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Standard cosmological models rely on an approximate treatment of gravity, utilizing solutions
of the linearized Einstein equations as well as physical approximations. In an era of precision
cosmology, we should ask: are these approximate predictions sufficiently accurate for comparison
to observations, and can we draw meaningful conclusions about properties of our Universe from
them? In this work we examine the accuracy of linearized gravity in the presence of collisionless
matter and a cosmological constant utilizing fully general relativistic simulations. We observe the
gauge-dependence of corrections to linear theory, and note the amplitude of these corrections. For
perturbations whose amplitudes are in line with expectations from the standard ΛCDM model, we
find that the full, general relativistic metric is well-described by linear theory in Newtonian and
harmonic gauges, while the metric in comoving-synchronous gauge is not. For the most extreme
observed structures in our Universe, such as supervoids, our results suggest that corrections to linear
gravitational theory can reach or surpass the percent-level in all gauges.

I. INTRODUCTION

It has been demonstrated that our Universe is mostly well-described on large scales by a standard cosmo-
logical model, consisting of matter with properties similar to that of a pressureless perfect fluid and dark
energy with properties similar to that of a cosmological constant (ΛCDM). At the same time, structures
are formed through nonlinear interactions on scales only somewhat smaller than the the Hubble scale–the
Universe is decidedly inhomogeneous. These nonlinear interactions are commonly modeled using Newtonian
N-body simulations, which account for nonlinearities in the matter sector, while large-scale inhomogeneities
are commonly modeled using linear cosmological perturbation theory.

Such approximate treatments of gravitational interactions help improve the tractability of calculations,
and offer us physical insight into the dominant gravitational effects. However, the connection between such
approximate treatments and fully relativistic treatments is not often made nor fully quantified. Yet it is
necessary in order to meaningfully interpret and understand theoretical predictions, especially given a goal
of testing general relativity and alternatives to it in a cosmological setting. One concern is that, upon coarse-
graining a spacetime, we lose insight into the underlying properties of the spacetime. For example, this idea
is at the core of the Ricci-Weyl problem [1], which has been shown to have implications for how observables
are interpreted in an inhomogeneous universe [2]. Studies of nonlinear gravitational effects have also shown
that energy from small-scale gravitational interactions can have a considerable impact on the cosmological
properties of a spacetime [3, 4]. Even within a standard perturbative cosmological framework, it has been
shown that neglected relativistic effects can lead to percent-level or larger corrections when computing
observables [5–7], providing a means by which we can study general relativity beyond its dominant behavior.

Numerical relativity offers us a unified framework in which to examine such questions, providing infras-
tructure largely agnostic to gauge and matter content, which, by construction, will exactly account for all
gravitational effects. While the magnitude of effects on both observables and the spacetime metric have been
examined in a standard cosmological setting using a fully relativistic approach [8–14], a more systematic ex-
amination of the order of magnitude of corrections to standard linear calculations has not yet been made.
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To this end, we compare linear theory to fully general relativistic simulations performed without reliance
on a background model or any perturbative assumptions. We evolve a collisionless stress-energy source and
cosmological constant, with energy densities corresponding to values inferred from observations. We then
explicitly demonstrate the gauge dependence of the magnitude of corrections to linear theory, and note the
approximate order of magnitude in several commonly used gauges as a function of scale. We examine both
overdensity amplitudes predicted by the ΛCDM model, as well as larger density contrasts consistent with
observed structures.

We then examine in detail two measures of the inaccuracy of linear theory: we first compute the level
of violation of the linearized Einstein field equations, and second compute the magnitude of disagreement
of background FLRW quantities with spatially averaged quantities. The first of these measures provides us
with a way to test the accuracy of linear gravitational theory. In linear theory, fields are often transformed
between gauges using linearized definitions of gauge transformations, thus a solution obtained in one gauge
can be mapped to another gauge. Precise field values are then expected to differ between gauges, but in
any gauge, corrections to linear gravitational theory should be of order O(h2) for a metric perturbation
amplitude h [15]. On the other hand, the average behavior of spacetimes is generally expected to agree with
an FLRW model, thus we directly compare the average properties of our simulations to an FLRW model.
We observe the gauge-dependence of this, and quantify the difference we observe across a range of physical
scales.

When simulating density perturbations of statistically common amplitudes, we find that in comoving
synchronous gauge, the difference between fully relativistic and linear models of overdensities can be much
larger than Newtonian and harmonic gauges, where the difference can be extremely small. For some of the
largest structures in our Universe that have been observationally well-characterized, we find that nonlinear
effects can approach the percent level even in harmonic and Newtonian gauges, while linear theory is entirely
unable describe the synchronous gauge metric. These findings coincide with expectations: it is well-known
that the amplitude of metric perturbations can vary significantly between gauges or “slicing conditions”
[16], as noted in other approximate and analytic treatments [17, 18] as well. For density perturbations
of cosmologically common amplitudes in synchronous gauge, the metric amplitude scales roughly with the
density contrast δρ, and can therefore become quite large, while in harmonic slicing and a quasi-Newtonian
gauge, metric perturbations remain small. The amplitude of metric perturbations in the presence of extreme
structures, on the other hand, can be considerably larger than expected.

We begin in Section II by discussing the various methods we employ in order to obtain our results. In
Section II A we briefly discuss the numerical relativity formulation we use to evolve Einstein’s equations. In
Section II B we discuss the formalism we use to evolve collisionless matter and some numerical details. In Sec-
tion II C we describe the initial conditions we use in order to maintain consistency with standard cosmological
calculations, and in Section II D we provide some discussion of the different gauges we use. We conclude by
detailing our results in Section III, first describing the behavior of nonlinear corrections for various “mode-
in-a-box” simulations with matter overdensity amplitudes predicted by standard cosmological perturbation
theory, and finally performing asymmetric, fully 3-dimensional runs with observationally-motivated physical
parameters comparable to large voids and overdensities.

II. METHODS

Standard cosmology and numerical relativity employ similar, and sometimes coincident, formulations in
which to study the behavior of Einstein’s equations. Common to both is the 3+1 language, in which
the evolution of the spacetime metric is posed as a Cauchy problem, with spatial hypersurfaces evolved
forward in time. We will generally remain within this framework, although will connect to both standard
cosmological perturbation theory, which deals with the linearized Einstein equations, and formulations of
numerical relativity, which are closely related to the 3+1 decomposition.

A. Metric Evolution

We evolve the full Einstein field equations using the BSSNOK formulation of numerical relativity [19–21].
This formulation permits use of an arbitrary gauge and stress-energy source, allowing us to investigate the
accuracy of linear theory in a cosmological setting for an arbitrary gauge, or slicing condition. We begin



3

by writing two decompositions of the spacetime metric, the 3+1/ADM form, and a linearized scalar-vector-
tensor (SVT) decomposition,

gµν =

(
−α2 + βlβ

l βi
βj γij

)
(3 + 1)

=

(
−1

a2δij

)
+

(
−E a∂iF
a∂jF a2 (Aδij + ∂i∂jB)

)
+ vector + tensor . (SVT) (1)

Here, γij is the metric of a spatial hypersurface, and the parameters α and βi are the lapse and shift,
respectively. The lapse and shift are considered gauge variables, and may be freely chosen. The SVT
scalars E, F , A, and B typically describe the dominant behavior of a spacetime, especially in a linearized
gravity setting. Vector and tensor modes can formally contribute at linear order in a perturbative expansion,
but respectively decay or remain small in commonly used gauges unless sourced, and are therefore usually
neglected in simulations of large scale structures. We will not study these contributions here. The linearized
Einstein equations are also found to provide independent equations for the scalar, vector and tensor modes.

