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This is a follow-up sensitivity study on r-mode gravitational wave signals from newborn neutron
stars illustrating the applicability of machine learning algorithms for the detection of long-lived
gravitational-wave transients. In this sensitivity study we examine three machine learning
algorithms (MLAs): artificial neural networks (ANNs), support vector machines (SVMs) and
constrained subspace classifiers (CSCs). The objective of this study is to compare the detection
efficiencies that MLAs can achieve to the efficiency of the conventional (seedless clustering)
detection algorithm discussed in an earlier paper. Comparisons are made using 2 distinct r-mode
waveforms. For the training of the MLAs we assumed that some information about the distance
to the source is given so that the training was performed over distance ranges not wider than half
an order of magnitude. The results of this study suggest that we can use the machine learning
algorithms as part of an investigative stage in the pipeline that would be able to provide very fast
and solid triggers for further, and more intense, investigation.

I. INTRODUCTION

In the late 1990s, the r-mode quasi-toroidal pul-
sations of a neutron star became very promising for
generating strong gravitational-wave signals due to the
Chandrasekhar-Friedman-Schutz (CFS) instability they
exhibit [1–3]. R-modes of any harmonic, frequency and
amplitude are subject to this instability at any angular
velocity of the star [4, 5]. Therefore, even the smallest
toroidal perturbations in the velocity of the neutron star
mass currents will keep increasing in amplitude. In the
absence of a saturation mechanism these small perturba-
tions could eventually reach energy values of the order of
the rotational energy of the neutron star.

In considering the saturation amplitude, α, its normal-
ization is such that values of order 1 carry energy of the
same order of magnitude as the total rotational energy of
the neutron star. Some authors have introduced damp-
ing mechanisms that can cause saturation at r-mode os-
cillation amplitudes of order 10−4 − 10−2 dimensionless
units [6], while others have introduced mechanisms that
cause saturation at amplitudes equal to or larger than
10−1 [7]. Some of the factors that can affect the order of
α are: the equation of state (EOS) of the matter in the
center of the neutron star [8], the magnitude of the mag-
netic fields on the neutron star [9, 10], the coupling of
the r-modes with other inertial modes [11] and magneto-
hydrodynamic coupling to the stellar magnetic field [12].
Therefore, an r-mode detection and a subsequent esti-
mation of the saturation amplitude will impact all of the
above theories depending on the order of magnitude of α
they predict.

The physical significance of an r-mode gravitational-

wave detection has been extensively studied over the
past 15 years [13–15]. Theoretical studies suggest that
(assuming the r-mode oscillation amplitude grows suffi-
ciently large) r-mode gravitational radiation (primarily
in the m = 2 harmonic) could carry away most of the
angular momentum of a rapidly rotating newborn neu-
tron star. Therefore, an r-mode detection would also (i)
provide explanation of the low rotational frequencies of
the observed neutron stars when compared to their possi-
ble rotational frequencies at birth, (ii) set constraints on
the equation of state of the matter in the core of the neu-
tron star and (iii) set upper bounds on α and settle the
debate about the magnitude of the saturation amplitude
of the r-mode oscillations on neutron stars [16].

In a previous study we argued that the most promis-
ing r-mode gravitational-wave sources are newborn neu-
tron stars [8]. In subsection I A (equation (3)) we show
that, due to their high angular velocities newborn neu-
tron stars will emit the most powerful r-mode gravita-
tional radiation among all other possible sources. There-
fore, the design of an r-mode search from newborn neu-
tron stars depends on an electromagnetic trigger from
a supernova (type-I or type-II) event. The distance to
the r-mode source is needed to extract any information
about the magnitude of α because an r-mode detection
can only give an estimate for the ratio α/d, as shown
in section II, equation (5). Distances to type-I supernova
can be calculated using the standard candle method with
an error between 5−10 % [17]. Distances to type-II super-
novae can be calculated using the expanding photosphere
method giving an error of 10− 15 % [18, 19].

The results of our previous sensitivity study showed
that advanced LIGO (aLIGO) can be sensitive to r-mode
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signals from newborn neutron stars only within our local
group of galaxies. Since distances to galaxies in our local
group are already known a supernova event within our
local group would automatically give information about
the distance to the hypothetical r-mode gravitational ra-
diation source. The latest supernova event in our lo-
cal group (SN2014J) occurred in January of 2014 in the
galaxy Messier 82 (M82) in the nearby group of galaxies
M81 and it was a type-I supernova [20]. This galaxy is
at a distance of 3.5 Mpc from the Earth. This is a factor
of 3 further than our previous sensitivity study showed
that aLIGO can be sensitive at. At that distance the
supernova event rate is only 3-6 per century [21, 22] and
the best we can do in order to be ready for the next event
is to increase the sensitivity of our algorithms or apply a
new class of more efficient algorithms.

In this study we investigated the applicability of ma-
chine learning algorithms (MLAs) as decision makers
(signal or not) for the detection of r-mode gravita-
tional waves. This study was performed by integrating
the MLAs in the stochastic pipeline [23–25]. The ob-
jective of this pipeline is to explore the possibility of
sources of long-lived gravitational-wave transients last-
ing from many seconds to weeks. Searches for long-
lived gravitational-wave transients have a strong scien-
tific motivation. This is a cross-correlation-based anal-
ysis pipeline, which was formed to bridge the gap be-
tween short O(s) burst analyses and stochastic analyses
(in which the signal is assumed to persist through the
duration of the data-taking run). The pipeline is framed
as a pattern recognition problem.

The investigation we present in this paper is a prelim-
inary one with the target to initiate further research in
this field. The purpose of this paper is to provide some in-
sight into how we can harness the power of MLAs and use
them for the r-mode gravitational-wave searches. Addi-
tionally, the methodology we followed here may also be
used for a broader investigation of the applicability of
MLAs for the detection of other long-lived gravitational-
wave transients. The aim of this paper is not to demon-
strate how we can use MLAs in order to make a detection
announcement. Instead, the aim is to perform a prelimi-
nary investigation on how we can use raw data taken by
the LIGO detectors, pre-process it and feed it into three
separate MLAs. The ultimate target is to use MLAs in
a way that we can facilitate the searches for long-lived
gravitational-wave transients in the stochastic pipeline.

A. R-mode model

The r-mode gravitational-wave model we used in our
present study as well as in our previous work [8], is based
on the Owen et al. ’98 model. Though very simplistic,
this model is still a very good approximation for the early
stages of the neutron star spin-down [15]. More com-
plicated numerical methods have shown that an r-mode
saturation amplitude α = 10−2 can result in a spin-down

whose energy loss can be detected as gravitational radi-
ation by aLIGO [6]. When this saturation amplitude is
used in the ’98 model, we see that there is a good agree-
ment in the angular velocity evolution of the neutron star
up to several months after the start of the neutron star
spin-down [8]. The evolution of the gravitational-wave
frequency emitted by the neutron star in the Owen et al.
’98 model is described by

f(t) =
1(

f−6o + µt
) 1

6

(1)

where µ is an EOS dependent parameter [8]. For a poly-
tropic EOS this parameter is expressed as a function of
α as follows

µ = 1.1× 10−20|α|2 s−1

Hz6
. (2)

For the same model and the same EOS the gravitational
radiation power is given by

Ė ≈ 3.5× 1019f8|α|2 W. (3)

This model depends on two parameters: the (dimension-
less) saturation amplitude, α, of the r-mode oscillations
and the initial gravitational wave spindown frequency fo.
The theoretical predictions for the values of these pa-
rameters were discussed extensively in our previous pa-
per. The values we considered for α lie in the range of
10−3−10−1 while the values we considered for fo lie in the
interval of 600− 1600 Hz. Due to the wide range within
which the values of these parameters lie, we cannot ef-
fectively use a matched filtering algorithm. Instead, we
have to develop techniques that could detect all possible
distinct waveforms.

B. Previous work

In our previous paper, a seedless clustering (SC) al-
gorithm was used [26]. This seedless clustering algo-
rithm integrates the signal-to-noise ratio (SNR) of pixels
along predetermined monotonic curves (clusters) with ar-
bitrary start and stop times and the constraint that there
is a minimum total duration. Then the algorithm per-
forms the weighted sum of the pixel-SNR values along
each curve to calculate the cluster SNR. After repeating
this T-many times (where T is a free parameter of the al-
gorithm), the algorithm records the largest cluster-SNR
value. The algorithm records the largest cluster-SNR
value for each one of the ft-maps that goes through the
pipeline. This method is not dependent on any knowl-
edge of the signal and it can be applied generically to
any long-lived gravitational-wave transients. In partic-
ular, it is unable to discriminate between r-modes and
other possible gravitational wave sources. Knowledge of
the r-mode signal can be used to make minor modifica-
tions in the clustering algorithm, however, there was not
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Waveforms with fo = 1500Hz, α = 10−1 and fo = 1100Hz, α = 0.01

FIG. 1. The (fo = 1500 Hz, α = 0.1) waveform is the most
powerful waveform considered in our sensitivity studies both
for the clustering and the MLAs. The second waveform we
chose has an amplitude 25 times smaller than the first one.
This waveform has parameters (fo = 1100 Hz, α = 0.01) and
is approximately monochromatic for the durations our sen-
sitivity studies were designed for. The clustering algorithm
could detect the weaker signal at distances not further than
a few kpcs.

much hope for a dramatic improvement in the efficiency.
Nevertheless, we were able to recover signals of magni-
tude 5 times weaker than the noise.

In the sensitivity study performed for the clustering al-
gorithm, we used 9 distinct waveforms. These were cho-
sen by taking (α, fo) pairs using 3 values (10−1, 10−2,
10−3) for α and 3 values (700 Hz, 1100 Hz, 1500 Hz) for
fo. In this sensitivity study for the MLAs, for com-
parison purposes, we used 2 of these waveforms: (fo =
1500 Hz, α = 0.1) and (fo = 1100 Hz, α = 0.01). These
waveforms as well as their corresponding power decays
are shown in Fig.1 and Fig.2 respectively. MLAs are well
suited especially for cases where the signal is not pre-
cisely (but only crudely) known. This paper is based on
three specific MLAs: ANN [27], SVM [28] and CSC [29].
All three methods are considered novel applications in
the area of long transient gravitational wave searches.

