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Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields
across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations
between these observables to place tight constraints on cosmology (DES Collaboration et al. 2018). In this work,
we develop the methodology to extend the DES year one joint probes analysis to include cross-correlations of the
optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured
by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of
five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy
lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by
the thermal Sunyaev-Zel’dovich effect is a potentially large source of systematic error for two-point function
analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and
imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the
analysis of data from the DES, the SPT, and Planck in a companion work.

I. INTRODUCTION

Modern optical imaging surveys measure the positions and
gravitational lensing-induced shears of millions of galaxies.
From these measurements, one can compute two fields on the
sky: the spin-0 galaxy overdensity field, δg, and the spin-2
weak lensing shear field, γ. Two-point cross-correlations be-
tween these fields are powerful cosmological probes, as they
are sensitive to both the geometry of the Universe and the
growth of structure. Joint fits to multiple two-point correla-
tions — such as δgδg and δgγ — offer the possibility of break-
ing degeneracies between cosmological and nuisance param-
eters, as well as significantly improving cosmological con-

straints [e.g. 1].1 Such joint fits have recently been demon-
strated in several works [2–6]. We refer to the set of three two-
point functions that can be formed from γ and δg — namely
δgδg, δgγ, and γγ — as 3×2pt. The 3×2pt analysis of the Ab-
bott et al. [5] presented the tightest cosmological constraints
to date on Ωm and S 8 = σ8

√
Ωm/0.3 from a single galaxy sur-

vey data set, demonstrating the power of such joint two-point
correlation analyses.

High resolution, low-noise observations of the cosmic mi-
crowave background (CMB) have recently enabled mapping
of gravitational lensing of the CMB, typically quantified via

1 We will use the notation wXY (θ) to represent the configuration space, two-
point correlation function between fields X and Y . We will use the notation
CXY (`) to represent the harmonic space cross-power spectrum between two
fields.
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the lensing convergence, κCMB. While it is possible to convert
a map of the convergence to shear, doing so is not necessary
for this analysis. Two-point functions that correlate κCMB with
the δg and γ fields also contain cosmological information [7–
11]. Jointly fitting γκCMB and δgκCMB with the 3×2pt cross-
correlations serves several purposes. First, the joint fit helps
improve cosmological constraints by breaking degeneracies
with galaxy bias [e.g. 12]. Second, the joint fit can constrain
nuisance parameters associated with sources of systematic er-
ror in galaxy lensing measurements [e.g. 12–15]. This is pos-
sible because the sources of systematic error that affect the
measurement of κCMB are generally different from those im-
pacting the measurement of γ. Finally, cross-correlations with
CMB lensing include some sensitivity to the angular diameter
distance to the last scattering surface, which can lead to im-
proved cosmological sensitivity relative to cross-correlations
with lower redshift lensing measurements.

The South Pole Telescope (SPT) [16] and Planck [17, 18]
provide high signal-to-noise maps of the CMB overlapping
with the DES survey, allowing for the joint measurement of
all six of the two-point functions that can be formed from δg,
γ and κCMB. We will refer to the combination of all six two-
point functions as 6×2pt, and the combination of all two-point
functions except for κCMBκCMB correlation as 5×2pt.

In this work, we develop the methodology for jointly ana-
lyzing the 5×2pt set of correlation functions. This methodol-
ogy will be applied to measurements of the 5×2pt two-point
functions using data from DES, SPT and Planck in a com-
panion paper, extending the 3×2pt analysis of Abbott et al.
[5]. We do not include wκCMBκCMB (θ) in the analysis presented
here because the current highest signal-to-noise measurement
of wκCMBκCMB (θ) comes from Planck Collaboration et al. [19].
Since the Planck κCMB map covers the full sky, the covariance
between wκCMBκCMB (θ) measured by Planck and set of 5×2pt
correlations involving current SPT and DES Y1 data (which
overlap over roughly 1300 sq. deg. on the sky) is negligible.
Therefore, cosmological constraints from the Planck measure-
ment of wκCMBκCMB (θ) can be trivially combined with those from
the 5×2pt analysis by taking the product of the correspond-
ing posteriors. For future DES and SPT data, the improved
signal-to-noise of the measurements may necessitate revisit-
ing the approximation of negligible covariance between the
Planck measurement of wκCMBκCMB (θ) and the DES and SPT
measurements of 5×2pt.

The analysis presented here builds on the methodology pre-
sented in Krause et al. [20] (hereafter K17) for analyzing the
3×2pt data vector. The most significant difference between
this work and that of K17 is that we must account for sources
of systematic error that are specific to the cross-correlations
with κCMB. Of these systematics, the most problematic is con-
tamination of κCMB by the thermal Sunyaev-Zel’dovich effect
(tSZ). The effects of tSZ and other potential contaminants on
κCMB has been investigated previously by several authors, in-
cluding van Engelen et al. [21], Ferraro and Hill [22], Mad-
havacheril and Hill [23]. We develop an approach for esti-
mating the effects of such contamination on wδgκCMB (θ) and
wγκCMB (θ), and use these estimates to determine an appropriate
choice of angular scale cuts to apply to the two-point function

measurements to minimize tSZ-induced bias.
After developing the methodology for analyzing the 5×2pt

data vector, we use simulated likelihood analyses to demon-
strate how adding the cross-correlations with κCMB to the
3×2pt analysis can improve cosmological constraints and can
potentially allow for the self-calibration of nuisance parame-
ters that are degenerate with cosmology in the 3×2pt analy-
sis. While the currently low signal-to-noise of the wδgκCMB (θ)
and wγκCMB (θ) correlation functions limits their cosmological
constraining power, we show that including them in the joint
analysis can make the cosmological constraints more robust
to multiplicative shear biases.

This work builds on several recent DES collaboration pa-
pers that analyze two-point functions of DES observables.
These include the analysis of cosmic shear [24], the analysis
of galaxy clustering [25], the analysis of galaxy-galaxy lens-
ing [26], and the joint analysis of all three two-point functions
in Abbott et al. [5].

The layout of the paper is as follows. In §II we describe
the datasets used in this work; in §III we describe the mod-
eling steps required to compute a likelihood for the observed
two-point functions given a cosmological model; in §IV we
describe our procedure for characterizing systematic biases in
wδgκCMB (θ) and wγκCMB (θ) that are specific to the κCMB maps; in
§V we describe the motivation for our choice of angular scale
cuts. We present results from simulated analyses in §VI and
conclude in §VII.

II. DATA

This work presents the methodology for analyzing the two-
point functions formed between δg, γ and κCMB. For the most
part, developing this methodology does not rely on analyzing
any actual data. However, in §IV, we will take a data-driven
approach to characterizing biases in wδgκCMB (θ) and wγκCMB (θ)
due to contamination of the κCMB maps. For that part of the
analysis, we rely on exactly the same galaxy and shear cata-
logs used in the DES 3×2pt analysis [5]. Below, we briefly
describe these catalogs and refer readers to the listed refer-
ences for more details.

We consider measurements of wδgκCMB (θ) and wγκCMB (θ) in
position-space, i.e. as a function of the angle between the two
points being correlated. Measuring wδgκCMB (θ) and wγκCMB (θ)
requires two sets of galaxies, which we refer to as ‘tracers’
and ‘sources.’ Lenses are treated as tracers of the matter den-
sity field and are used to measure δg; images of the source
galaxies are used to measure the gravitational lensing-induced
shears, γ. The tracer and source galaxies are in turn divided
into multiple redshift bins.

A. Galaxy catalog

For the purposes of measuring δg, we use a subset of the
DES Y1 ‘Gold’ catalog [27] referred to as redMaGiC [28].
The redMaGiC galaxies are a set of luminous red galaxies
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(LRGs) selected based on their match to a red sequence tem-
plate, which is calibrated via the redMaPPer galaxy-cluster-
finding algorithm [28–30]. The redMaGiC galaxies are de-
signed to have very well understood photometric redshift es-
timates, with a scatter of σz ∼ 0.017(1 + z) [25]. As in
K17, the redMaGiC galaxies are divided into 5 redshift bins
at 0.15 . z . 0.9, where the three lower redshift bins have a
luminosity threshold of Lmin = 0.5L∗ and the two higher red-
shift bins have luminosity thresholds Lmin = 1.0L∗ and 1.5L∗,
respectively. For a more detailed description of the galaxy
sample, see also [26] and [25].

B. Shear catalog

For the purposes of measuring γ, we use the same shear
catalogs used in the 3×2pt analysis. Two shear measurement
algorithms – MetaCalibration [31, 32] and Im3shape [33] –
were used to generate the galaxy shear catalogs that were used
in the 3×2pt analysis, while the MetaCalibration catalog was
used as the fiducial catalog due to its higher signal-to-noise.
MetaCalibration uses the data itself to calibrate the bias in
shear estimation by artificially shearing the galaxy images and
re-measuring the shear. Im3shape, on the other hand, invokes
a large number of sophisticated image simulations to calibrate
the bias in shear estimates. As in K17, the shear catalogs were
divided into four redshift bins between z ∼ 0.2 and 1.3. For
a detailed description of both shear catalogs, see Zuntz et al.
[34]. For details of the photo-z catalog associated with the
shear catalogs, see Hoyle et al. [35]. The analysis presented
in this work adopts noise estimates and redshift distributions
corresponding to the MetaCalibration catalog.

C. CMB lensing map

The methodology presented here is general and could be
applied to any map of κCMB. However, in order to accurately
characterize the magnitude of biases in κCMB, we tailor our
analysis to the κCMB maps that will be used in the companion
paper that presents cosmological constraints obtained from
analysis of the 5×2pt data vector. That work will use the
κCMB maps from Omori et al. [36] (henceforth O17) and so
we briefly describe those maps here.

