
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Critical behavior in 3D gravitational collapse of massless
scalar fields

Nils Deppe, Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky
Phys. Rev. D 99, 024018 — Published 10 January 2019

DOI: 10.1103/PhysRevD.99.024018

http://dx.doi.org/10.1103/PhysRevD.99.024018


Critical behavior in 3-d gravitational collapse of massless scalar fields

Nils Deppe,1, ∗ Lawrence E. Kidder,1 Mark A. Scheel,2 and Saul A. Teukolsky1, 2

1Cornell Center for Astrophysics and Planetary Science,
Cornell University, Ithaca, New York 14853, USA

2Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA
(Dated: December 18, 2018)

We present results from a study of critical behavior in 3-d gravitational collapse with no symmetry
assumptions. The source of the gravitational field is a massless scalar field. This is a well-studied
case for spherically symmetric gravitational collapse, allowing us to understand the reliability and
accuracy of the simulations. We study both supercritical and subcritical evolutions to see if one
provides more accurate results than the other. We find that even for non-spherical initial data with
35 percent of the power in the ` = 2 spherical harmonic, the critical solution is the same as in
spherical symmetry.

I. INTRODUCTION

Critical behavior in the gravitational collapse of a
massless scalar field was discovered by Choptuik [1], who
sought to answer the question “What happens at the
threshold of black hole formation?” Choptuik considered
a massless scalar field undergoing gravitational collapse
in a spherically symmetric spacetime. He found that for
some parameter p in the initial data, for example the
amplitude of a Gaussian-distributed scalar field, the fi-
nal mass of the black hole is related to p by

MBH ∝
∣∣∣∣ pp? − 1

∣∣∣∣γM . (1)

Here p? is the critical value of the parameter p that sep-
arates initial data that form a black hole (supercritical)
from initial data that do not form a black hole (sub-
critical). Choptuik observed that the critical exponent
γM is independent of the initial data chosen—the criti-
cal behavior is universal. The currently accepted value
of the critical exponent is γM = 0.374 ± 0.001 [2]. Not
much later, Garfinkle and Duncan [3] discovered that in
subcritical evolutions the maximum absolute value of the
Ricci scalar at the center of the collapse obeys the scaling
relation

Rmax ∝
∣∣∣∣ pp? − 1

∣∣∣∣2γRmax

. (2)

Interestingly, γRmax
was found to have the same value as

γM .
Another key aspect of the critical behavior observed

by Choptuik is that of a discretely self-similar solution,
or “echoing”. In the strong-field regime near the criti-
cal solution, Choptuik noticed that any gauge-invariant
quantity U obeys the relation

U(T , xi) = U(e∆T , e∆xi), (3)
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where ∆ is a dimensionless constant. Here T = τ − τ?,
where τ is the proper time of a central observer and τ?
is the value of τ when a naked singularity forms in the
limit p→ p?. τ? is referred to as the accumulation time.
As one moves closer in time to the critical solution by
e∆, the same field profile is observed for U but at spatial
scales e∆ smaller. The echoing period ∆, like the critical
exponent, is universal in the sense that it does not depend
on the initial data, only on the type of matter undergoing
gravitational collapse. The currently accepted value for
a massless scalar field is ∆ = 3.4453± 0.0005 [2].

Since the seminal work by Choptuik, many studies to
better understand critical behavior in gravitational col-
lapse have been performed. Studies of critical collapse of
a massless scalar field in spherical symmetry have found
that the critical exponent and echoing period are both
independent of the initial data profile but depend on the
dimensionality of the spacetime [4–7]. Similar studies
observed that the critical exponent, echoing period, and
possibly even the type of phase transition are changed
in modified theories of gravity [8, 9]. Interestingly, the
presence of critical behavior appears to be independent of
the matter source, but the value of the critical exponent,
echoing period, and type of phase transition depend on
the type of matter [10–17]. Vacuum critical collapse was
first studied in [18, 19], which found that critical behav-
ior is present and that the critical exponent and echoing
period have values different from those found in simula-
tions with matter. Unfortunately, studying vacuum grav-
itational collapse has proven to be quite difficult [20–23].

In critical collapse the phase transition is either Type
I or Type II. In Type II phase transitions the black hole
mass continuously goes to zero as p? is approached. This
has been the most common case observed so far when
studying critical collapse. In Type I transitions the mass
of the black hole that forms approaches a constant, non-
zero value as p? is approached. Type I phase transitions
have been clearly identified in critical collapse of a mas-
sive scalar field[12]. The discussion in this paper is only
relevant for Type II critical behavior.

In 1997 both Gundlach [2], and Hod and Piran [24]
independently discovered fine structure in addition to the
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power-law behavior of the black hole masses: There is
a small-amplitude modulation of (1). Specifically, the
scaling relation is altered to

ln(MBH) =γM ln |p/p? − 1|+ C

+A sin(w ln |p/p? − 1|+ δ), (4)

where C, A, w, and δ are constants. These authors pre-
dicted and verified that w = ∆/(2γM ) for massless scalar
field collapse in spherical symmetry. Whether or not this
relation holds for different matter sources and beyond
spherical symmetry is an open question.

