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New proper tetrad for teleparallel gravities in non-flat spacetime
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The restoration of spin connection clarifies the long known local Lorentz invariance problem
in telelparallel gravities. It is considered now that any tetrad together with the associated spin
connection can be equally utilized. Among the tetrads there is a particular one, namely proper
tetrad, in which all the spurious inertial effects are removed and the spin connection vanishes. A
specific tetrad was proposed in the literature for spherically symmetric cases, which has been used in
regularizing the action, as well as in searching solutions in various scenarios. We show in this paper
that the this tetrad is not the unique choice for the proper tetrad. We construct a new tetrad that
can be considered as the proper one, and it will lead to different behaviors of the field equation and
results in different solutions. With this proper tetrad, it is possible to find solutions to teleparallel
gravities in the strong field regime, which may have physical applications. In the flat spacetime
limit, the new tetrad coincides with the aforementioned one.

I. INTRODUCTION

General Relativity (GR) seems to work perfectly well
against the local weak field tests of gravity, whereas the
long known challenge of it when applied to the entire Uni-
verse, i.e. the dark contents of the Universe, still lacks
a consensus solution, which motivates the substantial
study of alternative theories of gravity. The recent detec-
tion of gravitational waves from binary black holes and
neutron stars has now opened a new window to test these
theories in the strong field regime. Most of the study re-
garding the modified gravities in the literature are based
on the curvature formulation. Besides that, one can also
search for alternative theories starting from the Telepar-
allel Equivalent of General Relativity (TEGR) [1, 2], in
which the tetrad field is used as the dynamical variable
instead of the metric, and torsion scalar T is constructed
to be the underlying Lagrangian. The simplest modi-
fying scheme under this framework is the f(T ) theories
[3–5]. When non-linear Lagrangian is constructed, the
field equations in f(T ) models feature in having second
order derivatives as in GR instead of fourth order ones
in f(R) models. Simpler may be the field equation, how-
ever, the strong field solutions in teleparallel gravities
are still difficult to extract. One of the difficulties lies in
the misunderstanding about their lack of local Lorentz
invariance. It is not new that the torsion-based theo-
ries suffer the problem of local covariance [6–9], which
comes from the simply setting of vanishing spin connec-
tion. The frame-dependent nature of this pure-tetrad
formalism has led to efforts in finding the “good” tetrad
in certain situations [10, 11], but the head-on solution
to this problem should be restoring the spin connection
and constructing the covariant formulation of teleparallel
gravities [12–16]. There is no longer a privileged “good”
tetrad in the sense that any tetrad within a Lorentz group
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can be used as long as the associated spin connection is
restored. Nonetheless, the determination of this spin con-
nection, or equivalently the determination of the proper
tetrad, is still open to debate. The theory will take differ-
ent form with different choice of proper tetrad. A specific
tetrad was proposed in Refs.[13, 14] to be the proper one
for spherically symmetric cases, which has been used in
the study of the covariant teleparallel gravities in various
scenarios [14, 17–22]. In this paper, we show that this
tetrad is not the unique choice for the proper tetrad. We
construct a new proper tetrad which will lead to a differ-
ent description of the theory and may be used to search
for strong field solutions in such spacetime. In the flat
spactime limit, the two tetrads coincide with each other.
The paper is organized as follows. We briefly review

the covariant teleparallel gravities in Section II. In Sec.
III, we construct a new tetrad that can be considered
as the proper one for static spherically symmetric met-
ric. The flat limit of the new proper tetrad and some
examples are presented in Sec. IV. Sec. V contains our
conclusion and discussions.

II. TETRAD AND SPIN CONNECTION

As the spacetime manifoldM is assumed to be a metric
space with g and parallelizable, it is generally possible to
find a trivialization ea = e µ

a ∂µ of the tangent bundle of
the manifold. The dual vector basis 1-form to ea, i.e. the
tetrad, is given by ha = haµdx

µ. The line element is then

written as ds2 = gαβdx
α⊗dxβ = ηabh

a⊗hb, where ηab is
the Minkowski metric of the tangent space. The torsion
2-form is given by[1, 14]

T a = Dha = dha + ωa
b ∧ hb, (1)

where the covariant exterior derivative D and the spin
connection ωa

b are introduced such that for any vector V a

in the tangent space at a given point, DµV
a is covariant

under Lorentz rotation. That is, for a rotation of frame

ha 7→ h̊a = Λa
bh

b with Λa
b (x) ∈ SO(1, 3), the derivative
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transforms into D̊V̊ a = Λa
bDV b. This ensures the torsion