The κCMB map generated in O17 is computed by applying
the quadratic lensing estimator of Hu and Okamoto [37] to
an inverse variance weighted combination of 150 GHz SPT
and 143 GHz Planck temperature maps. The quadratic esti-
mator of Hu and Okamoto [37] exploits the fact that gravi-
tational lensing induces a correlation between the gradient of
the CMB temperature field and small-scale fluctuations in this
field. A suitably normalized quadratic combination of filtered
CMB temperature maps then provides an estimate of κCMB.
The SPT maps used for this purpose are from the SPT-SZ
survey [38]. The combined map produced from the SPT and
Planck datasets is sensitive to a greater range of angular modes
on the sky than either experiment alone: Planck cannot mea-
sure small scale modes because of its 7’ beam (at 143 GHz),

while SPT cannot measure large scale modes because of time
domain filtering that is used to remove atmospheric contami-
nation.

The κCMB map from Omori et al. [36] is restricted to the
area of sky that is observed by both SPT and Planck . The
overlap of this region with the DES Y1 survey region is ap-
proximately 1300 sq. deg.

III. MODELING THE TWO-POINT FUNCTIONS

A. Formalism

We begin by describing the formalism used to model the
5×2pt set of correlation functions. This methodology closely
follows that described in K17 to model the 3×2pt data vec-
tor. We consider exactly the same galaxy selections, and make
many of the same modeling assumptions. To minimize repe-
tition, in this work, we focus only on describing the modeling
of those correlations that involve κCMB (i.e. wδgκCMB (θ) and
wγκCMB (θ)); for a complete description of the modeling of the
other two-point functions (i.e. wδgδg (θ), wδgγ(θ), and wγγ(θ)),
we refer readers to K17.

Since shear defines a spin-2 field, we can consider corre-
lations with different components of this field. When con-
sidering autocorrelations of the shear field, we use ξ+ and ξ−
[39]. When measuring the correlation between DES shears
and κCMB, we consider only the component of the shear that
is oriented orthogonally to the line connecting the two points
being correlated, i.e. the tangential shear, γt. In the weak
shear limit, this tangential component contains all the lensing
signal [39]. Using γt has the advantage of reducing contam-
ination from additive systematics in the shear estimation and
avoiding mask effects during the conversion from γ to κ [40].
Henceforth, we will denote this correlation as wγtκCMB (θ).

We begin by computing the cross-spectra between the rel-
evant fields in harmonic space using the Limber approxima-
tion [41]. The Limber approximation is justified here because
we do not consider very large angular scales, and because
the galaxy selection functions are slowly varying with redshift
[42]. For computing wγtκCMB (θ), it is convenient to first express
this cross-correlation in terms of lensing convergence, rather
than shear, and then transform to shear when expressing the
correlation function in configuration space. The lensing con-
vergence, κ, for a source at comoving distance χs and in some
direction specified by θ̂, is defined by

κ(θ̂, χs) =
3ΩmH2

0

2c2

∫ χs

0
dχ′

χ′(χs − χ
′)

χs

δ(θ̂, χ′)
a(χ′)

, (1)

where H0 is the Hubble constant today, Ωm is the matter den-
sity today, δ is the matter overdensity, and a is the scale fac-
tor [39]. We refer to the lensing convergence defined for the
source galaxies as κs (in contrast to the CMB-derived lensing
convergence, κCMB). For galaxy lensing, the sources are dis-
tributed across a broad range of redshift and the convergence
must be averaged across this distribution. In this case, the con-
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vergence for source galaxies in the ith redshift bin becomes

κi
s(θ̂) =

∫ ∞

0
dχ′qi

κs
(χ′)δ(θ̂, χ′), (2)

where we have defined the lensing weight as

qi
κs

(χ) =
3ΩmH2

0

2c2

χ

a(χ)

∫ ∞

χ

dχ′
ni

s(z(χ′)) dz
dχ′

n̄i
s

χ′ − χ

χ′
, (3)

where ni
s(z) the number density of the source galaxies in the

ith bin as a function of redshift, and n̄i
s is the average of that

quantity over redshift. Since the CMB originates from a very
narrow range of comoving distance, we can approximate the
source redshift distribution of the CMB as a Dirac δ-function
centered on the comoving distance to the last scattering sur-
face, χ∗. In this case, the lensing weight function for CMB
lensing becomes

qκCMB (χ) =
3ΩmH2

0

2c2

χ

a(χ)
χ∗ − χ

χ∗
. (4)

The overdensity of galaxies on the sky in the ith redshift bin
can also be related to an integral along the line of sight of the
matter overdensity, assuming the galaxy bias is known. Fol-
lowing Abbott et al. [5], we restrict our analysis to the linear
bias regime, where the galaxy overdensity can be expressed as
δg(θ̂, χ) = bg(χ)δ(θ̂, χ), where bg(χ) is the galaxy bias. In this
case, the projected overdensity of galaxies on the sky is

δi
g(θ̂) =

∫
dχ′qi

δg
(χ′)δ(θ̂, χ′), (5)

where we have defined the tracer galaxy weight function as

qi
δg

(χ) = bi
g(χ)

ni
g(z(χ))

n̄i
g

dz
dχ
, (6)

where ni
g(z) is the number density of the tracer galaxies in

the ith bin as a function of redshift, and n̄i
g is the average of

that quantity over redshift. We will further simplify the bias
modeling such that the bias for each galaxy redshift bin is
assumed to be a constant, bi

g. In reality, the linear bias model
is known to break down at small scales [43–45]. We will show
in §V that for our choice of angular scale cuts, the assumption
of linear bias does not bias our parameter constraints.

Using the Limber approximation, we have

CκsκCMB (`) =

∫
dχ

qi
κs

(χ)qκCMB (χ)

χ2 PNL

(
` + 1/2
χ

, z(χ)
)
, (7)

and

CδgκCMB (`) =

∫
dχ

qi
δg

(χ) qκCMB (χ)

χ2 PNL

(
` + 1/2
χ

, z(χ)
)
, (8)

where i labels the redshift bin (of either the tracer or source
galaxies) and PNL(k, z) is the nonlinear matter power spec-
trum. We compute the nonlinear power spectrum using the

Boltzmann code CAMB2 [46, 47] with the Halofit extension
to nonlinear scales [48, 49] and the Bird et al. [50] neutrino
extension.

SPT and Planck observe the CMB with finite-size beams.
When generating the κCMB map, this beam is deconvolved,
exponentially increasing noise at small scales. Unfortunately,
the presence of small-scale noise in κCMB will make the real-
space covariance diverge. To prevent this divergence, we ap-
ply a smoothing function to the κCMB maps. We convolve the
maps with a Gaussian beam having full width at half maxi-
mum of θFWHM = 5.4′. In harmonic space, this corresponds to
multiplication of the maps by

B(`) = exp(−`(` + 1)/`2
beam), (9)

where `beam ≡
√

16 ln 2/θFWHM ≈ 2120. Additionally, we fil-
ter out modes in the κCMB map with ` < 30 and ` > 3000,
where the lower bound is to remove biases coming from
poorly characterized modes due to the finite sky area covered
by the κCMB lensing map [36] and the upper limit is imposed to
remove potential biases due to foregrounds in the κCMB map.
The impact of this filtering can be seen in Fig. 1.

Converting the above expressions to position-space corre-
lation functions via a Legendre transform yields

wγi
tκCMB (θ) =

∫
d` `
2π

F(`)J2(`θ)CκsκCMB (`), (10)

wδi
gκCMB (θ) =

∑ 2` + 1
4π

F(`)P`(cos(θ))Cδi
gκCMB (`), (11)

where J2 is the second order Bessel function of the first kind
and P` is the `th order Legendre polynomial. The appearance
of J2 in Eq. 10 is a consequence of our decision to measure
the correlation of κCMB with tangential shear. The function
F(`) = B(`)Θ(` − 30)Θ(3000 − `), where Θ(`) is a step func-
tion, describes the filtering that is applied to the κCMB map.
Henceforth, for notational convenience, we will suppress the
redshift bin labels on the correlation functions. We show the
model wδgκCMB (θ) and wγtκCMB (θ) corresponding to the best-fit
Planck cosmological parameters in Fig. 1.

B. Modeling systematics affecting δg and γ

There are several sources of systematic uncertainty that af-
fect the δg and γ observables. These systematics will prop-
agate into the wδgκCMB (θ) and wγtκCMB (θ) measurements. We
model these sources of systematic error exactly as described
in K17, and so provide only a brief description here. We will
consider sources of systematic error that can affect the κCMB
map in more detail in §IV.

1. Shear calibration bias

The inference of γ from an image of a galaxy is subject to
sources of systematic error. Such errors are commonly pa-

2 See camb.info.
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FIG. 1. Models of the wδgκCMB (θ) and wγtκCMB (θ) correlation functions corresponding to the fiducial cosmological model of Table I (orange
points with errorbars). Each panel represents the correlation function for a different tracer or source redshift bin. Error bars correspond to the
square root of the diagonal elements of the covariance matrix described in §III C. Blue points show the model vectors in the absence of the
harmonic-space filtering of the κCMB map described in §III A; the filtering affects wδgκCMB (θ) and wγtκCMB (θ) differently because of the non-local
nature of γt.

rameterized in terms of a multiplicative bias, m, such that the
observed shear is related to the true shear by γobs = (1+m)γtrue
[e.g. 34]. While additive biases may also be present in shear
calibration, these are typically tightly constrained by the data
itself (and are minimized by our decision to use the tangential
shear component).