Unfortunately, answering the question of how symme-
try assumptions affect the critical exponent and echoing
period has turned out to be quite challenging. The rea-
son is that spatiotemporal scales varying over four to six
orders of magnitude must be resolved in order to prop-
erly study the fine structure and echoing, and a large
number of high-resolution simulations are necessary. In
addition, the well-posedness and stability of the formu-
lation of the Einstein equations solved and the choice of
gauge has proven to be as problematic here as in other
simulations in numerical relativity. Akbarian and Chop-
tuik [25] have recently studied how formulations of the
Einstein equations commonly used for binary black hole
mergers behave when studying critical collapse. How-
ever, that work was restricted to spherical symmetry.

Critical collapse of a massless scalar field in axial sym-
metry was studied using perturbation theory by Martin-
Garcia and Gundlach [26], who found that all non-
spherical modes decay. In 2003 Choptuik et. al [27] per-
formed numerical simulations of massless scalar field col-
lapse in axial symmetry. They found that the critical
solution in this case is the same as the solution found in
spherical symmetry. However, in contrast to [26], they
also found tentative evidence for a non-decaying l = 2
mode. More recently, Healy and Laguna [28] studied
critical collapse of a massless scalar field that is sym-
metric about the xz-plane. Healy and Laguna observed
results consist with spherically symmetric collapse, but
were unable to verify the echoing of gauge-independent
fields. The work of Healy and Laguna has been followed
by a study of massless scalar field collapse with a quartic
potential by Clough and Lim [29]. Clough and Lim also
studied initial data similar to that of [28] and obtained
results similar to those of Healy and Laguna.

In this paper we present a study of critical collapse of a
massless scalar field with no symmetry assumptions, and
the first study beyond spherical symmetry that is able to
resolve the fine structure in the black hole mass scaling
relation. We are able to resolve small-scale dynamics in
both supercritical and subcritical evolutions, allowing us
to directly compare the results. In §II we review the
equations solved, in §III we discuss the initial data used,
in §IV we provide details about the numerical method,
in §V we present the results, and we conclude in §VI.

After this work was completed, a paper by Baumgarte
appeared[30] in which axially symmetric initial data sim-

ilar to that of [27] is studied. We discuss the relation
between this paper and our work at the end of §V.

II. EQUATIONS

We study the dynamics near the critical solution in
gravitational collapse of the Einstein-Klein-Gordon sys-
tem. We solve the Einstein equations,

Rab = 8π

(
Tab −

1

2
ψabT

c
c

)
(5)

where Rab is the Ricci tensor, ψab the spacetime metric,
and Tab the stress tensor. Here and throughout the rest
of the paper we will use latin indices at the beginning of
the alphabet, e.g. a, b, c, . . . to refer to spacetime indices
running from 0 to 3, and later indices, i, j, k, . . . to refer
to spatial indices running from 1 to 3. We use the ADM
form of the metric,

ds2 = −N2dt2 + gij
(
N idt+ dxi

) (
N jdt+ dxj

)
(6)

where N(t, xi) is the lapse, N j(t, xi) the shift, and
gij(t, x

k) the spatial metric. We denote the timelike unit
normal orthogonal to the spacelike hypersurfaces by

ta = (N−1,−N i/N). (7)

We solve Eq. (5) using a first-order generalized harmonic
(GH) formulation [31].

The matter source is a massless scalar field ϕ with

Tab = ∂aϕ∂bϕ−
1

2
ψabψ

cd∂cϕ∂dϕ. (8)

To bring the resulting equations of motion into
first-order form, we define the auxiliary variables
Φi = ∂iϕ and Φiab = ∂iψab, and the conju-
gate variables Π = −N−1

(
∂tϕ−N i∂iϕ

)
and Πab =

−N−1
(
∂tψab −N iΦiab

)
.

The first-order GH system is [31]

∂tψab− (1 + γ1)Nk∂kψab = −NΠab − γ1N
iΦiab, (9)

∂tΠab−Nk∂kΠab +Ngki∂kΦiab − γ1γ2N
k∂kψab

=2Nψcd
(
gijΦicaΦjdb −ΠcaΠdb − ψefΓaceΓbdf

)
− 2N∇(aHb) −

1

2
NtctdΠcdΠab −NtcΠcig

ijΦjab

+Nγ0

(
2δc(atb) − ψabtc

)
(Hc + Γc)

− γ1γ2N
iΦiab

− 16πN

(
Tab −

1

2
ψabT

c
c

)
, (10)

∂tΦiab−Nk∂kΦiab +N∂iΠab −Nγ2∂iψab

=
1

2
NtctdΦicdΠab +NgjktcΦijcΦkab

−Nγ2Φiab, (11)
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where Ha is the so-called gauge source function and must
satisfy the constraint Ha = ψabΓ

b
cdφ

cd. The parame-
ters γ0, γ1 and γ2 are described in §IV D. The first-order
massless-Klein-Gordon system is

∂tψ =N i∂iψ −NΠ + γKG1 N i (∂iψ − Φi) , (12)

∂tΠ =NΠK +N i∂iΠ +NΦig
jkΓijk

+ γKG1 γKG2 N i (∂iψ − Φi)

− gij (N∂jΦi + Φj∂iN) , (13)

∂tΦi =−N∂iΠ−Π∂iN − γKG2 N (Φi − ∂iψ)

+N j∂jΦi + Φj∂iN
j . (14)

The parameters γKG1 and γKG2 are described in §IV D,
and K is the trace of the extrinsic curvature.