2-form (1) is locally Lorentz invariant, and requires the
spin connection to satisfy

ωa
d = (Λ−1)ab ω̊

b
cΛ

c
d + (Λ−1)ac (dΛ

c
d). (2)

Generally, one can always find a specific frame in which
all components of the spin connection vanish. Suppose

we have found such a frame h̊b and it connects to the
original frame ha via the transform Λb

a. Then ω̊b
c = 0

and

ωa
b = (Λ−1)ac (dΛ

c
b), (3)

i.e. purely determined by the Lorentz transform. The
tetrad with vanishing spin connection is then called the
proper tetrad[13]. And the spin connection reflects the
spurious inertial effects of the given frame with respect
to the proper frame. Reversely, to determine the spin
connection is in fact to determine Λ via Eq.(3), which
will transform the given tetrad into the proper one.
With these setup, the torsion scalar is then given by

T = T a ∧ ⋆
(

Ta − ha ∧
(

eb · T b
)

− 1

2
ea ·

(

hb ∧ Tb
)

)

(4)

where ⋆ denotes the Hodge dual and · indicates the inte-
rior product. TEGR takes this scalar as its Lagrangian,
and the f(T ) gravities, on the other hand, consider an
arbitrary function of T instead.
Historically, the torsion 2-form was defined using the

simple exterior derivative with vanishing spin connection
in the so-called pure-tetrad formalism. This made the
torsion 2-form not covariant under local Lorentz trans-
form . In the case of TEGR, the difference lies in the
surface term and hence not much problem arises. The
non-trivial f(T ) gravities, however, take different forms
depending on the tetrad in this pure-tetrad formalism,
and some choice of tetrad is considered “better” than
others. The covariant derivative introduced in (1) de-
prives the privileges of any “good” tetrad and clarifies
the misunderstanding about the lack of local Lorentz in-
variance of the teleparallel gravities. Nonetheless, the
determination of the proper tetrad is still the crux of the
whole covariant construction.

III. A NEW TETRAD FOR NON-FLAT

SPACETIME

As mentioned before, a given metric and a specific
tetrad along with the determination of the spin connec-
tion in fact establishes a tetrad that considered to be
proper. For example, in the static spherically symmetric
case

ds2 = ξdt2 − ζdr2 − r2dΩ2 (5)

with the diagonal tetrad

h0̂ =
√

ξdt, h1̂ =
√

ζdr,

h2̂ = rdθ, h3̂ = r sin θdφ,
(6)

where ξ(r), ζ(r) are functions of the radial coordinate
r, the determination of the spin connection gives, via
Eq.(3), a Lorentz rotation that transforms the diagonal
tetrad (6) into the proper tetrad. Thus we search for the
appropriate transform Λ directly. In general, a Lorentz
transform Λ ∈ SO(1, 3) can be decomposed into

Λ = R3B, (7)

where R3 ∈ SO(3) is the spatial rotation, and B is a
Lorentz boost.
Since it is the proper frame that we are seeking, we

assume that the Lorentz boost should be such that it
takes the frame into a freely falling one. Thus,

B =













1√
ξ

−
√

1−ξ
ξ

0 0

−
√

1−ξ
ξ

1√
ξ

0 0

0 0 1 0
0 0 0 1













(8)

along r̂ is proposed. A similar boost has been considered
in Ref.[23].
The rotation R3 takes place on a spatial slice. For a

fixed time dt = 0, a spatial slice boosted by Eq.(8) is
given by ds2(3) = (ζ/ξ)dr2 + r2dΩ2, the three legs of the

boosted tetrad are

h1̂(3) =

√

ζ

ξ
dr, h2̂(3) = rdθ, h3̂(3) = r sin θdφ. (9)

Due the spherical coordinate system, the pointing direc-
tions of these legs are dependent on the angular position
of the tetrad, which obviously brings in spurious iner-
tial effect owing to purely the choice of frame. So the
main idea of the search of the rotation R3 is such that
it should align the frame everywhere. However, the un-
derlying spacetime manifold is not flat, hence the mere
alignment may not be enough and the non-flatness should
also be accounted for.
In embedding point of view, dr is the projection of real

radial increment dρ on the flat slice dr = cosαdρ with
cosα =

√

ξ/ζ. With this in mind, we build a universal
Cartesian system

x1̂ = ρ sin θ cosφ, x2̂ = ρ sin θ sinφ, x3̂ = ρ cos θ
(10)

to help with the alignment of the tetrads at different
position.
Then the angular increment rdΩ can be viewed as one

that deviates from the slice spanned by this system by
an angle α. And hence ds2(3) is written as