Following K17 and other literature [51–53], we adopt a
separate multiplicative bias parameter, mi, for the ith source
galaxy redshift bin. The model for wγtκCMB (θ) (Eq. 10) is then
scaled by (1 + mi). Note, however, that wδgκCMB (θ) does not
depend on the estimated shears and is therefore unaffected by
mi.

2. Intrinsic alignment

In addition to the coherent alignment of galaxy shapes
caused by gravitational lensing, galaxy shapes can also be
intrinsically aligned as a result of e.g. tidal fields [54–56].
Such intrinsic alignments constitute a potential systematic for
the measurement of gravitational lensing from galaxy shapes.
Intrinsic alignments of galaxies will also affect wγtκCMB (θ)
[57, 58]. To see this, consider a galaxy that is stretched by
the tidal field of nearby large scale structure; the same large
scale structure that causes this intrinsic alignment will also
lens the CMB, leading to a correlation between the intrinsic
galaxy shapes and κCMB. This effect is analogous to the usual
gravitational-intrinsic (GI) term affecting cosmic shear [59].
Following K17, we parameterize the effects of intrinsic align-
ments using the nonlinear linear alignment (NLA) model [60].

This model impacts qκ for the source galaxies as described in
K17.

Briefly, we perform the replacement

qi
κs

(χ)→ qi
κs

(χ) − A(z(χ))
ni

s(z(χ))
n̄i

s

dz
dχ
, (12)

where

A(z) = AIA,0

(
1 + z
1 + z0

)ηIA 0.0139Ωm

D(z)
, (13)

where D(z) is the linear growth factor and we set z0 = 0.62.
The normalization AIA,0 and power law scaling with redshift,
ηIA are treated as free parameters of the model.

3. Photometric redshift errors

DES uses multiband optical photometry to infer the redshift
distributions of the galaxy samples (it is these distributions
that are necessary for modeling the 5×2pt set of correlation
functions). This inference is potentially subject to sources of
systematic error, which can result in biases to ng(z) and ns(z).
Following K17 and other literature [51–53], we parameterize
such biases in terms of the shift parameters, ∆z, such that the
estimated redshift distribution, n̂(z) is related to the true red-
shift distribution, ntrue(z), via ntrue(z) = n̂(z−∆z). We consider
separate shift parameters for each tracer and source galaxy
redshift bin, ∆i

z,g and ∆i
z,s, respectively, where the i superscript

labels the redshift bin.
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C. Covariance

The DES 3×2pt analysis uses a halo model covariance, as
described and validated in K17. We now describe the exten-
sion of this formalism to the CMB lensing cross-correlations
wδgκCMB (θ) and wγtκCMB (θ). For notational convenience, we will
use Σ(θ) and Σ(`) to generically represent one of these two-
point functions in position and harmonic-space, respectively;
we will use Ξ(θ) and Ξ(`) to represent one of the 3×2pt cor-
relation functions (i.e. wδgδg (θ), wδgγt (θ), ξ+(θ) and ξ−(θ)) in
configuration and harmonic space, respectively. We calculate
the covariance of the harmonic space correlation functions,
Cov(Σi(`),Σk(`′)) as the sum of a Gaussian covariance CovG

and non-Gaussian covariance CovNG, which includes super-
sample variance [61], as detailed in Krause and Eifler [62]
and Schaan et al. [15], using the halo model to compute the
higher-order matter correlation functions. The covariance of
the wδgκCMB (θ) and wγtκCMB (θ) is then

Cov
(
Σi(θ), Σk(θ′)

)
=

∫
d` `
2π

Jn(Σi)(`θ)F(`)
∫

d`′ `′

2π
Jn(Σk)(`′θ′)F(`′)[

CovG
(
Σi(`),Σk(`′)

)
+ CovNG

(
Σi(`),Σk(`′)

)]
, (14)

where Jn is the nth-order Bessel function of the first kind, and
F(`) is the function that describes the filtering that is applied
to the κCMB map. The cross-covariance between wδgκCMB (θ) and
wγtκCMB (θ) with one of the DES 3×2pt correlation functions is
given by

Cov
(
Σi(θ), Ξk(θ′)

)
=

∫
d` `
2π

Jn(Σ)(`θ)
∫

d`′ `′

2π
Jn(Ξ)(`′θ′)[

CovG
(
Σi(`),Ξk(`′)

)
+ CovNG

(
Σi(`),Ξk(`′)

)]
, (15)

where the order of the Bessel function is given by n = 0
for wδgκCMB (θ), wδgδg (θ), and ξ+, by n = 2 for wγtκCMB (θ) and
wδgγt (θ), and by n = 4 for ξ−.

D. Likelihood analysis

We now build the likelihood of the data given the model
described in §III A and the covariance described in §III C.
The model includes parameters describing cosmology, galaxy
bias, intrinsic alignment, and shear and photo-z systematics.
The cosmological model considered in this analysis is flat
ΛCDM. The cosmological parameters varied are the present
day matter density parameter, Ωm, the normalization of the
primordial power spectrum, As, the spectral index of the pri-
mordial power spectrum, ns, the present day baryon density
parameter, Ωb, and the Hubble parameter today, h0. The com-
plete set of model parameters is summarized in Table I. For
the simulated likelihood analyses described below, we gener-
ate a data vector at a fiducial set of model parameters given
by the middle column of Table I. The priors imposed in our
fiducial likelihood analysis are given in the third column of
Table I; these priors are identical to those of the 3×2pt analy-
sis of Abbott et al. [5].

TABLE I. Parameters of the baseline model: fiducial values, flat pri-
ors (min, max), and Gaussian priors (µ, σ). Definitions of the param-
eters can be found in the text. The cosmological model considered is
spatially flat ΛCDM, so the curvature density parameter and equation
of state of dark energy are fixed to ΩK = 0 and w = −1, respectively.

Parameter Fiducial Prior

Cosmology
Ωm 0.295 flat (0.1, 0.9)

As/10−9 2.26 flat (0.5,5.0)

ns 0.968 flat (0.87, 1.07)

w0 -1.0 fixed

Ωb 0.0468 flat (0.03, 0.07)

h0 0.6881 flat (0.55, 0.91)

Ωνh2 6.16 × 10−4 fixed

ΩK 0 fixed

Galaxy bias
b1

g 1.45 flat (0.8, 3.0)

b2
g 1.55 flat (0.8, 3.0)

b3
g 1.65 flat (0.8, 3.0)

b4
g 1.8 flat (0.8, 3.0)

b5
g 2.0 flat (0.8, 3.0)

Tracer galaxy photo-z bias
∆1

z,g 0.002 Gauss (0.0, 0.007)

∆2
z,g 0.001 Gauss (0.0, 0.007)

∆3
z,g 0.003 Gauss (0.0, 0.006)

∆4
z,g 0.0 Gauss (0.0, 0.01)

∆5
z,g 0.0 Gauss (0.0, 0.01)

Source galaxy photo-z bias
∆1

z,s -0.002 Gauss (-0.001,0.016)

∆2
z,s -0.0015 Gauss (-0.019,0.013)

∆3
z,s 0.007 Gauss (0.009, 0.011)

∆4
z,s -0.018 Gauss (-0.018, 0.022)

Shear Calibration bias
mi 0.013 Gauss (0.012, 0.023)

Intrinsic Alignments
AIA,0 0.0 flat (-5.0, 5.0)

ηIA 0.0 flat (-5.0, 5.0)

z0 0.62 fixed

For the purposes of this analysis, we keep the cosmolog-
ical density of neutrinos fixed to Ωνh2 = 6.16 × 10−4, cor-
responding to a total neutrino mass of 0.06 eV. This choice
is reasonable since the Abbott et al. [5] analysis only weakly
constrains the neutrino mass, and the 5×2pt analysis does not
significantly improve on these constraints.

Given a point in parameter space, p, we consider a Gaussian
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likelihood for the 5×2pt observable, d:

L(d|p) ∝ exp

−1
2

∑
i j

(di − mi(p))
[
C−1

]
i j

(d j − m j(p))

 ,
(16)

where m is the model vector, the sum runs over all ele-
ments of the data vector, and C is the covariance matrix de-
scribed in §III C. As in K17, we keep the covariance matrix
fixed as a function of cosmological parameters. This ignores
the cosmology-dependence of the covariance matrix [63, 64],
which is negligible compared to the noise level in the DES Y1
and SPT data.

The computation of the model vector and the likelihood
analysis is accomplished using CosmoSIS [65]. We sample
parameter space using the multinest algorithm [66]. The
multinest sampler has been tested in K17 to yield results
consistent those of another sampler, emcee [67], which relies
on the algorithm of Goodman and Weare [68].

IV. BIASES IN THE κCMB MAPS

A. Overview

While the systematics considered in §III B affect both the
3×2pt data vector and the 5×2pt data vector, there are also
sources of systematic error that impact only wδgκCMB (θ) and
wγtκCMB (θ). In this section, we attempt to quantify biases in
the κCMB maps that will affect the measurement of these two
correlation functions.

We write the observed κCMB signal on the sky, κobs, as the
sum of the true CMB lensing signal, κCMB, and some con-
taminating field, κsys, i.e. κobs = κCMB + κsys. The observed
correlation functions wδgκobs (θ) and wγtκobs (θ) then differ from
the correlation functions with the true κCMB by wγtκsys (θ) and
wδgκsys (θ). To determine these biases, we will form an esti-
mate of κsys and then use the true galaxy and shear catalogs
described in §II to calculate wγtκsys (θ) and wδgκsys (θ). However,
given the large uncertainties associated with our estimates of
κsys, we will not attempt to model or correct for such biases in
our analysis. Instead, we will choose angular scale cuts such
that biases to the inferred posteriors on the model parameters
are below 50% of the statistical errors (see discussion in §V).