III. INITIAL DATA

We generate initial data for the evolutions by solv-
ing the extended conformal thin-sandwich equations [32]
using the spectral elliptic solver [33] in SpEC [34]. The
contributions to the equations from the scalar field are
given by

ρ =tatbTab =
1

2

(
Π2 + gijΦiΦj

)
, (15)

Si =− gijtaTaj = gijΠΦj , (16)

and

S =gijg
iagjbTab =

1

2

(
3Π2 − gijΦiΦj

)
, (17)

where gia projects the spacetime index a onto the spatial
hypersurface orthogonal to ta.

Let r = δijx
ixj and

f(r) = ϕ0 exp

[
−
(
r − r0

σ

)2
]
. (18)

For concreteness we focus on three types of initial data:
spherically symmetric data given by

ϕ(t, xi) = ϕsph =
f(−r) + f(r)

r
, (19)

data where the second term has no y-coordinate depen-
dence (recall xz ∼ r cosφ sin 2θ) similar to that studied
in [28, 29]

ϕ(t, xi) = ϕ<(Y 2
1 ) := ϕsph (1− δ cosφ sin 2θ) , (20)

and finally generic initial data of the form

ϕ(t, xi) = ϕ3−d := ϕsph

{
1− δ

1.56
[(cosφ+ sinφ) sin 2θ

−
(
3 cos2 θ − 1

)]}
. (21)

The conjugate momentum to the ϕ in the spherically
symmetric case is given by

Πsph =
∂rf(−r)− ∂rf(r)

r
, (22)

and is multiplied by the same non-spherical terms as ϕ.
This is ingoing spherical wave initial data. The numerical
factor 1.56 is chosen so that when δ = 1, the maximum
of the second term is approximately unity. We choose
σ = 1 and r0 = 5 for the results presented here. For the
initial data (20) we (arbitrarily) choose δ = 0.9 and for
data given by (21) we choose δ = 1.

IV. NUMERICAL METHODS

A. Domain Decomposition

SpEC decomposes the computational domain into pos-
sibly overlapping subdomains. Within each subdomain a
suitable set of basis functions that depends on the topol-
ogy of the subdomain is chosen to approximate the so-
lution. The domain decomposition for finding the ini-
tial data is a cube at the center with an overlapping
spherical shell that is surrounded by concentric spheri-
cal shells. For the evolution, a filled sphere surrounded
by non-overlapping spherical shells is used until a black
hole forms. At this point a ringdown or excision grid
nearly identical to that used during the ringdown phase
of binary black hole merger evolutions is used [35–37].
The ringdown grid consists of a set of non-overlapping
spherical shells with the inner shell’s inner radius ap-
proximately 94% of the apparent horizon radius.

B. Dual Frames and Mesh Refinement

To resolve the large range of spatial and temporal
scales required, finite-difference codes typically use adap-
tive mesh refinement (AMR). However, for the spa-
tiotemporal scales required here, AMR is computation-
ally prohibitively expensive in 3+1 dimensions without
any symmetries.
SpEC achieves its high accuracy by using spectral meth-

ods to solve the PDEs rather than finite differencing. In
addition, two further tools are employed to achieve high
accuracy: dual frames [36–38] and spectral AMR [39].

In the dual frames approach, the PDEs are solved in
what is called the grid frame. This frame is related
to the “inertial frame”, the frame in which the PDEs
are originally written, by time-dependent spatial coordi-
nate maps. The dual frames method “moves” the grid
points inward as the scalar field collapses, which gives
an additional two orders of magnitude of resolution com-
pared to the initial inertial coordinates without the use
of any mesh refinement. We also employ a coordinate
map to slowly drift the outer boundary inward so that
any constraint-violating modes near the outer boundary
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are propagated out of the computational domain. While
the slow drift of the outer boundary is not essential for
stability, it is helpful in long evolutions.

Denote the coordinate map that moves the grid points
inward during collapse by Mscaling and the map that
drifts the outer boundary inward by Mdrift. Then the
coordinate map used during collapse before a black hole
forms is given by Mcollapse = Mdrift ◦ Mscaling. The
mapping Mcollapse relates the initial coordinates, x̄i to
the grid coordinates xi by x̄i = Mcollapsex

i. The spe-
cific spatial coordinate map we use for both Mdrift and
Mscaling is of the form

r̄ = a(t)r + [1− a(t)]
r3

r2
outer

, (23)

where r = δijx
ixj , r̄ = δij x̄

ix̄j , a(t) is a time-dependent
function we call an expansion factor, and router is a pa-
rameter of the map. For Mscaling we choose

ascaling(t) = A exp

[
−
(

t

σscaling

)2n
]

+B (24)

with A = 0.99, B = 0.01, n = 2 and σscaling = 3.8. The
value of router forMscaling is router = 100. ForMdrift we
use router = 180 and

adrift(t) = 1 + v
t3

b+ t2
, (25)

with b = 10−4 and v = −3.23 × 10−3. We find these
choices for the coordinate maps lead to accurate and sta-
ble long-term evolutions with sufficient resolution to re-
solve both scaling and echoing.

