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We investigate correlations induced by gravitational lensing on simulated cosmic microwave back-
ground data of experiments with an incomplete sky coverage and their effect on inferences from the
South Pole Telescope data. These correlations agree well with the theoretical expectations, given
by the sum of super-sample and intra-sample lensing terms, with only a typically negligible ∼ 5%
discrepancy in the amplitude of the super-sample lensing effect. Including these effects we find
that lensing constraints are in 3.0σ or 2.1σ tension between the SPT polarization measurements
and Planck temperature or lensing reconstruction constraints respectively. If the lensing-induced
covariance effects are neglected, the significance of these tensions increases to 3.5σ or 2.5σ. Using
the standard scaling parameter AL substantially underestimates the significance of the tension once
other parameters are marginalized over. By parameterizing the super-sample lensing through the
mean convergence in the SPT footprint, we find a hint of underdensity in the SPT region. We
also constrain extra sharpening of the CMB acoustic peaks due to missing smoothing of the peaks
by super-sample lenses at a level that is much smaller than the lens sample variance. Finally, we
extend the usual “shift in the means” statistic for evaluating tensions to non-Gaussian posteriors,
generalize an approach to extract correlation modes from noisy simulated covariance matrices, and
present a treatment of correlation modes not as data covariances but as auxiliary model parameters.

I. INTRODUCTION

Cosmic microwave background (CMB) measurements
[1, 2] have been instrumental in confirming the Λ cold
dark matter model (ΛCDM) as the standard model of
cosmology and in constraining its parameters. Gravita-
tional lensing of the CMB (see [3] for a review), recently
measured with high significance by a number of experi-
ments [4–14], is a secondary effect that allows us to break
geometric degeneracy in the CMB data and constrain the
low redshift Universe parameters, such as properties of
the dark energy and the sum of neutrino masses. Up-
coming CMB experiments [15–18] promise to greatly im-
prove on these measurements and make unprecedented
measurements of the low redshift physics in the linear
regime.

With the increasing precision of the measurements, it is
necessary to dedicate increasing scrutiny to subtle effects
that have been omitted so far in most analyses. One
such effect is the non-Gaussian correlations induced in
the CMB data by the gravitational lensing [19, 20], re-
flecting the stochastic nature of the gravitational lensing
potential φ. These correlations have been investigated on
simulations for an idealized full-sky experiment [19, 21].
However, in reality all CMB experiments can only utilize
the information on a portion of the sky. It is thus timely
to investigate lensing-induced covariances for a cut sky
experiments and check their theoretical description on
simulations. Such a study is presented in the first part
of this work.

Then we focus on the CMB polarization measurements
from the South Pole Telescope (SPT) to better under-

stand how the lensing-induced covariance terms mani-
fests on the cosmological parameter level and how they
affect information extracted from the lensing potential.
For the latter, these effects are already important for SPT
data.

Lastly, while the standard cosmological model is a very
good description of the experimental data, there are sev-
eral tensions that can potentially signal presence of new
physics [22–24]. One of the problems is an anomalously
high amount of lensing detected through the smoothing
of the acoustic peaks in the Planck temperature power
spectra [25–27]. Using a novel technique that allows
a direct comparison of gravitational lensing constraints
obtained from various data sets [28, 29], it is possible
to check to what extent the SPT lensing measurements
agree with the lensing constraints from Planck, as we do
in the final part of this work.

The outline of the paper is as follows. In § II we present
our numerical simulations of lensed CMB data and study
their covariances as determined by cut sky experiments.
We provide several technical details as Appendices, quan-
tifying agreement between the simulated covariance ma-
trices and theoretical expectations of the lensing-induced
covariance terms in Appendix A and constraining extra
sharpening of the CMB acoustic peaks due to missing
smoothing by the super-sample lenses in Appendix B.
In § III we present the data sets used in this paper and
discuss the details of their analysis. In § IV we conduct
a case study of the effect of the lensing-induced covari-
ance terms in the SPTpol polarization likelihood, espe-
cially in terms of how they affect cosmological parameter
constraints. Finally, in §V we compare constraints on
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TABLE I. Fiducial ΛCDM parameters used in this work.a

Parameter Fiducial value

100 θ∗ 1.041

Ωch
2 0.1197

Ωbh
2 0.02223

ns 0.9658

ln(1010As) 3.049

τ 0.058

a In ΛCDM, these parameters also imply a Hubble constant of
h = 0.6733.

gravitational lensing from various SPT and Planck data
sets using a generalization of the standard “shift in the
means” statistic, which we present in Appendix C. We
conclude in §VI.