The dominant sources of bias that contribute to κsys will
depend on the methods and data used to estimate κCMB. For
instance, a κCMB map created from maps of CMB temperature
will be affected by the tSZ effect, while this is not the case for
κCMB maps constructed from maps of CMB polarization. Here
we tailor our analysis to those systematics that are expected
to be dominant for the cross-correlation of DES galaxies and
shears with the κCMB maps generated in O17, since it is these
κCMB maps that will be used in the forthcoming 5×2pt results
paper.

Both the SPT 150 GHz maps and Planck 143 GHz maps
used to construct the κCMB maps in O17 receive contributions
from sources other than primary CMB. In particular, these

maps receive significant contributions from the tSZ effect and
from radio and thermal dust emission from distant galaxies.
The tSZ effect is caused by inverse Compton scattering of
CMB photons with hot electrons. At frequencies near 150
GHz, this results in a decrement in the observed CMB temper-
ature. Unresolved galaxies, which together constitute the cos-
mic infrared background (CIB), on the other hand, appear as
a diffuse background in the observed maps. The tSZ and CIB
signals on the sky will propagate through the quadratic esti-
mator into the κCMB maps of O17. Since both non-Gaussian
sources of contamination are correlated with the matter den-
sity, we also expect κsys to be correlated with the matter den-
sity. Consequently, these biases will not average to zero in the
wδgκCMB (θ) and wγtκCMB (θ) correlations, and we must carefully
quantify their impact on our analysis. Note that contamina-
tion from the kinematic Sunyaev-Zel’dovich (kSZ) effect is
also expected to be present in the κCMB maps. However, since
the kSZ signal has a similar morphology to the tSZ signal, but
an amplitude that is a factor of ∼ 10 smaller, by ensuring that
the tSZ effect does not bias our results, we ensure that the kSZ
effect also does not lead to a significant bias.

Our approach to estimating κsys due to both tSZ and CIB
is to estimate the contributions to the SPT+Planck tempera-
ture maps from these signals, and to then pass these estimated
temperature maps through the quadratic estimator pipeline of
O17. To see that this procedure works, consider the total tem-
perature at some multipole, `, as the sum of the lensed CMB
and the contaminating signal: Ttot(`) = TCMB(`) + Tsys(`).
The quadratic estimator for the lensing potential φ(L) is then
φ(L) ∝ 〈(T (`) + Tsys(`))(T (`′) + Tsys(`′))〉, where L = ` + `′.
Under the gradient approximation, T (`) ≈ T̃ (`)+ (∇T̃ ·∇φ)(`),
where the tilde denotes the unlensed field. In the case of both
tSZ and CIB bias, terms of the form T (`)Tsys(`′) average to
zero because the unlensed gradient field is uncorrelated with
these biases. Therefore, we have φ(L) ∝ φ(L)+φsys(L), where
φsys(L) is the "lensing" potential associated with the contami-
nating temperature field.

As we will see below, biases in wδgκCMB (θ) and wγtκCMB (θ)
due to the tSZ effect can be quite large, and dominate over all
other biases considered. Since massive galaxy clusters are the
largest contributors to the tSZ effect on the sky, the level of tSZ
bias in the κCMB maps can be reduced by masking these ob-
jects. Indeed, O17 masked clusters detected in the SPT maps
at high significance via their tSZ decrement before applying
the quadratic estimator to the SPT+Planck temperature maps.
Although masking regions of high tSZ signal reduces the tSZ-
induced bias, it has the undesirable consequence of inducing
another bias in the correlation functions, since the regions of
high tSZ signal are also regions of high κCMB. We will argue
below that this bias is negligible given our masking choices.

We emphasize that the approach taken in this section to
characterizing biases in the κCMB map is quite general, and
could be applied to characterize biases present in maps other
than that of O17. However, the values of the biases obtained
here (in particular the measurement of bias due to tSZ con-
tamination) apply only to the κCMB maps of Omori et al. [36].
Maps of κCMB generated from other data sets or using different
techniques could have significantly different levels of bias.
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B. Estimate of bias due to the tSZ effect

1. Construction of simulated y map

As described above, we estimate the tSZ-induced bias in
wδgκCMB (θ) and wγtκCMB (θ) by correlating the true galaxy and
shear catalogs with an estimate of the bias in the κCMB map due
to tSZ signal, which we refer to as κtSZ. We estimate κtSZ by
applying the quadratic lensing estimator to an estimated map
of the tSZ temperature signal in the SPT+Planck sky maps.
In principle, the tSZ temperature signal could be computed
directly from the multi-frequency SPT and Planck sky maps.
Instead, we take the approach of constructing a simulated map
of the tSZ signal by placing mock tSZ profiles at the locations
of massive galaxy clusters on the sky. One advantage of using
a simulated tSZ map instead of generating one from SPT or
Planck temperature maps is that the simulated map will not be
affected by noise in the temperature maps, making it possible
to characterize the bias with high statistical accuracy. On the
other hand, this approach carries some associated modeling
uncertainty, which we will attempt to constrain below.

The cluster sample used to generate the simulated tSZ map
combines the redMaPPer [29] cluster catalog from DES Y1
data with samples of tSZ-detected clusters from SPT and
Planck. We use redMaPPer clusters with richness λ > 20,
SPT clusters with detection significance ξ > 4.5 [69] and
the entire Planck tSZ-detected cluster sample [70]. Each of
these samples probes a different range of mass and redshift.
The redMaPPer sample captures low mass clusters, but only
over the redshift range of DES. The SPT cluster sample cap-
tures only very massive clusters, but out to high redshift. The
Planck cluster sample, on the other hand, captures very mas-
sive clusters at low redshift which are missed by both SPT and
DES.

Of course, there are halos in the Universe that are not de-
tected by redMaPPer, SPT or Planck — and are therefore
missing from the simulated tSZ map — but nonetheless con-
tribute to the tSZ signal on the sky. However, halos outside
of the DES survey region or at redshifts beyond those probed
by DES, will not correlate with DES galaxies and shears, and
will therefore not bias the inferred correlation functions (al-
though this tSZ contribution will contribute as noise to the
measurements). There are also halos within the DES survey
region and redshift range that are not detected by any of these
three surveys because their corresponding observables are be-
low the detection limit. The lowest mass halos in our sam-
ple come from the redMaPPer catalog. The limiting richness
threshold of the redMaPPer catalog that we employ is λ = 20,
corresponding roughly to a mass of M ∼ 1.5×1014 M� assum-
ing the mass-richness relation of Melchior et al. [71]. Using
simulations, Battaglia et al. [72] found that halos with masses
M < 2 × 1014 M� contribute half the tSZ power at ` = 3000,
with that fraction decreasing towards lower `. Consequently,
for ` < 3000 (the range used to construct the κCMB maps from
O17), we expect our simulated map to capture more than 50%
of the tSZ power from halos on the sky. We comment more
on possible contributions to tSZ bias in the measured corre-
lation functions from such low mass halos below. There may

also be tSZ signal on the sky that is not due to gas in massive
halos, i.e. tSZ signal due to diffuse gas. However, again, this
contribution is expected to be subdominant to the contribu-
tion of the massive halos and would therefore not significantly
change the estimated bias in κCMB.

To assign tSZ profiles to the redMaPPer and Planck clus-
ters, we first estimate their masses, and then use a model to
compute expected tSZ profiles given the estimated masses.
For the redMaPPer clusters, the masses are assigned using the
mean mass-richness relation of Melchior et al. [71]. For the
Planck clusters, the masses are assigned using the estimates
constructed by Planck Collaboration et al. [70] from the ob-
served cluster tSZ signals. In our fiducial analysis we set the
hydrostatic bias parameter to 1 − b = 1 when computing the
masses of the Planck clusters. Given the mass estimates for
the redMaPPer and Planck clusters, we compute correspond-
ing pressure profiles using the fits from Battaglia et al. [72].
In particular, the thermal pressure profile is written as

Pth(x) = P200P0(x/xc)γ
[
1 + (x/xc)α

]−β , (17)

where x = r/R200c and R200c is the radius from the cluster at
which the enclosed mass is M200c and the corresponding mean
density is 3M200c/(4πR3

200c) = 200ρcrit(z). The normalization,
P200 is given by

P200 = 200
GM200cρcrit(z) fb

2R200c
, (18)

where fb = Ωb/Ωm. The parameters P0, xc, α, β, and γ in
Eq. 17 are related to the cluster mass, M200c, and redshift as
described in Battaglia et al. [72]. The pressure profile is then
converted to a Compton-y profile by integrating along the line
of sight,

y(θ,M200c, z) =
σT

mec2

∫
dl Pe(

√
l2 + d2

Aθ
2,M200c, z), (19)

where σT is the Thomson cross-section, me is the electron
mass, and the term in the integral is the electron pressure (l
is the line of sight distance, dA is the angular diameter dis-
tance and θ is the angular separation relative to the cluster
center). We assume that the electron pressure, Pe, is given
by Pe = 0.518Pth. This relation holds when the hydrogen
and helium are fully ionized, and the helium mass fraction is
Y = 0.24.

Finally, the tSZ temperature signal at frequency ν is related
to y via

∆T (ν)
TCMB

= g
(

hν
kBTCMB

)
y, (20)

where g(x) = x(ex + 1)/(ex − 1) − 4 in the limit that the gas is
non-relativistic [e.g. 73].