ds2(3) = dρ2 + cos2 α(r2dΩ2) + sin2 α(r2dΩ2), (11)

where the angular increment is divided into two orthog-
onal parts: one along the usual angular direction in the
Cartesian system given by Eq.(10), and the other de-
scribes the deviation from it. One then can decompose
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the radial increment dρ and the former part of the an-
gular increment rdΩ in the Cartesian system (10) in the
usual way:





dρ1̂
dρ2̂
dρ3̂



 =





sin θ cosφdρ
sin θ sinφdρ

cos θdρ



 , (12)

and




rdΩ1̂
rdΩ2̂
rdΩ3̂



 =





cos θ cosφ − sinφ
cos θ sinφ cosφ
− sin θ 0





(

rdθ
r sin θdφ

)

,

(13)
where dρa and rdΩa are the components of the radial
increment and the former part of the angular increment
in the Cartesian system, respectively.
Since the decomposition of the angular increment in

Eq.(11) is orthogonal, the deviation part should be con-

sidered in the perpendicular direction of the former part
(still in the (dθ, dφ) plane though), which, in the Carte-
sian system, are explicitly:





rdΩ̃1̂

rdΩ̃2̂

rdΩ̃3̂



 =





± sinφ ± cos θ cosφ
∓ cosφ ± cos θ sinφ

0 ∓ sin θ





(

rdθ
r sin θdφ

)

,

(14)
where the tilde signs on top of dΩ indicate that they are
of the deviation part.

These components in the Cartesian system prescribe
naturally the three spatial legs of a tetrad

h̊a(3) = dρa + cosα (rdΩa) + sinα
(

rdΩ̃a

)

, (15)

such that ds2(3) = δab̊h
a⊗ h̊b. The transform between this

tetrad and the diagonal one (9) is

R3 =







1 0 0 0
0 sin θ cosφ cosα cos θ cosφ± sinα sinφ − cosα sinφ± sinα cos θ cosφ
0 sin θ sinφ cosα cos θ sinφ∓ sinα cosφ cosα cosφ± sinα cos θ sinφ
0 cos θ − cosα sin θ ∓ sinα sin θ






, (16)

where we have restored the first row and the first column
related to time. Eq.(16) is actually a spatial rotation with
the intrinsic Euler angles ψr = ±α− π

2 , ψθ = θ − π
2 and

ψφ = φ around the original axes r̂, θ̂ and φ̂, repectively.

Taking this rotation into the Eq.(7), we then have a
Λ ∈ SO(1, 3) that transforms the diagonal tetrad (6) into
a new one. The spin connection can be obtained using
Eq.(3):

ω0̂
1̂
= ω1̂

0̂
=

ξ′

2ξ
√
1− ξ

dr,

ω2̂
3̂
= −ω3̂

2̂
= ± ξζ′ − ζξ′

2ζ
√

ξζ − ξ2
dr − cos θdφ,

ω0̂
2̂
= ω2̂

0̂
= −

√

1− ξ

ζ
dθ ±

√

(1− ξ)(ζ − ξ)

ξζ
sin θdφ,

ω0̂
3̂
= ω3̂

0̂
= ∓

√

(1 − ξ)(ζ − ξ)

ξζ
dθ −

√

1− ξ

ζ
sin θdφ,

ω1̂
2̂
= −ω2̂

1̂
= − 1√

ζ
dθ ±

√

ζ − ξ

ξζ
sin θdφ,

ω1̂
3̂
= −ω3̂

1̂
= ∓

√

ζ − ξ

ξζ
dθ − 1√

ζ
sin θdφ,

(17)

where we have substituted that cosα =
√

ξ/ζ. And the
new tetrad can be obtained by performing the transform

Λ on the diagonal tetrad (6):

h̊0̂ =dt−
√

ζ

ξ
− ζdr,

h̊1̂ =−
√

1− ξ sin θ cosφdt+

√

ζ

ξ
sin θ cosφdr

+

(
√

ξ

ζ
cos θ cosφ±

√

1− ξ

ζ
sinφ

)

rdθ

−
(
√

ξ

ζ
sinφ∓

√

1− ξ

ζ
cos θ cosφ

)

r sin θdφ,

h̊2̂ =−
√

1− ξ sin θ sinφdt+

√

ζ

ξ
sin θ sinφdr

+

(
√

ξ

ζ
cos θ sinφ∓

√

1− ξ

ζ
cosφ

)

rdθ

+

(
√

ξ

ζ
cosφ±

√

1− ξ

ζ
cos θ sinφ

)

r sin θdφ,

h̊3̂ =−
√

1− ξ cos θdt+

√

ζ

ξ
cos θdr

− r

√

ξ

ζ
sin θdθ ∓ r

√

1− ξ

ζ
sin2 θdφ.