II. LENSING INDUCED COVARIANCE IN CUT
SKY SIMULATIONS

In this section we describe our simulations of CMB
experiments with an incomplete sky coverage and briefly
summarize the standard pseudo-C` method, before we
present our results on CMB power spectra covariances
and compare them against theoretical expectations.

A. Simulations

To simulate lensed CMB data we use the publicly avail-
able code Lenspix*1 [30] with unlensed CMB power spec-
tra calculated by CAMB*2 [31].

The fiducial cosmological model used to calculate the
simulated CMB data is the best fit flat ΛCDM cosmo-
logical model, determined from the 2015 Planck tem-
perature and low-` polarization likelihoods assuming no
primordial tensor modes and minimal mass neutrinos
(
∑
mν = 60 meV). To reflect the updated results on

the optical depth to recombination τ from [32], we set
τ to the value from that work and decrease As to keep
Ase

−2τ constant.

The six parameters of the ΛCDM model are: Ωbh
2,

the physical baryon density; Ωch
2, the physical cold dark

matter density; ns, the tilt of the scalar power spectrum;
lnAs, its log amplitude at k = 0.05 Mpc−1; τ the optical
depth through reionization, and θ∗, the angular scale of
the sound horizon at recombination. Their fiducial values
considered in this work are listed in Table I.

*1 https://github.com/cmbant/lenspix
*2 http://camb.info

B. Pseudo-C`

In this section we briefly summarize the standard
pseudo-C` approach of analyzing the cut-sky CMB data
[33, 34].

The part of the sky observed by a finite survey can be
described by a window function (also called mask) w(n̂),
that is zero outside of the observed region. Inside, w
can be chosen to attain values between zero and one, for
example to reduce ringing in the Fourier space.

Effectively, such experiments measure the fluctuations
of the underlying CMB temperature T and Stokes Q and
U parameters windowed,

Tw(n̂) = w(n̂)T (n̂),

Qw(n̂) = w(n̂)Q(n̂),

Uw(n̂) = w(n̂)U(n̂). (1)

As usual, it is possible to transfer from the masked
fields (Tw, Qw, Uw) to the spin and parity eigenstates
(Tw, Ew, Bw). Their power spectra

ĈXYw,` =
∑
m

X∗w,`mYw,`m

2`+ 1
(2)

are called pseudo-C` power spectra. Here we use
XY,WZ to denote elements from {TT, TE,EE,BB}.

Given a statistically isotropic underlying CMB sky,

〈X∗`′m′Y`m〉 = δ``′δmm′C
XY
` , (3)

the ensemble average of the pseudo-C` power spectra are
linearly related to the power spectra of the underlying
CMB CXY` as

CXYw,` =
∑
WZ,`′

MXY,WZ
``′ CWZ

`′ . (4)

Analytical expressions for the mode coupling matrices

MXY,WZ
``′ can be found for example in [34]. The mask

mixes E and B modes but in this work, we neglect the
information in the lensed CBB` spectra and focus only
on the TT, TE and EE power spectra. Without CBB` ,

MXY,WZ
``′ is diagonal in XY , so from this point forward

below we use a shorthand notation MXY
``′ with XY de-

noting {TT, TE,EE}.
For sufficiently small sky coverage experiments it is not

possible to invert the mode coupling matrices for every `
and so we bin the power spectra in ` as

CXYb =
∑
`

Pb`C
XY
` , (5)

using the binning operator

Pb` =
1

∆`b
×
{
`(`+1)

2π , if `b ≤ ` < `b+1

0, otherwise
, (6)
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where the minimum multipole in the first bin is `1 = 2.
Unless otherwise noted, we use fixed bin widths ∆`b ≡
`b+1−`b = 50 in this work. The reciprocal operator reads

Q`b =

{
2π

`(`+1) , if `b ≤ ` < `b+1

0, otherwise
. (7)

We do not include instrumental noise, beam or filtering
in our simulations.