In contrast to the Planck and DES-detected clusters, for the
SPT clusters we have a direct measurement of their tSZ pro-
files, and so use these measurements rather than modeling the
profile through an estimate of the cluster masses. Bleem et al.
[69] performed fits to the observed y profiles using the isother-
mal β model [74], with β = 1:

∆T (θ) = ∆T0(1 + θ/θc)−1, (21)



10

where θ is the angular distance to the cluster and ∆T0 and θc
are parameters of the fit. For the SPT-detected clusters, we use
these β-profile fits to estimate their contribution to the y signal
on the sky. For any SPT-detected cluster that is also detected
by Planck or redMaPPer, we use the SPT measurement of its
tSZ profile.

As a test of our simulated tSZ map, the left panel of Fig. 2
shows a comparison of the estimated tSZ temperature profiles
around the SPT, redMaPPer and Planck clusters used to gen-
erate the tSZ map. For those SPT-detected clusters that are
also detected in the redMaPPer and Planck catalogs, we plot
the amplitude of the β-profile fits at one arcminute from the
cluster center against the corresponding amplitudes of the es-
timated profiles from Eq. 17. We choose to evaluate the pro-
files at one arcminute because this is roughly the beam scale
of the SPT, so we do not expect the β-profiles to be well con-
strained below this scale. The left panel of Fig. 2 makes it
clear that the estimated tSZ temperature profiles from Eq. 17
agree well with the direct β-profile fits to the observed tSZ
signals of the clusters. This agreement is non-trivial: it pro-
vides a test of both of the profile model for the simulated tSZ
map as well as the mass estimates for both the redMaPPer and
Planck clusters.

As another check on the model y-profiles, we integrate the
simulated profiles for the redMaPPer clusters out to R500c to
obtain Y500, and compare these values to the direct measure-
ment of Y500 around redMaPPer clusters from Saro et al. [77].
Saro et al. [77] used a matched filter approach to estimate Y500
for redMaPPer clusters detected in DES Science Verification
data. We find no evidence for a bias between the simulated
and directly estimated Y500 for richness λ & 60. At richness
λ . 60, we find that our model tends to yield higher Y500 val-
ues, meaning that our model may be somewhat overestimating
the effects of tSZ contamination. Note that a similar discrep-
ancy between the measured and predicted profiles was also
found by Saro et al. [77]. In that work, it was found that the
measured Y500 values for clusters with λ < 80 were smaller
than predicted based on assumed scaling relations from Ar-
naud et al. [78].

As a further test of our simulated tSZ map, we compute the
power spectrum of the map and compare the result to mea-
surements of the y power spectrum from George et al. [75] and
Planck Collaboration et al. [76]. This comparison is shown in
the right panel of Fig. 2. At ` = 3000, our model yields a
tSZ power spectrum that is in excellent agreement with that
measured by George et al. [75]. At ` & 3000, we expect the y
signal on the sky to receive significant contributions from low
mass (M . 2 × 1014 M�) and high-redshift halos (z & 0.6) ha-
los. The fact that our simulated tSZ map does not include low-
mass, high-redshift halos yet has power at ` = 3000 that is as
large as the George et al. [75] measurement suggests we may
have somewhat overestimated the contribution to the y-signal
from the redMaPPer clusters. This explanation is consistent
with the finding that our model predicts larger Y500 values than
measured by Saro et al. [77] for low richness clusters.

For ` . 1000, the tSZ power spectrum receives a signif-
icant contribution from clusters that are detected by Planck,
and not by SPT or DES, i.e. high-mass, very low redshift

clusters. This can be seen from the fact that when we vary
the hydrostatic mass bias parameter used to calculate masses
for the Planck clusters, the amplitude of the tSZ power spec-
trum at low ` changes significantly. For our fiducial choice of
1 − b = 1.0, we somewhat underpredict the tSZ power at low
`; for 1 − b = 0.6, we somewhat overpredict the tSZ power at
low `, since this effectively assigns the Planck clusters larger
masses, and thus larger tSZ signals. Although Planck Collab-
oration et al. [79] find evidence for 1 − b = 0.6, this choice is
not well motivated here since we are attempting to invert the
SZ-derived masses to obtain an estimate of the correspond-
ing SZ profiles. Consequently, we keep 1 − b = 1.0 as the
fiducial choice for the estimated tSZ map. Note, though, that
the amplitude of the inferred bias in wδgκCMB (θ) and wγtκCMB (θ)
is almost completely insensitive to the value of 1 − b that
is assumed because the clusters that are only detected by
Planck are at very low redshift, and hence do not have strong
correlations with DES galaxies or shears.

2. Masking clusters to reduce tSZ-induced bias

Since galaxy clusters are sources of large tSZ signals, tSZ
contamination of the κCMB maps can be reduced by masking
these objects. O17 masked clusters detected by SPT with
signal-to-noise ξ > 6 when applying the quadratic lensing
estimator to the SPT+Planck CMB temperature maps. Ap-
plying a more aggressive mask prior to the application of
the quadratic estimator is problematic because a complicated
mask will lead to difficulties with mode coupling.

In tests on the simulated y-map, we find that tSZ bias of
the κCMB map can be further suppressed by masking addi-
tional clusters after the κCMB reconstruction. This approach
works because the application of the quadratic estimator with
the filters defined in O17 to a localized tSZ source results in
a somewhat-localized κtS Z signal. Masking clusters post-κ re-
construction, then, can be used to reduce high-` bias in the
κCMB maps.

Ultimately, the choice of clusters used for masking is set
by the two competing desires to (a) reduce bias in wδgκCMB (θ)
and wγtκCMB (θ) due to tSZ, while (b) ensuring that the bias in-
duced by masking regions of high κCMB remains very small
(see §IV D for more discussion of this bias). In tests on the
simulated y-maps, we find that masking SPT-detected clus-
ters with ξ > 5 and redMaPPer-detected clusters with λ > 80
post-κ reconstruction can reduce the impact of tSZ bias while
inducing an acceptable level of bias due to masking. For
all masked clusters, the mask radius employed is 5 arcmin-
utes. This choice of masking radius was found to signifi-
cantly suppress the high ` bias from the tSZ in tests on simu-
lations, while simultaneously preserving most of the sky area.
The ξ > 5 masking threshold corresponds roughly to re-
moving clusters with mass M200m & 4 × 1014M� [69]. The
λ > 80 threshold corresponds roughly to removing clusters
with M200m & 7 × 1014M� assuming the λ–M relation from
Melchior et al. [71]. The fraction of sky area covered by the
cluster mask is less than 1%.
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FIG. 2. The two panels show different tests of the simulated tSZ map used to estimate the effects of tSZ bias in the κCMB map of O17.
The simulated map is generated by placing mock tSZ profiles at the locations of galaxy clusters detected by DES, SPT and Planck . (Left)
Comparison of the amplitudes of the mock tSZ profiles of clusters detected in the different catalogs. The x-axis represents the tSZ decrement at
150 GHz computed using the β-profile fits of Bleem et al. [69] to SPT-detected clusters, evaluated at one arcminute from the cluster center. y-
axis represents the same quantity computed for redMaPPer (blue circles) and Planck -detected (red triangles) clusters using the Battaglia et al.
[72] profile model described in the text. The direct y-profile measurements from Bleem et al. [69] agree well with the estimated profiles for
those clusters that appear in both the SPT catalog and the redMaPPer and Planck catalogs. (Right) Power spectrum of the simulated tSZ map
compared to measurements from George et al. [75] and Planck Collaboration et al. [76]. The two solid lines represent different assumptions
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FIG. 3. The ratio of the δg and γ cross-correlations with the κtSZ map to the theoretical expectation for these correlations with the true κCMB

map (prior to applying a Gaussian smoothing of FWHM=5.4’). These measurements form our estimate of the fractional bias in wδgκCMB (θ) and
wγtκCMB (θ) due to tSZ contamination of the κCMB map from Omori et al. [36]. Solid curves show model fits to Eqs. 22 and 23, with the best-fit
model parameters listed in each panel. Grey points show equivalent quantities for the κCIB map. The error bars shown are calculated using a
spatial jackknife method.
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3. Calculation of bias due to tSZ

To estimate κtSZ, we pass the simulated tSZ temperature
map through the κCMB estimation pipeline of Omori et al. [36].
We then correlate κtSZ with the redMaGiC and shear catalogs
described in §II A and §II B to estimate the biases in wγtκCMB (θ)
and wδgκCMB (θ).

We measure CδgκtSZ (`) and CκsκtSZ (`) in harmonic space using
PolSpice.3 Fig. 3 shows these bias functions relative to the
theoretical expectation for CδgκCMB (`) and CκsκCMB (`) assuming
the fiducial cosmological model shown in Table I. Although
the exact values of the estimated biases are cosmology de-
pendent, we are only attempting to determine the scales over
which the tSZ bias is significant. The change in these scales
is negligible over the range of cosmological models allowed
by the data. The tSZ bias is well described by a multiplica-
tive factor that is a smooth function of multipole, and which
exhibits mild redshift dependence. The bias in CδgκCMB (`) is
negative at scales of ` . 2000, and positive for ` & 2000.
The amplitudes of these biases can be quite large, reaching a
maximum of roughly 25% for ` < 2000, and even higher for
` > 2000. The tSZ bias in CκsκCMB (`) does not exhibit as strong
a peak at small scales as CδgκCMB (`), but reaches similar levels
of magnitude below ` . 2000.

