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The generalized vortical formalism provides an electrodynamic description for superconducting
states—in the generalized vortical formalism, a superconducting state may be defined by the van-
ishing of an appropriate generalized vorticity and characterized by zero generalized helicity

for incompressible fluids. In this article, we investigate these states for compressible plasmas in
black hole spacetime geometries using the curved spacetime generalization of the grand generalized
vortical formalism. If the magnetic field is axisymmetric and the thermodynamic properties are
symmetric about the equatorial plane, the resulting states are characterized by a vanishing skin
depth and a complete expulsion of the magnetic field at the equator of the black hole horizon.
Moreover, if the thermodynamic properties of the plasma are uniform at the horizon, we find that
the magnetic field is completely expelled from the horizon, and the plasma behaves as a perfect
superconductor near the horizon. This result is independent of the spin of a black hole, holding
even for a (nonrotating) Schwarzschild black hole, and demonstrates that the geometry near black
hole horizons can have a significant effect on the electrodynamics of surrounding plasmas.

I. INTRODUCTION

In addition to infinite conductivity, the defining feature
of a conventional superconductor (CS) is the expulsion of
magnetic flux from its interior—the Meissner effect. The
phenomenological London equation

∇2 ~B =
~B

λ2
s

, (1)

expresses the fact that the magnetic field decays (from
its external value) in a skin depth, λs = c/ωp (ωp =
√

4πnq2/m is the plasma frequency), a length scale char-
acteristic of the charge carriers in the superconducting
‘fluid’. For a canonical SC, this superfluid consists of
Cooper pairs formed through quantum interactions.
What is rather interesting is that this unique prop-

erty associated with conventional superconductivity is
electro-dynamically equivalent to the complete elimina-
tion of a ‘generalized vorticity’ (GV) in the representative
(incompressible) fluid [1], that is

∇× ~V +
q ~B

M
= 0, (2)

where the first term denotes the standard fluid vorticity

(rotation of the fluid velocity ~V ) while the second term,
proportional to the cyclotron frequency, could be viewed
as the ‘vorticity’ of the electromagnetic field. One may
write the above equation in the equivalent form,

~Ω = ~B +
M

q
∇× ~V = 0, (3)

and ~Ω will be the generic symbol for GV. For the CS for
which the dynamic fluid is a collection of Cooper pairs,
M = 2m and q = −2e. When coupled with Ampere’s

law ∇× ~B = 4πn(−2e)~V , Eq. (3) reproduces the correct
skin depth.

It was noticed in [1] that the electrodynamics (leading
to the London equation) is blind to the microscopic ori-
gin of Eq. (3)—it could be quantum or non-quantum. In
this sense, the CS is a special case of the superconduct-
ing state where quantum correlations led to the specific
~ΩCS = 0. More directly stated, the behavior of
the magnetic field in a CS is entirely equivalent
to the vanishing of the canonical vorticity every-
where, including the skin depth region where the
magnetic field is zero. Thus, independent of the
origin of superconductivity, the electrodynamic
signature of a CS is the vanishing of the canon-
ical vorticity of the appropriate superconducting
fluid. One could attempt a broad generalization by ele-
vating a condition of the type epitomized in Eq. (3)—the

vanishing of an appropriate generalized vorticity—to con-
stitute the very definition of a superconducting state.

In curved spacetime, the expulsion of magnetic fields
is not unique to superconducting media. Under a cer-
tain set of assumptions, a spinning black hole will expel
magnetic fields near the horizon in the extremal limit.
A rather general argument by Penna [2] shows that a
black hole will expel axisymmetric magnetic fields as its
spin approaches the extremal limit (provided that split-
monopole type solutions are excluded), and it has been
shown explicitly in the context of Wald’s solution [3] for
magnetic (vacuum test) fields that the magnetic field
does indeed vanish at the horizon of a spinning black hole
in the extremal limit [4–7]. It was later shown that the
expulsion of magnetic fields from the horizon still occurs
for magnetic fields generated by plasmas surround-
ing the black hole [8–11]. The expulsion of magnetic
fields from horizons in the extremal limit suggests that
the extreme conditions near black hole horizons can have
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some profound effects on the electrodynamical properties
of plasmas surrounding black holes.

