statistical significance. The result is stable against degree
of freedom counting since the goodness of fit, in this case,
is dominated by the number of data points in the fit.
Since, as noted in [46], the coadded frequency spectrum
is a good fit we suspect that this result is dominated
by frequency dependent rather than cosmological effects,
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e.g. foreground and systematics modeling, especially in
the 100 GHz× 217 GHz and 100 GHz× 100 GHz spectra
that have been highlighted in [46], at about the same
statistical significance.

The full CMB goodness of fit is dominated by the TE
results, whose statistical significance gets diluted by the
increased number of data points in the joint data set.
The results for the CMBTTTEEE data set further con-
firms this showing that the discrepancy in the fit cannot
be attributed to CMBL measurements. Moreover, the
goodness of fit results for all data sets joined together
(ALL) is dominated too by CMB results since this is the
data set with the largest number of data points.

At slightly lower statistical significance we find that
the CFHTLenS and KiDS data sets are a bad fit and the
goodness of fit of their union further confirms this at high
statistical significance. Notice that this result is partic-
ularly worrisome since both data sets are cut at linear
cosmological scales and thus should not be influenced by
the, possibly improper, modeling of non-linearities. The
statistical significance of the goodness of fit to the joint
WL data set is only slightly lower than the product of
the single data sets, showing that the bad fits are almost
independent. These results could be, at least in the case
of the KiDS data set, due to lack of modeling of sur-
vey geometry in the covariance, as reported in [66]. The
same explanation does not apply to CFHTLenS whose
covariance was obtained through simulations.

At a statistical significance that is borderline between
significant and not significant we find that the LRG data
set is confirmation biased. Notice that, in this case,
proper degree of freedom counting is crucial to the as-
sessment of such effects. If we were to assume that this
data set measures all ΛCDM parameters this result will
not be statistically significant. If we further assume that
the two bias parameters that have been marginalized over
are also constrained by the data, the statistical signifi-
cance of confirmation bias would decrease becoming 96%
for Neff = 3.5 and 93% for Neff = 4.5.

Finally we notice that the BG data set is a good fit,
while being dominated by the SN data set that has more
data points with respect to the BAO one. The same ef-
fect is seen for the GC data set where the statistical sig-
nificance of confirmation in LRG measurements is over-
weighted by the number of data points in the WiggleZ
data set.

C. Evidence ratio type tests

In this section we present the application of the ratio
of likelihoods at maximum posterior estimator QDMAP,
introduced in Sec. II E, and discuss its relationship with
the evidence ratio.

The practical challenges in computing the QDMAP esti-
mator are the same as the maximum posterior goodness
of fit and are mitigated in the same way that was dis-
cussed in the previous section. The only difference is

that, in the previous section, errors on Neff had a small
effect for all data sets that have a large number of data
points. In this context, it is crucial to properly iden-
tify parameters, as the number of considered data points
drops out of degrees of freedom counting, as shown in
Sec. II E. As we show in App. G, see Table VI, the num-
ber of effective parameters for the single and joint data
sets agrees well with physical intuition and that their dif-
ference appropriately reflects the number of parameters
that both data sets are measuring.

Similarly to the previous section we cannot use the lowl
and HSL data sets as their likelihood is non-Gaussian in
the data. In addition we cannot apply this test to data
set couples that are correlated and we have to exclude
the comparison of the primary CMB spectra.

Before turning to QDMAP we apply the evidence ra-
tio test to several data couples, as shown in Fig. 4, and
subtract its bias, as computed within the GLM. The ev-
idence is estimated with the Gaussian approximation to
the MCMC posterior, as discussed in App. E, and its bias
is computed using the statistics of that approximation.

The first noteworthy result that is shown in Fig. 4 is
that the observed value of the evidence ratio is usually
of the same order of the bias in the evidence ratio. This
bias does also depend on the data set involved in the
comparison and has to be subtracted case by case. This
shows the limitations of the evidence ratio test judged
on the Jeffreys’ scale. The results is usually so biased
that the observed value alone cannot be used to judge
agreement or disagreement.

On the other hand, in Fig. 5, we show the statistical
significance of the QDMAP estimator. The reported re-
sults confirms the picture that comes from the debiased
evidence ratio while providing an estimate of statistical
significance. The qualitative agreement between the two
is due to the fact that, when parameter space directions
are either completely constrained by the prior or the data
QDMAP is distributed as the evidence apart for additive
factors that do not depend on the data realization and
drop out of the statistical significance.

We first consider the internal compatibility of data
within the set families. As we can see the SN and BAO
data sets agree as well as the CFHTLenS and KiDS data
sets making the BG and WL families internally consis-
tent. The LRG and WiggleZ data sets, on the other hand,
show a marked indication of disagreement. This is not
surprising considering the indication of confirmation bias
in the LRG data set and points toward a significant dif-
ference in parameters between the two probes. This dif-
ference is not signaled by the “rule of thumb difference
in mean”, when applied to the Ωm and Ωb parameters,
pointing toward a correlated shift in parameters. Notice
that, in this case, the bias in the evidence ratio is larger
than the observed value. If we were to look the the latter
and judge its value of the Jeffreys’ scale we would draw
the wrong conclusion that the two data sets agree.

Other interesting results concern the internal consis-
tency of the CMB family. The CMBTT and CMBEE
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data sets do not agree with CMBL at about a 5% prob-
ability to exceed. For both data sets, this is roughly
the same statistical significance of the deviation of the
amplitude of the lensing parameter, AL, from one, as re-
ported in [11, 16]. While CMBTE and CMBL agree the
joint result of CMBTTTEEE and CMBL is dominated
by the tension in the temperature spectrum, consistently
with the results in [11, 16]. Notice that the evidence ra-
tio result obtained with the Gaussian approximation to
CMBTT and CMBL agrees very well with the result of
numerical integration shown in [6].

We next apply the evidence ratio test to understand
the compatibility of different families of physical probes.

As we can see in Fig. 5 the CMB family agrees well
with the BG family but disagrees with the other three
families of data sets that we consider. The disagreement
between CMB and GC families can be understood con-
sidering the indication of a confirmation bias in the LRG
data set. The statistical significance of the disagreement
between these two probes roughly matches the statistical
significance of confirmation in the LRG data set, point-
ing toward the hypothesis that the latter data set might
be confirmation biased around parameter values that are
not the CMB ones. The CMB data set also shows high
statistically significant indications of tensions with the

WL and H0 data sets. The tension with Hubble constant
measurements is known and we recover 0.088 % probabil-
ity to exceed compared with the “rule of thumb differ-
ence in mean” result applied to H0 of 0.073% and the
exact 1D shift that results in 0.078%. The WL result is
also known but has been usually evaluated using the full
scale measurements of weak lensing, including scales that
are influenced by the non-linear evolution of cosmologi-
cal perturbations. Here we show that this tension persists
and remains statistically significant, specifically at 0.1%
probability to exceed, when restricting to linear scales.
Notice that the evidence ratio between the CMB and H0
data set is the only one that is found negative. Still in-
terpreting at face value this ratio on the Jeffreys’ scale
would lead to the incorrect conclusion that the tension is
not significant.

The other data sets families considered generally agree.
From a physical standpoint we know that they should
since they are either measuring different parameters or
weakly measuring the same parameters. This aspect is
properly recovered and none of them are found to be in
tension or confirmation biased at relevant statistical sig-
nificance. The only exception is the test applied to the
BG and WL data sets against the GC data set. The
first is in tension with the latter as a consequence of its
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The darker shade indicates results that are not statistically significant.

agreement with CMB at about the same statistical sig-
nificance. The second one is in tension with the latter
due to the fact that both data sets have some problem
at the goodness of fit level. Their combination is not
surprisingly signaling disagreement of some sort.

D. Parameter differences

In this section we present the application of the pa-
rameter shift CDE discussed in Sec. II F.

The challenges in applying this CDEs to real data are
profoundly different than the ones that we discussed in
the previous sections. This allows for a larger degree of
complementarity between tests and ensures the robust-
ness of conclusions against possible contamination from
non-Gaussianities and other estimate problems.