This paper is organized as follows: In section II we
present the details of the sensitivity study design. A
more detailed description about how the data is prepared
is given in appendix D. That discussion includes the res-
olution reduction performed on the data maps before we
perform the training of the MLAs. After the training
is performed we present the plot in Fig.10 of the train-
ing efficiencies as functions of the resolution reduction
factor. This plot provides the motivation for reducing
the resolution of the data maps by a factor of 10−2 per
axis. In section III we present a summary of the three
MLAs we used for our sensitivity study: Subsection III A
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Gravitational radiation power decay during spindown

FIG. 2. These power evolutions correspond to the signals in
Fig.1. We see that the blue plot corresponds to a rapidly
decaying signal: within 2500 s the radiation power drops to
17% of its original value. The red plot corresponds to a power
decay that dropped to only 99.9% of the initial. The power
of this (red) signal is about 3 orders of magnitude lower than
that of the signal plotted in blue. We chose this weak signal so
that we can examine how the MLAs compare to the clustering
algorithm both for powerful and weak signals.

describes the training of the ANN algorithm, subsection
III B describes the training of the SVM and subsection
III C describes the training of the CSC algorithm. The
details of the mathematical formulations are presented in
the appendices: Appendix A for the ANN, Appendix B
for the SVM and Appendix C for the CSC. In section IV
we present the results of our sensitivity study and com-
pare the MLA efficiencies to the SC algorithm efficiencies.
Finally, in section V, we summarize our conclusions and
topics for future work.

II. SENSITIVITY STUDY DESIGN

The sensitivity study design for the MLAs has sev-
eral differences from our previous sensitivity study for
the clustering algorithms. For the latter we only had
to produce 9 waveforms with α = 10−3, 10−2, 10−1 and
fo = 1500 Hz, 1100 Hz, 700 Hz. For each waveform we
created injection sets (100 injections per set) and each
injection set corresponded to a specific injection distance.
Using appropriate distance ranges we proceeded with this
method until we got a 50% detection rate. The distance
corresponding to that success rate was marked as our de-
tection distance. The detection threshold was taken to
be the loudest ‘cluster SNR’ [23] (as seen by the SC algo-
rithm [26]) among 1000 frequency-time maps with pure
detector noise. This threshold ‘cluster SNR’ determined
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a false alarm probability (FAP) of 0.1%.
The approach for the MLA sensitivity study was dif-

ferent. The MLAs were trained not only for those nine
waveforms but also for as many as possible distinct wave-
forms. In the paragraphs that follow we discuss why we
chose 11350 distinct waveforms each one injected at a dis-
tinct distance. Those 11350 waveforms had α and fo pa-
rameter values uniformly distributed in their correspond-
ing parameter value ranges. By training the MLAs with
these 11350 distinct injections we succeeded in getting
the MLAs to recognize not only these 11350 waveforms
but also all possible waveforms in the whole range of α
and fo values at all possible distances (assuming the sig-
nal strength was high enough). This result of getting the
MLAs recognizing signals outside the set of the signals
used for training is called ‘generalization’.

A. Choice of the fo and α parameter values

From equations (1) and (2) we have the two model pa-
rameters α and fo that determine the shape of the wave-
form. Apart from the shape, the injections that were
produced for the training of the MLAs were also depen-
dent on the pixel brightness or pixel signal-to-noise ratio
(SNR). For a single pixel in the frequency-time maps (ft-
maps) the SNR satisfies [23]

SNR(t, f, Ω̂) ∝ Re
[
Q̂ij(t, f, Ω̂)Cij(t, f)

]
(4)

where i = 1 and j = 2 are indices corresponding to
the two advanced LIGO (aLIGO) detectors [30], [31]

Q̂ij(t, f, Ω̂) is a filter function that depends on the source

direction, Ω̂, [32] and Cij ≡ 2h̃∗i (t, f)h̃j(t, f) is the cross

spectral density, h̃ being the Fourier transform of the
gravitational wave strain amplitude h. The latter is ex-
pressed in [9] as a function of the distance d to the source,
the gravitational-wave frequency f and the r-mode oscil-
lation amplitude α, by

h ≈ 1.5× 10−23
(

1Mpc

d

)(
f

1kHz

)3

|α|. (5)

For the construction of the injection maps we chose the 3
parameter values fo, α and h2 to be uniformly distributed
within predetermined value ranges as explained below.

Each injection set that was produced and used for the
MLA training was limited to 11350 injection maps and
11350 noise maps. This was due to the computational
resources available as well as the time needed to produce
the 22700 maps. For each injection the waveform was
randomly chosen in such a way that the α value was
randomly chosen from a uniform distribution of 11350
α values in the range of 10−3 − 10−1, the fo value was
randomly chosen from a uniform distribution of 11350 fo
values in the range of 600−1600 Hz, and for the h2 values
we picked 3 ranges (for 3 separate MLA trainings), whose
choice is discussed in the next subsection, II B.

B. Choice of the h2 parameter values

The results of the sensitivity study for the clustering
algorithm showed that for a signal of f = 1500 Hz and
α = 0.1 the detection distance was up to 1.2 Mpc. Using
equation (5) we see that the SC algorithm can detect
gravitational-wave strains of value h ≈ 4×10−24. Values
of the same order are obtained if we substitute the results
for the other 8 waveforms. For example from table 1 in
[8] we see that for f = 700 Hz and α = 0.01 we get a
detection distance of 0.043 Mpc. Substituting in equation
(5) we get h = 1.2 × 10−24. Therefore, the value of
h ≈ 10−24 will become a reference point because this
is the value of gravitational wave strain the MLAs will
have to detect if they are shown to be at least as efficient
as the SC algorithm [26].

If we consider supernova events at distances in the
range from 1 kpc to 1 Mpc then the corresponding range
for the gravitational wave strain values is h ≈ 10−24

to 10−21. Therefore, there are several approaches
in determining the range of h2 values for the injec-
tion maps produced for the training of the MLAs.
The first approach was to produce one set of data
with injections at distances distributed in such a way
that the h2 values are uniformly distributed in the range:

(a) from 10−48 to 10−42 (10−24 ≤ h ≤ 10−21 ).

In case the 11350 noise maps plus the 11350 injection
maps will not be sufficient to achieve ‘generalization’
during the training of the MLAs in the above range of
values of h, the alternative steps would be to create
injections with values of h in smaller ranges. Therefore,
we chose to produce three sets of data such that the h2

values are uniformly distributed in the following ranges:

(b) from 10−46.4 to 10−45.4 (10−23.2 ≤ h ≤ 10−22.7 )
(c) from 10−47.4 to 10−46.4 (10−23.7 ≤ h ≤ 10−23.2 )
(d) from 10−48.0 to 10−47.4 (10−24.0 ≤ h ≤ 10−23.7 ).

The last choice of 10−24 is such that the waveform with
(fo = 1500 Hz, α = 0.1) may be detectable up to a dis-
tance of 5 Mpc, depending on the MLA detection efficien-
cies. Note that at those distances (in the neighborhood
of Milky Way) the supernova event rate is 1 every 1-2
years [33, 34].

After producing the simulated data using the stochas-
tic pipeline, the noise and injection maps represent data
in the frequency-time domain. Hence each data map is
called an ft-map. These ft-maps data (already normal-
ized) are preprocessed further so that we can create the
‘data matrix’ that will include all the data that will be
imported and used for the MLA training. Each row in
the data matrix corresponds to an ft-map and each col-
umn corresponds to each pixel of the ft-map. The details
of this preprocessing are explained in Appendix D. For
the discussion on the MLAs that follows we will refer to
our data used for the MLA training as the ‘data matrix’.
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III. MACHINE LEARNING ALGORITHMS

There has only been a couple of applications of MLAs
in the area of the detection of gravitational waves. One
application is for gravitational wave searches of black hole
binary coalescence with an application of random forests
algorithms (RFA) [35] and the other one is about the
identification of noise artifacts (or glitches) in gravita-
tional wave data with an application of ANN, SVM and
RFA [36]. Our study is investigating the application of
three MLAs (ANN, SVM and CSC) for the detection of
long transient gravitational wave signals. These are sig-
nals of duration from O(seconds) up to O(months) and
they are in the middle of the spectrum (in terms of dura-
tion) between gravitational wave bursts and continuous
waves. ANNs have been extensively studied and estab-
lished [37]. Similarly SVM [38] and CSC [29] have been
broadly applied.

For the investigation of all three MLAs, the full set
of data we had available was split into a 90% for the
training set and a 10% for the test set. The training
efficiencies mentioned in Fig.3, Fig.4 and Fig.5 as well as
in section IV are all referring to how well the MLAs can
detect signals in the ‘unknown’ 10% of data that was left
out of the training process. Before the selection of the
training and test sets all data was shuffled and then the
training and test sets were randomly selected.

A. Artificial neural network

The applicability of an artificial neural network was
investigated as a pattern recognition algorithm [39] for
the detection of r-mode gravitational waves. The aim
was to train the ANN (Appendix A) in order to make it
capable of recognizing the ft-maps that contain r-mode
signals and the ft-maps that contain pure detector noise.
If successful for the r-mode gravitational-wave searches,
the applicability of the ANNs may also be investigated
in the stochastic pipeline for the detection of other long-
lived gravitational-wave transients.

The data matrix we used is a 2N × d matrix where
N = 11350 is the number of data (ft-maps) with sim-
ulated detector noise. This is equal to the number
(N = 11350) of simulated data (ft-maps) with noise
plus injected signals. According to Apppendix D, the
number of columns of the data matrix is chosen to be
d = 550 and this is equal to the dimensionality of the in-
put layer d = 550. The dimensionality of the hidden layer
is K = 50 and the dimensionality of the output layer is
L = 2. The ‘hidden’ layer used ‘neurons’ with the logistic
sigmoid function A1 while the output layer used neurons
with the soft-max activation function A5 which is typi-
cally used in classification problems to achieve a 1-to-n
output encoding [40, 41].