Since the redMaPPer catalog is complete to only z ∼ 0.7,
we expect our estimate of the tSZ- induced bias in the last
two redshift bins of CδgκCMB (`) and CκsκCMB (`) to be incom-
plete, since these bins receive contributions from structure at
z & 0.7. We therefore apply our bias measurements for the
third-to-last redshift bin to the higher redshift bins. We expect
this approximation to be conservative, since the tSZ bias ap-
parently decreases as a function of increasing redshift, as seen
in Fig. 3. This decrease is apparently physical, since the com-
pleteness of the redMaPPer and SPT catalogs does not evolve
significantly over the redshift range 0.15 < z < 0.6.

We fit the measured biases with smooth functions to make
incorporation into our simulated analyses easier. For the ra-
tio of CκtSZδg (`)/CκCMBδg

fid (`), we find that the functions defined
below provide a good fit:

y(`) = a(|(` − b)/c|)p × 10−8 + d, (22)

where a, b, c, d, and p are free parameters for each redshift
bin. Similarly, for CκtSZκs (`)/CκCMBκs

fid (`), we use a function of
the form:

y(`) = −a exp(−(`/b))1.2 × 10−4 + c. (23)

The results of these fits are shown as the solid curves in
Fig. 3. Given these parameterized fits, we can transform
the biases measured in multipole space into biases in angu-
lar space (where wδgκCMB (θ) and wγtκCMB (θ) are measured).

To assess how halos missing from the simulated tSZ maps
could contribute to bias in the measured correlation func-
tions, we repeat the bias estimates with different sets of ha-
los masked. We find that the contribution to the bias in the

3 http://www2.iap.fr/users/hivon/software/PolSpice/

wδgκCMB (θ) and wγtκCMB (θ) correlation functions contributed by
halos in the richness range 40 < λ < 80 is larger than that from
halos with 20 < λ < 40 by roughly a factor of three. Extrap-
olating this behavior to lower richness clusters suggests that
massive halos with 20 & λ & 5 do not contribute significantly
to the bias. Furthermore, we expect the tSZ contribution from
halos with M . few ×1013M� to be dominated by higher mass
halos over all angular scales, given the beam size of SPT [see,
e.g. 80]. These two arguments suggest that we have captured
the majority of potential tSZ bias by using redMaPPer clusters
with λ > 20 to generate the simulated tSZ map.

As seen in Fig. 3, the estimated biases due to tSZ leakage
into the maps of κCMB are significant. In §V we will assess
the impact of these biases on the inferred cosmological con-
straints, and will choose scale cuts to mitigate their impact.

C. Estimate of CIB bias

We expect bias in the wγtκCMB (θ) and wδgκCMB (θ) correlation
functions due to CIB bias to be small compared to the tSZ-
induced bias. Since the CIB is sourced predominantly from
redshifts z ∼ 2, it is not expected to correlate strongly with the
galaxy or shear samples used in this work. We now attempt to
confirm this expectation.

We estimate the effects of CIB contamination of the κCMB
maps on wδgκCMB (θ) and wγtκCMB (θ) using a procedure similar to
that used to estimate the tSZ bias. However, rather than gen-
erating a simulated CIB map, we instead rely on Planck ob-
servations. To this end, we use the Planck GNILC 545 GHz
CIB map [81] as a proxy for the true CIB emission on the
sky. We first calculate the `-dependent cross-correlation be-
tween the combined SPT+Planck map and the Planck GNILC
545 GHz maps; this correlation provides an estimate of the
amount of CIB contamination in the SPT+Planck map. The
GNILC 545 GHz map is then convolved with the ` dependent
scaling function:

η(`) =
CGNILC×SP
`

CGNILC×GNILC
`

, (24)

where SP refers to the SPT+Planck map. The result is a map
of the estimated CIB leakage into the SPT+Planck tempera-
ture map.

Next, the quadratic estimator is applied to the estimated
CIB leakage map to produce κCIB, an estimate of the leakage
of CIB into the κCMB map. As with κtSZ, we cross-correlate
κCIB with the true DES galaxy and shear catalogs to form esti-
mates of the bias in wγtκCMB (θ) and wδgκCMB (θ) due to CIB leak-
age. These cross-correlations are shown in Fig. 3. From the
figure, it is apparent our estimate of the CIB bias is consistent
with there being no bias, and we will henceforth ignore CIB
as a potential source of contamination in our analysis.

D. Biases due to masking clusters

As mentioned in §IV B 2, massive galaxy clusters are
masked to reduce contamination of κCMB by tSZ leakage.

http://www2.iap.fr/users/hivon/software/PolSpice/
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However, clusters are also associated with regions of high
κCMB. Consequently, by masking these objects, we expect to
reduce the amplitude of wγtκCMB (θ) and wδgκCMB (θ) somewhat,
which could result in a bias to parameter constraints. Further-
more, masking regions of high signal can also change the be-
havior of estimators for that signal. For these reasons, we have
not attempted to reduce the tSZ bias any further with more ex-
treme masking. We prefer instead to ensure that the masking
bias remains negligible, as we will show below. Note that the
total masked area is quite small because there are relatively
few clusters on the sky. Less than 1% of the pre-masking sur-
vey area is removed by the cluster mask, which masks 437
clusters.

To characterize masking-induced bias, we generate a simu-
lated κCMB map that consists only of mock cluster κCMB pro-
files at the locations of the masked clusters in the data; we
refer to this map as κsim. Each cluster is modeled with an
Navarro-Frenk-White (NFW) profile [82]. Taking a some-
what simplistic approach, we assign each simulated cluster
a mass of 1015 M�, which we expect to overestimate the ef-
fects of the masking, since most of the masked clusters will
have masses less than this. The simulated κsim map is then
correlated with the true galaxy and shear catalogs to estimate
wδgκsim (θ) and wγtκsim (θ).4 These two correlation functions ef-
fectively represent the parts of wδgκCMB (θ) and wγtκCMB (θ) that
we have "missed" by masking the massive galaxy clusters.
We find that the ratios of wγtκsim (θ) and wδgκsim (θ) to the true
correlation functions are approximately constant with angular
scale, and have an average amplitude of approximately 1%.
A 1% bias is significantly below the bias induced by e.g. tSZ,
and we will therefore ignore it in the subsequent analysis. The
level of bias induced by masking is schematically illustrated
by the dashed line in Fig. 4.

V. CHOICE OF ANGULAR SCALE CUTS

When modeling the 5×2pt data vector, we neglect nonlin-
ear galaxy bias, the impact of baryons on the matter power
spectrum, and the presence of tSZ contamination in the κCMB
maps. To prevent these unmodeled effects from causing bi-
ases in our cosmological constraints, we restrict our analysis
to scales over which their impact is small. In general, these
effects become significant at small scales, so this restriction is
tantamount to removing small scales from the analysis.

We follow the same basic approach for determining the
scale cuts as in K17: we introduce estimates of the unmod-
eled effects into a simulated data vector generated at the fidu-
cial parameter values from Table I, and analyze this data vec-
tor with varying scale cuts to determine how the parameter

4 In practice, masked pixels are excluded from the analysis when computing
correlation functions. Our estimate of the masking bias, however, corre-
sponds instead to setting these pixels to zero. Given the small angular size
of the masked clusters, the difference between these two approaches should
be small. If anything, we overestimate the effects of masking by computing
the bias in this manner.

constraints are impacted. If the impact of these effects is suf-
ficiently small, we consider our choice of scale cuts sufficient.
Our heuristic threshold for an acceptable bias is that the bias
on any parameter should not be larger than 50% of the statis-
tical uncertainty on that parameter. The resultant scale cuts
reduce the bias in the cosmological constraints to acceptable
levels, but at the cost of increasing our statistical errorbars.
Future work will be devoted to improving modeling of nonlin-
ear bias, baryons and tSZ bias in order to exploit the additional
statistical power in the data.

For the 3×2pt subset of observables, we adopt the same
scale cuts as in K17. In principle, the improved signal-to-
noise from including wδgκCMB (θ) and wγtκCMB (θ) in the analysis
could necessitate more conservative scale cuts for the 3×2pt
subset. However, we find below that this is not necessary.

To determine scale cuts for the wδgκCMB (θ) and wγtκCMB (θ) cor-
relation functions, we consider the impact of three systemat-
ics that are expected to dominate: tSZ bias in the κCMB maps,
nonlinear galaxy bias, and the effects of baryons. Of these, we
find that tSZ bias in κCMB is generally dominant. We introduce
these effects into the simulated data vectors in the following
fashion:

• tSZ bias: tSZ bias is introduced into the simulated data
vector using the harmonic space fits described in §IV
and shown in Fig. 3.

• Nonlinear galaxy bias: following K17, we compute the
corrections to wδgκCMB (θ) resulting from the next to lead-
ing order bias correction, b2, and tidal bias term, bs
[83, 84]. These terms are computed using FAST-PT
[85].

• Baryons: following K17, we introduce baryonic ef-
fects into the simulated data vector using results from
the OWLS simulations [86]. In particular, we use the
OWLS AGN model, which is expected to provide an
upper limit to the effects of baryons on the matter power
spectrum. The modifications to the power spectrum due
to baryons are propagated into the mock data vectors
using Eqs. 7 and 8.

A potential source of systematic bias considered by K17
was the impact of a one-halo term on wδgγt (θ). Since wδgγt (θ)
mixes power from small scales into large scales, the one-halo
term can impact wδgγt (θ) at scales significantly beyond the halo
virial radius. In contrast, wδgκCMB (θ) at a projected distance R
from halos depends only on the matter power at scales larger
than R. Since we exclude small scales of wδgκCMB (θ) anyway, it
is safe to ignore the effects of the one-halo term on wδgκCMB (θ)
in this analysis.