Under these conditions, the unbiased estimator of the
underlying binned true power spectra Cb is

ĈXYb =
∑
b′`

(
KXY

)−1

bb′
Pb′`Ĉ

XY
w,` , (8)

where

KXY
bb′ =

∑
``′

Pb`M
XY
``′ Q`′b′ . (9)

For future convenience we also define the operator

UXYb` =
∑
b′`′

(
KXY

)−1

bb′
Pb′`′M

XY
`′` (10)

that enables comparison of full sky power spectra against
simulation results.

In this work we investigate five different window func-
tions. Four of them are circular caps of sizes 150 deg2,
250 deg2, 500 deg2 and 1000 deg2. The fifth is a 500 deg2

rectangular patch of sky representing the SPTpol foot-
print, spanning 4 hr of right ascension, from 22 hr to 2 hr,
and 15◦ of declination, from −65◦ to −50◦. All window
functions have been apodized by a 15′ cosine taper to
reduce ringing in Fourier space.

C. Power spectra covariance

Using 2400 simulated CMB skies from § II A and the
windows from § II B, we estimate the underlying binned
power spectrum ĈXYb using (8). Note that for each simu-
lated sky we extract an estimator for each window. These
estimators are nearly independent as we place these win-
dows in vastly separated regions of sky. For each window
function, we then calculate the corresponding covariance
matrix

CovXY,WZ
bb′ = 〈ĈXYb ĈWZ

b′ 〉 − 〈ĈXYb 〉〈ĈWZ
b′ 〉. (11)

The correlation matrix

R̂XY,WZ
bb′ =

CovXY,WZ
bb′√

CovXY,XYbb CovWZ,WZ
b′b′

(12)

obtained for the SPTpol rectangular window is shown
in Fig. 1; correlation matrices derived using the other
windows show qualitatively similar features.

The covariance is composed of several contributions.
The diagonals in CovTT,TE ,CovTT,EE and CovTE,EE are

dominated by the usual Gaussian contributions, while the
anti-correlated band around the main diagonal reflects
the mode couplings due to the window function. Both
of these effects are present also for the unlensed CMB
fields.

As has been previously argued [20], gravitational lens-
ing by lenses larger than the survey footprint leads to
coherent (de)magnification, increasing or decreasing the
observed angular scales within the footprint. Its effect
on the power spectra is thus largely degenerate with a
change in θ∗, the angular scale of the acoustic peaks. This
effect and the ensuing covariance, called super-sample co-
variance (SSC), can be modeled as

CovXY,WZ
(SSC)bb′ =

∑
``′

UXYb`

∂`2CXY`
∂ ln `

σ2
κ

`2`′2
∂`′

2
CWZ
`′

∂ ln `′
UWZ
b′`′ .

(13)
Here σ2

κ is variance of the convergence field κ = −∇2φ/2
in the footprint,

σ2
κ =

1

A2

∑
LM

|wLM |2
L2(L+ 1)2

4
CφφL , (14)

whereA is the sky area (in radians) covered by the survey,

A =

∫
dn̂ w(n̂), (15)

and wLM are the spherical harmonic coefficients of the
window function. The factors U are added on top of
the standard expression from [20] to represent effects of
the window function and the subsequent de-biasing. We
find that in the simulated covariances, SSC is the domi-
nant effect induced by the gravitational lensing and cor-
responds to the checkerboard pattern visible in Fig. 1
(see also Fig. 12 in Appendix A 2).