Using the above data matrix we performed a batch
training of the neural network. After experimenting with
various parameter populations we used a learning rate of

0.02 and a momentum of 0.9. For the training we used a
batch version of the gradient descent as the optimization
algorithm. To avoid over-fitting and maintain the ability
of the network to ‘generalize’ we used the ‘early stopping’
technique. The results as shown in Fig.3, Fig.4 and Fig.5
demonstrate that the ANN algorithms performance is at
least as good as that of the SC algorithm.

B. Support vector machine

The second MLA we trained is a support vector ma-
chine (SVM). This method is based on a well formulated
and mathematically sound theory [40]. The mathemati-
cal formulation of this algorithm is described in detail in
Appendix B. In the SVM formulation we treat the noise
ft-maps, as rows of a N × d matrix X ′1 and ft-maps with
r-mode injections as rows of a N ×d matrix X ′2 as points
in a d-dimensional space. The solution to the SVM op-
timization problem is to find the optimal hypersurface
that would separate (and hence classify) the noise points
from the injection points.

The above problem is a convex optimization problem
and is formulated in Appendix B. It is solved using a
state of the art sequential minimal optimization solver,
LIBSVM. In our case we assumed that the classification
problem is a non-linear one hence we introduced the ra-
dial basis (kernel) function (RBF). The constant γ was
taken to be the default (by LIBSVM) value and equal to
1/d. For the other parameter C was estimated to have
an optimal value in the range of 103 to 105.

C. Constrained subspace classifier

The third algorithm we used is a constrained subspace
classifier (CSC) as explained in Appendix C. The sepa-
ration of the two classes is based on projecting the noise
data points (represented by the N × d matrix X ′1) onto
a d1-dim subspace and similalry projecting the injection
data points (represented by the N ×d matrix X ′2) onto a
d2-dim subspace, where d1 = d2 < d. Choosing the right
trade-off between optimality and speed we picked dimen-
sionalities d1 = d2 = 100 for some cases (most powerful
injections) and d1 = d2 = 200 for some others (weakest
injections). The constraint of the problem is the relative
orientation of the two subspaces that is determined by
the parameter C. This parameter was chosen after doing
several runs and it was found to take values between 104

and 105.

IV. RESULTS AND DISCUSSION

When using the SC algorithm in [8] the false alarm
probability (FAP) is easily controlled by adjusting the
SNR threshold above which an ft-map is considered to
include an r-mode signal. This is not the case for the
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MLAs we used where the FAP is given after the training
is performed as part of the training output. For this
reason, to draw fair comparisons, we adjusted the FAP
of the SC algorithm to match the output FAP of the
MLAs. In Fig.3, Fig.4 and Fig.5, the results of the SC
algorithm are compared with the results of the ANN,
SVM and CSC for the same FAP.

The first attempt to train all three MLAs was done
with data produced with h taking values over the range
of 10−24 ≤ h ≤ 10−21. Using this range of values for h
the MLAs did not outperform the SC algorithm. This
was probably due to the fact that the number 11350 of
distinct signals used for the training was too small for
the MLAs to achieve generalization, hence the training
efficiencies are too low. To avoid this the next steps in-
volved training of the same number of data over smaller
ranges of values of h.

In Fig.3 we present the detection efficiency results for
the SC algorithm and the three MLAs on the (α =
0.1, fo = 1500 Hz) waveform. The MLAs were trained
with data produced with h taking values over the range
of 10−23.7 ≤ h ≤ 10−23.2. This range of h values is such
that it includes the distance d′ at which the SC algorithm
has a 50% detection efficiency (for this particular wave-
form). This implies that the MLAs were trained with
signals injected at distances a little shorter than d′ up
to distances 1.5-2 times longer than d′. This particular
choice resulted in an MLA performance that is at least
as good as that of the SC algorithm. The training of the
MLAs on this training set resulted in false alarm proba-
bilities of 4%, 5% and 10% for the ANN, SVM and CSC
respectively.

At the 50% false dismissal rate (FDR), the ANN shows
an increase of ∼ 17% in the detection distance, from ∼
1.45Mpc (of the SC algorithm dash-dot blue line) to ∼
1.80Mpc (of the solid blue line). The SVM shows an
increase of ∼ 23%, from ∼ 1.50Mpc (of the SC algorithm
dash-dot green line) to ∼ 1.85Mpc of the solid-green line.
The CSC shows an increase of ∼ 13%, from ∼ 1.50Mpc
(of the SC algorithm dash-dot red line) to ∼ 1.70Mpc of
the solid-red line.

In Fig.4 we present the detection efficiency results for
the SC algorithm and the three MLAs on the (α =
0.1, fo = 1500 Hz) waveform. The latter were trained
with data produced with h taking values over the range
of 10−24.0 ≤ h ≤ 10−23.7. This range of h values is

such that all of the injection distances of the training set
were higher than the distance d′, at which the SC algo-
rithm has a 50% detection efficiency (for this particular
waveform). The training of the MLAs with injections at
distances longer than d′ was done in order to push the
limits of the MLAs and see how much (if at all) they can
outperform the SC algorithm.

The training of the MLAs on this training set resulted
in high false alarm probabilities of 18%, 22% and 36% for
the ANN, SVM and CSC respectively. At the 50% FDR,
the ANN algorithm shows an increase of ∼ 137% in the
detection distance, from 1.50Mpc (of the SC algorithm
dash-dot blue) to 3.55Mpc (of the solid blue). The SVM
algorithm shows an increase of ∼ 83% in the detection
distance, from 1.50Mpc (of the SC algorithm dash-dot
green) to 2.75Mpc (of the solid green). The CSC shows
an increase of ∼ 46% in the detection distance, from ∼
2.60Mpc (of the SC algorithm dash-dot red line) to ∼
3.40Mpc (of the solid red line). The distance range cov-
ered in this set has a practical significance because it
covers: (a) the distance of 3.5 Mpc at which the January
2014 supernova occured in M82 and (b) the distance of
5 Mpc at which the supernova event rate in the Milky
Way neighborhood is about 1 every 1-2 years.

In Fig.5 we present the detection efficiency results for
the SC algorithm and the three MLAs on the (α =
0.01, fo = 1100 Hz) waveform. The MLAs were trained
with data produced with h taking values over the range
of 10−24 ≤ h ≤ 10−23.7. This range of h values is such
that it includes the distance d′ at which the SC algorithm
has a 50% detection efficiency (for this particular wave-
form). This implies that the MLAs were trained with
signals injected at distances a little shorter than d′ up
to distances 1.5-2 times longer than d′. This particu-
lar choice resulted in an MLA performance that is not
as good as our results for the (α = 0.1, fo = 1500 Hz)
waveform. The training of the MLAs on this training set
resulted in false alarm probabilities of 18%, 22% and 36%
for the ANN, SVM and CSC respectively. At the 50%
false dismissal rate (FDR), the ANN shows an increase
of ∼ 18% in the detection distance, from ∼ 170kpc (of
the SC algorithm dash-dot blue line) to ∼ 210kpc (of the
solid blue line). The SVM shows a decrease of ∼ 24%,
from ∼ 170kpc (of the SC algorithm dash-dot green line)
to ∼ 140kpc of the solid-green line. The CSC shows a
decrease of ∼ 3%, from ∼ 185kpc (of the SC algorithm
dash-dot red line) to ∼ 10kpc of the solid-red line.
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Original resolution noise map
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FIG. 6. This is one of the noise ft-maps with the original
resolution of 1000× 5000 pixels. The pixels along the vertical
axis correspond to 1Hz each. The pixels along the horizontal
axis correspond to 0.5s each, hence the total duration of the
map is 2500s. The frequency cuts are well known seismic
frequency bands and suspension vibration modes.

Resolution reduction by a factor of 100 per axis
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FIG. 7. The highest training efficiency for the MLAs was
achieved with resolution reduction by a factor of 100 per axis,
as seen in Fig.10. This reduced 10 × 50 resolution ft-map
corresponds to the full resolution noise map in Fig.6. For the
resolution reduction we used bicubic interpolation as provided
by the matlab imresize.m function. The frequency cuts were
substituted with zeros before reducing the resolution.
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−5

0

5

FIG. 8. This is an injection added to the noise ft-map shown
in Fig.6. The waveform has parameters α = 0.1 and f0 = 1500
Hz. The duration of the injection is 2500s and corresponds
to a distance to the source of 117 kpc. Injections at longer
distances are harder to see by eye in the original resolution
maps. The contrast between signal pixels and noise pixels is
higher in the reduced resolution maps as shown in Fig.7. This
makes it easier to see the injections in the reduced resolution
maps rather than the full resolution ft-maps.

Resolution reduction by a factor of 100 per axis

time (s)

fr
eq
u
en
cy

(H
z)

 

 

0 500 1000 1500 2000 2500
600

800

1000

1200

1400

1600

S
N
R

−0.04

−0.02

0

0.02

0.04

0.06

FIG. 9. This reduced 10 × 50 resolution ft-map corresponds
to the full resolution map in Fig.8. Despite the 10000 times
reduced resolution as compared to the ft-map of Fig.8, the
r-mode injection is still visible. It turns out that the re-
duced resolution ft-maps increase the training efficiency for
the MLAs, according to Fig.10. However, for the parameter
estimation algorithms we use the full resolution ft-maps.
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V. CONCLUSIONS

Computational efficiency: The most computationally
expensive part of this study was the production of the
one set of 11350 noise ft-maps and the 3 sets of 11350
injection ft-maps (each set requires up to 10 GB of mem-
ory and up to 1 week on a 50 node cluster). The 3 sets of
injections examined the 3 different ranges of values for h
(those correspond to 3 different ranges of values for the
distance). In practice, we will know the distance to the
source so we will have to produce only one set of injec-
tions that will be determined according to that distance.

Training/testing speeds: Once we have the method
(that is presented in this paper) the training of the CSC
method requires 10 minutes, the training of the SVM
method requires about 30 minutes while the training of
the ANN method requires about 8 hours. After the train-
ing is done the decision making about the presence of a
signal or not takes about 2 seconds for 100 ft-maps. The
MLAs are much faster when it comes to the decision mak-
ing process than the SC algorithm is (that takes up to 5
minutes for one ft-map).