After an apparent horizon is found we switch over to
an excision grid and use the same coordinate maps used
in the ringdown portion of the binary black hole evolu-
tions [35–37]. Specifically, we excise the interior of the
apparent horizon with the excision surface’s radius be-
ing approximately 94 per cent of the apparent horizon’s
coordinate radius. Near the apparent horizon, all the
characteristics are directed toward the center of the ap-
parent horizon and so no boundary conditions need to
be imposed there. Thus, as long as the excision surface
remains close to the apparent horizon, the simulation
remains stable without the need to impose additional
boundary conditions. One difficulty is that during the
very early phase of ringdown the apparent horizon’s co-
ordinate radius increases very rapidly. To deal with the
rapid expansion, a control system is used to track the
apparent horizon and adjust the location of the excision
boundary to follow the apparent horizon [35, 37, 38].

While the spatial coordinate maps work extremely well
for resolving the small length scales that appear near
the critical solution, they do not provide any guaran-
tees about the truncation error of the simulations. The
temporal error is controlled by using an adaptive, fifth-
order Dormand-Prince time stepper. The spatial error is
controlled using the spectral AMR algorithm described

in [39]. Using AMR we control the relative error in the
metric, the spatial derivative of the metric and the conju-
gate momentum of the metric. For the results presented
in this manuscript we set a relative maximum spatiotem-
poral error of 10−8.

C. Gauge Choice

In binary black hole evolutions with the GH system,
large constraint violations occur unless an appropriate
gauge condition is chosen. The key ingredient in a suc-
cessful choice [40] is to control the growth of

√
g/N ,

where g is the determinant of the spatial metric. As
one might expect, evolutions of critical behavior at black
hole formation require even more stringent control of the
gauge than in binary simulations. We find that with-
out such control, explosive growth in both

√
g/N and

1/N prevents the code from finding an apparent horizon
before the constraints blow up and the evolution fails.
Accordingly, we adopt a modified version of the damped
harmonic gauge used in Ref. [40]:

Ha =

[
µL,1 log

(√
g

N

)
+ µL,2 log

(
1

N

)]
ta

− µSN−1gaiN
i. (26)

The coefficients µL,1, µL,2 and µS are described below.
Fortunately, the region of the spatial hypersurfaces

where
√
g/N diverges is different from that where 1/N

diverges and so having the coefficients µL,1 and µL,2 de-
pend on log(

√
g/N) and log 1/N respectively allows us

to control both divergences with a single equation. The
functional forms of the coefficients are

µL,1 =R(t)W (xi)

[
log

(√
g

N

)]4

, (27)

µL,2 =R(t)W (xi)

[
log

(
1

N

)]4

, (28)

and

µS =µL,1. (29)

The roll-on function R(t) is given by

R(t) = 1− exp

[
−
(
t− t0
σt

)4
]
, (30)

where we choose t0 = 0 and σt = 2, while the spatial
weight function, W (xi) is given by

W (xi) = exp

[
−34.54

(
r

rmax

)2
]
, (31)

where we set rmax = 30. The function R(t) is used
to transition from the initial maximal slicing to the
damped harmonic gauge needed later in the evolution,
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while W (xi) makes the gauge be pure harmonic near the
outer boundary of the computational domain. The log
factors in Eq. (27) and (28) make the gauge pure har-
monic in the region of the spatial slice where

√
g/N and

1/N are near unity, respectively. We found that using
the fourth power as opposed to the second power that is
typically used for controlling the growth of

√
g/N in bi-

nary black hole evolutions is required for stable long-term
evolutions.

D. Constraint Damping

Both the Klein-Gordon and the GH system have con-
straints that must remain satisfied during evolutions. For
the Klein-Gordon system the constraint is

CKGi = ∂iψ − Φi = 0. (32)

The constraints for the GH system are given in refer-
ence [31].

Failure to satisfy the constraints indicates that the nu-
merical simulation is no longer solving the physical sys-
tem of interest and should not be trusted. To control
growth of constraint violations from numerical inaccu-
racies, constraint damping parameters are added to the
evolution equations. For the GH system the constraint
damping parameters are γ0, γ1 and γ2, and for the Klein-
Gordon system γKG

1 and γKG
2 . See Eqs.(9–14) for how the

constraint damping parameters appear in the evolution
equations. We find that choosing γKG

1 = 1 and γKG
2 = 0

works well for the scalar field. For the GH system, find-
ing good constraint damping parameters is more difficult,
especially during ringdown. The dimensions of the con-
straint damping parameters are time−1, which suggests
that for smaller black holes where the characteristic time
scale is shorter, the constraint damping parameters must
be increased. During ringdown we choose

γ0 = A0 exp

(
− r2

102

)
+ 10−3, (33)

γ1 = A1

[
exp

(
− r2

10002

)
− 1

]
, (34)

γ2 = A2 exp

(
− r2

102

)
+ 10−3, (35)

with A0 ∈ [20, 100], A1 = 0.999, and A2 ∈ [20, 80].
Larger values of A0 and A2 are used for smaller black
holes. During the collapse phase of the evolutions we
find less sensitivity to the choice of the damping param-
eters. We use the same functional form as during the
ringdown but always choose A0 = A2 = 20.