Finally, fluctuations of lenses within the observed foot-
print also correlate CMB data [19] and the intra-sample
lensing covariance (ILC) they induce is given by

CovXY,WZ
(ILC)bb′ (16)

=
4π

A

∑
L``′
UXYb`

[
∂CXY`

∂CφφL

2(CφφL )2

(2L+ 1)

∂CWZ
`′

∂CφφL

]
UWZ
b′`′ .

It represents the correlation caused by the common de-
pendence of the CMB power spectra on the stochastic
lensing power. The inverse proportionality to the sky
area A reflects the fact that due to a smaller number
of measured modes, lensing power shows larger sample
variance on smaller patches. For simplicity we in this
work evaluate the sum in (16) from L = 2, despite the
fact that the super-sample lenses do not contribute to the
peak-smearing effect modeled by (16). This approxima-
tion is sufficiently precise for the purposes of this paper,
because most of the peak smearing is caused by lenses at
scales smaller than the window sizes considered here.

In Fig. 1 (right panel) we show the expected contribu-
tion of the lensing-induced terms, given by the sum of the
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FIG. 1. Left: Correlation matrix of the unbiased estimates of the binned power spectra ĈXYb calculated from the simulations
with the rectangular SPT-like window function. Right: Theoretical expectation for the lensing-induced contributions to the
correlation matrix, RXY,WZ

(theory)bb′ , given by the sum of the SSC (13) and ILC (16) contributions. The gray region hides elements

dominated by the Gaussian terms and the window function effects.

SSC (13) and ILC (16) contributions, to the correlation
matrix for the rectangular window function,

RXY,WZ
(theory)bb′ =

CovXY,WZ
(ILC)bb′ + CovXY,WZ

(SSC)bb′√
CovXY,XYbb CovWZ,WZ

b′b′

. (17)

Notice we divide by the full covariance obtained from
the simulations, as we do not model the Gaussian terms
explicitly and focus only on the lensing-induced terms
away from the diagonal.

In Appendix A we quantify the agreement between the
lensing-induced effects in the simulated covariance matri-

ces CovXY,WZ
bb′ and their theoretical expectations. Using

template fitting, in Appendix A 1 we find that theoreti-
cal expectations match the simulations reasonably well,
with the amplitude of the SSC term underestimated in
the model by about ∼ 5 %. In Appendix A 2 we introduce
an alternative quantification approach, based on an idea
presented in [35]. This method gives consistent results
with the template fitting estimation.

Finally, in cut-sky experiments we expect to see
slightly sharper acoustic peaks than in a full sky exper-
iment. As explained above, gravitational lenses larger
than the footprint lead to a coherent shift of the angu-
lar scale. A full sky experiment contains many lenses of
such size, some of them locally magnifying while some
of them locally demagnifying the CMB fields. Averag-
ing over all of these lenses then leads to smoothing of

the peaks. Because a cut sky experiment observes only
one such lens, this averaging does not happen and we in
principle expect sharper peaks. In Appendix B we in-
vestigate this effect on simulations and find that for the
windows that we consider it is negligible even for cosmic
variance limited CMB experiments.

III. MCMC ANALYSIS DETAILS

In this section we provide details about the Markov
Chain Monte Carlo (MCMC) analyses we perform to find
constraints of gravitational lensing from several data sets.
We start by summarizing the data used in this paper, af-
ter which we introduce the technique used to obtain di-
rect measurements of the gravitational lensing potential
from the CMB data. We conclude with a few technical
details about sampling of the posterior probability dis-
tribution.

A. Data

We compare SPT lensing constraints with those from
the Planck satellite*3, derived from their 2018 gravita-

*3 http://pla.esac.esa.int/pla/
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tional lensing reconstruction likelihood (Planck PP) [14]
and the 2015 temperature likelihood (Planck TT) [36].
As Planck TT is not able to measure the optical depth
through reionization τ , we supplement it with a Gaus-
sian prior on τ centered on 0.058 and with width 0.02
[32]. We do not use the latest Planck parameter values
[37] that were not available at the inception of this work;
we checked that the tensions between the data sets dis-
cussed in §V are insensitive to the details of the τ prior
(see also [38]).