Detection performance: Fig.3 shows the detection effi-
ciencies of MLAs that were trained with signals injected
at distances a little shorter than the distance d′, at which
the SC algorithm has a 50% success rate, up to distances
1.5-2 times longer than d′. When compared to Fig.4 that
shows the detection efficiencies of MLAs trained with sig-
nals injected at distances longer than d′ (from 2.2 up to
4.3 times longer) we observe that the MLAs of Fig.3 do
not perform as well. In both figures the MLAs outper-
form the SC algorithm by a factor of 1.2 (Fig.3) up to a
factor of 1.8 (Fig.4). Training the MLAs with injections
at distances shorter than d′ was to ensure that the MLAs
can detect signals injected at distances 0.7 − 0.8 that of
d′, and training the MLAs with injections at distances
longer than d′ was done in order to push the limits of the
MLAs and see how much (if at all) they can outperform
the SC algorithm.

Low detection efficiency: for the (0.01, 1100 Hz) wave-
form. We suspected that the low detection efficiencies for
the second waveform (weakest signal) as seen in Fig.5 are
due to the resolution reduction factor of 10−2 we used.
This resolution reduction factor was shown (in Fig.10)
to maximize the training efficiency for the strongest sig-
nals (Fig.3 and Fig.4) (0.1, 1500 Hz). We did not derive
the optimal value of this reduction factor for the weaker
signals. In other words, we have not tested whether the
weaker signals have maximum training efficiencies at a
different resolution reduction than the one we used for
the strongest signal. This needs further investigation.

False alarm probabilities: In our study FAPs of 4-10%
(for Fig.3) and 18-36% (for Fig.4 and Fig.5) are consid-
ered very high, however, a more carefully chosen training
set may result in lower FAPs. The first suggestion would
be to train the MLAs with a higher number of noise and
injection ft-maps. If that is not possible (due to data
availability) we may train the MLAs with injections at

distances over a range of (h2) values that is smaller than
those in the current training sets. Similarly we can use
smaller ranges of parameter values for α and fo. We can
also try to increase the ratio of noise maps over injection
maps in the training set so that the MLAs may recognize
the noise maps more efficiently. Specifically for the ANN,
one way we may try to reduce the FAP is by exploring
different topologies in the neural network architecture.
For SVM and CSC we may introduce a cost function to
suppress FAP to acceptable values.

For the most powerful signals the false alarm probabil-
ity is about 3%. This FAP is further decreased down to
0.3% when we used a number of noise maps 2 times higher
than the number of signal-injection maps. However, this
was done at the expense of the True Positive probability
(that decreased from 99% to 96%). Therefore, for sig-
nals from nearby sources the MLAs were shown to have
a FAP comparable to what the referee would like to see.

Search optimization: There are many ways that we
can further optimize the MLAs specifically designed for
the search of r-mode gravitational radiation. One way is
by customizing the ft-map resolution reduction. Instead
of using bicubic interpolation we may use a resolution
reduction algorithm specifically designed for the r-mode
signals so that the averaging is done along the r-mode sig-
nal curves. Since the r-mode search is a targeted search
(using a supernova electromagnetic or neutrino trigger)
the distance to the source can be estimated with an accu-
racy of 10−15% [17, 19]. This distance range can then be
used to produce injection ft-maps with which the MLAs
will be trained. In this way the training can be optimized
for the distance of the detectors to the external trigger.

Search constraints: Our current method is specifically
designed for r-mode gravitational wave searches. A differ-
ent signal (e.g. gravitational waves sourcing from other
neutron star oscillation modes) would require their own
training set produced over the specific model parameter
values. This is a quite different approach than that of the
SC algorithm that is generically designed for the detec-
tion of any type of signal. Our current method involves
the production of at least 10000 ft-maps (that may be
overlapping), any amount of data that will not be enough
for the production of this many ft-maps will limit the sen-
sitivity of the search. At the same time the higher the
number of the ft-maps used for training is the more we
may increase the training efficiencies of the MLAs.

Resolution reduction: We did not examine robustness
of the resolution reduction results on other signals (with
different α and fo) therefore, this method may have
to be repeated for different r-mode waveforms as well
as different long duration gravitational wave transients.
However, if we use Google’s “Tensorflow” [54], based
on graphic processing units (GPUs) we may be able to
train computationally expensive algorithms, such as re-
gion convolutional neural networks (R-CNNs), without
needing to reduce the resolution of the time/frequency
map.

Despite the high FAP, the MLAs have an extremely
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important advantage over SC algorithm. After perform-
ing the training stage of the MLAs, the testing stage is
lightning fast (testing with the SC algorithm may take
several tens of minutes versus fractions of a second that
are needed by MLAs). This implies that we can use the
MLAs as part of an investigative stage in the pipeline
that would be able to provide very fast and solid triggers
for further, and more intense, investigation.

Pipeline suitability: ANN, SVM and CSC (and very
likely other machine learning algorithms not tested yet)
are a suitable class of decision making algorithms in the
search not only for r-mode gravitational waves but in the
search for long transient gravitational waves in general.
The results in this paper demonstrate that the stochastic
pipeline would benefit from utilizing machine learning
algorithms for determining the presence of a signal or
not.

The aim of this paper was not to demonstrate how we
can use MLAs in order to make a detection announce-
ment. Instead, our aim was to perform a preliminary
investigation on how we can use raw data taken by the
LIGO detectors, pre-process it and feed it in three sepa-
rate MLAs. The purpose of this paper was fulfilled since
we were able to obtain preliminary results that can en-
courage us (as well as other groups) for further investi-
gation, including addressing the issue of high false alarm
probability.

VI. SUGGESTIONS FOR FUTURE WORK

Future developments: Future developments include
optimization of the current methods as well as the use
of other supervised machine learning algorithms such as
random forests[42]. Random forests can deal with the
high dimensionality of our data by revealing features that
contribute very low information to our analysis; which
can be discarded prior to classification. With respect to
the ANN, we plan to train a deep convolutional neural
network [43] which appears to be very promising for im-
age classification.

Training with more data: Out of the 5 million columns
(of our 22700 x 5000000 matrix) only the 22700 are lin-
early independent (row rank=column rank). This means
that the information we can extract from the columns
are limited by the number of data rows we produce. This
suggests that upon production of higher number of data
rows (ft-maps) the MLAs will be able to extract more
information from the data matrix and quite possibly the
training efficiencies will improve.
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Appendix A: Artificial Neural Networks

After resolution reduction the original 2N × D data
matrix gets reduced to a 2N × d data matrix, X ′. The
latter will be presented as input into a feed-forward neu-
ral network with an input layer of dimensionality d. For
the training of the ANN we randomly picked 90% of the
first N (injection data) rows and also 90% of the second
N (noise data) rows. The other 10% of the (injection and
noise) rows was used to determine the training efficiency
of the trained algorithm. The ANN had one hidden layer
with a number of nodes (‘neurons’) equal to K and an
output layer with two ‘neurons’ that would ‘fire’ for ‘sig-
nal’ or ‘no signal’. The ‘hidden’ layer used ‘neurons’ with
the logistic sigmoid function [41]

σ(aj) =
1

1 + exp(−aj)
(A1)

where aj (j = 1, 2, ..., d) are the values presented at one
‘neuron’ in the hidden layer. The purpose of the hidden
layer is to allow for non-linear combinations of the in-
put values to be forwarded to the output layer. These
combinations in the hidden layer carry forward ‘features’
from the input to the output layer that would not be
possible to be extracted from each individual neuron in
the input layer, enabling non-linear classification. The
number of hidden layers and hidden neurons was chosen,
as is typically done, after experimentation with various
ANN architectures, aiming to enhance the accuracy, the
robustness and the generalization ability of the ANN,
along with the training efficiency and feasibility.

Starting from the first ft-map in the data matrix X i.e.
starting from the row vector x1 where

x1 = { xij | i = 1 and j = 1, 2, ..., d} (A2)

we have d values that are fed into the input layer of the
neural network. These values are then non-linearly com-
bined in each hidden ‘neuron’ to get K many output
values forwarded to the output layer, given by

x′1k = σ(
d∑

j=1

w
(1)
kj x1j + w

(1)
k0 ) (A3)

where k = 1, 2, ...,K is the index corresponding to each
‘neuron’ in the hidden layer and the superscript (1) rep-
resents the hidden layer. The parameters wkj are called
the weights while the parameters wk0 are called the bi-
ases of the neural network.

The ‘output’ layer used ‘neurons’ with the soft-max
activation function which is typically used in classifica-
tion problems to achieve a 1-to-n output encoding [40].
In particular, the soft-max function rescales the outputs
in order for all of them to lie within the range [0, 1] and
to sum-up to 1. This is done by normalizing the expo-
nential of the input bk to each output neuron over the
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exponential of the inputs of all neurons in the output
layer:

soft-max(bk) =
exp(bk)∑
k(exp(bk))

. (A4)

When the values from equation (A3) are presented in the
output layer we get the result

x′′1l = soft-max(
K∑
k=1

w
(2)
lk x

′
1k + w

(2)
l0 ) (A5)

(where l = 1, 2) as the output value in the single neuron
of the output layer. Equation (A5) represents the ‘for-
ward propagation’ of information in the neural network
since the inputs are ‘propagated forward’ to produce the
outputs of the ANN, according to the particular ‘weights’
and ‘biases’.

Equation (A5) also shows that a neural network is a
non-linear function, F , from a set of input variables {xi}
such that i ∈ {1, 2, ..., 2N} as defined by equation (A2)
i.e. xi are row vectors of the matrix X ′ to a set of output
variables {x′′l } such that l ∈ {1, 2} i.e. the output layer
has dimensionality equal to L = 2 (2 neurons: one fires
for noise and the other fires for injection). To merge the

weights w
(1)
kj and biases w

(2)
k0 into a single matrix (and

similarly do with the weights w
(2)
lk and biases w

(2)
l0 ) we

need to redefine x1 as given by equation (A2) to

x1 = { xij | i = 1 and j = 0, 1, 2, ..., d and x10 = 1}
(A6)

and similarly redefine all row vectors of X ′ as well as all
the output row vectors from the hidden layer. Then the
non-linear function F is controlled by a (K+ 1)× (d+ 1)
matrix w(1) and a 2× (K + 1) matrix w(2) of adjustable
parameters. Training a neural network corresponds to
calculating these parameters.