V. RESULTS

All files used to produce figures in this paper, including
the data, are available from the arXiv version of this
paper.

A. Scaling

In this section we present two sets of scaling relations.
The first involves the final mass of the black hole MBH

for supercritical evolutions. For each class of initial data
we evolve the data with amplitudes large enough that
a black hole forms and gradually decrease the ampli-
tude. While decreasing the amplitude we focus on simu-
lations that form a black hole. Rather than performing
a binary search to estimate p?, we fit the relationship
ln(MBH) = γ ln(p/p? − 1) + C to the data for γ, p?,
and C, where we take p to be the amplitude ϕ0 of the
initial data. We then use the p? from the fit to deter-
mine an amplitude that should form a black hole but
is closer to the critical solution. This is repeated until
log10(p/p? − 1) ≈ −6, the target value. Choosing suit-
able values of p to fit for γ and ∆ is tricky. We describe
our procedure in the Appendix. Note that the relation-
ship used for determining which amplitude to use next is
not used for analyzing the results.

The second scaling relation involves, Rmax the max-
imum Ricci scalar at the center for subcritical evolu-
tions. We run simulations to obtain an approximately
even distribution of masses and maximum Ricci scalars
for ln(p/p? − 1) ∈ (−14,−5]. We estimate the errors in
the final mass of the black hole and Rmax using conver-
gence tests with values of p nearest p?.

Once we have reached the target number of simula-
tions, with the lowest amplitude that forms a black hole
having log10(p/p? − 1) ≈ −6, we fit the mass of the re-
sulting black hole to

ln(MBH) =γM ln(p/p? − 1) + CM

+AM sin
[
wM ln(p/p? − 1) + δM

]
, (36)

as suggested in [2, 24]. Note that the superscript M is not
an exponent but denotes that parameter was obtained
from fitting to the mass of the black hole rather than
the maximum Ricci scalar at the center. We find that
the probability of χ2 and the reduced χ2 are better for
this function than the one where the sinusoidal term is
omitted. We fit for all parameters in (36), including p?.
The fitting function used for the maximum Ricci scalar
at the origin is

ln(Rmax) =2γR ln(p/p? − 1) + CR

+AR sin
[
wR ln(p/p? − 1) + δR

]
. (37)

However, for consistency we use the value of p? obtained
from fitting to the masses when fitting to the maximum
Ricci scalar as well.

In Fig. 1 we plot ln(MBH) as a function of ln(p/p?−1)
for the three types of initial data studied. For data
ϕ<(Y 2

1 ) we arbitrarily choose δ = 0.9, which is a large de-
viation from the spherical solution. For reference, when
δ = 1 the scalar field profile is zero at the zeros of
1− cos(ϕ) sin(2θ). For initial data ϕ3-d we choose δ = 1,
an even stronger deviation from spherical symmetry. In
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−14 −12 −10 −8 −6 −4

ln(p/p? − 1)

−6

−5

−4

−3

−2

ln
(M

B
H

)
+
β
i

ϕsph

ϕ<(Y 2
1 )

ϕ3-d

FIG. 1. Plotted is ln(MBH) as a function of ln(p/p?−1) for the
three types of initial data studied. We find critical exponents
γM
sph = 0.3753(1), γM

<(Y 2
1 ) = 0.3748(2), and γM

3-d = 0.3761(3).

We shift the curves vertically by βi = {0.3, 0,−0.3} so that
data points from different initial data are easily distinguished.

Fig. 1 we offset the curves vertically by βi = {0.3, 0,−0.3}
so that they do not overlap and are easier to compare.
The critical exponents we find are γMsph = 0.3753(1),

γM<(Y 2
1 )

= 0.3748(2), and γM3-d = 0.3761(3), where the

number in parentheses is the uncertainty in the last digit.
These are all close to the accepted value for spherically
symmetric initial data, 0.374±0.001 [2] strongly suggest-
ing that the spherical mode dominates.

In addition to studying the final mass of the result-
ing black hole, we follow [3] and calculate the maximum
Ricci scalar at the center of the collapse for subcritical
evolutions. In Fig. 2 we plot ln(Rmax) as a function of
ln(p/p? − 1) along with a fit using Eq. (37) for the ini-
tial data studied. We again offset the plots vertically
by amounts βi = {0.4, 0,−0.4} to aid readability. In
this case we find critical exponents γRsph = 0.3787(1),

γR<(Y 2
1 )

= 0.3761(1), and γR3-d = 0.3755(2), which are

comparable to the values for mass scaling and to the ac-
cepted value in spherically symmetric critical collapse,
γ = 0.374± 0.001.

B. Echoing

Having studied the scaling we now turn to the fine
structure and echoing of the critical behavior. Echoing
of any gauge-invariant quantity was described by Eq. (3)
above. A small-amplitude sinusoidal modulation about
the straight line expected from critical behavior was con-
jectured and observed in [24]. Fig. 1 and 2 both show
this feature. In Fig. 3 we plot the residuals when fitting
only the linear term and when fitting the linear plus sine

−14 −12 −10 −8 −6

ln(1− p/p?)