This superconducting-like phenomena near extremal
horizons motivates further investigation of the effect
of horizon geometry on the electrodynamical proper-
ties of magnetized plasmas. In particular, we ex-
ploit the electrodynamical similarity between a
canonical superconductor and a vorticity-free hot
relativistic fluid (which we call a superconduct-
ing plasma) to further explore the properties of
plasmas surrounding black holes (we do not as-
sume extremal or near extremal spin) that ex-
hibit superconducting-like behavior. This requires
extending the definition of classical generalized vortic-
ity to relativistic plasmas. The relativistic formalism,
termed ‘magnetofluid unification’ (henceforth the mag-
netofluid formalism) and first proposed in ([12]) and later
extended in [13, 14], replaces the regular fluid vorticity

(~∇× ~V ) with a composite thermo-kinetic fluid vorticity

(~∇× GΓ~V ) where G is the thermodynamic factor and Γ
is the Lorentz factor.

Recently, the magnetofluid formalism, which seemed
to valorize the magnetic part of the electromagnetic part,
was renamed Electro-Vortic (EV) formalism [15], to ex-
plicitly emphasize its covariant character. It was also
shown that for a restricted form of the velocity field (the
Clebsch form, Uµ = (∇µQ)/T ), a generalized helicity is
absolutely conserved irrespective of the thermodynam-
ics governing a perfect relativistic fluid. The appropriate
vorticity (the magnetic part of the EV field), termed the
grand generalized vorticity, takes the form

~ΩG = ~B +m/q~∇× G′T ~U (4)

where

G′ =

(G
T

− σ

m

)

. (5)

and depends on the entropy density σ, and flow velocity is

represented as ~U = Γ~V . In this letter, we investigate the
characteristics of plasma electrodynamics due to the com-
plete expulsion of the grand generalized vorticity ΩG = 0
(instead of the generalized vorticity Ω = 0) near a black
hole—such equilibrium states, will perhaps, constitute a
more complete description of a superconducting plasma
(as defined by its macroscopic electrodynamical
properties) surrounding a black hole.

We begin with a brief overview of the standard mag-
netofluid formalism for plasma dynamics in curved space-
time. Next, we discuss the grand generalized vortical
formalism in curved spacetime and we obtain the mag-
netic field profile for the stationary ΩG = 0 solution in
a stationary, axially symmetric spacetime. Finally, we
perform a skin depth analysis for the superconducting
ΩG = 0 states, and discuss the features of these plasma
states in the vicinity of the horizon of black holes.

II. PLASMA DYNAMICS IN CURVED

SPACETIME- GRAND GENERALIZED

VORTICITY

Here, we describe the essential elements of the EV for-
malism in curved spacetime [[12], [14, 16], [15]]. A multi-
species plasma in curved spacetime is governed by the
following equation of motion

mnUν∇ν (GUµ) = qnFµβUβ −∇νp, (6)

where the quantities m and q are the respective mass
and charge of the constituent particles of the fluid, while
n and p respectively denote the number density and the
pressure. The fluid four-velocity for each species may be
written as Uµ = dxµ/dτ , where τ is the proper time for
a fluid element. The thermodynamic factor G is given by
the expression (ρ + p) = h = mnG with h and ρ being
the respective enthalpy and mass density of the fluid.
The defining step in the initial EV formalism is the

“construction” of a new temperature-transformed flow
field tensor [12, 17] Sµν := ∇µ (GUν) − ∇ν (GUµ), in
terms of which, Eq. (6) can be rewritten as

qUµMµν = T∇νσ, (7)

where Mµν = Fµν + (m/q)Sµν is the magnetofluid
tensor, and the entropy density σ for the fluid obeys
T∇νσ = (mn∇νG −∇νp) /n. One readily notices that a
relativistic perfect fluid is isentropic,

Uν∇νσ = 0, (8)

the entropy density σ being constant along a flow line.
Equation (7) for plasma dynamics can be recast in a

source free form by defining the following EV potential
P
µ:

P
µ = Aµ +

m

q
G Uµ − σ∇µQ, (9)

where Aµ and Q are four potential and a scalar, respec-
tively. Then, the covariant equation of motion Eq.(7)
may be written:

qUµM
µν = 0, (10)

where

M
µν = ∇µ

P
ν −∇ν

P
µ. (11)

The scalar Q must satisfy the following:

Uν∇νQ = T/q (12)

so that one may recover Eq.(7) from Eq.(10). In
general, flow fields Uµ satisfying Eq. (12) can be written
in the form