Numerous algorithms for training ANN exist [41] and
in general can be classified as being either sequential or
batch training methods:
(i) sequential (or ‘online’) training: A ‘training item’ con-
sists of a single row (one ft-map) of the data matrix. In
each iteration a single row is passed through the net-
work. The weight and bias values are adjusted for every
‘training item’ based on the difference between computed
outputs and the training data target outputs.
(ii) batch training: A ‘training item’ consists of the ma-
trixX ′ (all 2N rows of the data matrix). In each iteration
all rows of X ′ are successively passed through the net-
work. The weight and bias values are adjusted only after
all rows of X ′ have passed through the network.

In general, batch methods perform a more accurate
estimate of the error (i.e. the difference between the out-
puts and the training data target outputs) and hence
(with sufficiently small learning rate [44]) they lead to
a faster convergence. As such, we used a batch version
of gradient descent as the optimization algorithm. This

form of algorithm is also known as ‘back-propagation’ be-
cause the calculation of the first (or hidden) layer errors is
done by passing the layer 2 (or output) layer errors back
through the w(2) matrix. The ‘back-propagation’ gradi-
ent descent for ANNs in batch training is summarized as
follows:

Algorithm 1 Gradient Descent for ANN

1. Initialize w (and biases) randomly.
while error on the validation set satisfies certain criteria
do
for i=1:2N do
2. Feed-forward computation of the input vector xi.
3. Calculate the error at the output layer.
4. Calculate the error at hidden layer.
5. Calculate the mean error.
6. Update w of the output layer.
7. Update w of the hidden layer.
end for
end while

Out of the 90% of the data that was (randomly) chosen
for the training, 10% of that was used as a validation set.
The latter is used in the ‘early stopping’ technique that
is used to avoid over-fitting and maintain the ability of
the network to ‘generalize’. Generalization is the ability
of a trained ANN to identify not only the points that
were used for the training but also points in between
the points of the training set. For each iteration the
detection efficiency of the ANN is tested on the validation
set. When the error on the validation set drops by less
than 10−3 for two consecutive iterations then we do the
‘early stopping’ and the training is stopped.

The learning rate of the gradient-decent algorithm de-
termines the rate at which the training of the network
is moving towards the optimal parameters. It should be
small enough not to skip the optimal solution but large
enough so that the convergence is not too slow. A cru-
cial challenge for the algorithm is not to converge to local
minima. This can be avoided by adding a fraction of a
weight update to the next one. This method is called
‘momentum’ of the training of the network. Adding ‘mo-
mentum’ to the training implies that for a gradient of
constant direction the size of the optimization steps will
increase. As such, the momentum should be used with
relatively small learning rate in order not to skip the op-
timal solution.

Appendix B: Support Vector Machine

The second MLA we trained is a support vector ma-
chine (SVM). This method gained popularity over the
ANNs because it is based on well formulated and mathe-
matically sound theory [40]. In the following paragraphs
we give a brief introduction to the SVM mathematical
formulation.

In the SVM formulation we treat the noise ft-maps,
rows of X ′1 as well as the ft-maps with r-mode injections,
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rows of X ′2 as points in a d-dimensional space. The
idea behind the formulation of the SVM optimization
problem is to find the optimal hypersurface that would
separate (and hence classify) the noise points from the
injection points. For this discussion we will need the
following definitions:

Definition 1: The distance of a point xi to a flat hyper-
surface H = {x|〈w, x〉+ b = 0} is given by

dxi(w, b) = zi × (〈w, xi〉+ b) (B1)

where w is a unit vector perpendicular to the flat hyper-
surface, b is a constant, and zi = +1 for 〈w, xi〉 + b > 0
and zi = −1 〈w, xi〉 + b < 0. The index i (in xi) takes
values from the set {1, 2, 3, ..., 2N}. In the following
discussion each point xi that lies above the hypersurface
pairs with a value zi = 1 and each point xi that lies
below the hypersurface pairs with a value of zi = −1.

Definition 2: The ‘margin’, γS(w, b), of any set, S,
of vectors is defined as the minimum of the set of all
distances D = {dxi

(w, b)|xi ∈ S} from the hypersurface
H. For the purpose of our discussion the set S is the
union of the set of all noise points and the set of all
injection points.

For definition 3 we assume that a training set consists
of points xi with each one belonging to one of two
distinct data classes denoted by yi = 1 (for one class)
and yi = −1 (for the other class). We may further
assume that the set of all noise points belongs to the
class represented by yi = −1 while the set of all injection
points belongs to the class represented by yi = +1.

Definition 3: A training set {(x1, y1), ..., (xn, yn)|xi ∈
Rd, yi ∈ {−1,+1}} is called ‘separable’ by a hypersurface
H = {x|〈w, x〉+ b = 0} if both a unit vector w (‖w‖ = 1)
and a constant b exist so that the following inequalities
hold:

〈w, xi〉+ b ≥ γS if yi = +1 (B2)

〈w, xi〉+ b ≤ −γS if yi = −1 (B3)

where S = {xi|i = 1, 2, ..., n} and γS is given by
definition 2.

For the purpose of our discussion d is the dimension-
ality of the points xi (this dimensionality corresponds to
the number of pixels in each ft-map) and n = 2N is the
number of our (ft-maps) data points. Using the fact that
the hypersurface is defined up to a scaling factor c, i.e.
H = {x|〈cw, x〉+cb = 0}, we can take c such that cγS = 1
and hence we can rewrite equations (B2) and (B3) as

yi × (〈cw, xi〉+ cb) ≥ 1 for all i=1,2,...,n. (B4)

Defining w′ = cw i.e. ‖w′‖ = c and dividing equation
(B4) by c we get

yi × (〈 w
′

‖w′‖
, xi〉+ b) ≥ 1

‖w′‖
for all i=1,2,...,n. (B5)

Formulation of the SVM optimization problem:

Given a training set, that is, a data matrix X ′ =

(
X ′1
X ′2

)
,

X ′1 being a N × d matrix representing the noise points
and X ′2 being a N × d matrix representing the injec-
tion points, we want to find the ‘optimal separating hy-
persurface’ (OSH), that separates the row-vectors of X ′1
from the row-vectors of X ′2. According to definition 3,
this translates to maximizing the ‘margin’ γS . In other
words, we want to find a unit vector w and a constant
b that maximize 1

‖w′‖ . Therefore, the SVM optimization

problem can be expressed as follows

min
w,b

1

2
‖w′‖2 subject to (B6)

1− yi × (〈w′, xi〉+ b′) ≤ 0 for all i=1,2,...,n (B7)

where b′ = cb. This is a quadratic (convex) optimiza-
tion problem with linear constraints and can be solved
by seeking a solution to the Lagrangian problem dual to
equations (B6) and (B7).

Before formulating the Lagrangian dual we introduce
the ‘slack variables’, ξi (i = 1, 2, ..., n), that are used to
relax the conditions in equation (B4) and account for
outliers or ‘errors’. Instead of solving equation (B6) we
seek a solution to

min
w,b

1

2
‖w′‖2 + C

n∑
i=1

ξi subject to

ξi ≥ 0 and 1− yi × (〈w′, xi〉+ b′)− ξi ≤ 0 for all i=1,..,n.

(B8)

The slack variables ξi measure the distance of a point
that lies on the wrong side of its ‘margin hypersurface’.
Using the Lagrange multipliers

αi ≥ 0 and βi ≥ 0 (B9)

the Lagrangian dual formulation of equation (B8) is to
maximize the following Lagrangian

L(w′, b, ξi, α, β) =
1

2
‖w′‖2 + C

n∑
i=1

ξi −
n∑
i=1

βiξi+

+

n∑
i=1

αi(1− yi × (〈w′, xi〉+ b)− ξi).

(B10)

Using the stationary first order conditions for w′, b and
ξi

∂L
∂w′j

= w′j −
n∑
i=1

αiyixij = 0, ∀j = 1, 2, . . . d,

(B11a)

∂L
∂b

=

n∑
i=1

αiyi = 0, (B11b)

∂L
∂ξi

= C − αi − βi = 0, ∀i = 1, 2, . . . n. (B11c)
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(where xij is the jth entry of the xi data point) the La-
grangian dual as given in expression (B10) can be re-
expressed only in terms of the αi Lagrange multipliers,
as follows

L(αi) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xj , xi〉 (B12)

and hence we can evaluate the αi Lagrange multipliers
by solving the following optimization problem

max
αi

L(αi) subject to

n∑
i=1

αiyi = 0, (B13a)

0 ≤ αi ≤ C , ∀i = 1, 2, .., n.. (B13b)

Defining Gij = yiyjx
ᵀ
j xi problem (B13a)-(B13b) is

equivalently expressed as

min
αi∈Rn

1

2
αᵀGα− eᵀα (B14a)

subject to yᵀα = 0 (B14b)

and 0 ≤ αi ≤ C , i = 1, 2, ..., n (B14c)

where eᵀ is a n−dimensional row vector equal to eᵀ =
(1, 1, ..., 1) and (B14c) is derived from (B11c) together
with (B9).

Since the objective function in equation (B14) is
quadratic and all the constraints are affine, the prob-
lem defined by these equations is a quadratic optimiza-
tion problem. Using the fact that (by constrution) the
sum of all the entries of G can be written as a sum of
squares and also using that αi ≥ 0 we can see that G is
positive semidefinite, which implies that the problem is
convex. Convex problems offer the advantage of global
optimality; that is any local minimum is also the global
one. Several methods have been proposed for solving
such problems including primal, dual and parametric al-
gorithms [45].