In the following we only use parameter difference esti-
mator QUDM using Eq. (50), which is defined through the
parameter update when combining two data sets. Param-
eter difference estimators of the form QDM using Eq. (49)
have problems that are difficult to overcome in practi-
cal applications. In case of uninformative flat priors any

such test would be ill posed for directions that are un-
constrained by one of the data sets. If we consider Gaus-
sian priors, then the QDM itself can be formally defined.
However, noise in the determination of the covariances
of the two experiments, due to MCMC sampling, makes
it difficult to disentangle prior constrained and data con-
strained directions. In applying it to the data we find this
estimator to be unreliable and numerical noise dominated
for a wide variety of algorithms used for the estimate.

Aside from numerical issues, differences in parameters
update also have the clear advantage that corrections due
to non-Gaussianities are mitigated if the posterior of the
most constraining data set is Gaussian. In our cosmologi-
cal applications CMB data play this role since parameter
posteriors are nearly Gaussian for all ΛCDM parameters.
If the second data set has a non-Gaussian posterior, a di-
rect parameter difference would misestimate significance
if the mean of the first set lay in the tail of the second
set. For the parameter update, GLM is effectively ap-
plied around the mean of the first set by replacing the
non-Gaussian posterior of the second set with a Gaussian
approximation locally around that point.

To minimize numerical noise in the QUDM estimates we
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use the Karhunen-Loeve (KL) decomposition of the two
covariances that are involved. Recall that to compute the
observed value of the update parameter shift we need to
evaluate:

QUDM ≡ (∆θ̄U )T (Cp1 − Cp12)−1 (∆θ̄U ) . (54)

The second data set can only add information on top of
the first data set so that (Cp1 − Cp12) has to be positive
definite in the absence of numerical noise. In the pres-
ence of numerical noise, it is better to first transform to
the KL basis since it is mutually orthogonal in the met-
rics defined by Cp1 and Cp12. We solve the generalized
eigenvalue problem to find the KL modes, φa, of the two
covariances: ∑

ν

Cµνp1 φ a
ν = λa

∑
ν

Cµνp12 φ
a
ν . (55)

Here the eigenmodes are defined to be orthonormal in
the Cp12 metric ∑

µν

φ a
µ Cµνp12φ

b
ν = δab, (56)

and since they are orthogonal in the Cp1 metric, but with
variance λaδab, the KL basis provides linear combina-
tions of the parameters that are mutually independent
and ordered by the improvement in the variance of 12
over 1. If we now define the linear combination of pa-
rameter differences in the KL basis as

∆pa =
∑
µ

φ a
µ ∆θ̄µU (57)

we obtain

QUDM ≡
NKL∑
a=1

(∆pa)2

λa − 1
. (58)

While this transformation, when NKL is the full set of KL
modes, gives exactly the same value as Eq. (54), it also
highlights the problem of numerical noise. If 12 does not
improve over 1 substantially in a given mode, then λa ≈ 1
and numerical noise in the estimation of covariances cre-
ate large errors in QUDM. The KL decomposition allows
us to place a well defined lower cutoff on this improve-
ment in order to remove unwanted numerical noise from
the estimator. In practical applications there is a hierar-
chy of KL modes so that noise and data modes are well
separated in the spectrum. We use a simple algorithm to
find this separation point and define the optimal cutoff
for each data set combinations. To minimize numerical
noise in the QUDM estimates we also notice that it is
preferable to use the mean of the parameters in the test
rather than the best fit parameters even though they are
the same in the GLM.

We find that for parameter distributions that are well
approximated by Gaussian distributions the cutoff is usu-
ally in the range of 5% while it can be as large as 15% in

case of non-Gaussian posteriors. In all cases we limit the
cutoff to be between 2% and 20% and we cannot extend it
to zero otherwise the estimator will be noise dominated.
Notice that this prescription also effectively defines

〈QUDM〉 = NKL , (59)

and hence QUDM is chi-squared distributed with NKL

degrees of freedom.
With this technique the estimator is stable but is left

with one case where the statistic returns a null result.
When we are combining a data set that is very constrain-
ing with a data set that is very weakly constraining the
improvement in the KL modes might be below the thresh-
old that separates data dominated modes and noise dom-
inated modes. In this case the value of QUDM will be zero
and it distributed as a χ2 with zero degrees of freedom,
i.e. zero for all data realizations. This simply means that
while there may be a true, but tiny, parameter shift, it
is too small to measure. In this case, the procedure cor-
rectly returns that the answer that neither tension nor
confirmation bias can be detected.

We start by applying the update difference in mean to
assess the consistency of data sets families and we report
the results in Fig. 5.

As we can see the disagreement between the LRG and
WiggleZ data sets, at parameter level, is confirmed to be
statistically significant, as we found in the previous sec-
tion. The statistical significance of this result is, however,
slightly lower than what is reported by the likelihood at
maximum posterior test. This effect can be attributed
to the different sensitivity of the two estimators to the
effect of non-Gaussianities in the parameter posteriors.

The parameter update results further confirm the in-
ternal consistency of the BG and WL families, as found
in the previous section. On the other hand, we can ex-
tend here the study of internal consistency of families of
probes to include H and HSL measurements. While the
latter has a likelihood that is non-Gaussian at the data
level, at parameter level it can be well approximated by
a Gaussian distribution. As we can see the two data sets
agree on the determination of the Hubble constant while
not showing indications of tensions nor confirmation.

Similarly we can here extend the study of the CMB in-
ternal consistency, even though the lowl likelihood is non-
Gaussian at the data level. The update parameter shift
test confirms the tension between CMBTT, CMBEE and
CMBL and the agreement between CMBTE and CMBL,
at about the same statistical significance that was found
in the previous section.

If we now consider the same set of comparisons, with
the addition of the CMB large angular scale multipoles,
we see that the agreement between the primary CMB
spectra and CMBL improves to the point that it is not
statistically significant. This picture is consistent with
the results of the update parameter shift test applied
between the lowl data and the primary CMB spectra.
As we can see from Fig. 5 all the four results are on
the tension side and exceed 95% C.L. for the CMBEE
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spectrum. These are also in qualitative agreement with
the the “rule of thumb” and 1D shift when applied to
the τ parameter. The tension is reported to be slightly
larger because the direction that is selected by the KL
decomposition takes into account degeneracies with other
cosmological parameters.

The discrepancy between these three probes can be
physically understood because at fixed Ase

−2τ , lower-
ing τ reduces As and hence reduce the gravitational
lensing potential and the smoothing of the CMB peaks.
At high multipoles the CMB measurements of Planck
have enough precision to be sensitive to gravitational
lensing, hence other parameters shift to compensate for
the decreased smoothing of the peaks. This is achieved
by increasing Ωmh

2 and Ase
−2τ , while reducing ns and

Ωbh
2, as discussed in [15]. The best fit solution to the

lowl+CMBTT has known oscillatory residuals at high
multipoles [15] because of the lack of power at large an-
gular scales. Without the lowl data set these oscillatory
residuals can be fit by raising τ that is balanced by rais-
ing also As and Ωmh

2 that overall give a larger CMB
lensing signal that is in conflict with lensing reconstruc-
tion of the CMBL data set. This tension can then be
isolated by adding a new parameter that describes the
amplitude of the lensing of the CMB, AL, that allows to
fit the oscillatory residuals in the primary spectra and is
found to be deviating form unity at about the statistical
significance of the tensions that we report here.

We can now proceed to the application of the update
parameter shift test to different data sets families. These
results are largely in agreement with the ones reported in
the previous section with some noticeable differences. As
shown in App. G these results do not depend strongly on
the inclusion of the lowl data set that leaves them largely
unchanged.

While the tension between CMB and H0 is confirmed
and in good agreement with the benchmark results,
specifically at 0.087% agreement probability, the tension
between the CMB and WL data sets is markedly lower
than the QDMAP result, specifically at 1.6% agreement
probability. This is expected since the WL data set does
show a non-Gaussian posterior with slowly decaying tails.
Still this tension is noticeably higher with respect to the
“rule of thumb” estimate applied to the S8 parameter
which yields 7.1% agreement probability and the exact
1D shift that takes into account the non-Gaussianity of
the posterior and results in 6.7% agreement probability.