TUµ = ∇µQ+ bµ, (13)

where the vector bµ is orthogonal to Uµ. To simplify the
analysis, we assume bµ = 0, so that TUµ = ∇µQ. [21]
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We briefly describe the application of the 3 + 1
(ADM) decomposition of spacetime to the EV
formalism, which is more thoroughly discussed in
[14, 16]. In the 3+1 (ADM) formalism, spacetime
is foliated by a family of 3-dimensional spacelike
hypersurfaces such that each hypersurface Σt is
defined by a constant value for the time coordi-
nate t. The line element in the ADM formalism
takes the form

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) (14)

where α is the lapse function, βi is the shift vector,
and γij is the spatial metric (the induced metric)
for the hypersurface Σt; collectively, α, β

i and γij
form the ADM variables. Equation (10) is split
into space and time components; the spatial com-
ponents, which form the 3D equation of motion,
are obtained by applying the projection operator
γµ

ν = δµ ν +nµnν (where nµ = −αgµν∇νt is the unit
normal vector to Σt):

αΓ~EG + α~U × ~ΩG = 0. (15)

Here, the grand generalized electric and vorticity are
given by the respective equations:

~EG = ~E − m

αq
~∇(αTG′Γ)− m

q

[

2σ · (G′T ~U) +
2

3
KG′T ~U

]

− m

qα

(

∂t(G′T ~U)− L~β(G′T ~U)
)

; (16)

~ΩG = ~∇× ~PG = ~∇×
(

q ~A+mG′T ~U
)

, (17)

where Γ = 1/
√
1− V 2 is the Lorentz factor and ~A

is the vector potential. Here, ~β is the shift vec-

tor, L~β is the Lie derivative with respect to ~β, σ

is a trace-free rank-2 tensor (with components σi
j

formed from ∂tγij and βi) called the shear tensor,
and K is the mean curvature for Σt. The dynam-
ics of a hot, relativistic, magnetized plasma as
expressed by Eq. (15) has a strikingly similarity
with ideal MHD model i.e. it has the structure
of an ideal Ohm’s law.

III. THE ΩG = 0 SOLUTION

Eq. (15) is trivially satisfied if the grand general-

ized electric field ~EG and grand generalized vorticity ~ΩG

(GGV) are, separately, zero

~EG = ∇(αTΓG′)− α

[

2σ · (G′T ~U) +
2

3
KG′T ~U

]

+ L~β(G
′T ~U) = 0 (18)

~ΩG = q ~B +mT ~∇G′ × ~U = 0, (19)

where magnetic field is ~B = ~∇ × ~A and we have made

use of the vector identity ~∇ × ~∇Q = 0. The first equa-
tion is a general relativistic Bernoulli’s condition, and is
not essential to understanding the ΩG = 0 state un-
der investigation. The second equation describes the
total expulsion of GGV and is, clearly, a generalization
of London equation (expulsion of the standard canonical
vorticity). A state with zero GGV must, necessarily, have
a zero grand generalized helicity (GGH). It should be

emphasized here that ~ΩG = 0 (along with the Bernoulli
condition) is an exact solution to the time-independent
GGV evolution equation[16].
Since we are solving steady-state charge neutral fluid-

Maxwell system, Eq. (19) should be coupled with the
steady state Ampere’s law

~∇× (α~B) = 4πnqα~U, (20)

when normalized in terms of the cyclotron frequency,
Bc = q/mB, becomes

~∇× (α~Bc) =
n̂

λ2
α~U, (21)

where n = n̂n0 , n̂ is the density envelope, and the skin
depth λ =

√

4πn0q2/m, associated with some average
density, is an intrinsic length scale of the dynamics. Us-
ing Eq. (21), we rewrite Eq. (19) as

~B +
λ2T

n̂

[

∇G′ × (∇× ~B)
]

= 0, (22)

where we have defined ~B = α~Bc. Notice that despite
its somewhat complicated form, Eq. (22) is linear and
a generalization of the London equation in a hot
relativistic fluid signifying the complete expulsion
of the grand canonical vorticity.
We now seek a simple axisymmetric solution of

Eq.(22). The general line element for a stationary and
axisymmetric spacetime is [18, 19]:

ds2 = −α̃2dt2+2 βθ dt dφ+h2

1
dr2+h2

2
dθ2+h2

3
dφ2, (23)

where the quantities α̃2, βθ, h1, h2, and h3 are all as-
sumed to be functions of r and θ only. The quantity
α̃ =