After solving the optimization problem defined by ex-
pressions (B14a)-(B14c), i.e. after evaluating all the αi
(i = 1, 2, ..., n), we can find the vector w using (B11a).
The constant b can be found by using the Karush-Kuhn-
Tucker (KKT) complementarity conditions [46],

αi{−1 + yi × (〈w′, xi〉+ b′) + ξi} = 0 (B15a)

βiξi = 0 (B15b)

along with equation (B11c). For any αi satisfying 0 <
αi < C, equation (B11c) implies that βi > 0 and hence
(B15b) implies that ξi = 0. Consequently, we can use
the xi corresponding to the aformentioned αi to solve
equation (B15a) for b′.

Having calculated the vector w′ and the constant b′

is equivalent to knowing the hypersurface defined by
〈w′, xi〉 + b′ = 0. During the testing phase a new data
point, xi, is classified according to

class(xi) = sgn(〈w′, xi〉+ b′). (B16)

For class(xi) = −1 we classify the xi point as noise and
for class(xi) = +1 we classify the xi point as injection.

We choose to solve the convex quadratic problem as
defined in equation (B14) with sequential minimal op-
timization (SMO)[48]. SMO modifies only a subset of
dual variables αi at each iteration, and thus only some
columns of G are used at any one time. A smaller op-
timization subproblem is then solved, using the chosen
subset of αi. In particular at each iteration only two La-
grange multipliers that can be optimized are computed.
If a set of such multipliers cannot be found then the
quadratic problem of size two is solved analytically. This
process is repeated until convergence. The integrated
software for support vector classification (LIBSVM) [47]
is a state of the art SMO-type solver for the quadratic
problem found in the SVM formulation. SMO outper-
forms most of the existing methods for solving quadratic
problems [49]. Hence we choose to use it for training the
SVM, using the LIBSVM routine ‘svmtrain’.

Non-linear SVM: The soft margins ξi can only help
when data are ‘reasonably’ linearly separable. However,
in most real world problems, data is not linearly separa-
ble. To deal with this issue we transform the data into
a ‘feature’ (Hilbert) space, H, (a vector space equipped
with a norm and an inner product), where a linear sepa-
ration might be possible due to the choice of the dimen-
sionality of H, dim(H) ≥ dim(Rd). The transformation
is represented by

Φ :Rd → H
such that Φ(xi) ∈ H.

(B17)

From equations (B12) and (B17) we see that the
non-linear SVM formulation depends on the data
only through the dot products Φ(xi) · Φ(xj) in H.
These dot products are generated by a real-valued
‘comparison function’ (called the ‘Kernel’ function)
k : Rd × Rd → R that generates all the pairwise
comparisons Kij = k(xi, xj) = Φ(xi) · Φ(xj). We
represent the set of these pairwise similarities as entries
in a n × n matrix, K. The use of a kernel function
implies that neither the feature transformation Φ nor
the dimensionality of H are required to be explicitly
known.

Definition 4: A function k : L×L → R is called a posi-
tive semi-definite kernel if and only if it is: (i) symmetric,
that is k(xi, xj) = k(xj , xi) for any xi, xj ∈ L and (ii)
positive semi-definite, that is

cᵀKc =

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (B18)

for any xi, xj ∈ L where i, j ∈ {1, 2, ..., n} and any
c ∈ Rn i.e. ci, cj ∈ R (i = 1, 2, ..., n) and the n × n
matrix K has elements Kij = k(xi, xj).

The nature of the data we are using strongly suggests
that our data points are not linearly separable in the
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original feature space. Therefore we choose to solve the
dual formulation as given by equation (B14) where G
is now defined by Gij = yiyjk(xi, xj) so that we can
use the ‘Kernel Trick’. Solving the dual problem has the
additional advantage of obtaining a sparse solution; most
of the αi will be zero (those that satisfy 0 < αi ≤ C are
the support vectors that define the hypersurface). For the
purpose of our study we used the Radial Basis Function
(RBF) kernel defined by

k(xi, xj) = exp

(
− γ ‖xi − xj‖

2

σ2

)
(B19)

where γ is a free parameter and σ is the standard devi-
ation of the xi that is equal to 1 due to normalization.
Typically the free parameters (γ and C) are calculated
by using the cross validation (grid search) method on
the data set, meaning that we split the data set into
several subsets and the optimization problem is solved
on each subset with different parameter values for γ and
C. We then choose the parameter values that give the
lowest minimum value of the objective function. In our
study we chose the default (by libsvm) value of γ that
was set equal to γ = 1/d. To determine the value of
the parameter C, we plotted training efficiencies against
several values of C. We determined that C should be in
the range of 104 − 105. All experiments with SVM are
conducted with 90/10 split on data, where 90% of the
data is randomly selected for training and the remaining
10% is used for testing.

Using the ’Kernel trick’, we substitute xi with Φ(xi)
in equations (B8)-(B16). Then equation (B12) is re-
expressed as

L(αi) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈Φ(xj),Φ(xi)〉. (B20)

After solving (B14), the αi (i = 1, 2, ..., n) are substituted
in (B11a) that we solve for w′j to get

w′j =

n∑
i=1

αiyiΦj(xi) ∀j = 1, 2, . . . d (B21)

where Φj(xi) is the jth entry of the Φ(xi) transformed
data point. Since the transformation Φ is not obtained
directly we never calculate the w′ vector explicitly. Nev-
ertheless,we can substitute expression (B21) in (B15a)
and solve the latter for b′ (when ξk = 0 and αk 6= 0) as
follows

b′ = 1− yk ×
n∑
i=1

αiyi〈Φ(xi),Φ(xk)〉 (B22)

where this result should be independent of which k we
use. Having the expression (B21) for the vector w′ and
the expression (B22) for the constant b′ we can classify a
new data point during the testing phase according to

class(xi) = sgn(〈w′,Φ(xi)〉+ b′). (B23)

From (B23) we see that we are able to calculate the new
(flat) hypersurface in the new feature (Hilbert) space sim-
ply through inner products of 〈Φ(xi),Φ(xj)〉.

Appendix C: Constrained Subspace Classifier

The idea in the constrained subspace classifier (CSC)
method is similar to the idea used in SVM. In the lat-
ter the target was to separate the noise points (or noise
vectors) from the injection points (or injection vectors)
using a hypersurface. In the CSC method the idea is to
project the noise vectors, rows of X ′1 (N × d matrix),
onto a d1-dimensional subspace S1, (of dimensionality
d1 < d) of the d-dimensional space and also project the
injection vectors, rows of X ′2 (also a N × d matrix), onto
a subspace S2, (of dimensionality d2 < d). That is we
seek to find two (optimal) subspaces such that we can
classify data (ft-map) points according to their distance
from each subspace: points closer to the subspace S1 are
classified as ‘noise points’ and points closer to the sub-
space S2 are classified as injection points.

The optimality of the choice of each subspace depends
on the chosen basis vectors, the chosen dimensionalities,
d1 and d2, of each subspace as well as the relative orienta-
tion between the two subspaces. Each choice corresponds
to a given variance of the projected data: the closer the
variance of the projected points is to the variance of the
original data set the more optimal the subspaces are con-
sidered.

1. The projection operator

Let S be a data space of dimension equal to the number
of features, d, of the selected dataset (for our study d
is the dimensionality of the ft-maps after the resolution
reduction). We can always find an orthonormal basis for
S (using the Gram-Schmidt process) given by

Ud = {u1, u2, . . . , ud} with ui ∈ Rd ∀i = 1, 2, ..., d
(C1)

i.e. Ud ∈ Rd×d. We seek to find a subspace of S of
dimension d1 < d. Since reducing the dimensionality
brings the data points closer to each other, thus reducing
the variance, we try to reduce the number of features
from d to d1 while trying to maintain the variance of the
data distribution as high as possible.

To achieve the dimensionality reduction we seek to
find a projection operator that projects the data points
from Rd to a (dimensionally reduced) subspace Rd1 of
orthonormal basis given by

Ud1 = {u1, u2, . . . , ud1} with ui ∈ Rd ∀i = 1, 2, ..., d1
(C2)

i.e. Ud1 ∈ Rd×d1 . By definition the projection operator
is given by

P = Q(QᵀQ)
−1
Qᵀ (C3)
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and projects a vector onto the space spanned by the
columns of Q. Therefore, we may take the columns of
Q to be the orthonormal vectors given in (C2), that is
Q = Ud1 . In that case, equation (C3) becomes

P = Ud1(Uᵀ
d1
Ud1)

−1
Uᵀ
d1

(C4)

which is the projection operator onto the space spanned
by the column vectors of Ud1 .

Since equation (C1) is an orthonormal basis for Rd
then Uᵀ

d1
Ud1 = Id1 . Therefore, the expression of the pro-

jection operator that can project the (data) vectors in Rd
onto its subspace Rd1 is given by

P = Ud1U
ᵀ
d1
. (C5)

In case d1 = d then P = UdU
ᵀ
d . Since Ud is a square

matrix whose columns are orthonormal, this implies that
its rows are also orthonormal. Orthonormality of the
columns of Ud implies Uᵀ

dUd = Id (i.e. Uᵀ
d is the left in-

verse of Ud) and orthonormality of the rows of Ud implies
UdU

ᵀ
d = Id (i.e. Uᵀ

d is the right inverse of Ud). Therefore,
for the special case that d1 = d we have that Uᵀ

d is the
inverse of Ud or

Uᵀ
d = U−1d . (C6)

2. Principal component analysis (PCA)

To introduce PCA we will use the definition of the data
matrix X ′1 as a N × d noise matrix as well as the defini-
tion of X ′2 as a N × d injection data matrix. Using the
projection operator as given by expression (C5) we want
to project the ft-maps of X ′1 in a subspace Rd1 of Rd
(d1 < d). Let xi be the original 1 × d row vector in Rd.
We project the column vector xᵀi onto Rd1 thus defin-
ing x̃i

ᵀ = Ud1U
ᵀ
d1
xᵀi . Then the norm of the difference

between the original and the projected (column) vectors
can be expressed as

‖xᵀi − x̃i
ᵀ‖ = ‖xᵀi − Ud1U

ᵀ
d1
xᵀi ‖ (C7)

where Ud1 ∈ Rd×d1 . In PCA we want to find the subspace
Rd1 such that

n∑
i=1

‖xᵀi − Ud1U
ᵀ
d1
xᵀi ‖

2 is minimized

subject to Uᵀ
d1
Ud1 = Id1 .