Einstein’s field equations can be written in terms of the metric, the extrinsic curvature Kij , its trace K,
and stress-energy source terms projected onto the spatial hypersurface as a system of first-order dynamical
equations. Conformally-related variants of these fields are evolved in the BSSNOK formulation. A conformal
factor related to the determinant of the metric γ is also evolved, φ ≡ ln(γ1/12), which we will refer to
later. The metric fields and extrinsic curvature also satisfy the 3+1 Hamiltonian and Momentum constraint
equations,

H = 0 = R+K2 −KijK
ij − 16πρ

Mi = 0 = Dj

(
Kij − γijK

)
− 8πSi , (2)

where Di and R are respectively the covariant derivative and Ricci scalar associated with the 3-metric γij ,
and ρ and Si are 3+1 source terms, which are given by projections of the stress-energy tensor Tµν onto
spatial hypersurfaces,

ρ = nµnνT
µν , Si = −γiknµ = T kν , Sij = γikγjlT

kl (3)

with nµ = (−α,~0).
For details on the code we use, see [22, 23], or see [24, 25] for a pedagogical introduction to numerical

relativity, including further details on the formulation we use. Importantly, in the BSSNOK formulation as
with numerical relativity formulations in general, some gauges will be more numerically stable than others.
Slicing conditions commonly found in cosmology tend to be ill-adapted for numerical evolution, including
comoving synchronous gauge, and relativistic generalizations of Newtonian gauge (see Appendix B).

To alleviate these problems, we sometimes use Z4c constraint damping while working in these gauges
[26, 27]. The Z4c formulation provides a prescription for modifying the BSSNOK formulation in order to
tend the dynamical evolution of the metric towards obeying the non-dynamical 3+1 constraint equations.
This does not guarantee better numerical convergence than the standard BSSNOK formulation, however, in
some gauges it is able to suppress the growth of numerical error that would otherwise prohibit simulations
from evolving stably at all. This formulation also provides an alternative to the constrained evolution scheme
considered in [28], in which the conformal metric factor was solved for (see also, eg. [29]).

B. Matter Evolution

In order to model dark matter, we primarily integrate the Einstein-Vlasov equations, modeled using an
N-body system in harmonic and Newtonian gauges, and a perfect fluid in comoving-synchronous gauge.
The Einstein-Vlasov equations describe a covariantly conserved phase-space density f along a trajectory
described by an affine parameter λ,

Df

dλ
= 0 . (4)

Simulations developed to solve this equation using N-body techniques within a general relativistic framework
date back to seminal work in 1985 by Shapiro and Teukolsky [30], who examined the collapse of structures
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in a dimensionally reduced setting. Fully 3+1 N-body simulations appeared as early as 1999 [31, 32], and
have recently been employed in, eg., studies of collapse [28, 33]. For our N-body simulations, we employ a
method similar to [28], making use of additional techniques in order to accelerate the numerical convergence
of simulations. Additional schemes for modeling collisionless matter both approximately and using a fully
relativistic treatment have been considered [8, 24, 34–38]; however a full review of these methods is beyond
the scope of our work.

In comoving synchronous gauge, we find poor convergence of simulations when using an N-body system.
In this gauge, the particles do not move, so small errors sourced when we compute the density field from
these particles can accumulate over time in a secular manner. This results in an unacceptably large amount
of numerical error, preventing us from obtaining reliable results. We therefore use a perfect, pressureless fluid
in synchronous gauge, which provides solutions equivalent in the continuum limit to an N-body simulation
when no stream-crossings are present.

The only variable that needs to be evolved for a pressureless fluid in comoving synchronous gauge is the
density. In particular, we can write a conservation equation for a conformally-related density field D̃,

∂tD̃ = ∂t(γ
1/2ρ0) = 0 , (5)

provided a rest-density ρ0 and metric determinant γ. We provide further details on evolving this system in
[22], and focus on describing N-body integration in the remainder of this section.

Rather than providing a fundamental description of particulate dark matter, N-body methods can be
thought of as a way of discretizing a phase-space distribution in a manner suitable for numerical integration.
This discrete representation becomes a solution to the Einstein-Vlasov equations in the continuum limit,
as the spatial resolution and number of particles tend towards infinity, and particle deposition radius tends
towards zero. We assume that the Einstein-Vlasov system provides a valid description of cold dark matter
on a wide range of scales, down to scales of order inter-particle spacing for particulate dark matter. On
smaller scales, or in scenarios where the density distribution is better described by point-like matter sources,
we may hope to gain fundamental insights into relativistic effects using, eg., black hole lattice studies [36].

In a cosmological setting, it is common to start with a uniform density distribution in phase space that
is “cold” (3-dimensional). We therefore begin by examining properties of a phase-space “sheet”, a density
distribution described by a 3-dimensional sub-manifold of 6-dimensional phase space. Locations on the sheet
can be parametrized by coordinate labels, or a 3-vector ~s. The coordinate location and velocity of each
phase-space point in configuration space will be given by the functions ~x(~s) and ~u(~s), and the phase-space
density f(~s) = const ≡ ρs will be conserved for non-interacting, collisionless matter.

In order to determine how the fields ~x and ~u evolve at each point on the sheet, we can integrate the geodesic
equations. In Newtonian gravity, these only require knowing the Newtonian potential, ΦN (~x), which in turn
is determined by the metric-space density, ρ(~x), through Poisson’s equation. In the relativistic case, the
full metric is required, which is sourced by the 3+1 stress-energy source terms. The problem is then to
determine, given a phase-space distribution f , what the physical density is. The Newtonian density is given
by the determinant of the Jacobian of the transformation between the two coordinate systems [39],

ρ(~x) = f(~s)/ det

∣∣∣∣∂~x∂~s
∣∣∣∣ . (6)

Note that ~x(~s) is not always invertible, or the Jacobian may be infinite at some points; the inverse function
~s(~x) may also be multi-valued, although ~x(~s) should not be. For further discussion of this, we refer the
reader to Appendix A and references therein.

Given this and a coordinate mapping ~x(~s), we can determine ρ(~x). The standard Newtonian N-body
prescription then discretizes the phase-space distribution at regular intervals of ~s into “particles” with a
mass m = ρsds

3, and considers the mass to be localized near a given metric-space coordinate ~x(~s). The
mass is assigned to a gridded metric-space density field using one of several mass deposition schemes. In
standard N-body codes, perhaps the most common deposition scheme is the cloud-in-cell (CIC) scheme,
which assigns particle masses to a weighted average of nearby metric-space density grid cells, so that ρ(~x) is
locally incremented by some amount m/dx3 for each particle. We additionally implement a tri-cubic spline
(TCS) deposition scheme as described in [28]. Regardless of deposition scheme, in the limit of an infinite
number of particles with infinitesimal mass, infinite resolution in metric space, and infinitesimal radius of
deposition, Eq. 6 can be recovered.
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General relativistic N-body systems extend this idea to a fully relativistic setting. For particles A with
rest mass mA, the source terms to the 3+1 equations are given by [24]

ρ =
∑
A

mAnAW
2
A

Si =
∑
A

mAnAWAu
A
i

Sij =
∑
A

mAnAu
A
i u

A
j

S = γijSij = ρ−
∑
A

mAnA (7)

where W is the relativistic Lorentz factor,

WA = αu0 =
√

1 + γijuiuj , (8)

and nA is the relativistic volume element,

nA =
1

WAγ(xA)1/2dx dy dz
. (9)

Eq. 6 also picks up a factor of
√
γ/W on the left-hand side of the equation (eg., Eq. 37). The geodesic

equations can be neatly written in terms of covariant spatial velocities and contravariant coordinates,

dui
dt

= −αu0∂iα+ uj∂iβ
j − ujuk∂iγjk

dxi

dt
= γij

uj
u0
− βi , (10)

where u0 is given in terms of ui in the expression for W above. Using this prescription, we can evolve ui and
xi at each point si according to the geodesic equations, and compute the density and other stress-energy
source fields using Eq. 7. In the Newtonian limit where ui � 1 and α = 1 + ΦN with ΦN � 1, the geodesic
equations reduce to the Newtonian ones, with ∂tui = −∂iΦN and ∂tx

i = ui.
One of the drawbacks of N-body methods is the presence of sampling noise in the stress-energy source

fields, which in turn sources noise in the metric fields. To alleviate this, phase-space element techniques
have been recently been developed [39, 40]. One explicit implementation of these methods is to interpolate
additional particles in the phase-space distribution: the fields xi and ui are known on a grid described by
coordinates si, and can there be interpolated to arbitrary si, providing a way to deposit additional particles
for which the geodesic equations are not explicitly used to evolve. We take advantage of this, using tricubic
interpolation, depositing additional appropriately weighted masses in order to increase the smoothness of
the density field, and depositing all particles according to Eq. 7.