In this case the QUDM test is indicating, through the
number of degrees of freedom, that this tension is evalu-
ated along one parameter space direction, 〈QUDM〉 = 1.
This direction is built to be the optimal one for both data
sets. The S8 parameter, in turn, is not exactly describ-
ing the amplitude of the lensing signal, at the redshifts of
the combined WL surveys that we are considering, and
is not the best constrained parameter. We find that, for
the WL data set, σ8Ω0.7

m is better constrained and the
“rule of thumb” test is signaling a tension similar to that
of the QUDM estimator.

Finally we can easily see an example of the null result
mode of the estimator by looking at data sets combi-
nations involving the GC data set. This data set is very
weakly constraining, when compared with the CMB data
set, so that its improvement on the parameter constraints
cannot be distinguished from numerical noise. Further-
more the GC data set is very weakly constraining along
the parameter space directions that are constrained by
the WL data set so that the result is again dominated by
noise and our KL procedure properly identifies this as a
null update result.

V. CONCLUSIONS

We studied statistical estimators of concordance and
discordance (CDEs) between cosmological probes and ap-
plied them to state of the art cosmological data sets.

We discussed the likelihood at maximum posterior as
a measure of the goodness of fit. Unlike the maximum
likelihood, this quantity depends on the prior on cosmo-
logical parameters and allows us to disentangle parameter
space directions that are constrained by the data and by
the prior. This disentanglement provides a fair degree-
of-freedom counting when performing the goodness of fit
test.

We studied the distribution of the evidence ratio test
of data set compatibility over the space of data realiza-
tions. This allowed us to uncover the fact that the evi-
dence ratio is usually biased toward agreement and that,
in practical applications, this bias is as large as the ob-
served value, making the Jeffreys’ scale unreliable as an
indicator of agreement or disagreement. We then de-
fined a similar estimator based on the ratio of likelihoods
at maximum posterior that allows for an assessment of
statistical significance of the reported results. While be-
ing equivalent to the evidence ratio in the limiting cases
where parameter space directions are completely con-
strained by either the data or the prior, this estimator
is significantly easier to apply.

We investigated the statistics of parameter shifts devel-
oping methods that work in arbitrary number of dimen-
sions. These estimators optimally weight the parameter
shifts and mitigate the fact that tensions might not be
identifiable at the single parameter level because they
are hidden by the process of marginalization over a high
dimensional parameter space. We introduce a robust reg-
ularization scheme based on the Karhunen-Loeve decom-
position which identifies and discounts the small param-
eter shifts due to sampling noise in MCMC posteriors.

When applying these estimators to cosmological data
we find several noteworthy results. As a benchmark for
the estimators we recover the known result regarding
tensions between the Planck measurements of the CMB
spectra and local measurements of the Hubble constant
and the amplitude of the galaxy weak lensing signal.
Concerning the latter, we find that, when considering
the Canada-France-Hawaii Telescope Lensing Survey and
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the Kilo Degree Survey on large linear scales the statisti-
cal significance of the disagreement with CMB measure-
ments is between 98.4% and 99.9%. This is somewhat
higher than is estimated by looking at the posterior of
the S8 ≡ σ8Ω0.5

m parameter alone as we optimally weight
all parameter space directions.

We investigated the consistency of CMB measurements
of the Planck satellite, establishing a set of results that
allow us to prioritize the analysis of the next release of
the Planck data. In particular we find that: the CMB
TE cross correlation is a bad fit and that seems to be
related to the presence of residual, frequency dependent
foregrounds; the discrepancy between the CMB TT spec-
trum and its lensing reconstruction is also present in the
E-mode spectrum at about the same statistical signifi-
cance; the measurements of the large angular scales mul-
tipoles, ` < 30, are in tension with the small scale tem-
perature and E-mode spectra at about 95% probability.

Moreover we find CMB results to be in tension with
probes of the clustering of galaxies. This disagreement
can probably be attributed to the SDSS LRG DR4 survey
being slightly confirmation biased toward a different set
of cosmological parameters.

We also find that most of the other combination of
data sets are in agreement and can thus be safely com-
bined, and in particular that there is agreement between
SN and BAO; between the two WL surveys that we con-
sider; between strong lensing time delay measurements
of the Hubble constant and direct measurements from
the distance ladder; between CMB measurements and
SN and BAO.

Overall we find that the statistical significance of the
discrepancies identified in this work is not yet sufficient
to firmly establish whether they are due to residual sys-
tematic effects or new physical phenomena. In this sense
their statistical significance is not yet to the point where
we can clearly draw a line between data sets that should
not be combined with others because of unaccounted sys-
tematic effects. We highlight that the resolution of these
discrepancies, or their unequivocal identification, is likely
to come as a result of further improvements of the quality
of the data.

The work toward understanding the consistency of
present cosmological probes and preparing for the analy-
sis of the next generation of probes is far from complete.
Future efforts in these directions include the generaliza-
tion of the techniques presented in this paper to consider
non-Gaussian corrections. Moreover we need to develop
statistical estimators that work on more than two data
sets at the time, allowing us to compute the joint distri-
bution of multiple tests. These will allow us to under-
stand the global consistency of the ΛCDM model with
a large and diverse set of experimental data. In addi-
tion these would allow us to perform analyses targeted
at identifying the most outlying data set, within a larger
pool of data sets.

Finally these tests should be applied as we gather new
and more precise cosmological data sets to make sure

that inconsistencies due to systematic effects or incom-
plete modeling of cosmological observables are identified
and corrected and that discrepancies due to new physical
phenomena are promptly found.

ACKNOWLEDGMENTS

We thank Saroj Adhikari, Chuck Bennett, Chihway
Chang, Tom Crawford, Mike Hobson, Dragan Huterer,
Pavel Motloch, Sam Passaglia, Kimmy Wu and Geor-
gios Zacharegkas for useful comments. MR and WH are
supported by U.S. Dept. of Energy contract DE-FG02-
13ER41958. WH was further supported by NASA ATP
NNX15AK22G and the Simons Foundation. Computing
resources were provided by the University of Chicago Re-
search Computing Center through the Kavli Institute for
Cosmological Physics at the University of Chicago.

Appendix A: Quadratic forms in Gaussian random
variables

In this appendix we briefly outline how to practically
deal with the statistics of the many quadratic forms that
appear in the main text. This material is mostly taken
from [67] and reproduced here to ease the comprehension
of the main text.

A quadratic form in the p dimensional random Gaus-
sian variable X is defined by:

Q = XTAX ; X ∼ Np(x;µ,Σ) . (A1)

The first two moments of the quadratic form are:

〈Q〉X = tr[AΣ] + µTAµ ,

Var(Q) = 2 tr[(AΣ)2] + 4µTAΣAµ . (A2)

In the following we only consider the case of central
quadratic forms 〈X〉 = µ = 0. We find that all distribu-
tions in the main text satisfy this requirement. For the
generalization of the following results to the case where
µ 6= 0 we refer the reader to [67].

Over the subspace where Σ is invertible, Q admits a
decomposition of the form:

Q = XTAX =

p∑
j=1

λjU
2
j , (A3)

where λ = eigenval (AΣ), P = eigenvec (AΣ) and

U =PTΣ−1/2(x− µ) ∼ Np(x; 0, I) . (A4)

Given that Uj is a normally distributed variable, U2
j is

a χ2(1) variable, and so Q is in general distributed as
the sum of scaled χ2(1) variables which are themselves
known as Gamma distributed variables.

If A is any projection of Σ−1, i.e. A = PTΣ−1P where
P2 = P, then all the eigenvalues λj ∈ 0, 1 and Q would
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be the sum of independent χ2(1) variables, Q ∼ χ2(r),
with r = rank(P) degrees of freedom. This includes the
trivial case where A = Σ−1.

More generally, if all the eigenvalues λj ≥ 0 then ana-
lytic expressions for the probability density of Q exist [67]
and probabilities can be computed with dedicated algo-
rithms [68] once the eigenvalues of AΣ are obtained.