We use the publicly available SPT likelihoods*4: the
SPT-SZ measurement of CTT` from 2500 deg2 of the sky
[8], lensing reconstruction likelihood based on the same
data combined with the Planck temperature measure-
ment [39] and the SPTpol measurements of CTE` and
CEE` in a 500 deg2 patch [40]. Below, we denote these
likelihoods as SPT TT, SPT PP and SPT TEEE. We supple-
ment SPT TT and SPT TEEE with the same τ prior that
we use for Planck TT.

In the sections below we show that lensing-induced co-
variance effects, discussed in the previous section, are
important enough to affect results derived from the SPT
polarization measurements. In § IV we discuss ways how
to modify the SPT TEEE likelihood to properly include
these effects.

B. Parameterizing lensing

Here we provide a brief review of a technique to di-
rectly constrain the gravitational lensing potential from
the CMB power spectra introduced in [28, 29].

The gravitational lensing potential power spectrum is
parameterized in terms of Npc effective parameters Θ(i)

10 100 1000
Lens multipole L

−0.15

−0.10

−0.05

0.00
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0.10

0.15

0.20

K
(i

)
L

Principal
component
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K
(1)
L K

(2)
L K

(3)
L K

(4)
L

FIG. 2. Lensing principal components K
(i)
L used in this work.

*4 https://lambda.gsfc.nasa.gov/product/spt/

which determine arbitrary variations around a fixed fidu-

cial power spectrum CφφL,fid as

CφφL = CφφL,fid exp

Npc∑
i=1

K
(i)
L Θ(i)

 . (18)

In this setup, constraining Θ(i) from the data corresponds
directly to constraining the gravitational lensing poten-
tial. This should be contrasted with the common ap-
proach of introducing a phenomenological parameter AL
which multiplies CφφL at each point in the model space
and cannot be so interpreted once model parameters are
marginalized over.

We choose the same fiducial model and K
(i)
L as in [38]

to allow easier comparison to those results. More de-
tails about the fiducial model and values of cosmologi-

cal parameters are given in § II A. These K
(i)
L are cho-

sen such that Θ(i) correspond to Npc principal compo-
nents (PCs) of the gravitational lensing potential best
measured by Planck TT, as determined using a Fisher

matrix construction [38]. The resultant eigenmodes K
(i)
L

are shown in Fig. 2. We retain Npc = 4 PCs in order to
fully characterize all sources of lensing information [38].
Accommodating the PCs to the SPT covariance is not

necessary, as the shapes K
(1)
L that would correspond to

the lensing modes best constrained by the SPT TT and
SPT TEEE likelihoods are very close to the one derived
from the Planck TT likelihood (Fig. 3). Additionally,
the other principal components in SPT have variance at
least ∼ 100 times larger than the leading PC and the data
are thus unable to constrain them strongly. Throughout

this work we consistently use a single set of K
(i)
L , given

by Planck TT.
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FIG. 3. Comparison of the shapes of the best measured princi-

pal component K
(1)
L as determined from the Planck TT (black

dashed) and SPT TEEE (red) data. They are very close, as
is the one determined from SPT TT (not shown).
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In models beyond ΛCDM, changes in the integrated
Sachs-Wolfe (ISW) effect would typically affect data on
the largest scales. In this work we are interested only in
lensing-like effects and leave the ISW contribution at its
ΛCDM value.

C. Markov Chain Monte Carlo sampling

To sample the posterior probability in the various pa-
rameter spaces we use the MCMC code CosmoMC*5 [41].
Each of our chains has a sufficient number of samples
such that the Gelman-Rubin statistic R− 1 [42] falls be-
low 0.01.