C. Initial conditions

Synchronous gauge is the only gauge we use that requires a fixed choice of lapse and shift on the initial
surface. The other gauges we utilize are driver gauges, which impose conditions only on the time-evolution
of the lapse, and can thus be initialized with the same lapse and shift as synchronous gauge; their subsequent
evolution will be “driven” towards a particular slicing condition irrespective of the initial hypersurface chosen.
We therefore choose conditions with an initial lapse and shift given by the synchronous gauge ones,

α=1, βi = 0 (11)

We then need to solve the Hamiltonian and momentum constraint equations (2). A choice for the metric
itself can be made using the Zel’dovich approximation [41]. In Newtonian gauge, where ΦN ≡ E/2 and
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ΨN ≡ −A/2, the Zel’dovich approximation sets the time derivative of the Newtonian potential to zero,

Φ̇N = 0. Synchronous gauge potentials that coincide with this choice in linear theory can be chosen,

A = ΦN , Ȧ = B = Ḃ = 0 , (12)

and from the linearized Einstein’s equations in absence of anisotropic stress we also find

B̈ = A , (13)

from which we can also derive the relation ΦN = ΨN . A choice of constant trace of the extrinsic curvature,
K = const, can then be made to produce a desired background evolution. Once given this choice of metric,
the density ρ and momentum Si can be solved for using the constraint equations, and this solution will
coincide with the Zel’dovich approximation in comoving synchronous gauge at linear order, but will now
satisfy the full, nonlinear constraint equations.

We additionally need to determine the primitive stress-energy source variables, not just the 3+1 sources.
Given an arbitrary metric, this can be accomplished algebraically prior to stream-crossing when the stress-
energy tensor of various components of the universe, including collisionless matter and a cosmological con-
stant, coincide with that of a perfect fluid,

Tµν = (ρ0 + P )uµuν + Pgµν , (14)

with equation of state P = wρ0. The 3+1 source terms for this stress-energy tensor are given by

ρ = (ρ0 + P )W 2 − P , (15)

Si = γijS
j = (ρ0 + P )Wui . (16)

For multiple species, the stress-energy tensor will be given by the sum of individual contributions from all
species S,

Tµν =
∑
S
TµνS , (17)

and the contribution from each species to the 3+1 sources will be given by ρ =
∑
S ρS and Si =

∑
S S

i
S .

Once given a metric, the constraint equations provide a prescription for ρ, however additional information
is required in order to specify the contributions of each species. In the case of a cosmological constant
and collisionless matter, S ∈ {m, Λ}, we can divide ρ into two pieces, respectively a constant ρΛ, and the
remainder ρm = ρ− ρΛ.

Once ρS and SiS are determined for each species, the matter sources can be solved algebraically for the
primitive fluid density and velocity fields, uiS and ρ0,S For a cosmological constant Λ, the equation of state
parameter will be w = −1, and the solution is necessarily ρ0,Λ = −PΛ = ρΛ = const. For a more general
fluid with w 6= −1, a solution for W 2

S is given by

W 2
S =

1− 2CSRS +
√

1 + 4RSCS (RS − 1)

2 (1− CS)
, (18)

with

RS =
w

1 + w

CS = γijS
i
SS

j
S/ρ

2
S . (19)

Eq. 15 can be subsequently solved for ρ0,S and Eq. 16 solved for ui,S . This approach to setting initial
conditions remains valid for an arbitrary equation of state parameter w, including the case of an N-body
system in absence of stream-crossings. For such collisionless matter or a w = 0 fluid, the solution reduces to
Cm = 0, W 2

m = 1, and ρm = ρ0,m, again consistent with linear theory.
The final solution we obtain for collisionless matter and a cosmological constant is then determined. Given

an initial ΦN and constants K and ρΛ/ρ = ΩΛ, we have

γij = (1− 2ΦN )δij ρ0,Λ = ΩΛρ

KTF
ij = ui,m = 0 ρ0,m = (1− ΩΛ) ρ , (20)



7

where 16πρ = R + 2K2/3. In order to determine ρ in practice, we specify the BSSNOK conformal variable
φ as the solution to e4φ ≡ γ1/3 = 1 +A = 1− 2ΦN . Once we have the metric and density field ρ0,m, we can
find a Jacobian transformation that satisfies Eq. 6 in order to set initial particle positions.

Often in numerical literature, additional physical perturbations are introduced on small scales as numerical
resolution is increased. This procedure can result in confusion between numerical effects and new physics,
leading to difficulty verifying the numerical accuracy of results, especially when we are interested in resolving
corrections that can have quite small amplitudes. We therefore opt to study solutions initially described
by a single mode in one dimension, and three modes in three dimensions, and to verify formal numerical
convergence of our solutions with a fixed physical construction.

Some progress can be made analytically determining particle displacements for a given density field,
allowing us to obtain initial conditions efficiently, as well as to benchmark the accuracy of a more general
solver. Determining a displacement field is difficult in general, as it requires the density field be both
analytically integrable and invertible. We can nevertheless write down an analytically integrable density
field that is a solution to the constraint equations, in which case determining particle displacements is
reduced to a root-finding problem. We choose the conformal factor φ to be

φ = log[1 +A sin(2πx/L)] (21)

and the extrinsic curvature (expansion rate) K = KFLRW to determine the density field using Eq. 20. The
integral of the density field can then be written,∫
dx
√
γρ0,m(x) =

1

1920πL2

[
120πx

(
16πA2 +

(
5
(
A4 + 18A2 + 24

)
A2 + 16

)
L2ρ̄m

)
+AL

(
A

(
L2ρ̄m

(
−5A4 sin

(
12πx

L

)
− 72A3 cos

(
10πx

L

)
+ 45

(
A2 + 10

)
A2 sin

(
8πx

L

)
+ 200

(
3A2 + 8

)
A cos

(
6πx

L

)
− 225

(
A4 + 16A2 + 16

)
sin

(
4πx

L

))
− 480π sin

(
4πx

L

))
−240

(
3
(
5
(
A2 + 4

)
A2 + 8

)
L2ρ̄m + 8π

)
cos

(
2πx

L

))]
'ρ̄mx−

A
(
3L2ρ̄m + π

)
πL

cos

(
2πx

L

)
+O(A2) , (22)

where ρ̄m = (1.0− ΩΛ)K2/24π, and from which the displacement field is x(s) solved for.
For more generic initial conditions, especially in three spatial dimensions, we require a method to displace

particles to reproduce an arbitrary density field. In standard N-body simulations, displacements are com-
monly computed within perturbation theory. However, such a solution will not obey the constraint equations
exactly, resulting in a small but measurable amount of violation of the full GR constraint equations.