Alternately, the distribution of Q can be approximated
by that of a chi squared variable matching some of the
moments of Q. We refer to these as Patnaiks’ type ap-
proximations [69]. The first approximation matches the
mean to a (single) chi square distribution:

Q =
∑
j

λjX
2
j ' χ2(tr[AΣ]) , (A5)

where ' stands for “approximately distributed as”. The
second approximation matches the mean and variance to
that of (single) Gamma distribution:

Q =
∑
j

λjX
2
j ' cχ2(ν) , (A6)

where:

c ≡
∑
j

λ2
j/tr[AΣ] ,

ν ≡ (tr[AΣ])2/
∑
j

λ2
j . (A7)

Notice that in both approximations the number of de-
grees of freedom of the (scaled) chi square distribution is
usually not integer.

We shall use the first approximation in practice,
matching only the mean. When 0 ≤ λ ≤ 1, this ap-
proximation is conservative as the second approximation
and the full distribution have smaller variance. These
types of approximations are usually relevant over param-
eter space directions that are partially constrained by
the prior, where the full posterior of the data set that
we consider is usually highly non-Gaussian. Underesti-
mating their contribution to the statistical significance of
the reported results is then a mitigation strategy against
non-Gaussianities.

Appendix B: Proofs of Section II D

In this appendix we provide the proofs for the results
contained in Sec. II D as a worked example of how to use
the GLM in practice.

We first consider the maximum likelihood:

−2 lnLmax =XT (I− P)TΣ−1(I− P)X

+ d ln(2π) + ln(|Σ|) , (B1)

where, here and below, X ≡ x − m̂ with m̂ = mΠ for
convenience, involves the component of the data vector

that is in the complement of the model space (I − P)X.
For any prior, this data vector is distributed as

(I− P)X ∼ Nr((I− P)X; 0, (I− P)Σ(I− P)T ) , (B2)

where r = rank(I − P), since the projector nulls the
part of the data draw covariance that lives on param-
eter space. The data dependent piece of the maximum
likelihood statistic contains

QML = [(I− P)X]TΣ−1[(I− P)X] , (B3)

which is a quadratic form for this data vector. Consider-
ing now the results of the previous section, the statistics
of QML is determined by the eigenvalues

λ = eigenval
[
Σ−1(I− P)Σ(I− P)T

]
= eigenval(I− P) , (B4)

which implies QML ∼ χ2(r). If we assume that the model
has N relevant parameters then P projects the data vec-
tor onto an N dimensional subspace and therefore its
complement has r = d−N .

We now turn to the distribution of the evidence. For
uninformative flat priors, the evidence quadratic form is
identical to the maximum likelihood quadratic form and
is therefore also distributed as χ2(d−N). In case of delta
priors, the evidence quadratic form in data space is

QE = XTΣ−1X , (B5)

where X is normally distributed with covariance Σ. Thus
QE is chi squared distributed with full rank χ2(d).

In case of Gaussian priors the quadratic form defined
by the evidence becomes:

QE = XTΣ−1
0 X , (B6)

where X is normally distributed with covariance Σ0 =
Σ +MCΠMT . Thus QE is again distributed as χ2(d).

We next derive the distribution of the likelihood at
maximum posterior for different prior choices. In case of
delta priors we have:

−2 lnL(θp) = − 2 lnL(θΠ)

=XTΣ−1X + d ln(2π) + ln(|Σ|) , (B7)

that, up to a constant, defines a quadratic form in data
space:

QMAP =XTΣ−1X , (B8)

that is distributed as χ2(d).
In case of uninformative flat priors the likelihood at

maximum posterior is just the maximum likelihood and
so QMAP = QML.

Gaussian priors stand in between these cases. The data
dependent part, QMAP, of the likelihood at maximum
posterior is given by:

QMAP = − 2 lnL(θp)− d ln(2π)− ln(|Σ|)
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=XT

[
(I− P)TΣ−1(I− P)

+ M̃TC−1
Π CpC−1CpC−1

Π M̃

]
X . (B9)

This quadratic form has d−N eigenvalues with λi = 1 to-
gether with the N eigenvalues of C−1

Π Cp that are bounded
as 0 ≤ λi ≤ 1. From this set of eigenvalues the ex-
act distribution can be computed or approximated as in
App. A. If we take the first approximation, Eq. (A5), that
matches the mean, then QMAP ' χ2(d−N+tr[C−1

Π Cp]) =
χ2(d−Neff). This approximation is exact for all parame-
ter space directions that are data dominated C−1

Π Cp → 0

or completely prior dominated C−1
Π Cp → 1 and approxi-

mated for cases in between.
As long as the number of partially constrained direc-

tions in parameter space remains small compared with
the total number of degrees of freedom, the approxima-
tion works very well. When the number of partially con-
strained directions is large, Eq. (A5) systematically un-
derestimates the statistical significance of results. In such
cases, however, it is likely that the distributions that are
being considered are highly non-Gaussian so that results
should be interpreted with caution anyway.

Appendix C: Proofs of Section II E

In this appendix we report the proofs of the results
contained in Sec. II E.

We start by discussing the statistics of the ratio be-
tween the maximum likelihoods of two experiments and
their joint maximum likelihood. In data space this can
be written as:

−2∆ lnLmax ≡ −2 lnL12
max+2 lnL1

max+2 lnL2
max . (C1)

Since we assumed that the two data sets are uncorrelated,
the data independent part cancels so that −2∆ lnLmax

defines a quadratic form in data space:

QDML =XT
12(I12 − P12)TΣ−1

12 (I12 − P12)X12

−XT
1 (I1 − P1)TΣ−1

1 (I1 − P1)X1

−XT
2 (I2 − P2)TΣ−1

2 (I2 − P2)X2 , (C2)

where X12 ≡ x12 − m̂12, X1 ≡ x1 − m̂1, X2 ≡ x2 − m̂2

and we assumed that the two data sets are independent
so that Σ12 = diag(Σ1,Σ2).

The projector P12 takes data realizations of the joint
data set (x1, x2) and projects them on the model tangent
space. It can be explicitly written as:

P12 =M12(MT
12Σ−1

12 M12)−1MT
12Σ−1

12

=

(
M1C12M

T
1 Σ−1

1 M1C12M
T
2 Σ−1

2

M2C12M
T
1 Σ−1

1 M2C12M
T
2 Σ−1

2

)
, (C3)

to verify that it is a projector P2
12 = P12 and that it leaves

the tangent space of the model invariant P12M12 = M12.

Notice that the projector of the joint data set cannot
be written as the direct sum of the two single projectors
diag(P1,P2) but it can be shown by direct calculation
that they commute:

P12 diag(P1,P2) = diag(P1,P2)P12 = P12 . (C4)

This implies that the subspace that P12 spans is con-
tained in the subspace that diag(P1,P2) spans, P12 ⊂
diag(P1,P2). Conversely diag(I− P1, I− P2) ⊂ I− P12.

Now, by noticing that m̂12 = (m̂1, m̂2), we can write
Eq. (C2) as:

QDML = XT
12

[
(I12 − P12)TΣ−1

12 (I12 − P12) (C5)

−
(

(I1 − P1)T Σ
−1
1 (I1 − P1) O

O (I2 − P2)T Σ
−1
2 (I2 − P2)

)]
X12 ,

where X12 is distributed according to the evidence of the
joint data set.

In the delta prior case the joint evidence is given
by E12 = Nd1+d2(x12; m̂12,Σ12) while the uninforma-
tive flat prior case is E12 = Nd1+d2(x12; m̂12, [(I −
P12)TΣ−1

12 (I− P12)]−1) and the Gaussian case has E12 =
Nd12(x12;m12Π,Σ12 +M12CΠMT

12).
When we compute the eigenvalues of the product of

the matrix defining the quadratic form in Eq. (C5) and
the covariance of the joint data draws it is sufficient to
notice that in all three cases the projector would null
everything along the model joint tangent space and so
would diag(I−P1, I−P2) since it is contained in I−P12.
We can then apply Theorem (5.1.6) in [67] to show that
Eq. (C5) is distributed as:

χ2(rank(I− P12)− rank(I− P1)− rank(I− P2))

= χ2(d12 −N12 − d1 +N1 − d2 +N2)

= χ2(N1 +N2 −N12) , (C6)

where we used the fact that the rank of a block diagonal
matrix is the sum of the ranks of the diagonal blocks,
having allowed different data sets to have different irrel-
evant parameters and noticing that d12 = d1 + d2.