Fig. 4 shows the fractional changes in wδgκCMB (θ) and
wγtκCMB (θ) induced by tSZ bias, nonlinear galaxy bias, and
the OWLS baryon model. For wδgκCMB (θ), we plot the frac-
tional change as a function of the projected physical sepa-
ration evaluated at the mean redshift of the tracer galaxies.
For wγtκCMB (θ), we plot the fractional change as a function of
the projected physical separation evaluated at the peak of the
lensing kernel of the source galaxies. The errorbars plotted
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FIG. 4. Biases in wγtκCMB (θ) and wδgκCMB (θ) relative to the error bars as a function of physical separation. Faded points are excluded by scale
cuts. Errorbars correspond to 10% of the square root of the diagonal of the covariance matrix described in §III C; for ease of visualization,
we only plot errorbars on the tSZ-biased points. The dashed line labeled ‘Masking’ refers to the roughly 1% bias induced by masking galaxy
clusters described in §IV D.

in Fig. 4 are intended to allow comparison between the bias
and the statistical uncertainties of the measurements; for bet-
ter visualization, the errorbars correspond to only 10% of the
square root of the diagonal of the covariance matrix. For each
angular bin, the bias is not highly significant, but the com-
bined effect from all bins is significant, as we show below.

Fig. 4 also makes it clear that over most scales, tSZ contam-
ination is the most significant source of bias in our analysis.
Note that baryons have a fairly small impact on wδgκCMB (θ),
and the nonlinear bias does not impact wγtκCMB (θ) at all since
this correlation function does not involve biased tracers of
the mass. Below scales of about 3 Mpc, bias due to the im-
pact of baryons begins to dominate over the tSZ-induced bias
in wγtκCMB (θ). Clearly, though, removing tSZ bias from the
κCMB maps would allow us to push the analysis to significantly
smaller scales.

Our scale cut choice is also illustrated in Fig. 4. The
faded points in the figure illustrate the scales that are re-
moved from the analysis by the scale cuts. We exclude an-
gular scales below (15′, 25′, 25′, 15′, 15′) for the five redshift
bins of wδgκCMB (θ), and below (40′, 40′, 60′, 60′) for the four
redshift bins of wγtκCMB (θ). For wδgκCMB (θ), the cuts correspond
roughly to restricting to scales R > 8 Mpc, and somewhat
smaller for the lowest redshift bin.

We define the ∆χ2 between the biased and unbiased data
vectors as

∆χ2 = (dbias − dfid)T C−1 (dbias − dfid) , (25)

where dbias and dfid are the data vectors with and with-
out the unmodelled effects, respectively. Including all three
unmodeled effects simultaneously, before the application of
scale cuts, we find that for the combination of wδgκCMB (θ) and

wγtκCMB (θ), ∆χ2 = 10.2 (with ν = 90 degrees of freedom).
After the scale cuts are imposed, ∆χ2 for the wδgκCMB (θ) and
wγtκCMB (θ) combination is reduced to only 0.26 (with ν = 43
degrees of freedom). We compute the effect of the residual
∆χ2 on the parameter constraints below.

Using the MCMC methods described in §III D, we compute
the posteriors on the full set of model parameters with and
without the unmodeled sources of bias, and with and with-
out the imposition of the scale cuts. These results are shown
in Fig. 5. For ease of visualization, we show the shifts in
the posteriors only in the space of Ωm and S 8. These two
cosmological parameters are tightly constrained by the 3×2pt
and 5×2pt analysis, and so are particularly useful for assess-
ing the effectiveness of our scale cut choices. The left panel
of Fig. 5 shows the constraints on Ωm and S 8 obtained when
analyzing the simulated data vectors with and without the un-
modeled effects when all scales are included in the analysis of
wδgκCMB (θ) and wγtκCMB (θ) (but imposing the fiducial scale cuts
on the 3×2pt subset of the data vector). In this case, the bias
induced by the unmodeled effects is unacceptably large, sig-
nificantly greater than the statistical uncertainties. The right
panel of Fig. 5 shows the cosmological constraints when small
scales are excluded as described above. In this case, the bias
is significantly reduced at the cost of larger error bars. We
find that the shift in the 68% confidence interval for S 8 due to
the unmodeled effects is roughly 38% of the statistical uncer-
tainty on S 8, which we deem acceptably small. The shift in
the mean Ωm is 23% of the statistical uncertainty on Ωm. We
also note that with the scale cuts imposed, Ωm appears to be
degenerate with S 8, while they are much less degenerate with-
out the scale cuts. This implies that the additional small-scale
power in the wγtκCMB (θ) and wδgκCMB (θ) measurements helps to
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FIG. 5. Effects on cosmological constraints of unmodeled contributions to the simulated data vector before (left) and after (right) the application
of angular scale cuts on wδgκCMB (θ) and wγtκCMB (θ). ‘Fiducial’ refers to the data vector generated using the baseline model described in §III;
‘Systematics’ refers to the simulated data vector that includes prescriptions for tSZ bias in the κCMB map, nonlinear galaxy bias, and the OWLS
AGN model for baryons. The scale cuts applied to the 3×2pt subset of observables are kept fixed throughout to those of Abbott et al. [5].

break this degeneracy. Note that the residual bias exhibited
in the right panel of Fig. 5 is partially due to the effects of
nonlinear galaxy bias and baryons on the 3×2pt combination
of observables. The total ∆χ2 between the biased and fidu-
cial 5×2pt data vectors is 0.81. Of this, 0.45 is contributed
by wδgκCMB (θ) and wγtκCMB (θ). One could in principle make the
3×2pt scale cuts more conservative in order to relax the scale
cuts on wδgκCMB (θ) and wγtκCMB (θ) somewhat. However, we have
not taken this approach in order to maintain consistency with
the analysis of Abbott et al. [5].

We note that our choice of scale cuts removes a signifi-
cant fraction of the signal-to-noise in wγtκCMB (θ) and wδgκCMB (θ),
resulting in significantly degraded cosmological constraints
from these two correlation functions. However, given that we
use the κCMB maps from Omori et al. [36], this choice seems
unavoidable. For future work, reducing tSZ leakage into the
κCMB maps is a high priority. Alternatively, it may be possible
to model the effects of tSZ bias in the analysis.

VI. RESULTS OF SIMULATED ANALYSES

Having described our model for the 5×2pt combination of
observables and our choice of angular scale cuts, we now
present the results of simulated likelihood analyses. For this
purpose, we use the simulated data vector described in §V.
The simulated data vector is generated without noise so that
— by definition — the maximum likelihood point occurs at
the true parameter values.
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FIG. 6. Constraints on Ωm and S 8 for 3×2pt (red), 5×2pt (blue),
and the two 2pt function that cross-correlation with the CMB lensing
map, wδgκCMB (θ) and wγtκCMB (θ) (green). The dashed black line shows
the fiducial values of Ωm and S 8.
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when no scale cuts are applied to the analysis. The dashed black line
shows the fiducial values of Ωm and S 8.

A. Fiducial results

We first present projected constraints on cosmological pa-
rameters generated from our analysis of a simulated 5×2pt
data vector assuming the fiducial choice of angular scale cuts
described in §V. Fig. 6 shows the constraints on Ωm and S 8
generated from our fiducial analysis under the ΛCDM model.
Also shown in Fig. 6 is the constraint coming from the joint
analysis of wδgκCMB (θ) and wγtκCMB (θ) alone. Given the current
errorbars, the constraining power of wδgκCMB (θ) and wγtκCMB (θ)
is significantly weaker than that of the 3×2pt combination.
This is not too surprising given the low signal-to-noise of the
wδgκCMB (θ) and wγtκCMB (θ) correlation functions after the impo-
sition of scale cuts: the combined signal-to-noise from these
observables is roughly 8.8. The signal-to-noise of the 3×2pt
combination after imposing scale cuts, on the other hand, is
approximately 41. Consequently, extending 3×2pt to 5×2pt
does not have a dramatic impact in terms of tightening cos-
mological constraints. Interestingly, though, the degeneracy
direction of the combined wδgκCMB (θ) and wγtκCMB (θ) constraint
in the Ωm–S 8 parameter space is very complementary to that
of the 3×2pt analysis.

Ignoring the effects of tSZ, nonlinear galaxy bias, and
baryons, the projected signal-to-noise of the 5×2pt analysis
including all angular bins is 20. After the fiducial scale cuts
are imposed, the signal-to-noise is reduced to 8.8. An inter-
esting question to ask, then, is how well could the 5×2pt com-
bination constrain cosmology if all of the original signal to
noise could be exploited? Fig. 7 shows the cosmological con-
straints from the 5×2pt analysis on S 8 and Ωm when no scale
cuts are imposed on wδgκCMB (θ) and wγtκCMB (θ). In this case,
the 5×2pt analysis significantly shrinks the constraint contour.

We note that this figure is meant simply to illustrate the po-
tential signal-to-noise of the cross-correlations between DES
Y1 data and the κCMB maps. The result is overly optimistic
because it ignores other sources of model bias (i.e. baryons,
nonlinear galaxy bias, etc.). As shown in Fig. 4, other sources
of model bias can become significant at small scales. All re-
sults presented below will use the fiducial choice of scale cuts
described in §V.

B. Self-calibration of systematics parameters

In addition to the cosmological parameters, there are many
nuisance parameters varied in this analysis, including mi, ∆zs,
the galaxy bias, and intrinsic alignment parameters. One of
the main advantages of joint two-point function analyses is
that the resultant cosmological constraints are quite robust to
such nuisance parameters [e.g. 1]. This is not true for the
analysis of single 2pt functions. For example, fits to wδgγt (θ)
alone lead to complete degeneracy between galaxy bias and
As, while fits to ξ+/−(θ) lead to a complete degeneracy be-
tween m and As. Many of these degeneracies are broken by
the 3×2pt combination of observables, since there is no nui-
sance parameter that affects wδgδg (θ), wδgγt (θ), and ξ+/−(θ) in
the same way. For instance, wδgγt (θ) scales with the shear cali-
bration bias as (1+m), ξ+/−(θ) scales with (1+m)2, but wδgδg (θ)
is independent of (1 + m).