A more general way of ensuring the constraint equations are fully satisfied is a diffusion method, in which
particles are drifted until a desired density field is produced. The idea behind this method has been used in
the past in various settings, for example equalization of cartographic data according to properties such as
population density [42]. We begin with an approximate guess of particle positions xig(s

i) which generate a
density field ρg, and adjust particle positions in order to send ρg → ρ0,m. Phrased in terms of the difference
of these, we wish to equalize ∆ρ ≡ ρ0,m−ρg, so that ∆ρ→ 0. We can drift particle positions along gradients
in the field ∆ρ according to

ẋig = ηD∂i (∆ρ) , (23)

for a given diffusion strength ηD. The coefficient ηD need only be chosen so that the solution converges;
larger values of ηD may result in faster convergence, but can also result in instabilities if particles “overshoot”
final positions along their trajectories.

D. Gauge Choices

In this section we review some common gauge choices, drawing parallels between gauge choices in approx-
imate treatments and fully relativistic counterparts in a 3 + 1 language. We therefore examine two common
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gauge choices, comoving synchronous gauge and a quasi-Newtonian gauge, in addition to the harmonic slicing
condition commonly used in Numerical relativity.

We begin by noting that the results we obtain are not observables in the sense that our results may
vary between these gauges. How accurately we can compute what a particular class of observers would see,
such as observers chosen to be normal to given spatial hypersurfaces defined by a particular time slicing
or gauge, will depend on the accuracy with which quantities can be computed that gauge. However, the
set of observers chosen to measure observables in a cosmological setting are often chosen to coincide with a
background, reference FLRW metric, and so observables will generally be gauge-independent. They will still
depend on how this background is chosen, which is ambiguous beyond linear order.

Comoving synchronous gauge (also referred to as geodesic slicing, and which refer to more concisely as
“synchronous gauge” throughout this work,) is well-defined in both a fully relativistic setting and in linear
theory, ie. can be defined without requiring approximations. This choice corresponds to

α = 1, βi = 0 (24)

in a 3 + 1 language, or choosing E = 0 and F = 0 in the SVT language. Some remaining ambiguity exists
in how the potentials A and B are chosen, although this is irrelevant as long as observables are computed in
the end. While we do not compute observables in this work, this ambiguity remains irrelevant insofar as we
are interested in studying the accuracy of linear theory in describing relativistic properties of the spacetime
in specific gauges, rather than drawing conclusions about physical quantities or observables.

Harmonic slicing can be viewed as a foliation that tends to evolve towards maximal slicing, or a driver
condition for maximal slicing, where maximal slicing is defined by choosing a lapse such that K = 0 [43].
This gauge choice coincides with the time slicing used in the harmonic formulation of Einstein’s equations,
where coordinates themselves satisfy �xµ = 0. However, we maintain zero shift, so the condition is not
entirely equivalent. In an FLRW setting, this condition is also modified so that rather than being driven
to zero, the value of K will be driven to that of a reference FLRW value [44]. A constant-K condition is
sometimes referred to as a uniform expansion gauge; here we are considering a driver version which can
approximate this condition. The resulting expression is

∂tα = −ηHα2 (K −KFLRW) , (25)

where KFLRW is the trace of the extrinsic curvature we wish to drive towards, and can be freely chosen.
We use a coefficient ηH = 1 as is common, but also note that as ηH → ∞, uniform expansion should be
recovered, reducing to the maximal slicing condition when KFLRW = 0 [24]. The constant-K limit has also
been studied in detail in a linearized cosmological setting in [16].

Lastly, we wish to consider a gauge analogous to Newtonian gauge, commonly found in a linearized,
scalar-only context [45]. This condition can be imposed on the scalar part of the metric by setting the
scalar potential B = 0, or choosing the scalar part of Kij to be purely traceful. Unfortunately, although we
refer to this gauge as “Newtonian” in order to make the analogy explicit, there is no exact generalization
of Newtonian gauge in a fully relativistic setting. A more general choice is to impose a zero shear (or
“isotropic expansion”) condition on the spatial metric [46], however this condition relies upon both a choice
of background and an assumption of linearity. A relativistic generalization of this condition would involve
imposing this condition on the anisotropic contributions to the extrinsic curvature, requiring

Kij
TF = 0 , (26)

however not enough gauge freedom exists to fully enforce this condition. Instead, we consider a minimal
shear driver condition in order to reproduce the zero-shear condition to some approximation. Our choice of
this minimal shear condition is given by

∂tα = ηG

2

3
∇2α− 1

∇2

∑
i,j

∂i∂jR
TF
ij

 , (27)

which we derive and explore additional properties of in Appendix B, and for which we will extrapolate to
the ηG → ∞ limit. Although we refer to this as Newtonian gauge, a more appropriate name is perhaps a
“minimal-shear driver gauge”.
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III. RESULTS

We now proceed to examine the accuracy of linear theory in several ways. We do so by numerically
obtaining full, general relativistic solutions, and examining to what degree the linearized Einstein field
equations are satisfied. In particular, we check the linearized, trace-free spatial part of Einstein’s equations,

GTF
ij − 8πTTF

ij . (28)

For a universe containing only collisionless matter and dark energy, the scalar contributions to this equation
give rise to the expression [15]

(∂i∂j)
TFV ≡ (∂i∂j)

TF
(
E +A− a2B̈ − 3aȧḂ + 2aḞ + 4ȧF

)
' 0 . (29)

Involving no matter terms at linear order for cold dark matter and a cosmological constant, this constraint can
be viewed as purely gravitational, expected to remain valid even in the presence of large density contrasts
so long as the metric potentials themselves are small. Neglected stress-energy contributions to V come
from anisotropic stress, and are of order O(v2/∂2). In comoving synchronous gauge where E = F = 0, this
expression places a constraint on the potentials A and B, while in a Newtonian setting where B = F = 0, this
enforces E = A, or ΦN = ΨN , a condition explicitly enforced in much of cosmological literature. Violation of
this constraint is referred to as gravitational slip, and has been characterized using perturbative and weak-
field approaches [47, 48]. Slip is also looked for as a signature of modified gravity models [49]. However,
given an exact solution to Einstein’s equations, the linear constraint equations will not be perfectly satisfied;
it is therefore important to check how well this expression holds lest an observed violation be mistaken as a
sign of failure of general relativity.

We directly report the violation V relative to the root sum of the squares of the terms comprising it, which
we denote [V]. This is opposed to its Hessian as found in Eq. 29, which is not often directly utilized; this
ratio also disguises the precise amplitude of V, so we note that we find general consistency with it being of
order h. There is freedom to choose the zero-mode of B up to an arbitrary time-dependent function; we
choose this to be zero. This quantity will still depend on the FLRW background chosen, so we note that we
use averaged quantities to construct a and its time-derivatives, in order to decouple the sensitivity of this
expression to the question of how closely averaged quantities follow an FLRW model.

We can nevertheless explore this last point, sometimes referred to as the fitting problem or “backreaction”,
by checking to see how well FLRW model parameters agree with spatially averaged quantities. We explore
this question by looking at the average expansion rate on spatial slices and comparing to the expected FLRW
value,

K ≡ 1 + 3
HFLRW

〈K〉
' 0 , (30)

where the average is volume-weighted,

〈K〉 =

∫
d3x
√
γK∫

d3x
√
γ

. (31)

This quantity will of course depend on the chosen slicing condition–here, we are interested in the degree to
which 〈K〉 ' −3HFLRW in gauges commonly used for interpreting cosmological dynamics. Although we do
not directly compute observables in this work, should an observable coincide with the choice of gauge (eg.
the proper time observable [50] coincides with the proper time slicing condition of synchronous gauge), the
results we present can contain implications for observable quantities.

We also compare results to the metric perturbation amplitude h by computing

h ≡ 1

3
(perm|γ̄ij | − 1) , (32)

with |γ̄ij | = |γij |/γ1/3, which is the absolute value of the conformally related BSSNOK metric, and perm
the permanent matrix operator, which we use to reduce the expression to an overall measure of magnitude.