(18)
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IV. FLAT SPACETIME LIMIT AND SOME

EXAMPLES

In flat limit ξ = ζ = 1, the tetrad (18) becomes

h̊a|ξ=ζ=1 = (dt, dx1̂, dx2̂, dx3̂) , (19)

namely holonomic, and the torsion 2-form T a = d̊ha =

ddxa vanishes since the components of h̊a|ξ=ζ=1 are ex-
act, which is expected for flat spacetime. This means that
the legs of the tetrad (19) are aligned everywhere and
the spurious inertial effects are removed, which makes
Eq.(19) ideal for the proper tetrad for flat spacetime. In
this case, the spin connection (17) becomes

ω2̂
1̂
= dθ, ω3̂

1̂
= sin θdφ, ω3̂

2̂
= cos θdφ, (20)

which is the same as the spin connection introduced
in Ref.[14]. Together with the non-flat diagonal tetrad
(6), this spin connection gives a specific choice of proper
tetrad introduced in Refs.[13, 14]:

h̃0̂ =
√

ξdt

h̃1̂ =
√

ζ sin θ cosφdr + r cos θ cosφdθ + r sinφ sin θdφ

h̃2̂ =
√

ζ sin θ sinφdr + r cos θ sinφdθ + r cosφ sin θdφ

h̃3̂ =
√

ζ cos θdr − r sin θdθ.

(21)

Eq.(21) also reduces to the holonomic (19) in the flat
limit ξ = ζ = 1. That is, the new proper tetrad (18)
coincides with the proper tetrad introduced in Refs.[13,
14] in flat limit. In fact, utilizing the flat limit as the
reference tetrad and solving

T a|ξ=ζ=1 = dha + ωa
b ∧ hb = 0 (22)

for ωa
b is exactly how Eq.(20) is obtained[14, 16], where

ha is any given tetrad, and in the current case it is the
diagonal one (6). This procedure bears a simple but im-
portant facts that the torsion 2-form should ideally van-
ish in flat spacetime limit. However, as is shown, the
tetrad (21) is not the only choice of proper tetrad that
can carry out this idea. For non-flat spacetime (5), spin
connections with certain combinations of ξ and ζ can
also make it, as long as they reduce to Eq.(20) in the
limit ξ = ζ = 1. Or equivalently, certain tetrads are also
suitable to be considered as the proper tetrad if they can
reduce to Eq.(19) in the flat limit. Undoubtedly, our new
tetrad (18) is one of them.
In the underlying static spherically symmetric case, the

new proper tetrad (18) will lead to the torsion scalar

T =
2

r2ζ2
(

ζ2 − ζ + rζ′
)

, (23)

whereas if one uses Eq.(21) as the proper tetrad[13, 14],
the torsion scalar will be

T = −2
(√
ζ − 1

) (

ξ −
√
ζξ + rξ′

)

r2ζξ
. (24)

In certain teleparallel gravities like TEGR or f(T ) grav-
ity, the difference between Eqs.(23) and (24) will lead to
different behaviors of the field equations in that Eq.(24)
will encounter apparent singularities at the possibly ex-
isting horizon(s) where ξ → 0, while Eq.(23) will behave
regularly. Hence the new proper tetrad and the tetrad
introduced in Refs.[13, 14] describe physically different
strong field situations.
For example, in TEGR, due to the equivalence to GR,

Schwarzschild vacuum ξ = 1/ζ = 1 − rs
r

is surely one of
the solutions. In fact, different choices of proper tetrad
can be utilized to obtained this solution in TEGR[16]. In
this case, the tetrad in [13, 14] leads to

T = − 2

r2

(

√

r − rs
r

+

√

r

r − rs
− 2

)

, (25)

which is obviously divergent at the horizon r = rs,
whereas the new proper tetrad constructed in this pa-
per leads to T = 0.
For general f(T ) theories with the action

S = − 1

16πG

∫

ef(T )d4x+

∫

eLmd
4x (26)

where e = det(eaµ) and Lm is the matter Lagrangian, we

consider a simple model f(T ) = T + λT 2 here for ex-
emplification. The new proper tetrad leads to the static
spherically symmetric field equations
(

ζ2 + rζ′ − ζ
) [(

r2 + 2λ
)

ζ2 + 2rλζ′ − 2λζ
]

= 0, (27)

and

ξ
[

r2
(

ζ3 − ζ4
)