5

6

7

8

9

10

11

12

13

ln
(R

m
ax

)
+
β
i

ϕsph

ϕ<(Y 2
1 )

ϕ3-d

FIG. 2. Plotted is ln(Rmax) as a function of ln(1−p/p?) for the
three types of initial data studied. We find critical exponents
γR
sph = 0.3787(1), γR

<(Y 2
1 ) = 0.3761(1), and γR

3-d = 0.3755(2).

We shift the curves vertically by βi = {0.4, 0,−0.4} so that
data points from different initial data are easily distinguished.

−14 −12 −10 −8 −6 −4

ln(p/p? − 1)

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

ln
(M

B
H

)
−

fit

Linear

Linear+Sine

FIG. 3. The residuals of the fitting ln(MBH) = γM ln(p/p? −
1) + C (blue dots) and Eq. 36 (green triangles) to the black
hole masses for the spherical symmetry case, ϕsph. The sinu-
soidal residual of the straight line fit is identical to what is
observed in [24].

term for the spherically symmetric mass scaling case.1

The sinusoidal modulation is much clearer in Fig. 3 than
in Fig. 1.

From the fit, Eq. (36), we estimate the period, T =
2π/w. In [24] it was found that the relationship between
the echoing period, ∆ and the scaling period, T is T =
∆/(2γ). To test this relationship, we calculate ∆ using T

1 The residuals of the fits for non-spherical initial data and for
Ricci scaling are qualitatively identical.
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− ln(1− τ/τ?)
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10

ln
(−
R

)
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ϕ<(Y 2
1 )

ϕ3-d

FIG. 4. Plotted is ln(R(t, r = 0)) as a function of ln(1−τ/τ?)
for the three types of initial data studied. The echoing is
clearly visible and very similar between the different evolu-
tions, which all have ln(1 − p/p?) ≈ −6. The echoing period
is ∆ = 3.2± 0.1 for all simulations.

Initial Data 2γMTM 2γRTR ∆echoing

ϕsph 3.46± 0.01 3.557± 0.001 3.2± 0.1
ϕ<(Y 2

1 ) 3.46± 0.02 3.518± 0.002 3.2± 0.1

ϕ3−d 3.67± 0.04 3.512± 0.003 3.2± 0.1

TABLE I. Comparison of 2γMTM and the echoing period ∆.
In [24] it was found that ∆ = 2γT , which we are unable
to verify within our error estimates. The accepted value of
the echoing period in spherical symmetry is ∆ = 3.4453 ±
0.0005 [2].

and also by estimating it directly from the Ricci scalar at
the origin as a function of the logarithmic time, − ln(1−
τ/τ?). τ is the proper time at the origin given by

τ =

∫ t

0

N(t̃, 0)dt̃, (38)

and τ? is the accumulation time of the self-similar solu-
tion.

We find that despite being able to resolve the fine
structure and knowing p? to six significant figures, the
estimate of τ? from the apparent horizon formation time
is only accurate to about two digits. This is because
the formation time of an apparent horizon is a gauge-
dependent quantity. We estimate τ? by assuming that
the logarithmic time between successive echoes becomes
constant and adjusting τ? until this is true. The result-
ing τ? is consistent with what we estimate from apparent
horizon formation times. In Fig. 4 we plot ln(R(t, r = 0)),
a geometric invariant, which shows the expected echoing
that has been studied in previous work [3, 6]. From Fig. 4
we estimate the echoing period to be ∆ = 3.2± 0.1.

In Table I we summarize and compare direct estimates
of ∆ to 2γT . Specifically, we find that 2γMTM ≈ 3.46,
near the best known value of ∆ = 3.4453±0.0005 [2]. For

0 2 4 6 8

− ln(1− τ/τ?)

10−5

10−4

10−3

10−2

10−1

P
ow

er
in
ϕ
`

` = 0

` = 2

FIG. 5. The power in ϕ` for ` = 0, 2 for the <(Y 2
1 ) initial

data with ϕ0 = 0.07586803.

simulations that do not form a horizon, where we com-
pute 2γRTR from the Ricci scalar scaling plot, Fig. 2,
we find that 2γRsphT

R
sph = 3.556± 0.001, 2γR<(Y 2

1 )
TR<(Y 2

1 )
=

3.518 ± 0.002, and 2γR3-dT
R
3-d = 3.512 ± 0.003. The dis-

crepancy between 2γT from mass scaling and Ricci scalar
scaling is currently not understood. When studying the
echoing of ln(−R(t, r = 0)), we find ∆ = 3.2±0.1, where
the larger error is explained by the difficulty in estimating
τ?.

A power spectrum analysis shows that the spherical
mode dominates the evolution. We define the power in a
given `-mode as

P` =
1

Nr

Nr−1∑
i=0

∑̀
m=−`

|Ci,`,m|2 (39)

where Nr is the number of radial points, and Ci,`,m are
the coefficients in spectral expansion. This definition is
consistent with Parseval’s theorem given that∫

|Y `m(θ, φ)|2dΩ = 1. (40)

Also note that with this definition at a given radius∫
|f(θ, φ)|2dΩ =

∞∑
`=0

P`. (41)

For the <(Y 2
1 ) data we find that initially

P2

P0
=

27

125
⇒ P2∑

` P`
=

P2

P0 + P2
≈ 0.18, (42)

or that approximately 18 percent of the power is in the
` = 2 mode. For the 3-d initial data we find that initially

P2

P0
≈ 0.548⇒ P2∑

` P`
=

P2

P0 + P2
≈ 0.35, (43)
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or that approximately 35 percent of the power is in the
` = 2 mode.