√

|gtt| is not the ADM lapse function, but is related
to the ADM lapse function α through the expression:
gtt = −α̃2 = −α2 + γijβ

iβj . Here, γij is the induced
metric and βi is the shift vector and the shift vector cor-
responds to the θ component of βi = γijβ

j .
Assuming thermodynamic quantities (in particular G′)

depend on r and θ direction, Equation (22) can be writ-
ten as

Br −
ζG′

,θ

αh1h2

2

(

∂(αh1Br)

∂θ
− ∂(αh2Bθ)

∂r

)

= 0 (24)

Bθ +
ζG′

,r

αh2h2
1

(

∂(αh1Br)

∂θ
− ∂(αh2Bθ)

∂r

)

= 0 (25)
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Bφ − ζ

αh3

(G′

,θ

h2

2

∂(αh3Bφ)

∂θ
+

G′

,r

h2

1

∂(αh3Bφ)

∂r

)

= 0 (26)

where Br, Bθ, and Bφ are the orthonormal basis

components of ~Bc, and we have defined ζ = λ2T/n̂,
G′

,θ = ∂G′/∂θ and G′

,r = ∂G′/∂r.
If one assumes that the thermodynamic prop-

erties of the fluid are symmetric about the equa-
torial plane, then G′ has a maxima or minima in
θ at the value θ = π/2. One may conclude that
at the equatorial plane θ = π/2, G′

,θ = 0. Immedi-

ately, we see that inserting the condition G′

,θ = 0

into Eq. (24) implies that the radial component
Br of the magnetic field vanishes; the radial com-
ponent of the magnetic field Br therefore vanishes
at the equatorial plane θ = π/2. The solutions in
the equatorial plane θ = π/2 for the remaining
components of the magnetic field are then

Bθ = Bθ,0 exp

(
∫

∞

r

dr′

Z(r′)

)

(27)

Bφ = Bφ,0 exp

(
∫

∞

r

dr′

Z(r′)

)

. (28)

whereZ(r) := ζG′

,r

∣

∣

θ=π/2
, and Bθ,0 and Bφ,0 are con-

stants determined by boundary conditions.
For the Schwarzschild geometry, h2 = r sin θ and h3 =

r, which indicates the magnetic field profiles decay as r →
∞. The exact profiles can be determined by computing
the form of Z(r) which will depend on some equation of
state and the thermodynamic properties of the plasma.
This will be explored further in future work.

A. Magnetic Field Expulsion and Skin Depth

Analysis

We have seen that the symmetry of G′ about
the equatorial plane implies the vanishing of Br

at the equatorial plane. We will now examine
the behavior of magnetic fields, as described by
Eqs. (24-26), at the horizon of an axisymmet-
ric black hole. For the Schwarzschild spacetime,
h−2

1
= α2 = 1−2M/r, which vanishes at the horizon

surface defined by r = 2M (also note that αh1 = 1).
In the Kerr spacetime, one also finds that h−2

1
= 0

at the horizon and αh1 remains finite. From Eq.
(25), we see that at the horizon, the θ-component
of the magnetic field is completely expelled from
the horizon, or that Bθ = 0; we emphasize here
that Bθ vanishes on the entire horizon. Under
the condition G′

,θ = 0, which we assume is valid at

the equatorial plane, we find [from Eqs. (24) and
(26)] that the remaining components of the mag-
netic field vanish at the horizon. One may there-
fore conclude that at the equator of the black hole

horizon (where we expect G′

,θ = 0), all components
of the magnetic field vanish; the magnetic field is
completely expelled from the equator of a black
hole horizon. The plasma therefore behaves as a
perfect superconductor at the equator of a black
hole horizon. We observe that the symmetry in
G′ about the equatorial plane need not be exact;
the complete expulsion of magnetic fields from
the horizon occurs for any value of θ for which
G′ has a minimum or a maximum. Moreover, if
the thermodynamic properties of the plasma are
uniform near the horizon, so that G′ is constant,
the magnetic field is completely expelled from the
horizon, and the entire black hole is immersed in
a plasma which behaves as a perfect superconduc-
tor at the horizon.
To further establish this result, it is appropriate

to work in terms of the proper distance dR = h1dr.
Again, we examine the properties of the plasma
at the equator, so that G′

,θ = 0. When written in

terms of Bθ and Bφ components, Eqs. (25) and
(26) can be rearranged into a slightly different
form