Literature largely anticipates that cosmological systems are well-described by linear theory on scales larger
than O(10) Mpc, albeit with appreciable mode coupling on scales up to O(100) Mpc due to nonlinearities,
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and excepting extreme large-scale structures which we will examine later. In Newtonian gauge, nonlinearities
are attributed solely to dynamics of the matter sector rather than the gravitational sector, so δρ can be large
while h remains small. As our interest is in the gravitational sector, we have chosen to measure the accuracy
of standard linear calculations using Eq. 29, which is expected to hold even in the presence of large, O(1)
density perturbations in Newtonian gauge. In synchronous gauge, the amplitude of metric perturbations is
not suppressed relative to the density contrast, and we do not expect suppression of metric perturbations
relative to density perturbations on these scales, so considerable violation may appear.

We will consider scales on which we can obtain a satisfactory answer in all the gauges we consider. In
particular, we examine modes of wavelength L & 35 Mpc. On the other hand, the largest observable scales
are of order the current Hubble scale, H−1

0 ∼ 4.4 Gpc, so we will also consider modes up to this scale.
We run a suite of planar-symmetric (“mode in a box”) simulations across this range of scales. We then
extend our results to full, asymmetric 3D simulations with two goals: first, we examine the applicability
of the planar-symmetric results to a more general context by comparing the amplitudes V and K between
a three-dimensional and planar-symmetric setting, and second, we consider modes with larger-than-typical
amplitudes in the full 3D case, motivated by observations of extremely large structures.

A. Benchmarks in a planar-symmetric setting

The planar-symmetric simulations we run begin at a redshift z ' 50, when the energy density of the
Universe is dominated by cold dark matter in the concordance cosmology. We run all simulations with
initial conditions as described in Section II C, using identical initial conditions in all gauges. We determine
the initial amplitude of density perturbations using CAMB to compute the synchronous gauge density power
spectrum Pδδ(k) [51], from which we compute RMS density perturbation amplitudes smoothed on a length
scale L,

σ2
ρ,L

ρ̄2
=

1

2π2

∫
k2e−(kL)2Pδδ(k)dk . (33)

We use CAMB settings including the Halofit nonlinear matter power spectrum, H0 = 67.5, Ωbh
2 = 0.022,

Ωch
2 = 0.122, ns = 0.965, and otherwise default settings to compute σρ,L, and choose mode amplitudes so

the RMS density perturbations agree with this value.
The planar-symmetric runs have a metric grid resolution of Nx = 64, 96, 128 with Ny = Nz = 1, and

number of particles Np = N2
x/8. We generally find 2nd-order convergence in the case that error due to parti-

cle deposition dominates, and 4th-order convergence for large physical box sizes in which case timestepping
error dominates. Finite differencing is 8th-order, and is not found to be the dominant source of error for
particle runs, but can be for the fluid simulations in synchronous gauge. Our final results are Richardson
extrapolated using all pairs of resolutions, and numerical confidence intervals inferred from the remaining dis-
agreement between extrapolated values. We provide further discussion and details of numerical convergence
in Appendix C.

We first examine the degree of violation of the linearized Einstein equations as described by V/[V] in
Eq. 29. We show the maximum absolute value of the violation in different gauges in Figures 1 and 2. The
results we find are consistent with the expectation that V ∼ O(h2) and [V] ∼ O(h), so that V/[V] ∼ O(h).
Importantly, the degree of violation is found to be scale-dependent and gauge-dependent, and in fact the
violation can be quite large in synchronous gauge where h is of order δρ, implying the the metric given by
linearized calculations in synchronous gauge will not be accurate when sufficiently small (“nonlinear”) scales
are considered.

We examine both the time-dependence of modes and the scale dependence of solutions at the end of the
runs. The time-dependence is expressed in terms of the FLRW redshift function of the BSSN conformal
factor as

z = exp [2 〈φfinal〉 − 2 〈φ〉]− 1 . (34)

Several features can be seen in both the time-dependence and scale-dependence plots. We interpret these
as transients due to physics in the gauge, initial conditions which are not purely growing mode solutions,
or, especially at early times, the system transitioning from the synchronous gauge solution to the preferred
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FIG. 1: Accuracy of approximations for two “modes” with concordance cosmology amplitudes in different gauges.
The left plot shows the evolution of the maximum violation of the linearized Einstein equations, Eq. 29, and the right
the evolution of the fitting difference, Eq. 30. Synchronous gauge results are shown in pink, harmonic in blue, and
Newtonian in green. Solid lines indicate results for a ∼1 Gpc mode wavelength, and dashed for a ∼100 Mpc mode.
Confidence intervals are indicated for all results using shaded bands, and are not visible when sufficiently small. The
Newtonian curves have been extrapolated to the ηG →∞ limit as described in Appendix B.

★
★

★
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

★






  






















▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

50 100 500 1000

10-6

10-5

10-4

0.001

0.010

0.100

1

Mode length (Mpc)

M
ax
V
io
la
ti
on

|
|/
[

]































▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

★ ★ ★ ★
★

★
★

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
★

★
★

50 100 500 1000

10-10

10-7

10-4

Mode length (Mpc)

F
it
ti
ng
D
if
fe
re
nc
e,


FIG. 2: The accuracy of approximations is shown in various gauges as a function of mode wavelength, for concordance
cosmology mode amplitudes. Synchronous gauge results are shown in pink circles, harmonic in blue triangles, and
Newtonian (see Appendix B) in green stars. Results include numerical confidence intervals and are connected by
a solid line, while dashed lines indicate the amplitude h (Eq. 32). The left plot shows the difference between a
background FLRW Hubble parameter and averaged expansion rate, and the right plot shows the violation of the
linearized Einstein equations.

slicing in the driver gauges. Despite the specific dynamics giving rise to these features, we expect that the
order-of-magnitude of these results is fairly insensitive to the precise initial conditions used.

Turning to examine the overall trends, we indeed find appreciable linearized constraint violation in syn-
chronous gauge on scales when nonlinear dynamics begins to become important, or when σρ/ρ̄ is no longer
small. We generally find harmonic slicing results to be consistent with small second-order corrections: vio-
lation amplitudes remain below 10−4 at all times, in line with expectations from field values h. The inexact
nature of Newtonian gauge provides us with a more complicated story, which we provide detail on in Ap-
pendix B, however agreement is still found in this case. As a final note, there is some expectation that
a minimal-shear gauge will behave poorly on large scales, leading to divergent mode amplitudes. While
we have considered these scales, we have circumvented this difficulty by initializing our simulations in syn-
chronous gauge, which are then driven towards other slicings, and may not have sufficient time to appear.
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In contrast to the minimal-shear condition, synchronous gauge is well-behaved on large scales, so there is no
such subtlety setting initial conditions. The ηG → ∞ extrapolation also results in appreciable error in our
Newtonian gauge results, while other numerical errors are considerably smaller, as seen in other gauges.

We also examine the same data, but check how the degree to which averaged quantities agree with FLRW
quantities. We find results generally consistent with those seen in the time-evolution: the behavior of the
Synchronous gauge metric is not well-described by a background FLRW behavior, while the harmonic and
Newtonian gauge metrics are. We may particularly expect that the fitting difference in harmonic slicing to
be small, due to the gauge condition explicitly driving the solution towards that of an FLRW spacetime.
The Newtonian and synchronous gauge results are also qualitatively consistent with prior literature looking
at backreaction using a partially nonlinear treatment [18], although we do not resolve scales as small as
that work due to the breakdown of synchronous gauge in a fully relativistic setting, and also expect a fully
relativistic calculation to be necessary in such a nonperturbative setting.

The fitting difference in synchronous and harmonic slicings has also been examined using fully relativistic
simulations [10, 14, 18]. In these studies, backreaction in the sense of violation of the FLRW acceleration
equation was been found to be small, while properties of hypersurfaces such as the average volume or average
expansion rate could show larger deviations from the average, especially in synchronous gauge.