In Fig. 5 we plot the power in ϕ` for ` = 0, 2 for the
<(Y 2

1 ) initial data. Fig. 5 shows that the ` = 2 mode
decays much more rapidly than the ` = 0 mode, sug-
gesting that the spherically symmetric critical solution is
approached. However, given the different initial data and
that we are further from the critical solution than [27],
we are unable to corroborate or dispute their results.

The initial data used in [30] is given by

ϕY 2
2

=ϕ0 exp

(
− r

r0

)[
sin2 θ +

(
1− δ2

)
cos2 θ

]
=ϕ0 exp

(
− r

r0

)(
1− δ2 + δ2 sin2 θ

)
. (44)

The deformation in this case is proportional to the Y ±2
2

spherical harmonics as opposed to the Y 1
2 spherical har-

monic. Ref. [30] found that for δ = 0.75 the critical
behavior differs significantly from that of the spherically
symmetric evolutions. For example, the critical exponent
is observed to be γ ≈ 0.306. The percentage of the power
in the ` = 2 mode for δ = 0.75 is approximately 47 per-
cent. This is 12 percent more than our 3-d initial data
that has behavior consistent with the spherically sym-
metric evolutions. This raises the question as to whether
the reason [30] see different behavior is because of the
increased power in the ` = 2 modes or because the ini-
tial data is proportional to the Y ±2

2 spherical harmonics
instead of the Y 1

2 spherical harmonic. Work is underway
to attempt to resolve this question.

VI. CONCLUSIONS

We present results of a study of critical behavior in
the 3-d gravitational collapse of a massless scalar field
with no symmetry assumptions. We are able to resolve
the dominant critical behavior as well as the fine struc-
ture in both supercritical and subcritical evolutions. We
use the Spectral Einstein Code, SpEC [34] to perform the
evolutions, with several key changes to the gauge condi-
tion and constraint damping. We study how the critical
exponent and echoing period obtained from the data de-
pend on how close to the critical solution the simulations
are, as well as how the simulations are distributed in pa-
rameter space. This is especially important in 3-d where
simulations are costly to perform. We find the critical
exponents to be γMsph = 0.3753(1), γM<(Y 2

1 )
= 0.3748(2),

and γM3-d = 0.3761(3), consistent with the accepted re-
sult in spherical symmetry of 0.374 ± 0.001 [2]. The ac-
cepted value of the echoing period ∆ in spherical sym-
metry is ∆ = 3.4453 ± 0.0005 [2], while we find echo-
ing periods ∆ = 3.2 ± 0.1 for all initial data consider.
The discrepancy can be attributed to the difficulty in di-
rectly measuring the echoing period. We also test the
predicted relationship [2, 24] between the echoing pe-
riod and the fine structure of the scaling, 2γT = ∆.

We find that for mass scaling 2γMsphT
M
sph = 3.46 ± 0.01,

2γM<(Y 2
1 )
TM<(Y 2

1 )
= 3.46±0.02, and 2γM3-dT

M
3-d = 3.67±0.04,

where TM is the period of the sinusoidal fine structure.
The agreement of the critical exponent, echoing period,

and fine structure between the spherically symmetric and
highly non-spherical simulations leads us to conclude that
even for initial data far from spherical symmetry the crit-
ical solution is that of spherical symmetry. However, the
reason why our results differ from those of [27] and [30],
where data far from spherical symmetry approaches a dif-
ferent critical solution, is not yet fully understood. One
reason for the discrepancy could be that in our data ap-
proximately 18 percent of the total power is in the ` = 2
mode for the <(Y 2

1 ) initial data and 35 percent for the
3− d initial data, while in [30] approximately 47 percent
of the power is in the ` = 2 mode. In other words, more
power than we used is needed in the ` = 2 mode. Another
possible reason is that [30] studied ` = 2,m = 2 initial
data while we study ` = 2,m = 1 initial data. Work is
underway to understand if either of these scenarios are
responsible for the discrepancy and to independently re-
produce the simulations of [30].
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Appendix: Choosing parameter values for
simulations

When estimating the error in the critical exponent γ
and 2γT , we find it important to not only consider the
error obtained from convergence tests, but also to study
how γ and 2γT depend on the number of data points, and
how close to p? the data points are. The former should
be thought of as whether or not the ln(p − p?) space is
sampled densely enough by the simulations. While reduc-
ing this error requires more (potentially costly) simula-
tions, these simulations will be similar in their dynamics
to simulations that have already been performed and so
no algorithmic changes to the code are generally required.
Determining how the closeness to p? affects γ and 2γT
is a closely related, but separate issue. We study both of
these sources of errors separately, while error estimates
from convergence tests are included as error bounds on
MBH in the fits.
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We use two methods to estimate the errors from our
sampling of the ln(p − p?) space. First, we use boot-
strapping to study how choosing different data points
from within the datasets alters the critical exponent and
2γT . Second, we build a minimal grid that achieves the
desired error tolerances by using a greedy algorithm. If
the minimal grid is the same as or quite close to our grid
we deduce that our grid may not be sufficiently dense to
accurately extract γ and 2γT . We will now outline these
methods in more detail.