The same result can be obtained by bringing Eq. (C2)
in parameter space to show that:

QDML = (θ2
ML − θ1

ML)T (C1 + C2)−1(θ2
ML − θ1

ML) , (C7)

and considering θ1
ML and θ2

ML to be drawn independently
from a Gaussian distribution with covariance C1 and C2
respectively.

We now consider the distribution of the evidence ratio.
In case of delta priors the distribution is trivial:

−2∆ ln E ≡ − 2 ln E12 + 2 ln E1 + 2 ln E2
= − 2 lnL12(θΠ) + 2 lnL1(θΠ) + 2 lnL2(θΠ)

= 0 . (C8)

Notice that we assume that the prior is the same for the
analysis of the joint data set and the single data sets. If
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this is not the case and the prior is changed between the
analysis of different data sets the distributions of this
appendix would be more complicated and, in general,
non-central.

In the uninformative flat prior case the distribution of
the data dependent part of the evidence ratio follows that
of the maximum likelihood QDE = QDML.

In the Gaussian case the distribution is more compli-
cated and can be written starting from:

−2∆ ln E =

− 2 lnL12(θ12
p ) + 2 lnL1(θ1

p) + 2 lnL2(θ2
p)

− 2 ln
Π12(θ12

p )

Πmax
12

+ 2 ln
Π1(θ1

p)

Πmax
1

+ 2 ln
Π2(θ2

p)

Πmax
2

+ (N1 +N2 −N12) ln(2π)

+ 2 ln
V 12

Π

V 1
ΠV

2
Π

+ ln
|Cp1||Cp2|
|Cp12|

. (C9)

The data dependent part of Eq. (C9) defines a quadratic
form in data space:

QDE ≡XT
12AX12 (C10)

=XT
12

[
(Σ12 +M12CΠMT

12)−1

−
(

(Σ1 + M1CΠMT
1 )−1 O

O (Σ2 + M2CΠMT
2 )−1

)]
X12 ,

where X12 ≡ x12 − m12(θΠ) and the covariance of the
joint data draws is explicitly given by:

Σ12 +M12CΠMT
12 = (C11)

=

(
Σ1 O
O Σ2

)
+

(
M1CΠMT

1 M1CΠMT
2

M2CΠMT
1 M2CΠMT

2

)
.

By direct computation of the product between the two
matrices,

λ = eigenval
[
A(Σ12 +M12CΠMT

12)
]

= ±
√

eigenval
[
(I− C−1

Π Cp2)(I− C−1
Π Cp1)

]
. (C12)

This means that QDE does not define a positive definite
quadratic form. The expression for the probability den-
sity of indefinite quadratic forms can be found in [67].
Here we notice that the decomposition of QDE can be
written as:

QDE =

2N∑
j=1

λjX
2
j =

N∑
i=1

λiX
2
i +

N∑
j=1

λjY
2
j

=

N∑
i=1

|λi|(X2
i − Y 2

i ) (C13)

where both X and Y are independently distributed nor-
mal variables with zero mean and unit variance and
we exploited the fact that the evidence ratio has two

equal eigenvalues of opposite sign. It is now possible to
show, by matching the moment-generating function, that
the evidence ratio for Gaussian priors is distributed as
a sum of independent variance-gamma distributed vari-
ables. Summing all the eigenvalues shows that the distri-
bution is zero mean and in the limit where Cp1, Cp2 → CΠ
it recovers delta prior results.

We now turn to the statistics of the ratio of likelihoods
at maximum posterior. In both the delta and uninforma-
tive flat prior cases, this follows the statistics of the data
independent part of the evidence ratio. The Gaussian
case instead is given by:

QDMAP ≡ − 2∆ lnLp (C14)

= − 2 lnL12(θp12) + 2 lnL1(θp1) + 2 lnL2(θp2) ,

that defines a quadratic form in data space that can be
easily written with Eq. (B9). This quadratic form is cen-
tral and positive definite and, as before, it can be written
as the difference of two quadratic forms. By direct cal-
culation it can be shown that its eigenvalues are given
by:

λ = eigenval

(
A B

C D

)
, (C15)

where

A = I− C−1
Π Cp1 − C−1

p1 Cp12 + C−1
Π Cp12 ,

B = C−1
p1 Cp12 − C−1

Π Cp12 + C−1
Π Cp1 − C−1

Π Cp1C−1
Π Cp1 ,

C = C−1
p2 Cp12 − C−1

Π Cp12 + C−1
Π Cp2 − C−1

Π Cp2C−1
Π Cp2 ,

D = I− C−1
Π Cp2 − C−1

p2 Cp12 + C−1
Π Cp12 . (C16)

The quadratic form defining QDMAP is positive defi-
nite so that its eigenvalues are all positive and recover
the two limits of uninformative flat priors and delta pri-
ors. Eq. (C15) can be used if one wants to compute
the exact distribution of QDMAP. On the other hand it
is convenient to approximate this distribution by a chi
squared distribution, as discussed in App. A, with∑

λ = N1
eff +N2

eff −N12
eff , (C17)

degrees of freedom since this would generally down-
weight the contribution of partially constrained parame-
ter space directions.

Appendix D: Optimal quadratic forms

Given that there seems to be no general rule to se-
lect the matrix defining the quadratic forms in Eq. (A1),
in this appendix we discuss how to choose a quadratic
form that is “optimal” in some sense. For this pur-
pose it is worth noticing that a quadratic forms de-
fined by Eq. (A1), if rescaled by a positive quantity, α,
would give the same statistical significance of results, i.e.
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P (Q > Qobs) = P (αQ > αQobs). This means that, for
our purpose, the quadratic forms defined by A and αA
are equivalent.

As a consequence, all quadratic forms, in one dimen-
sion give the same statistical significance. This explains
why the rule of thumb difference in mean, discussed in
Sec. II F, when it can be applied and is representative
of the full tension, works so well. In one dimension all
parameter quadratic forms are equivalent and the rule of
thumb is the one for which we can immediately read the
statistical significance.

In multiple dimensions the same does not apply and,
apart from a constant rescaling, different choices of the
matrix A would lead to a different statistical significance.
We follow [70] in looking for a quadratic form that is
optimal according to some criterion. Since the quadratic
form defined by Eq. (A1) is central, i.e. 〈X〉 = 0, all the
cumulants of the quadratic forms pdf are given by:

κm = (m− 1)! Tr[(AΣ)m] . (D1)

Starting from this, one can compute all moments.
The mean is given by µ1 = κ1 = Tr[(AΣ)] and the

variance by µ2 = κ2 + κ2
1 = 2Tr[(AΣ)2]. For all other

moments we refer the reader to [67].
We define the optimal parameter quadratic form to

minimize the variance and all other moments. This can
be achieved if the quadratic form minimizes all cumu-
lants. The trivial solution to our optimization problem
is A = 0 which is not particularly informative and can
be excluded from the solution to our problem. We can
look for other solutions by demanding that the quadratic
form should not have zero mean. Since, for our purposes,
all quadratic forms that are just rescaled by a constant
are equivalent we can assume that they all have the same
mean, without loss of generality. Thus we need to mini-
mize:

f(A) = (m− 1)! Tr[(AΣ)m] + α [Tr[(AΣ)]− κ1] , (D2)

over all positive matrices A and for all cumulants greater
than one. Notice that we implemented the constraint
on the average as a Lagrange multiplier α. Taking the
derivative of f with respect to the Lagrange multiplier
would give back the finite mean constraint. Writing the
trace in terms of the λq eigenvalues of AΣ we have:

f(A) = (m− 1)!

N∑
q=1

λmq + α

[
N∑
q=1

λq − κ1

]
, (D3)

that has to be minimized over all positive, non-zero λq.
Setting ∂f/∂λq = 0 we can easily find that f is minimized
when all λq are the same, so that AoptΣ = I which gives:

Aopt = Σ−1 . (D4)

That is, in multiple dimensions, the quadratic form that
minimizes the variance and all moments is the inverse
covariance one.