However, even the 3×2pt analysis of Abbott et al. [5] is
not completely immune to degeneracies between nuisance pa-
rameters and cosmological parameters. In particular, the cos-
mological constraints of the 3×2pt analysis are degraded by a
three-parameter degeneracy between galaxy bias, shear cali-
bration, and As. Consider the effect of increasing the galaxy
bias, b, by some factor α > 1 such that b → αb. In that
case, the amplitude of wδgγt (θ) will increase by α and wδgδg (θ)
will increase by α2, while ξ+/−(θ) remains unchanged. These
changes can be compensated partly by decreasing As by α2,
which will result in ξ+/−(θ) decreasing by α2, wδgγt (θ) being
reduced by α relative to its original value, and w(θ) return-
ing to its original value. Finally, if shear calibration, m, is
increased such that (1 + m)→ α(1 + m), then wδgγt (θ) and w(θ)
will return to their original values. The net result is a counter-
intuitive positive correlation between m and galaxy bias. This
degeneracy is illustrated for a single redshift bin with the blue
contours in Fig. 8. Since the fiducial priors on m significantly
restrict its allowed range, it is hard to see the degeneracy be-
tween m and other parameters when these priors are imposed.
Consequently, when generating Fig. 8 we have replaced the
fiducial m prior with one that is flat over the range m ∈ [−1, 1].

As a result of the above degeneracy in the 3×2pt analysis,
it is useful to impose informative priors on the multiplicative
bias parameters and the redshift bias parameters. For the Ab-
bott et al. [5] analysis, the priors on multiplicative shear bias
for the MetaCalibration catalog are derived using a variety
of tests described in Zuntz et al. [34]. In the case of red-
shift biases, priors on the source redshift biases are derived
using comparisons to data from the COSMOS [87] field in
Hoyle et al. [35] and angular clustering in Davis et al. [88]
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FIG. 8. Illustration of the degeneracy between As, galaxy bias (b1)
and shear bias (m1) in the 3×2pt and 5×2pt analyses. For this fig-
ure, we have placed non-informative priors on the shear calibration
parameters.
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FIG. 9. Recovered constraints (68% confidence interval) on multi-
plicative shear bias (left) and photometric redshift bias (right) for the
5×2pt analysis (orange bars) and 3×2pt analysis (blue bars) when the
priors on these parameters are completely non-informative. Black
bars show the priors imposed on the mi in the fiducial analysis.

and Gatti et al. [89]. While such priors are believed to be ro-
bust, they are difficult to obtain, require data external to the
correlation function measurements, and in the case of shear
bias, rely on image simulations which may not exactly match

the data5. Because of these challenges and associated uncer-
tainties, it would be advantageous if the correlation function
measurements themselves could break the nuisance parameter
degeneracies, and self-calibrate m and ∆zs.

As pointed out by several authors [e.g. 8, 12, 13, 15] joint
measurements of galaxy lensing and CMB lensing correla-
tions can enable self-calibration of both multiplicative shear
bias and photometric redshift biases. This is possible because
CMB lensing and galaxy lensing are correlated, while CMB
lensing is not sensitive to these two sources of systematic er-
ror, thus breaking the three-parameter degeneracy between
shear bias, galaxy bias, and As described above.6 This degen-
eracy breaking is illustrated with the red contours in Fig. 8. In
fact, either one of wδgκCMB (θ) or wγtκCMB (θ) is sufficient to break
this degeneracy. The wγtκCMB (θ) correlation breaks this degen-
eracy because this quantity depends on m, but not on galaxy
bias; it is broken by wδgκCMB (θ) because this quantity depends
on galaxy bias, but not on m.

We now investigate the potential of the 5×2pt analysis to
self-calibrate the shear and photo-z bias parameters by replac-
ing the fiducial priors on these parameters (in Table I) with
non-informative, flat priors. For m, we use m ∈ [−1, 1]; for
∆zs, we use ∆zs ∈ [−1, 1].

The posteriors on the shear calibration parameters result-
ing from the 5×2pt and 3×2pt analyses for wide priors on m
are summarized in the left panel of Fig. 9. The blue bands in
that figure illustrate the level at which the 3×2pt combination
is able to self-calibrate the multiplicative shear bias, roughly
σ(m) ∼ 0.2. Note that the confidence intervals shown in Fig.
9 are not centered on the input shear values, even though the
maximum likelihood point in the full parameter space does
occur at the input parameter values; this is simply the result
of projecting the higher dimensional parameter space to the
1D parameter space shown in the figure. We find that the
5×2pt combination is able to significantly improve on the self-
calibration of m, reaching constraints of roughly σ(m) ∼ 0.1,
with the constraints improved somewhat for higher redshift
bins (orange bands). This level of shear calibration is certainly
interesting, but is not yet competitive with priors on the m ob-
tained in the fiducial Abbott et al. [5] 3×2pt analysis (black
bands).

Changing the priors on ∆zs to be flat reveals that the 5×2pt
analysis constrains these biases at roughly σ(∆zs) ∼ 0.03 −
0.04 (right panel of Fig. 9). This level of constraint is only a
factor of ∼ 2 weaker than the fiducial priors on ∆zs. However,
we find that the posterior on ∆zs from the 3×2pt analysis is
almost identical to that from 5×2pt. The reason for this is that
∆zs is not impacted by the three parameter degeneracy that
affects m in the 3×2pt analysis, and can therefore be tightly
constrained using 3×2pt alone.

5 As described in Section 5 of Zuntz et al. [34], the residual shear calibration
bias in MetaCalibration from PSF modeling errors is determined using
image simulations, even though the MetaCalibration algorithm itself does
not require simulations.

6 In principle, CMB lensing could also have some form of multiplicative
bias. However, for current measurements, any multiplicative bias is ex-
pected to be much smaller than the associated statistical errorbars.
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The constraints on Ωm and S 8 obtained from the 3×2pt and
5×2pt analyses when the priors on m are very wide and flat are
shown in Fig. 10. This figure highlights the exciting potential
of the 5×2pt analysis: with a non-informative prior on m, the
5×2pt analysis can obtain significantly tighter cosmological
constraints than the 3×2pt analysis. We see that weakening
the priors on m mostly degrades the cosmological constraints
in the S 8 direction. This is because S 8 effectively controls the
amplitude of the correlation functions, and it is thus strongly
impacted by the degeneracy between shear calibration, galaxy
bias, and As described above. Also shown in Fig. 10 are the

contours obtained from the 5×2pt analysis with the fiducial m
priors. Comparing these contours to those with the loose m
priors reveals that the priors on m do contribute some infor-
mation to the cosmological constraints. This is not surprising,
given that the level at which 5×2pt self-calibrates m is signif-
icantly looser than the fiducial priors on m. Fig. 11 shows the
cosmological constraints obtained from the 5×2pt and 3×2pt
analyses when the priors on ∆zs become non-informative. In
this case, we see little improvement of the 5×2pt combina-
tion relative to the 3×2pt combination. We find that the fidu-
cial priors on ∆zs are useful for improving cosmological con-
straints in the 5×2pt analysis, indicating that the data is not
self-calibrating for this parameter.

VII. DISCUSSION

We have presented the methodology for jointly analyzing
the combination of five two-point functions that can be formed
from the combination of the δg, γ and κCMB observables (not
including the κCMB autocorrelation). This methodology will
be applied to a forthcoming analysis using data from DES,
SPT and Planck.

Essential to this analysis is the characterization of the bias
in maps of κCMB induced by the thermal Sunyaev-Zel’dovich
effect. Our estimate of this bias suggests that it could be quite
large at small scales. Given the uncertainties associated with
this estimate, we do not attempt to model tSZ bias in our anal-
ysis. Instead, we remove angular scales that are estimated to
be strongly affected by the bias, at the cost of increasing our
statistical errorbars. This degradation is significant: the total
expected signal-to-noise of the wγtκCMB (θ) and wδgκCMB (θ) cross-
correlations is roughly 20; after the scale cuts, this is reduced
to 8.8.

Given the scale cuts required to remove tSZ contamination
of the κCMB maps, we find that the joint cosmological con-
straining power of wδgκCMB (θ) and wγtκCMB (θ) is significantly
weaker than the 3×2pt analysis (Fig. 6). Consequently, the
5×2pt analysis does not lead to dramatic improvement in cos-
mological constraints given the fiducial priors of the 3×2pt
analysis.

However, we find that the 5×2pt analysis can significantly
improve on the cosmological constraining power of the 3×2pt
analysis in the case that priors on the multiplicative shear bi-
ases are loosened. As shown in Fig. 10, with essentially no
information on the multiplicative bias parameters, the 5×2pt
analysis can still obtain tight cosmological constraints.

Given the large degradation in signal-to-noise that results
from cutting scales affected by tSZ contamination, future
work to model or remove such contamination is strongly moti-
vated. More accurate estimates of the contamination could be
achieved with high signal-to-noise and high resolution Comp-
ton y maps. Alternatively, such contamination could be re-
moved from the κCMB maps using either multi-frequency com-
ponent separation methods to remove tSZ from the CMB tem-
perature maps, or by constructing the κCMB maps instead from
maps of the CMB polarization, since the tSZ signal is nearly
unpolarized.
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