We choose flat tophat priors on Θ(i). As Θ(1) is the
variable in which we will evaluate the tensions between
data sets, we choose uninformative prior on it. For the
remaining three Θ(i), that allow freedom in the shape of
the gravitational lensing potential, we limit their vari-

ation such that all CφφL are within a factor of 1.5 of

CφφL,fid. These weak priors are meant to eliminate cases
that would be in conflict with other measurements of
large scale structure or imply unphysically large ampli-

tude high frequency features in CφφL .
In analyses that use Planck TT, SPT TEEE or SPT TT,

in addition to these four lensing parameters we also vary
the six ΛCDM parameters, with flat uninformative pri-
ors. Unlike the standard analysis, which we also con-
duct for comparison, these only affect the unlensed power
spectra and their changes do not in any way affect the
gravitational lensing potential that is fully determined by
Θ(i) (18).

We use default foreground and nuisance parameters
and their priors in all the likelihoods.

IV. LENSING COVARIANCE EFFECTS IN SPT
TEEE DATA

As we will see shortly, gravitational lensing mea-
surements from SPT TEEE are so constraining that the
lensing-induced covariance terms have to be included. In
this section we comment on possible ways to account for
this covariance in the likelihood and what cosmological
parameters are affected in the standard ΛCDM model
and in its parameterized lensing extension.

A. Super-sample covariance

To obtain the data covariance matrix, the SPT collab-
oration used simulations based on Gaussian realizations
of lensed CMB power spectra instead of actually lensing

*5 https://github.com/cmbant/CosmoMC

the simulated CMB data. As a consequence, in this ap-
proach the lensing-induced covariance terms are missing
from their covariance matrix.

Instead of explicitly including the SSC term in the co-
variance matrix, the SPT collaboration introduced a new
parameter κ̄ into the SPT TEEE likelihood. The parame-
ter κ̄ quantifies the unknown value of the mean lensing
convergence in the survey which shifts the power spectra
according to

CXY` (pµ, κ̄) = CXY` (pµ) +
∂`2CXY`
∂ ln `

κ̄

`2
, (19)

where pµ are the cosmological parameters.*6 We find
that including super-sample lensing as an additional co-
variance by adding (13) or through the additional param-
eter κ̄ leads to identical results. Since the measurement
of κ̄ can be useful when comparing to other data sets,
as we show below, from this point forward we adopt it
in our analysis. When considering the SSC effect we also
include the ILC covariance in the analysis and vice versa,
but the results are not sensitive to its inclusion.

Due to the strong degeneracy with θ∗ (see Fig. 4), the
parameter κ̄ is only very poorly constrained by the SPT
data itself and is limited by a Gaussian prior with width
σκ̄ = 1.0 × 10−3, reflecting the expected fluctuations of
the super-sample lenses. The size of the prior was cho-
sen by the SPT collaboration according to (14); using
our fiducial cosmology and SPTpol-like rectangular win-
dow we obtain a similar value. With κ̄ prior, θ∗ can be
constrained, as evident from Fig. 4. The cosmological pa-
rameters other than θ∗ are not significantly affected by
the super-sample lensing effect. To avoid bias in the θ∗
measurement, the SPT TEEE likelihood also corrects for
the aberration effect [43].

Using SPT TEEE and assuming ΛCDM, the prior uncer-
tainty on κ̄ limits the measurement of the angular scale
of the angular peaks to 100θ∗ = 1.03982±0.00135.*7 For
the 2018 Planck temperature and polarization data [37],
the impact of SSC is negligible which allows an extremely
precise measurement of θ∗: 100θ∗ = 1.04109 ± 0.00030,
with a difference in mean from the SPT TEEE measure-
ment that is in good agreement at 0.9σ. If SSC were
ignored in the SPT TEEE analysis, constraints on the an-
gular scale of the acoustic peaks would be too optimistic,
100θ∗ = 1.03985 ± 0.00085, leading to an overly signifi-
cant 1.4σ difference in means.

The benefit of considering κ̄ as a parameter is that
when combined with the Planck 2018 measurement of θ∗,
a more precise measurement of its value in the SPT field

*6 This technique was introduced in [20] but note that κ̄ → −κ̄ in
their Eq. (32).