To have an intuition of this result let us consider a two
dimensional space and two quadratic forms Qopt and Q2.
The first one is the optimal, inverse covariance weighted,
for which κopt

m = 2(m − 1)!. The second one has a di-
rection rescaled, with respect to the inverse covariance,
by a positive constant λ so that all cumulants are given
by κ2

m = (λm + 1)(m − 1)!. We could now say that we
can make the moments of the second form arbitrarily
small by properly choosing λ but this is not taking into
account invariance under rescaling. We thus rescale the
second quadratic form by the ratio of the two averages,
in this case 2/(λ+ 1) so that all cumulants are given by
κ2
m = 2m(λm + 1)/(λ+ 1)m(m− 1)! and we can see that

the second quadratic form has cumulants that are always
bigger than the first one.

We can now ask what happens to the statistical signif-
icance of the reported results, in our simplified example.
Let’s suppose that we have two uncorrelated parameters
and that the observed difference between them is given by
∆θ = n(σ2

1 , σ
2
2)T so that Qopt = 2n2 and Q2 = n2(λ+1).

The eigenvalues of AΣ in the first case are just (1, 1),
Qopt is chi-squared distributed with two degrees of free-
dom. The eigenvalues of AΣ in the second case are given
by (λ, 1) so that Q2 is the sum of a Gamma distributed
and a chi-squared distributed variable. Both distribu-
tions can be easily numerically integrated to show that
statistical significance is the same for λ → 1/λ and that
Q2, for all values of positive λ, will underestimate both
confirmation biases and tensions. This is why we picked
as a criterion for defining an optimal quadratic form the
minimization of the moments higher than the mean, as
this is related to a lower probability of extreme events
and would thus make our concordance/discordance es-
timator more sensitive to the presence of tensions that
might be hidden by other estimators.

Appendix E: Gaussian approximation of MCMC
posterior

In this section we describe how we approximate the
posterior obtained from MCMC sampling with a mul-
tivariate Gaussian. This approximation is useful when
computing some of the statistical results of this paper
and can be obtained by properly accounting for all the
factors that are usually neglected when performing the
sampling. While we adopt CosmoMC [59] conventions,
similar results would apply for other samplers.

The un-normalized posterior that CosmoMC produces
can be approximated by:

lnP = lnL(θ̃)− lnVΠ −
1

2
(θ − θ̃)TC−1

θ̃
(θ − θ̃)

+ ln
Π(θ̃)

Πmax
, (E1)

where θ̃ is the parameter around which the expansion is
performed, Cθ̃ = 〈(θ − θ̃)(θ − θ̃)〉θ the covariance of the
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parameters samples around that point and L(θ̃) the like-
lihood at that point. We also included a prior term that
takes into account that some parameters, i.e. some nui-
sance parameters, might have Gaussian priors. There are
mainly three points that we can use to define our Gaus-
sian approximation: the parameters’ mean; the maxi-
mum posterior parameters; and the parameters from the
maximum posterior in the MCMC samples.

It is possible to define the best Gaussian approximation
by computing the KL divergence [44] between the Gaus-
sian approximation and the full posterior for the three
expansion points and select the approximation that has
the smallest difference in information content with re-
spect to the full posterior.

Having Ns samples θi of the parameter posterior the
KL divergence, DKL, between the (normalized) full pos-
terior, Pfull, and one of the Gaussian approximations, PG,
can be written as:

DKL(Pfull||PG) ≡
∫
Pfull(θ) ln

[
Pfull(θ)

PG(θ)

]
dθ

' 1

Ns

Ns∑
i=1

ln

[Pfull(θi)

PG(θi)

]
+ C (E2)

where the samples θi are drawn from Pfull and PG is easily
computed with Eq. (E1). The normalization constant C
is the ratio between the evidence of the full posterior
and the evidence of the Gaussian approximation C =
ln(EG/Efull). Notice that, for the purpose of comparing
performances of different Gaussian approximations, there
is no need for an accurate estimate of the full posterior
evidence. Eq. (E2) is trivially generalized to weighted
samples.

Given the Gaussian approximation of the MCMC pos-
terior we can compute the evidence as:

ln E = lnL(θ̃)− lnVΠ +
N

2
ln(2π) +

1

2
ln |Cθ̃|

+ ln
Π(θ̃)

Πmax
, (E3)

which is usually called the Laplace or saddle-point ap-
proximation and we accounted for Gaussian priors on
some parameters.

In general one cannot test whether a distribution is
truly Gaussian but we can perform several null tests to
warn us against non-Gaussianities in parameter space. In
particular we checked:

• that the marginalized 1D posterior was visually well
approximated by the marginalized 1D Gaussian ap-
proximation, for all constrained parameters;

• that the best fit obtained by explicitly minimizing
the data residuals, the best fit from MCMC sam-
ples and the mean were not showing relevant shifts
in units of their covariance, for all the constrained
parameters;

Whenever one of the Gaussian approximations fails to
comply with these requirements we flag the results and
express caution in interpreting them.

Appendix F: Parameters priors

Parameter Prior range

Ωbh
2 [ 0.005 , 0.1 ]

Ωch
2 [ 0.001 , 0.99 ]

100θMC [ 0.5 , 10 ]

τ [ 0.01 , 0.8 ]

ns [ 0.8 , 1.2 ]

ln(1010As) [ 2 , 4 ]

TABLE III. Nominal flat priors on the six cosmological pa-
rameters of the ΛCDM model used for all analyses in this
work.

The estimate of most of the results in the main text
depends on the prior, especially in quantifying how many
directions a data set constrains compared to it. In this
appendix we discuss how we approximate the prior dis-
tribution.

In many cases these are informative flat priors and we
approximate them with Gaussian priors of the same co-
variance to compute the statistics discussed in the main
text while taking into account that explicit evaluations
of the prior would give Π(θ) = 1/VΠ. In order to make
these approximations we sample the parameter space for
the various flat priors listed in Table III to obtain the
covariance and volume. To make our approach more effi-
cient and transparent we do not sample Gaussian priors
but rather account for their variance analytically as de-
scribed below.

While approximate, this approach works very well in
practice. It is faster and computationally less expen-
sive than re-sampling the parameter posterior and is less
noisy with respect to the results obtained by importance
sampling the MCMC samples with a Gaussian prior. Its
robustness stems from the fact that the most important
information that we need to extract from the prior is
whether a parameter is constrained or not. Other situa-
tions that fall in between are not usually relevant to the
end results.

In addition to the parameters in Table III, the likeli-
hood of most experiments will add nuisance parameters
describing systematic effects. We include them by an-
alytically augmenting the prior covariance matrix and
volume. In case of flat priors on nuisance parameters
we fill the corresponding entrance in the prior covariance
with C = (θmax − θmin)2/12 which corresponds to the
variance of the flat distribution between θmax and θmin.
Some nuisance parameters, noticeably some foreground
parameters in CMB observations, have tight uncorrelated
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FIG. 6. The two dimensional marginalized prior distribution
of physical matter density Ωmh

2 and the Hubble constant H0.
The shaded area shows parameter choices that satisfy the
constraints 0 ≤ Ωm ≤ 1 and 20 ≤ H0 [km s−1Mpc−1] ≤ 100.
This projection highlights that priors on derived quantities
leave the prior distribution flat but introduce a non-trivial
shape to the boundaries of the prior volume.

Gaussian priors. In this case the corresponding prior co-
variance entrance can be easily read from the parameter
prior variance.

The prior on the base ΛCDM parameters deserves
a closer look. We choose a parameter basis that has
100θMC instead of the Hubble constant but we also im-
pose physical constraints on matter density Ωm to be
positive definite and smaller than unity. Furthermore we
impose a prior cut on the Hubble constant to be between
20 km s−1Mpc−1 and 100 km s−1Mpc−1.

These two joint boundary constraints on derived quan-
tities make the prior volume non-trivial in shape and the
prior covariance matrix non-diagonal in the base param-
eters. In Fig. 6 we show the 2D marginalized distribution
of the prior to show that the two constraints on derived
parameters are still locally flat in the interior, but the
shape of the boundary induces a covariance between the
parameters.