(C8)

This subspace Rd1 is defined as the d1-dimensional hy-
persurface that is spanned by the (reduced) orthonormal
basis {u1, u2, u3, . . . , ud1}. i.e. finding such a basis is
equivalent to defining the subspace Rd1 .
Using the definition of the Frobenius norm for a m × n
matrix A,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace(A∗A) (C9)

where A∗ is the conjugate transpose of A, we get

n∑
i=1

‖xᵀi −Ud1U
ᵀ
d1
xᵀi ‖

2
F = tr

{
X ′1

ᵀ
X ′1(I−Ud1U

ᵀ
d1

)
}

(C10)

where X ′1 ∈ Rn×d (where n = 2N). Thus the optimiza-
tion problem in equation (C8) reduces to [50]

min
Ud1

tr
{
X ′1

ᵀ
X ′1(I − Ud1U

ᵀ
d1

)
}

subject to Uᵀ
d1
Ud1 = Id1 .

(C11)

Since tr
{
X ′1

ᵀ
X ′1
}

is a constant, the optimization prob-
lem can be re-written as

max
Ud1

tr{Uᵀ
d1
X ′1

ᵀ
X ′1Ud1}

subject to Uᵀ
d1
Ud1 = Id1 .

(C12)

To solve equation (C12) we define the Lagrangian dual
problem by

L(Ud1 , λij) = tr(Uᵀ
d1
X ′1

ᵀ
X ′1Ud1)−

−
d1∑
i=1

d1∑
j=1

λij(

d∑
k=1

Uᵀ
jkUki − δji)

where δij =

{
1 for i = j
0 for i 6= j.

(C13)

Since Uᵀ
d1
Ud1 is a symmetric d1 × d1 matrix then the

orthonormality condition in equation (C12) represents a
total of d1× (d1 +1)/2 conditions. Therefore, for the La-
grangian dual problem (as shown in equation (C13)) we
need to introduce d1 × (d1 + 1)/2 Lagrange multipliers
λij . Hence we require that λij is a symmetric matrix.
Also since each term in (C13) involves symmetric matri-
ces then the following first order optimality conditions

∂L
∂λpq

= 0 and
∂L
∂Ulm

= 0. (C14)

can be solved for λij only if the latter is symmetric. Using
equations (C13) and (C14) we get

∂

∂λpq

[ d1∑
i=1

d∑
j=1

d∑
k=1

Uᵀ
ij(X

ᵀX)jkUki−

−
d1∑
i=1

d1∑
j=1

λij(

d∑
k=1

Uᵀ
jkUki − δji)

]
= 0

(C15)

and

∂

∂Ulm

[ d1∑
i=1

d∑
j=1

d∑
k=1

Uᵀ
ij(X

ᵀX)jkUki−

−
d1∑
i=1

d1∑
j=1

λij(

d∑
k=1

Uᵀ
jkUki − δji)

]
= 0.

(C16)
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Equation (C15) implies the d1 × (d1 + 1)/2 equations

d∑
k=1

Uᵀ
qkUkp = δqp (C17)

while equation (C16) implies the d× d1 equations

d∑
j=1

Uᵀ
mj(X

′
1
ᵀ
X ′1)jl +

d∑
k=1

(X ′1
ᵀ
X ′1)lkUkm−

−
d1∑
j=1

λmjU
ᵀ
jl −

d1∑
i=1

λimUli = 0.

(C18)

Using the fact that X ′1
ᵀ
X ′1 is symmetric, the first two

terms of equation (C18) can be combined to a single term
and similarly (using the symmetry of λij) the last two
terms of equation (C18) can be combined to a single term
to get

d∑
j=1

Uᵀ
mj(X

′
1
ᵀ
X ′1)jl −

d1∑
i=1

λmiU
ᵀ
il = 0. (C19)

Equations (C19) and (C17) are sufficient to solve for λij
and Ukl. Right-multiplying equation (C19) by Uln and
summing over 1 ≤ l ≤ d we get

d∑
l=1

d∑
j=1

Umj
ᵀ(X ′1

ᵀ
X ′1)jlUln −

d1∑
i=1

λmi

d∑
l=1

Uᵀ
ilUln = 0.

(C20)
Using equation (C17) then equation (C20) becomes

d∑
l=1

d∑
j=1

Umj
ᵀ(X ′1

ᵀ
X ′1)jlUln = λmn. (C21)

Equations (C21) and (C19) represent a set of d1 × (d1 +
1)/2 and d1 × d equations respectively. These can be
solved to obtain the d1 × (d1 + 1)/2 degrees of freedom
of λij and the d1 × d degrees of freedom of Ud1 .

The left hand side (LHS) of equation (C21) represents
the amn elements of a d1 × d1 matrix and similarly the
right hand side (RHS) of (C21) represents the λmn ele-
ments of another d1×d1 matrix. Equation (C21) implies
an entry-by-entry equation (amn = λmn) between the
two matrices. Choosing m = n and summing equation
(C21) over 1 ≤ m ≤ d1 implies that the sum along the
diagonal of the matrix on the LHS is equal to the sum
along the diagonal of the matrix on the RHS or equiva-
lently

d1∑
m=1

d∑
l=1

d∑
j=1

Umj
ᵀ(X ′1

ᵀ
X ′1)jlUlm =

d1∑
m=1

λmm. (C22)

Noting that the LHS of (C22) is the trace of the LHS of
(C21) we can re-write (C22) as

tr(Uᵀ
d1
X ′1

ᵀ
X ′1Ud1) =

d1∑
m=1

λmm. (C23)

To interpret the λmm we use a theorem according to
which the trace of a matrix is equal to the sum of its
eigenvalues. Therefore, we can identify the λmm for
1 ≤ m ≤ d1 as the eigenvalues of the symmetric ma-
trix (X1Ud1)ᵀ(X1Ud1). However, these d1 eigenvalues are
d1 out of the total d eigenvalues of Xᵀ

1X1. This can be
shown by using the invariance of trace under similarity
transformations (in this case under conjugacy). Using
equation (C6) we can re-write equation (C23) for d1 = d
as

tr(U−1d X ′1
ᵀ
X ′1Ud) = tr(X ′1

ᵀ
X ′1) =

d∑
m=1

λmm. (C24)

Therefore, the maximum of the objective function F =
tr(Uᵀ

d1
X ′1

ᵀ
X ′1Ud1) in expression (C12) is equal to the

summation of the d1 largest eigenvalues of Xᵀ
1X1. There-

fore the orthonormal basis for the lower dimensional sub-
space is given by the set of the eigenvectors correspond-
ing to the d1 largest eigenvalues of the symmetric matrix
Xᵀ

1X1.

3. Formulation of CSC

Consider the binary classification problem with X ′1 ∈
Rn×d and X ′2 ∈ Rn×d be the data matrices corresponding
to two data classes, C1 (noise points) and C2 (injection
points) respectively. The number of data samples in C1
is the same as the number of data samples in C2 and is
equal to n/2. The corresponding number of features is
given by d for both classes C1 and C2.

We attempt to find two linear subspaces S1 ⊆ C1 and
S2 ⊆ C2 that best approximate the data classes. Without
loss of generality we assume the dimensionality of these
subspaces to be the same and equal to d1. Let

U = [u1, u2, . . . , ud1 ] ∈ Rd×d1 (C25)

and

V = [v1, v2, . . . , vd1 ] ∈ Rd×d1 (C26)

represent matrices whose columns are orthonormal bases
of the subspaces S1 and S2 respectively. If we attempted
to find S1 independently from S2 then we would have
to capture the maximal variance of the data projected
onto S1 separately from the maximal variance of the data
projected onto S2. That would be equivalent to solving
the following two optimization problems [51]

max
U∈Rd×d1

tr(UᵀX ′1
ᵀ
X ′1U)

subject to UᵀU = Id1

(C27)

and

max
V ∈Rd×d1

tr(V ᵀX ′2
ᵀ
X ′2V )

subject to V ᵀV = Id1 .
(C28)
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The solution to the optimization problem as shown
in expression (C27) is given by the eigenvectors (the
columns of the orthonormal basis U of S1) correspond-
ing to the d1 largest eigenvalues of the matrix X ′1

ᵀ
X ′1.

Similarly, the solution to the optimization problem as
shown in expression (C28) is given by the eigenvectors
(the columns of the orthonormal basis V of S2) cor-
responding to the d1 largest eigenvalues of the matrix
X ′2

ᵀ
X ′2. Though the subspaces S1 and S2 are good ap-

proximations to the two classes C1 and C2 respectively,
these projections may not be the ideal ones for classifi-
cation purposes as each one of them is obtained without
the knowledge of the other.

In the constrained subspace classifier (CSC) the two
subspaces are found simultaneously by considering their
relative orientation. This way CSC allows for a trade off
between maximizing the variance of the projected data
onto the two subspaces and the relative orientation be-
tween the two subspaces. The relative orientation be-
tween the two subspaces is generally defined in terms of
the principal angles. The optimization problem in CSC
is formulated as follows

max
U,V ∈Rd×d1

tr(UᵀX ′1
ᵀ
X ′1U) + tr(V ᵀX ′2

ᵀ
X ′2V )+

+ Ctr(UᵀV V ᵀU)

subject to UᵀU = Id1 , V ᵀV = Id1 .

(C29)

The last term of the objective function G =
tr(UᵀX ′1

ᵀ
X ′1U) + tr(V ᵀX ′2

ᵀ
X ′2V ) + Ctr(UᵀV V ᵀU) is a

measure of the relative orientation between the two sub-
spaces as defined in [29]. The parameter C controls the
trade off between the relative orientation of the subspaces
and the cumulative variance of the data as projected onto
the two subspaces. For large positive values of C, the
relative orientation between the subspaces reduces (the
two subspaces become more ‘parallel’), while for large
negative values of C, the relative orientation increases
(the two subspaces become more ‘perpendicular’ to each
other).