1

λ̃2
=

∂ lnG′

∂R

∂

∂R
ln[h2 Bθα]

=
∂ lnG′

∂R

[

∂ ln(h2 Bθ)

∂R
+

∂ lnα

∂R

]

(29)

1

λ̃2
=

∂ lnG′

∂R

∂

∂R
ln[h3 Bφα]

=
∂ lnG′

∂R

[

∂ ln(h3 Bφ)

∂R
+

∂ lnα

∂R

]

, (30)

where λ̃2 = ζG′ is the modified skin depth charac-
terizing the ΩG = 0 solution. Eqs.(29-30) express
the skin depth of the plasma in terms of variations
of magnetic field and thermodynamic gradients
whereas, for classical superconducting state, the
skin depth depends only on the variation of the
magnetic field.
In addition to magnetic and thermodynamic varia-

tions, the term ∂ lnα/∂R is purely a general relativis-
tic correction to the skin depth and can be computed as
follows

∂ lnα

∂R
=

1

α

∂α

∂R
=

1

h1α

∂α

∂r
(31)

For Schwarzschild black hole, Eq. (31) becomes

∂ lnα

∂R
=

GM

r2
√

1− 2GM/r
, (32)

which diverges at the horizon—in the limit r → 2GM .
One can show that the divergent behavior at the horizon
also persists for rotating black holes (even for the non-
extremal case). It follows that the skin depth vanishes
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at the horizon, and the plasma behaves as a perfect su-
perconductor at the equator θ = π/2 of the horizon
if G′ is symmetric about the equator, or on the
entire horizon if G′ is uniform. The skin depth
analysis demonstrates that this effect is coordinate
independent, as the analysis is carried out in terms of
proper length, and also that this effect is a consequence
of the spacetime geometry near the horizon of a station-
ary black hole. Note also that the complete expulsion
of magnetic fields at black hole horizon or horizon
equator is independent of the value of the spin,
in contrast to the case with vacuum magnetic test fields,
which are only expelled from the horizon in the limit of
extremal spin.

IV. CONCLUSION

By defining a superconducting plasma as the one in
which the grand generalized vorticity (GGV) vanishes
identically (ΩG = 0), we have examined the magnetic
properties of such a state for a magnetized plasma around
a black hole. The principal features of this state (applica-
ble to both rotating and nonrotating black holes) may be
summarized as follows: (i) the grand generalized helicity
associated with the vortical field lines is identically zero
(ii) the θ-component Bθ of the magnetic field van-
ishes at the horizon regardless of the thermody-
namic properties of the plasma (this is purely due

to near-horizon geometry), (iii) assuming symme-
try in G′ about the equatorial plane the magnetic
fields are expelled according to a varying scale
length which becomes zero at the equator of the
black hole horizon—no restrictions are placed on
laminar flows, and (iv) if G′ is uniform at the hori-
zon, the skin depth vanishes on the whole of the
horizon. The vanishing of the skin depth (associ-
ated with the magnetic field penetration) in this
manner suggests that the plasma becomes a per-
fect superconductor wherever ∂G′/∂θ = 0 on the

horizon (which implies ~B = 0 on the horizon), i.e,
the vanishing of the GGV is entirely equivalent to
the vanishing of the magnetic field. In contrast
to the expulsion of magnetic fields for extremal
black holes (as described in [4–6, 8–11]), the vanish-
ing of the skin depth λ for the plasma states we
present here does not require extremal or near extremal
spin; it works even for non-spinning Schwarzschild black
holes. Our result therefore demonstrates what could have
been expected - that the geometry near stationary black
hole horizons can have a significant effect on the elec-
trodynamics of the surrounding plasma. The next step
in the investigation of magnetized plasmas surrounding
black holes should consider a broader class of velocity
profiles and more general (non-superconducting) equilib-
rium states; this will be discussed in future work.

[1] SM Mahajan. Classical perfect diamagnetism: expulsion
of current from the plasma interior. Physical review let-
ters, 100(7):075001, 2008.

[2] Robert F Penna. Black hole meissner effect and
blandford-znajek jets. Physical Review D, 89(10):104057,
2014.

[3] Robert M. Wald. Black hole in a uniform magnetic field.
Phys. Rev. D, 10:1680–1685, Sep 1974.

[4] A. R. King, J. P. Lasota, and W. Kundt. Black holes and
magnetic fields. Phys. Rev. D, 12:3037–3042, Nov 1975.
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