When we marginalize these flat but shaped priors to
obtain the marginal distributions in 1D on the three
ΛCDM background parameters, we obtain Fig. 7. As we
can see the prior distribution for Ωbh

2 and Ωch
2 looks to

have curvature on the same scale of the prior range while
the prior on 100θMC is more constraining. This shape of
the 1D prior will not influence the posterior distribution
for constraining data sets as the prior is locally flat but
does change the parameter ranges and combinations out
to which the prior influences weaker data constraints. In
particular the range of 100θMC is modified, with respect
to its face value in Table III, and not taking that into
account would lead to wrong degree of freedom counting,
for data sets that do not constrain it.

Moreover, we show in Fig. 8, the prior correlation be-
tween different parameters to highlight that the prior on
the background ones are also correlated because of the
non-trivial shape induced by priors on derived quantities.
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it

ra
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FIG. 7. The one dimensional marginalized prior distribu-
tion on the background ΛCDM parameters. Notice that the
actual range of 100θMC is much smaller than the nominal one
reported in Tab. III.

Ωbh
2 Ωch

2 100θMC τ ln(1010As) ns

Ωbh
2

Ωch
2

100θMC

τ

ln(1010As)

ns

100.0% -2.3% -37.3% 0.2% -1.0% 0.1%

-2.3% 100.0% 77.2% -0.2% -0.1% 0.7%

-37.3% 77.2% 100.0% -1.2% -1.2% -0.5%

0.2% -0.2% -1.2% 100.0% 1.9% 1.0%

-1.0% -0.1% -1.2% 1.9% 100.0% -0.8%

0.1% 0.7% -0.5% 1.0% -0.8% 100.0%

Prior correlation

FIG. 8. The correlation between the base ΛCDM parameter
priors, as obtained form the prior MCMC samples. Notice
the correlation between background parameters induced by
the boundaries of the prior volume.

This correlation too is important when judging parame-
ters shifts and counting degrees of freedom.

The remaining three parameters {τ, ns, lnAs} have flat
distributions and no covariance between themselves or
the other parameters. Their covariance is also well ap-
proximated by the covariance of the uniform distribution
as C = (θmax − θmin)2/12. Small correlation values in
Fig. 8 are due to the MCMC sampling.

In summary, throughout this work we use a Gaussian
approximation to the prior for the six base parameters
by using the covariance extracted from the prior MCMC
samples.
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Appendix G: Tables of results

In this appendix we report the full results of the ap-
plication of the CDEs in Sec. II to cosmological data,
in table format. Specifically we report: exact 1D pa-
rameter shifts, T1, and the “rule of thumb difference in
mean”, as the Gaussian approximation of T1, described
in Sec. II F and IV D, in Table IV; the likelihood at
maximum posterior goodness of fit QMAP, described in
Sec. II D and IV B, in Table V; the difference of log-
likelihoods at maximum posterior QDMAP, described in
Sec. II E and IV C, in Table VI; the parameter update
QUDM, described in Sec. II F and IV D, in Table VII.

In this appendix we also report probabilities (P ) in
terms of equivalent number of standard deviations (nσ).

This should be interpreted as an effective definition cor-
responding to a Gaussian distribution:

neff
σ (P ) ≡

√
2 erf−1(1−min[P, 1− P ]) , (G1)

where erf−1 is the inverse error function. Notice that by
defining the correspondence with min[P, 1−P ] instead of
2 min[P, 1−P ] as in Eq. (39) we are equating the tension
and confirmation tails of the non-Gaussian CDE distri-
bution separately to the sum of probabilities in the two
tails of the Gaussian. As an example, a tension event
with probability to exceed of P = 4.55% would corre-
spond to a “2σ” significance. neff

σ should not be confused
with the number of standard deviations from the mean
(Qobs − 〈Q〉)/

√
Var(Q).

Data set D1 vs. D2 parameter D1 result D2 result
P (T1 > T obs

1 )

“rule of thumb” exact 1D shift

LRG vs WiggleZ Ωm 0.212± 0.043 0.37± 0.11 16.0 % (1.4 σ) 15.0 % (1.4 σ)

SN vs BAO Ωm 0.297± 0.034 0.358± 0.042 26.0 % (1.1 σ) 28.0 % (1.1 σ)

CFHTLenS vs KiDS σ8Ω0.5
m 0.369± 0.071 0.281± 0.087 43.0 % (0.8 σ) 43.0 % (0.8 σ)

H vs HSL H0 73.0± 1.7 72.3± 2.6 82.0 % (1.3 σ) 85.0 % (1.4 σ)

CMB vs H0 H0 67.25± 0.73 73.0± 1.5 0.073 % (3.4 σ) 0.078 % (3.4 σ)

CMB vs BG Ωm 0.316± 0.01 0.32± 0.026 87.0 % (1.5 σ) 87.0 % (1.5 σ)

CMB vs LRG Ωm 0.316± 0.01 0.212± 0.043 2.0 % (2.3 σ) 4.5 % (2.0 σ)

CMB vs GC Ωm 0.316± 0.01 0.31± 0.075 94.1 % (1.9 σ) 77.0 % (1.2 σ)

CMB vs CFHTLenS σ8Ω0.5
m 0.4595± 0.0071 0.369± 0.071 20.0 % (1.3 σ) 20.0 % (1.3 σ)

CMB vs KiDS σ8Ω0.5
m 0.4595± 0.0071 0.281± 0.087 4.0 % (2.1 σ) 2.1 % (2.3 σ)

CMB vs WL σ8Ω0.5
m 0.4595± 0.0071 0.354± 0.058 7.1 % (1.8 σ) 6.7 % (1.8 σ)

BG vs GC σ8Ω0.5
m 0.448± 0.03 0.35± 0.1 36.0 % (0.9 σ) 32.0 % (1.0 σ)

BG vs GC Ωm 0.32± 0.026 0.31± 0.075 90.0 % (1.6 σ) 76.0 % (1.2 σ)

BG vs WL σ8Ω0.5
m 0.448± 0.03 0.354± 0.058 15.0 % (1.4 σ) 16.0 % (1.4 σ)

BG vs WL Ωm 0.32± 0.026 0.3± 0.13 86.0 % (1.5 σ) 70.0 % (1.0 σ)

GC vs WL σ8Ω0.5
m 0.35± 0.1 0.354± 0.058 96.9 % (2.2 σ) 92.3 % (1.8 σ)

GC vs WL Ωm 0.31± 0.075 0.3± 0.13 93.1 % (1.8 σ) 83.0 % (1.4 σ)

CMBTT vs lowl τ 0.137± 0.035 0.067± 0.021 8.6 % (1.7 σ) 9.9 % (1.6 σ)

CMBEE vs lowl τ 0.191± 0.063 0.067± 0.021 6.1 % (1.9 σ) 8.8 % (1.7 σ)

CMBTE vs lowl τ 0.094± 0.057 0.067± 0.021 65.0 % (0.9 σ) 74.0 % (1.1 σ)

CMBTTTEEE vs lowl τ 0.115± 0.026 0.067± 0.021 14.0 % (1.5 σ) 15.0 % (1.4 σ)

TABLE IV. The “rule of thumb difference in mean” and 1D exact parameter shift estimators applied to different data sets and data
sets combinations. The second column indicates the parameter that is being used in the test while the third and fourth columns report
its value and error for the two data sets considered. The last two column indicates the probability to exceed (P.T.E.) the tests and neff

σ ,
as computed from the results of Sec. II F. All results that are higher than 95% and lower than 5% P.T.E. are highlighted as statistically
significant confirmation bias and tension respectively. This table contains mostly known results that we use as a benchmark for other
concordance and discordance estimators.
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Data set −2 lnLMAP Neff N Ndata
P (QMAP > Qobs

MAP)

σ min(DoF) best(DoF) max(DoF)

CMBTT 757.6 14.3 21 765 57.0 % (0.8σ) 42.0 % (0.8σ) 36.0 % (0.9σ)

CMBEE 739.8 8.1 13 762 71.0 % (1.1σ) 64.0 % (0.9σ) 59.0 % (0.8σ)

CMBTE 924.6 7.9 15 762 0.0045 % (4.1σ) 0.0019 % (4.3σ) 0.00089 % (4.4σ)

CMBL 5.3 2.5 7 8 73.0 % (1.1σ) 44.0 % (0.8σ) 2.1 % (2.3σ)