The goal of bootstrapping is to resample the dataset
randomly to obtain knowledge about how well the
dataset represents the full population. This is done by
randomly selecting as many points as there are in the
dataset, while allowing repetition. Eq. (36) is then fit to
the randomly selected points to obtain the critical expo-
nent and 2γT . By repeating this procedure many times
(we choose 10,000 times) we are able to plot a histogram
of the critical exponents and values of 2γT . The variance
in both γ and 2γT is then obtained by fitting a Gaussian
to the histograms.

Using bootstrapping we find that the critical exponents
obtained from mass scaling are left unchanged to within
error with values γMsph = 0.3753(2), γM<(Y 2

1 )
= 0.3750(5),

and γM3-d = 0.376(1). For Ricci scaling, we find that the
critical exponents also do not change within error, but
the error estimate from bootstrapping is larger by ap-
proximately an order of magnitude than from the fit to
the full dataset. The values obtained for γ from Ricci
scaling are γRsph = 0.379(3), γR<(Y 2

1 )
= 0.376(3), and

γR3-d = 0.375(5). For 2γT we find qualitatively simi-
lar results to the critical exponent. Using data points
from mass scaling we find 2γMsphT

M
sph = 3.46 ± 0.03,

2γM<(Y 2
1 )
TM<(Y 2

1 )
= 3.47 ± 0.06, and 2γM3-dT

M
3-d = 3.7 ± 0.8

and from Ricci scaling we find 2γRsphT
R
sph = 3.56 ± 0.02,

2γR<(Y 2
1 )
TR<(Y 2

1 )
= 3.52±0.05, and 2γR3-dT

R
3-d = 3.51±0.07.

A greedy algorithm is designed to find the approximate
global minimum of a problem by selecting the path that
is a local minimum at each node in the decision tree. In
this case we seek the optimal values of p to determine
γ and 2γT . Assume we have a minimal dataset that al-
lows the fitting procedure to succeed. Then the greedy
algorithm randomly selects a new value of p and com-
putes the corresponding black hole mass using Eq.(36).
If adding the computed black hole mass to the dataset
decreases the error it is added, otherwise a new value of
p is selected and added if it decreases the error in γ and
2γT . This is repeated until the error in γ and 2γT is
below some specified tolerance.

The greedy algorithm method takes as input a range

of ln(p/p? − 1) in which to sample points, as well as
the fit parameters obtained from a numerical study,
i.e. p?, γ, C,A,w, and δ. Fake black hole masses are
computed using (36) and adding a random offset of at
most ±10−3 to simulate numerical errors that would be
present in the numerical simulations. The algorithm ini-
tially randomly chooses five (or six if also fitting for p?)
data points on the specified interval of ln(p/p?−1). Next,
points are randomly added until the fitting algorithm suc-
cessfully identifies fit parameters. Then data points are
randomly chosen and added to the dataset only if they
reduce |γgreedy− γsimulation|. Data points are added until
|γgreedy − γsimulation| < 10−4.

Using the greedy algorithm, we find that for ln(p/p?−
1) ∈ [−14,−3] roughly 11 evenly spaced data points
are necessary to achieve the desired tolerance and for
ln(p/p? − 1) ∈ [−7,−3] approximately 15 evenly spaced
data points are necessary. This is far fewer than the
roughly 40 to 50 data points used for the fits to the nu-
merical simulations. One reason for the difference in the
number of data points is that, as indicated by the greedy
algorithm results, initially when we do not know p? very
accurately a denser grid is necessary to obtain a fit of
decent accuracy. Another reason is that after finding
p? to some accuracy we preformed simulations to fill a
grid with spacing of approximately 0.1 in log10(p/p?−1),
which, in hindsight was unnecessary. Finally, a factor
that was not accounted for in the greedy algorithm is that
the fitting algorithm may not succeed because a good
initial guess for the fit parameters is not known. The
greedy algorithm always used the input that we modeled
the data from.

To estimate the errors in γ and 2γT arising from how
far from criticality the simulations are, we fit to only
the lower or upper 25, 50 and 75 percent of data points.
This provides insight into how many digits of the critical
amplitude p? need to be resolved for the fits to be reliable.
We note that this test only determines whether or not γ
and 2γT are locally constant in ln(p−p?) space. The test
cannot make any pdefinitive statements about γ and 2γT
far outside this range, though this remains true regardless
of how close to machine precision 1− p?/p is.

By fitting to only a subset of the dataset, we observe
that when fewer than two to three significant figures of
p? are known, the linear + sine fit either fails to converge
or else exhibits high sensitivity to the initial guess of the
fitting parameters. However, the linear fit is still robust
in this regime. Ultimately, we find that knowing p? to
five or more significant figures provides robust fit results
and good accuracy of the local critical exponent and 2γT ,
while knowing p? to fewer digits can lead to convergent
fits that are biased by not having sufficiently resolved the
sinusoidal oscillation.
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