This problem is solved using an alternating optimiza-
tion algorithm described in [29]. For a fixed V , expression
(C29) reduces to

max
U∈Rd×d1

tr(Uᵀ(X ′1
ᵀ
X ′1 + CV V ᵀ)U)

subject to UᵀU = Id1 .
(C30)

The solution to the optimization problem (C30) is ob-
tained by choosing the eigenvectors corresponding to the
d1 largest eigenvalues of the symmetric matrix X ′1

ᵀ
X1 +

CV V ᵀ. Similarly, for a fixed U , expression (C29) reduces
to

max
V ∈Rd×d1

tr(V ᵀ(X ′2
ᵀ
X ′2 + CUUᵀ)V )

subject to V ᵀV = Id1

(C31)

where the solution to the optimization problem (C31) is
again obtained by choosing the eigenvectors correspond-
ing to the d1 largest eigenvalues of the symmetric matrix
X ′2

ᵀ
X ′2 + CU1U

ᵀ
1 .

The algorithm for CSC can be summarized as follows:

Algorithm 2 CSC (X ′1, X
′
2, d1, C)

1. Initialize U and V such that UᵀU = Id1 , V ᵀV = Id1 .
2. Find eigenvectors corresponding to the d1 largest eigen-
values of the symmetric matrix X ′1

ᵀ
X ′1 + CV V ᵀ.

3. Find eigenvectors corresponding to the d1 largest eigen-
values of the symmetric matrix X ′2

ᵀ
X ′2 + CUUᵀ.

4. Alternate between 2 and 3 until one of the termination
rules below is satisfied.

We define the following three termination rules:

• Maximum limit Z on the number of iterations,

• Relative change in U and V at iteration m and
m+ 1,

tolmU =
‖U (m+1) − U (m)‖F√

N
,

tolmV =
‖V (m+1) − V (m)‖F√

N

(C32)

where N = d× d1 and the subscript F denotes the
Frobenius norm.

• Relative change in the value of the objective func-
tion G as shown in expression (C29) at iteration m
and m+1,

tolmf =
G(m+1) −G(m)

|G(m)|+ 1
. (C33)

The value of Z was set to 2000, while tolmf , tolmU and

tolmV are all set at the same value of 10−6. From

equation (C9) we see that the factor of 1/
√
N in (C32)

results in the averaging of the squares of all the entries
of the matrices (U (m+1) − U (m)) or (V (m+1) − V (m)).
This regularization factor keeps the tolerance values
independent of the data set.

After solving the optimization problem (C29) (by uti-
lizing algorithm 2) a new point x is classified by com-
puting the distances from the two subspaces S1 and S2
defined by

dist(x,S1) = tr(UᵀxᵀxU) (C34)

and

dist(x,S2) = tr(V ᵀxᵀxV ). (C35)

The class of x is defined by

class(x) = arg{ min
i∈{1,2}

{dist(x,Si)}}. (C36)

In our case, if x is closer to S1 then x is classified as noise
(or ‘no signal’) and if x is closer to S2 then x is classified
as an r-mode injection (or ‘presence of signal’).
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Appendix D: Data Preparation

1. Production of the data matrix for the MLA
training

We start with the data maps in the frequency-time
domain (ft-maps) produced by the stochastic transient
analysis multi-detector pipeline (STAMP) [23]. Let N
be the number of noise maps. The number of (r-mode)
injection maps is also equal to N . These ft-maps are
produced using simulated data recolored with the aLIGO
sensitivity noise curve. Each map has a size of F ×T pix-
els with each pixel along the vertical axis corresponding
to δf Hz and each pixel along the horizontal axis corre-
sponding to δt s, hence the length of the map along the
vertical axis is (Fδf) Hz and the length of the map along
the horizontal axis is (Tδt) s. This ft-map is reshaped to
a 1 × D (where D = FT ) row vector. We reshaped all
2N ft-maps (each one of size F × T ) and produced 2N
row vectors xi with i ∈ {1, 2, ..., 2N}. The rows with
i ∈ {1, 2, ..., N} correspond to the noise ft-maps while
the rows with i ∈ {N + 1, N + 2, ..., 2N} correspond to
the injection ft-maps.

We then used the rows xi with i ∈ {1, 2, ..., N} to pro-
duce a N × D noise data matrix, X1 and we also used
the rows with xi with i ∈ {N + 1, N + 2, ..., 22700} to
produce a N ×D injection data matrix, X2. The MLAs
would take as an input the 2N ×D data matrix given by

X =

(
X1

X2

)
. (D1)

Each row xi with i ∈ {1, 2, .., 2N} of the data matrix
X corresponds to a single ft-map. The total number of
rows is equal to the number of data points, n = 2N ,
while the total number of columns (i.e. the total number
of features) is equal to D = FT , where D is the dimen-
sionality of the feature space in which each single ft-map
lives.

For any matrix we know that row rank = column rank,
therefore, the number of linearly independent columns of
X is equal to 2N . This number is determined by the
limited number (n = 2N) of ft-maps we could produce.
This means that even though each single ft-map lives in
a D−dimensional space (D � n), we can only approxi-
mate these ft-maps as vectors living in a n-dimensional
space (subspace of the D−dimensional space). The best
approximation of this subspace would be the one in which
the most ’dominant’ n features (out of the total number
of D) constitute a basis of the subspace. A well known
method of choosing the n most dominant features is de-
scribed by the principal component analysis (PCA) [52]
or see section C 2. However, the (RAM) memory required
to perform PCA on X is beyond 1TB, thus making it
practically impossible to perform PCA on X with realis-
tically available computing resources.

A reliable approach to solve the problem of the high
dimensionality of the features (D � n) is to seek MLAs

that will naturally select d-many features (with d � D)
such that d ≤ n [53]. Three classes of MLAs that can
achieve this are the ANN, SVM and CSC methods. How-
ever, the data matrix is too large to attempt to perform
any MLAs on it. Therefore, the only way out of these
restrictions the data matrix size imposes, is to perform
resolution reduction for each F × T ft-map (before re-
shaping each one of them to a row vector). After the
resolution reduction, performing further feature selection
would still benefit the training of the algorithms in terms
of speed. The right choice of features can significantly de-
crease the training time without noticeably affecting the
training efficiencies.

A resolution reduction on the ft-maps would result in
a number of 2N row vectors (of dimensionality 1 × d)
such that d � D. The desired effect of the resolution
reduction would be to get d ≤ n. The first guess for
such a reduction would be to choose a factor of D/n.
That would be equivalent to a reduction by a factor of

∼
√

D
n along each axis (frequency and time) of the ft-

map. However, it turned out that this is not the optimal
resolution (per axis) reduction factor. The following two
sub-sections describe the experimentation on the reduc-
tion factor.

2. Resolution reduction: bicubic interpolation

To perform the resolution reduction, we used the im-
resize matlab function. The original ft-map of F × T
pixels consists of a (F + 1)× (T + 1) point grid. Imresize
will first decrease the number of points in the point grid
according to the chosen resolution reduction factor, r.
Interpolation is then used to calculate the surface within
each pixel in the new point grid. The result is a new
ft-map of dimensionality F

r ×
T
r with a number of pixels

equal to d = FT
r2 = D

r2 .
We used the bicubic interpolation option of the imre-

size function. According to this, the surface within each
pixel can be expressed by

S(t, f) =

3∑
i=0

3∑
j=0

aijt
if j (D2)

The bicubic interpolation problem is to calculate the
16 aij coefficients. The 16 equations used for these
calculations consist of the following conditions at the 4
corners of each pixel:
(a) the values of S(t, f)
(b) the derivatives of S(t, f) with respect to t
(c) the derivatives of S(t, f) with respect to f and
(d) the cross derivatives of S(t, f) with respect to t and f

Determining the resolution reduction factor that would
yield the best training efficiencies for the MLAs was not
a very straight forward task. To do so we performed a
series of tests using the set of N noise ft-maps and the set
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FIG. 10. Training efficiencies of ANN (blue), SVM (green)
and CSC (red) versus the resolution reduction (per axis). For
SVM and CSC there is a clear peak at a resolution reduction
factor of 10−2. The ANN peak seems to be a little off but
for uniformity we used 10−2 for all 3 MLAs. The training of
all three MLAs was performed using the (α = 0.1, fo = 1500)
waveform. No tests have been performed to verify the validity
of these plots for other waveforms or other h value ranges.

of N injection ft-maps. The injected signal SNR values
lay in a range such that 10−23.7 ≤ h ≤ 10−23.2.

3. Resolution reduction versus training efficiency

We tested 5 different resolution reduction factors (r =
10−1, r = 10−1.5, r = 10−2, r = 10−2.5 and r = 10−3)

where the value of r corresponds to the factor by which
each axis resolution is reduced. With N = 11350 and
F = 1001, T = 4999 (such that D = 5003999) the result-
ing (2N×d) data matrices had dimensions 22700×50500,
22700 × 5155, 22700 × 550, 22700 × 64 and 22700 × 10
respectively. Subsequently each of the three MLAs were
trained and the training efficiencies were plotted against
the resolution reduction factors. The results are shown
in Fig.10. From the plots we see that the training effi-
ciencies first improve as we lower the resolution. For too
low or too high resolution reductions the training efficien-
cies decrease. This behavior was consistent on all three
MLAs. At a reduction factor of 100 per axis we have
the maximum training efficiency. Resolution reduction
offers two advantages: (a) it increases the MLA training
efficiency and (b) it reduces the training time. Using the
results from Fig.10 we determined that the best resolu-
tion reduction would be the factor of r = 10−2. This
results in a data matrix with dimensions of 22700× 550
(disc space of 84MB).

After dimensionality reduction, the matrices X1 and
X2 become X ′1 with row vectors xi ∈ R550 where i ∈
{1, 2, ..., 11350} and X ′2 with row vectors xi ∈ R550 where
i ∈ {11351, ..., 22700}. Both of the X ′1 and X ′2 has a
reduced dimensionality 11350× 550. Similarly we define
the dimensionally reduced 22700× 550 data matrix

X ′ =

(
X ′1
X ′2

)
. (D3)

The number of rows, n = 22700, is the number of data
points (ft-maps) and the number of columns, d = 550, is
the number of features of each point or the dimension-
ality of the space in which each ft-map lives (after the
resolution reduction).
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