CMBTTTEEE 2417.1 19.0 33 2289 3.1 % (2.2σ) 1.6 % (2.4σ) 0.93 % (2.6σ)

SN 695.1 3.0 8 740 88.0 % (1.6σ) 86.0 % (1.5σ) 83.0 % (1.4σ)

BAO 5.4 3.1 6 11 90.9 % (1.7σ) 70.0 % (1.0σ) 37.0 % (0.9σ)

LRG 4.1 2.5 6 14 99.49 % (2.8σ) 97.5 % (2.2σ) 85.0 % (1.4σ)

WiggleZ 189.5 1.9 6 196 62.0 % (0.9σ) 58.0 % (0.8σ) 50.0 % (0.7σ)

CFHTLenS 86.8 1.8 7 56 0.52 % (2.8σ) 0.32 % (2.9σ) 0.07 % (3.4σ)

KiDS 58.4 1.8 7 30 0.14 % (3.2σ) 0.07 % (3.4σ) 0.0064 % (4.0σ)

CMB 2432.2 18.9 33 2297 2.5 % (2.2σ) 1.2 % (2.5σ) 0.71 % (2.7σ)

BG 702.2 5.0 8 751 90.0 % (1.6σ) 87.0 % (1.5σ) 86.0 % (1.5σ)

GC 204.7 2.5 6 210 59.0 % (0.8σ) 54.0 % (0.7σ) 47.0 % (0.7σ)

WL 146.5 2.7 8 86 0.0052 % (4.0σ) 0.0024 % (4.2σ) 0.00044 % (4.6σ)

ALL 3516.2 22.8 37 3345 1.9 % (2.3σ) 0.96 % (2.6σ) 0.59 % (2.8σ)

TABLE V. The likelihood at maximum posterior (MAP) goodness of fit estimator applied to different data sets and combinations. The
second column reports the data likelihood at maximum posterior; the third the number of effective parameters Neff , as estimated using
Eq. (29); the fourth the number of nominal parameters N , the fifth the number of data points Ndata = d and the seventh the P.T.E. for
Qobs

MAP assuming our best estimate of the degrees of freedom (DoF) Ndata − Neff . Values higher than 95% or lower than 5% P.T.E. are
highlighted as statistically significant confirmation bias and tension respectively. The remaining columns list the P.T.E.s assuming the
minimal DoF Ndata −N and the maximal DoF Ndata which place conservative bounds on tension and confirmation respectively.

Data set Neff
1 Neff

2 Neff
12 ∆Neff log10 C 〈log10 C〉12 P (QDMAP > Qobs

DMAP)

LRG vs WiggleZ 2.5 1.9 2.5 1.8 1.0 3.0 0.31 % (3.0σ)

SN vs BAO 3.0 3.1 5.0 1.1 2.4 2.6 20.0 % (1.3σ)

CFHTLenS vs KiDS 1.8 1.8 2.7 0.9 2.4 2.4 25.0 % (1.2σ)

CMBTT vs CMBEE 14.3 8.1 16.9 5.6 10.2 10.6 25.0 % (1.2σ)

CMBTT vs CMBL 14.3 2.5 14.3 2.5 3.3 4.8 1.8 % (2.4σ)

CMBEE vs CMBL 8.1 2.5 8.4 2.3 2.6 4.1 1.4 % (2.5σ)

CMBTE vs CMBL 7.9 2.5 8.0 2.4 3.9 4.2 18.0 % (1.3σ)

CMBTTTEEE vs CMBL 19.0 2.5 18.9 2.6 3.2 4.8 1.3 % (2.5σ)

CMB vs BG 18.9 5.0 21.0 3.0 4.2 3.8 75.0 % (1.2σ)

CMB vs GC 18.9 2.5 18.9 2.6 2.2 3.5 2.3 % (2.3σ)

CMB vs WL 18.9 2.7 20.8 0.8 0.3 2.3 0.1 % (3.3σ)

CMB vs H0 18.9 1.4 19.0 1.3 -0.6 2.5 0.088 % (3.3σ)

BG vs GC 5.0 2.5 5.5 2.1 1.8 3.1 2.3 % (2.3σ)

BG vs WL 5.0 2.7 6.9 0.9 2.0 2.3 12.0 % (1.6σ)

GC vs WL 2.5 2.7 4.3 0.9 1.6 2.9 0.74 % (2.7σ)

GC vs H0 2.5 1.4 3.2 0.7 1.3 1.6 9.7 % (1.7σ)

WL vs H0 2.7 1.4 3.6 0.4 1.9 1.9 22.0 % (1.2σ)

TABLE VI. Evidence ratio type estimators applied to different data sets combinations. The first three columns report the number of
effective parameters of the first, second and joint data sets. The fourth column reports the number of effective parameters that both data
sets constrain. The fifth column reports the observed value of the evidence ratio and the sixth one its expected value when averaged over
data realizations of D1∪D2. The last column reports the significance of the observed value of the ratio of likelihoods at maximum posterior
(DMAP), as estimated using the results of Sec. II E. All results that are higher than 95% and lower than 5% P.T.E. are highlighted as
statistically significant confirmation bias and tension respectively.
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Data set QUDM NKL P (QUDM > Qobs
UDM)

LRG vs WiggleZ 5.5 1 1.9 % (2.3σ)

BAO vs SN 1.0 1 33.0 % (1.0σ)

CFHTLenS vs KiDS 0.1 1 75.0 % (1.2σ)

H vs HSL 0.3 1 62.0 % (0.9σ)

CMBTT vs CMBL 7.0 1 0.82 % (2.6σ)

CMBEE vs CMBL 6.6 1 1.0 % (2.6σ)

CMBTE vs CMBL 0.3 1 59.0 % (0.8σ)

CMBTTTEEE vs CMBL 7.3 1 0.68 % (2.7σ)

lowl vs CMBTT 3.9 1 4.9 % (2.0σ)

lowl vs CMBEE 8.5 2 1.4 % (2.4σ)

lowl vs CMBTE 3.2 2 20.0 % (1.3σ)

lowl vs CMBTTTEEE 3.1 1 7.6 % (1.8σ)

lowl + CMBTT vs CMBL 1.5 1 22.0 % (1.2σ)

lowl + CMBEE vs CMBL 1.1 2 59.0 % (0.8σ)

lowl + CMBTE vs CMBL 0.1 1 77.0 % (1.2σ)

lowl + CMBTTTEEE vs CMBL 2.0 1 16.0 % (1.4σ)

lowl vs CMBTT + CMBL 0.0 1 88.0 % (1.6σ)

lowl vs CMBEE + CMBL 2.5 2 29.0 % (1.1σ)

lowl vs CMBTE + CMBL 3.1 2 22.0 % (1.2σ)

CMB vs BG 0.4 1 52.0 % (0.7σ)

CMB vs GC 0.0 0 −
CMB vs WL 5.8 1 1.6 % (2.4σ)

CMB vs H0 11.1 1 0.087 % (3.3σ)

lowl + CMB vs BG 0.4 1 55.0 % (0.8σ)

lowl + CMB vs GC 0.0 0 −
lowl + CMB vs WL 5.9 1 1.5 % (2.4σ)

lowl + CMB vs H0 10.7 1 0.11 % (3.3σ)

BG vs GC 0.0 0 −
BG vs WL 0.7 1 42.0 % (0.8σ)

BG vs H0 0.4 1 55.0 % (0.8σ)

GC vs WL 0.0 0 −
GC vs H0 0.6 2 72.0 % (1.1σ)

WL vs H0 0.2 2 90.7 % (1.7σ)

TABLE VII. The update difference in mean estimator, QUDM, applied to different data sets combinations. The first column reports the
observed value, as computed from Eq. (50). The second column is the number of effective KL parameters retained NKL = 〈QUDM〉D for
which the second data set significantly improves constraints over the first one. The third column reports the significance of the observed
value of the update difference in mean, as estimated using the results of Sec. II F. All results that are higher than 95% and lower than 5%
P.T.E. are highlighted as statistically significant confirmation bias and tension respectively. When NKL = 0, QUDM = 0 and we do not
report statistical significance.
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