Because the way we measure the fitting difference is gauge-dependent, the results we present here, and
indeed results found in any gauge, are only meaningful to either the extent that these quantities describe
observables, or that these quantities are used as an intermediary step to computing observables. To that end,
it is interesting to consider that Synchronous gauge coincides with a proper time slicing, making it possible, at
least in principle, to pick out spatial hypersurfaces in this gauge. Newtonian and harmonic slicing conditions,
on the other hand, do not so neatly determine an observable; no (fully nonlinear) observable properties of
a spacetime coincide with the foliations. Rather, observables are usually constructed from contributions to
the metric and matter fields whose physical interpretations are gauge dependent.

As a final point, we note that backreaction has also been looked at in harmonic slicing in the context of
black hole lattice simulations. While the expansion properties of these systems has been found to reproduce
FLRW behavior to some approximation [52–54], it has also been shown that the averaged optical properties
of these spacetimes do not always coincide with expectations from an FLRW model, even in a homogeneous
limit [55]. A necessary next step will therefore be examining optical properties of inhomogeneous spacetimes
in a fully relativistic context, especially in the limit that inhomogeneities are introduced and localized on
increasingly small scales.

B. Benchmarks in a general 3D setting

As an exploration of over/underdensities with scales similar to the largest observed structures in our
Universe, as well as checking that the results we find in the planar-symmetric runs are indicative of the order
of magnitude of corrections in a less symmetric setting, we additionally run fully 3-dimensional simulations
in Harmonic and synchronous gauges. When including perturbations in additional dimensions we have some
expectation that the violation amplitude can increase: collapse can now occur in these additional directions,
allowing field profiles to further deviate from their original mode-like profiles than in the 1-dimensional case.

We initialize these simulations at redshift z = 5 as a superposition of modes. We follow the prescription
described in Eq. 20, but now using the diffusion method to determine initial particle displacements. The
BSSNOK conformal factor is chosen to be

φ =
∑
i

A sin(2πxi/L) , (35)

where the sum over i is a sum in each direction.
In order to choose relevant and interesting length and overdensity scales, we consider the case of particularly

large voids and overdensities. For typical overdensity amplitudes on a wide range of scales, there is the
expectation that nonlinear corrections are small in appropriately chosen gauges and a perturbative approach
is therefore well-justified [56], something we have explicitly confirmed above. However, uncommon structures
with large density contrasts have been observed on large scales in our Universe, for example [57–59], along
with even larger but more controversial structures. The density contrast in these regions can reach tens of
percents or more on length scales of up to a few hundred Mpc. We first use a simulation with parameters
comparable to the void described in [59]. The diameter of this supervoid is of order 400 Mpc, and density
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contrast optimistically of order δρ ∼ −0.2. We therefore simulate a box with L ∼ 400 Mpc and σρ/ρ̄ ∼ 0.2 at
the end of the simulation. We also run a L ∼ 100 Mpc simulation with σρ/ρ̄ ∼ 1, comparable to parameters
of the Sloan Great Wall described in [58], which has an effective radius of order 50 Mpc and reported mass
excess δM larger than unity.
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Harmonic and Newtonian Gauge Runs

FIG. 3: We show the mean violation 〈V〉 /[V] and fitting difference K, for planar-symmetric (“1D”, solid) and
asymmetric (“3D”, dashed) runs, in synchronous and harmonic gauges as indicated by plot titles, for the large void
(red) and overdensity (dark blue), as a function of FLRW redshift. For comparison, the light gray line and band
are results and uncertainty from a planar-symmetric simulation using void parameters in Newtonian gauge. Values
from individual runs at different resolutions are indicated by thick, light bands, and Richardson extrapolated values
thin darker lines. Near-perfect agreement is found in harmonic and synchronous gauges, so individual runs and
extrapolated values are nearly indistinguishable.

We näıvely expect the metric perturbation amplitude for these runs to be of order ΦN ∼ 4πGL2ρ ∼ 10−3.
We do not run full, 3D simulations in Newtonian gauge due to the poor numerical properties of the gauge,
but anticipate given our earlier results and additional 1D tests that fractional corrections to the Newtonian
potential are comparable to harmonic gauge. On the other hand, we expect the synchronous gauge potentials
to be closer to σρ/ρ̄.

We run the fully 3-dimensional simulations for the above choices of L and σρ, along with planar-symmetric
simulations using the same physical parameters in order to compare results. The synchronous gauge runs
utilize a number of gridpoints N3 = 243, 323, 403 for all 3-dimensional runs, and N = 64, 96, 128 for
all planar-symmetric runs. In harmonic gauge for the 3-dimensional, L = 100 Mpc runs, we use N3 =
163, 203, 243 metric grid points with Np = (4N)3 particles, and N3 = 243, 283, 323 with Np = (N2/4−2N)3

particles for the L = 400 Mpc runs. For the planar symmetric comparisons, we use N = 24, 28, 32 with
Np = N2/2−8N , although we also run with higher resolutions as described in Sec. III A in order to examine
accuracy and for the Newtonian gauge comparison. We encounter some difficulty extrapolating Newtonian
results to the ηG → ∞ limit for the fitting difference as zero-crossing locations are sensitive to the driver
coefficient, resulting in a large uncertainty in the precise behavior of K. We provide further details on the
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convergence of these runs in Appendix C, and show results from these runs in Figure 3.
For these runs, we find corrections to linear theory can surpass the expected 10−3 level in Harmonic and

Newtonian gauge and reach the percent level. This is still within a perturbative regime, but suggests nonlinear
gravitational effects are unexpectedly beginning to become important for these extreme structures, regardless
of gauge. These nonlinear effects may be important to properly model in order to draw accurate inferences
for cosmology and for astrophysics of these extreme structures. In synchronous gauge, the corrections become
tens of percent up to order unity, indicating the failure of a perturbative approach to be able to describe
the synchronous gauge metric. We also find that the violation amplitudes in the 3-dimensional cases are
comparable to the planar-symmetric runs, and thus we expect the planar-symmetric results provide a good
indication of the level of linearized constraint violation.

IV. CONCLUSIONS AND DISCUSSION

We have examined the magnitude of violations in a standard cosmological setting using fully relativistic
simulations, and found support for the idea that relativistic corrections scale as O(h2) on large scales. The
magnitude of h itself will be gauge-dependent, will not always be small depending on the gauge in question,
and can be appreciable in any gauge for sufficiently extreme structures. For codes that work in synchronous
gauge in a linearized context, such as CAMB or CLASS when run in synchronous gauge, it is therefore
inaccurate to directly infer properties of metric and matter fields in synchronous gauge. However, because
the results of these calculations can be considered as identical to calculations in a well-behaved gauge under
a change of variables, observables computed from these codes can still be recast as having been performed
in a gauge where nonlinear gravitational effects are small.

It is still important to note that we have not directly computed any observable quantities, except according
to particular classes of observers defined by specific time slicings. Rather, we have examined the accuracy
of intermediate steps used in approximate calculations. The physical interpretation of the various fields
involved will be gauge-dependent in general: for example, peculiar velocities and matter power spectra
will depend on the chosen slicing. The accuracy with which these effects can be interpreted is subject
to gauge, and as a consequence so are the precise values of inferred cosmological parameters describing
properties of these spacetimes. True observables can still be constructed by projecting these fields onto past
null geodesics. Relativistic effects involved in this projection are not trivial to compute, although recent
progress has been made both analytically and numerically [9, 60]. We can expect that the accuracy of
these projections in a perturbative context will also depend on gauge: lightcones in comoving synchronous
gauge (Lagrangian frame) can contain quite large distortions, while these effects will be smaller but still
important in, eg., Newtonian gauge (Euclidean frame). Observables computed in linear theory are gauge-
invariant only at linear order, and even then linear gravitational effects are often neglected due to physical
or practical considerations in particular gauges. As a consequence, these observables and corresponding
average properties of the spacetime are perhaps best interpreted as having been computed under a change
of variables in a gauge that maximally satisfies any approximations made, for example N-body gauge in the
case of Newtonian N-body simulations [61].