+ 2λ
(

2ζ3 − ζ4 + r2ζ′2 − ζ2
)]

+ rξ′
[

ζ3r2 + 4λζ
(

ζ2 + rζ′ − ζ
)]

= 0.
(28)

The solutions would be

ξ =
1

ζ
= 1− rs

r
, or ξ =

1

ζ
= 1 +

r2

6λ
− rd

r
, (29)

where rs, rd are integral constants, which means that the
only solutions in T + λT 2 model are the Schwarzschild
one and the Schwarzschild-(anti) de Sitter one. On the
other hand, when taking the tetrad (21) as the proper
tetrad, it is known that the Schwarzschild vacuum is not
a solution to the field equations if f(T ) is not a linear
function of T [11, 24].
In the cosmological scenario,

ds2 = dt2 − a2

1− kr2
dr2 − a2r2(dθ2 + sin2 θdφ2) (30)

where a(t) is the scale factor, a “good” tetrad has been
preferred[10, 11, 25] in pure-tetrad formalism. The non-
vanishing components of the spin connection associated
with this preferred tetrad for k = +1 has also been listed
in Ref.[26]. Since in this scenario the freely falling frame
is the comoving one, our construction of proper tetrad
coincides with this preferred tetrad.
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V. CONCLUSION AND DISCUSSIONS

In the present paper, we have constructed a new tetrad
that can be considered as the proper tetrad for non-flat
spacetime. The new tetrad coincides with the tetrad pro-
posed in Refs.[13, 14] in flat limit, and hence can also
realize the simple but important idea that the torsion
2-form should vanish in flat spacetime. In cosmological
scenario, our construction of proper tetrad coincides with
the preferred “good” tetrad[10, 11, 25] in pure-tetrad for-
malism. In the strong field regime, the new tetrad leads
to different behaviors of the field equations in that they
will not encounter singularities at the possibly existing
horizon(s), thus can help with the search and analysis of
the strong field solutions in teleparallel gravities.

With this new proper tetrad, the Schwarzschild vac-
uum leads to a vanishing torsion scalar T = 0. Since in
torsion-based gravities, the torsion scalar T takes a po-
sition similar to that of the Ricci scalar R in curvature-
based gravities, this result is an direct analogue of the
vanishing R in the Schwarzschild vacuum. Due to the
equivalence, the Schwarzschild vacuum is no doubt one
of the solutions in TEGR. Although any tetrad including
the diagonal one can be used to obtain this solution, it is
still necessary to consider the choice of proper tetrad in
TEGR for the regularization reason[13, 27]. Simple cal-
culation shows that our proper tetrad will also success-
fully regularize the four-momentum for the Schwarzschild
metric.

Furthermore, using the new proper tetrad, we have also
consider a simple model of f(T ) gravities with f(T ) =
T +λT 2, which has been previously considered in various
cases[18–21]. Here we have proved that this model has
only the Schwarzschild and Schwarschild-(anti) de Sitter

solutions. This suggests that with the new proper tetrad,
the TEGR solutions are also solutions to f(T ) as argued
in Refs.[11, 23], and hence there is a greater chance to find
physical application for f(T ) gravities. This result may
be extended to a more general f(T ) model. It is known
that in f(R) gravities[28, 29], setting R = const. will lead
to the absence of new solution other than the general
relativistic ones. Without this setting, the possibility
of having new solutions in fact lies in the higher order
derivatives of the field equation. Since f(T ) gravities
feature in second order derivatives as in GR, it will not
be surprising that they have only the current solutions.
Nonetheless, at perturbation level, it is still possible to
tell apart the f(T ) solutions from the GR ones as in f(R)
cases[30]. A general f(T ) model and its perturbation will
be considered in the future.
The study presented in the current paper shows that

there are different choices of tetrad that can be consid-
ered as the proper tetrad for teleparallel gravities. Inves-
tigating this issue may hopefully pave the way to finding
and analyzing the spherically symmetric solutions, such
as black holes, wormholes and other astrophysical stars
in teleparallel gravities, as well as to the construction of
strong field solutions with other symmetry. With the his-
toric detection of gravitational waves, it is important to
be able to study the strong field behaviors of teleparallel
gravities if there is any chance in testing them using this
powerful tool.
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[11] N. Tamanini and C. G. Böhmer, Phys. Rev. D 86, 044009

(2012).

[12] Y. N. Obukhov and G. F. Rubilar, Phys. Rev. D 73,
124017 (2006).

[13] T. G. Lucas, Y. N. Obukhov, and J. G. Pereira, Phys.
Rev. D 80, 064043 (2009).
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