We are also mindful of the assumptions we have made in this work. It will be important to work towards
relaxing the coarse-graining operation implicitly performed when utilizing a stress-energy source. This can
be partially addressed by working towards a limit in which increasingly smaller scales are resolved, and
examining any scaling of nonlinear gravitational effects. We have also limited the dynamics allowed on large
scales by imposing periodic boundary conditions. For a sufficiently large volume, or for a volume larger than
our observable Universe, the boundary conditions are less relevant. The challenge then is resolving both of
these scales simultaneously in a fully relativistic setting.

Lastly, we note that due to particle noise and the general expense of N-body calculations, it can be
difficult to obtain reliable results using N-body simulations. The approach we use here takes advantage of
recent developments in order to improve both performance and numerical convergence, however cosmological
simulations in general may stand to greatly benefit from the development of methods that converge at higher
order, which can result in a lower computational cost per accuracy goal.

The agreement we find with linear theory in Newtonian and harmonic gauges is encouraging for standard
cosmological theory in the context of the late Universe. Yet, we also find that spacetimes may not always be
well-described by linear theory when sufficiently large overdensities or voids are present in these gauges. The
inability of linear theory to accurately describe the synchronous gauge metric, on the other hand, implies
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that a fully relativistic treatment may generally be necessary to obtain the metric in that gauge. The
large amplitude of nonlinear terms can, for example, explain the gravitational slip we observed in [9]; the
amplitude of the slip was O(V), but it was computed by evaluating quantities from linear theory using the
fully relativistic synchronous gauge metric, and was therefore found to be large. Nevertheless, additional
linear-order gravitational corrections are still often neglected in literature, as in the approximate expression
used in that work.

In this work we have shown the importance of considering linear theory in the context of a fully relativistic
treatment. We have verified in a fully relativistic setting that nonlinear corrections are of the expected
magnitude for perturbations with amplitudes expected in a concordance cosmological model in Newtonian
and harmonic gauge, and have explicitly demonstrated that large metric perturbations can be found in the
presence of large density contrasts in synchronous gauge. We have also found that nonlinear effects can
give rise to larger-than-expected metric perturbations when considering the most extreme structures in our
Universe, approaching percent-level corrections to the metric even in Newtonian and harmonic gauges. These
results suggest care should be taken when attempting to infer properties of the fully relativistic metric, and
in the presence of extreme structures where linear theory may begin to fail.
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A. A TOY DESCRIPTION OF CAUSTICS

Formally, the density will become infinite when the Jacobian |∂~x/∂~s| is zero, a phenomenon that occurs
during shell-crossings. This is well-known in Newtonian theory [62], but general relativistic studies of such
phenomena are few, typically found in studies of relativistic collapse [28, 30].

In the presence of an infinite density source, the full, general relativistic constraint equations imply that
curvature scalars should also diverge. Because this can indicate the presence of a physical singularity, we
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would like to obtain solutions to the constraint equations to gain insight into the behavior of the metric in
the vicinity of a caustic. To this end, we first consider a toy caustic in a universe with planar symmetry. We
choose displacements

x(s) = s1+p (36)

with p a positive integer (setting the dominant term in a series expansion around a caustic) so that for a
constant ρs,

√
γρ = ρs

∣∣∣∣∂x∂s
∣∣∣∣−1

=
ρs

1 + p
|x|−p/(1+p)

, (37)

which diverges when s = 0, or x = 0, and the severity of the divergence is controlled by p. Using the
constraint equations and choosing an asymptotically flat and (3-)conformally flat spacetime with K = 0,
or neglecting cosmological effects on the dynamics, the Hamiltonian constraint equation can be written in
terms of the 3+1 conformal factor ψ (where γ1/2 = ψ6), and obeys

∇2ψ = −2πψ5ρ . (38)

In the vicinity of the caustic, we can expand ψ in a power series for small x and find a solution that scales
as

ψ ' 1− 2πρs
2 + p

1 + p
|x|

2+p
1+p (39)

and therefore does not diverge. The first derivative of ψ will also not diverge, indicating geodesics can be
integrated through caustics without issue, although second derivatives, and therefore curvature scalars, may
diverge. The mass present within a test region around the caustic also vanishes as the volume of the test
region is decreased, indicating there is infinitesimal mass at the point of infinite density. Similar behavior
may be found for a zero-dimensional caustic (i.e., radially displaced phase-space distribution).

For this toy solution, because the divergence of curvature scalars does not require the metric itself to
diverge, the metric can remain in a weak-field limit. Because it is also possible to integrate geodesics
through these caustics, such solutions do not appear to represent a singularity in the sense of a black hole.

Although this is a dimensionally reduced example, we do not empirically find caustics to lead to numer-
ical instabilities or otherwise prevent us from performing our numerical integration (except in comoving
synchronous gauge / geodesic slicing). The primary drawback we encounter is a divergent computed Hamil-
tonian constraint violation due to subtracting numerically large values. In a standard Newtonian N-body
setting, this difficulty is absent as the linearized constraint equations are directly used to determine the
metric, so the dynamical Einstein equations are not enforced. In our case where both the metric and matter
are dynamically evolved, we instead check for convergence of field profiles, and increased localization of the
region in which a large GR constraint violation is observed.

B. A RELATIVISTIC GENERALIZATION OF NEWTONIAN GAUGE

As noted in the text, no true generalization of Newtonian gauge exists in a fully relativistic setting due
to the presence of additional degrees of freedom. In a planar-symmetric setting as studied here, general
relativity can be directly mapped to Newtonian gravity for a judicious gauge choice [63], however this idea
does not generalize to an asymmetric 3+1 case, and thus we seek a more general condition. Perhaps the
most commonly used generalization of Newtonian gauge is a “zero-shear” condition requiring

Kij
TF = 0 , (40)

although other approaches to map results from Newtonian theory to a relativistic setting do exist [61]. In
a linear setting this condition can be reduced to constraints on the scalar and vector modes. For the scalar
modes in the absence of anisotropic stress, we can compare the Newtonian-gauge line element to the BSSN
one as in the text below Eq. 20, and combine with one of the BSSN equations to produce a gauge condition,

α̇ = Φ̇N = −2φ̇ =
1

3
αK . (41)
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While this resembles the Harmonic gauge condition, it differs by an important minus sign that results in
rapid growth of numerical error. Due to this growth, we therefore utilize Z4c constraint damping in order
to stably evolve the system.

This choice also will not enforce the zero shear condition beyond linear order. A generalization suggested
by Bardeen [16] is to instead use a minimal-shear condition, such that

DiDjK
ij
TF = 0 . (42)

This choice reduces to Newtonian gauge in the scalar sector in the linear limit, and results in a 4th-order
differential equation for α. However as solving an elliptic PDE at every timestep is computationally de-
manding, and anyways we wish to set initial conditions consistent with the synchronous gauge ones, we can
instead seek a driver condition and look for a lapse such that the time-evolution equation for Kij

TF is damped
and not sourced at linear order. Damping of anisotropic stress is already present to an extent: the equations
of motion

∂tK
TF
ij =∂t

(
Kij −

1

3
γijK

)
=αRTF

ij − (DiDjα)
TF

+
1

3
αKKTF

ij − 2αKTF
ik K

kTF
j − 8παSTF

ij

+ βk∂kKij +Kik∂jβ
k +Kjk∂iβ

k − 1

3
γijβ

iDiK −
1

3
(Diβj +Djβi)K (43)

contain a damping term,

∂tK
ij
TF ⊃

1

3
αKKTF

ij , (44)

along with dominant “source” terms

∂tK
ij
TF ⊃ αR

TF
ij − (DiDjα)

TF
+ shift , (45)

where the “shift” denotes the contribution from the last line of Eq. 43, which we will discuss later. In order
to eliminate the first-order terms, we can attempt to choose a gauge for which

αRTF
ij − (DiDjα)

TF
= 0 , (46)

as any existing Kij
TF will naturally decay. As with the zero-shear condition, this condition cannot be fully

satisfied, but can be minimized by solving

DiDj
(
αRTF

ij − (DiDjα)
TF
)

= 0 . (47)

This gauge condition again results in a 4th-order elliptic condition for α. It can be cast into a driver form
by using the right-hand side as an evolution equation for the lapse,

∂tα = ηDiDj
(
αRTF

ij − (DiDjα)
TF
)

(48)

for a driver strength coefficient η. An ordinary Laplacian D2 acts as a viscous term, driving field values at a
point to the local average value, resulting in standard diffusive behavior. The squared Laplacian D2D2 can
be viewed in a similar way, but now with an additional frequency-dependent strength, and with the opposite
sign. This minimal shear condition can therefore be viewed as a diffusion equation, driving the field profile
of α towards one that satisfies Eq. 47.

Superluminal propagation may exist for this condition, depending on the driver coefficient and simulation
resolution, imposing a strong restriction on the coefficient amplitude or quite small timestep so that the
Courant condition is satisfied. A future task would be to construct a condition absent of this requirement.
Such a gauge would provide a generalization of Newtonian gauge that is well-suited to numerical evolution,
requiring neither an especially small timestep nor require solving an elliptic equation at each timestep. This
idea has been explored in a Newtonian setting [64], and the superior scaling properties demonstrated in that
context. Mapping a general relativistic gauge condition to the hyperbolic equations of motion found in [64]
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would provide a means of interpreting these results in a relativistic context without requiring a large speed
of propagation of gravity.

In order partially to alleviate this problem, we both linearize and act the inverse Laplacian on the right-
hand side of 48 in order to cast it into a more standard diffusive form, for which α will still be driven towards
the desired value,

∂tα = ηG

2

3
∇2α− 1

∇2

∑
i,j

∂i∂jR
TF
ij

 , (49)

although we still need to compute an inverse Laplacian. We unsurprisingly find that this gauge is not stable
numerically, but the use of Z4c constraint damping still allows solutions to be found. However, even after
acting the inverse Laplacian, the timestep required for stability is still quite small. We nevertheless find this
driver condition to perform better than the choice of Eq. 48, or acting the inverse Laplacian twice (which
results in another unstable gauge condition for which the behavior resembles exponential decay instead of
diffusion).

It is also possible to minimize the vector contribution to Kij by setting the linearized vector contribution
to zero. In cosmology, this choice together with the linearized minimal shear lapse condition comprises
longitudinal or Poisson gauge. A nonlinear generalization of this shift condition is the minimal distortion
shift [43]. A conformally related, somewhat simplified choice for the shift is widely employed in numerical
relativity simulations in a hyperbolic driver form, with

∂tβ
i = kBi

∂tB
i = ∂tΓ̄

i − ηBBi , (50)

commonly known as the “Gamma-driver” condition [65, 66]. In the limit k → ∞ and ηB → ∞, and in a
linearized setting, the longitudinal/Poisson gauge condition should be recovered.

Although the utility of the gamma-driver gauge condition has been demonstrated throughout numerical
relativity literature, we do not use this shift condition in the simulations in this work. The gauge choice of
βi = 0 that we employ results in vector modes instead residing in the 3-metric; these modes should decay
on the scales we consider [15].
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FIG. 4: Similar to Figures 1 and 2, we show the relative violation of the linearized Einstein equations, both as a
function of mode and FLRW redshift. Light (top three) lines indicate Newtonian results with different values of the
driver coefficient (ηG = 0.005, 0.01, 0.02 top to bottom), and dark green the extrapolated ηG →∞ limit as described
in the text. The left plot shows the violation as a function of redshift, and the right plot shows the violation “today”
(redshift zero). Other parameters are as in Figures 1 and 2.

The final results we obtain in the Newtonian driver gauge are sensitive to the diffusion coefficient in the
gauge, with larger coefficients generally found to result in a smaller amount of linearized constraint violation.
In order to provide a measure for the linearized constraint violation in the limit that the diffusion coefficient
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is infinite, we note that we see the difference between measured linearized violations follow a power law,

V
[V]
' V

[V]

∣∣∣∣
ηG=∞

+
A

ηpG
, (51)

with p ∼ 1 determined empirically. We can then take the limit that ηG → ∞ in a manner similar to
Richardson extrapolation. Unfortunately this exponent does not work perfectly in all cases: the exponent
inferred from the observed convergence rate varies by tens of percent, leading to appreciable error bars in the
final, extrapolated values. The extrapolated values nevertheless agree to within the error bars for different
choices of p within this range, so we expect our results including error bars to robustly quantify the correct
order of magnitude of violation of linear theory in the ηG → ∞ limit. Results for several choices of ηG can
be seen in Figure 4, along with the mean violation extrapolated using all pairs of runs, and error inferred
from the standard deviation of this distribution.

C. NUMERICAL CONVERGENCE

We briefly describe numerical convergence of our results, focusing on the results from Section III B in
Harmonic gauge, which make use of the particle code and can be run at high resolutions for comparisons. As
noted in the text, we generally find runs converge at second-order in the grid resolution ∆x. For sufficiently
large timesteps, 4th-order error from RK4 timestepping can dominate: larger physical box sizes allow larger
physical timesteps taken due to the Courant condition. Error from the 8th-order finite differencing scheme
we use was not usually the dominant error source for the runs we present in this paper, although may in some
cases depending upon choices of numerical parameters. In order for simulations to numerically converge,
the number of particles per smoothing volume–per configuration-space grid cell in our case–must also tend
towards infinity [67]. Without imposing this condition when noise dominates the error, we can find non-
convergent and inaccurate field values. Along with the Courant condition, increasing particle number per
grid cell in order to reduce noise poorly impacted scaling in a higher-dimensional setting.

In Figure 5, we show the convergence rate of the violation magnitude [V] with resolution,

C =
[V]∆x1

− [V]∆x2

[V]∆x2
− [V]∆x3

, (52)

for runs with various resolutions ∆x1 > ∆x2 > ∆x3. Parameters of these runs are as presented in Sec-
tion III B. In all cases, the convergence rate is found to be second-order in ∆x. Although not shown
explicitly, similar convergence is found for other fields.
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FIG. 5: Numerical convergence of the violation magnitude [V]. Dashed lines indicate theoretical 2nd-order con-
vergence, and solid lines computed convergence. Black lines indicate 3D/asymmetric runs, and dark blue lines
“1D”/planar-symmetric runs. Light blue lines indicate results from planar symmetric Newtonian gauge runs with
ηG = 0.02, while all other runs used harmonic slicing. Resolutions are as described in the text of Section III B.

For the perfect fluid evolved in synchronous gauge, we find convergence in agreement with the 8th-order
finite difference method used for sufficiently small timesteps, and 4th-order convergence in the case that error
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due to timestepping is dominant. Synchronous gauge results are also Richardson extrapolated assuming
appropriate convergence.

The error bars or “confidence intervals” we report come from the distributions of extrapolated values. We
typically run at three resolutions and can therefore produce three extrapolated values using three unique
pairs or runs, and one extrapolation using all three runs. The extrapolated values typically agree well, except
in the case of zero-crosings of V or K. In these cases, uncertainty is dominated by uncertainty in the precise
time of the zero crossing, which in turn is highly sensitive to truncation error. However, in these cases, the
computed violations were also found to be uninterestingly physically small.
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