*7 In § II C we found that variance of κ̄ calculated by (14) appears
to be underestimated by ∼ 5%. Even if this is the case, the
uncertainty on θ∗ from SPT TEEE would grow only marginally, to
1.38× 10−5.
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FIG. 4. Constraints on θ∗ and κ̄ from SPT TEEE when no
prior on κ̄ is chosen (blue solid) and with the σκ̄ = 10−3

prior (black lines). In red we show constraints on θ∗ from
Planck 2018 temperature and polarization cosmological pa-
rameter constraints [37]. Results assume ΛCDM and display
68% and 95% confidence limits.

can be extracted and compared to other measurements
of lensing. The Planck measurement breaks the κ̄ − θ∗
degeneracy in the SPT TEEE without any need for the σκ̄
prior. This approach allows us to determine κ̄ in the
SPTpol field and leads to

κ̄SPTpol = (−1.3± 0.9)× 10−3. (20)

The mean in the field is consistent with the expected root
mean squared (rms) σκ̄ of the ΛCDM model and the er-
rors approach the intrinsic sensitivity of the SPT TEEE
data to a fractional shift in angular scale in the absence
of the κ̄−θ∗ degeneracy, i.e. σθ∗/θ∗ ≈ 0.8×10−3. Com-
bined they show a mildly significant indication of an un-
derdensity in the SPTpol footprint.

In principle, this mild preference can be tested against
other measurements of lensing, for example the Planck
lensing map [11]. However, the Planck lensing map is
noisy and band limited to L ≥ 8, which removes part of
the super-sample lensing signal. The quantity

κ̄est
SPTpol =

1

A

∫
dn̂ w(n̂)κ̂(n̂), (21)

where κ̂ is the Planck lensing map, is an unbiased esti-
mator of κ̄SPTpol with variance

σ2
κ̄SPTpol

=
1

A2

∑
LM

|wLM |2
L2(L+ 1)2

4
χφφL , (22)

where

χφφL =

{
CφφL , L < 8

Nφφ
L , L ≥ 8

,

with Nφφ
L being the noise power in the Planck lensing

map. The L < 8 terms account for the missing large
scale lensing modes, while the L ≥ 8 terms include the
uncertainty due to the noise in the Planck lensing map;
we assume the noise is uncorrelated with the lensing sig-
nal. Using our rectangular window function as a proxy
for the real SPTpol mask, we obtain

κ̄est
SPTpol = (−0.7± 1.2)× 10−3, (23)

result consistent with the SPT TEEE measurements.
We see from (14) that the expectation for the rms κ̄,

σκ̄, depends on the gravitational lensing potential and the
SSC amplitude should in principle be evaluated in each
point in the parameter space. However, in the ΛCDM
model the shape and amplitude of lensing is sufficiently
well constrained and consistent between measurements
that parameter uncertainties lead to only small fractional
changes to σκ̄. We shall see that the same is not true once

CφφL is allowed to deviate from the ΛCDM prediction,
due to presence of tensions between lensing constraints
from various datasets. For this reason, we choose not
to repeat the SSC analysis of this section for this more
general model until such tensions are resolved. Likewise,
although as we shall see ILC can also be treated with
auxiliary parameters, because of these tensions we do not
conduct such an analysis in this work.

B. Intra-sample lensing covariance

As pointed out in the previous section, the SPT TEEE
covariance is based on simulations without actual grav-
itational lensing and is thus missing the ILC term. To

include the ILC, we add CovXY,WZ
(ILC)bb′ calculated according

to (16) on top of the covariance matrix provided by the
SPT collaboration in the SPT TEEE likelihood. To cal-
culate the ILC term here, we use the UXYb` that are also
provided in the SPT TEEE likelihood.

In ΛCDM, we find that the main effect of adding the
intra-sample lensing covariance to SPT TEEE is a degra-
dation of the Ωch

2 constraints by ∼ 7%. This is because
part of the information on Ωch

2 comes from the smooth-
ing of the peaks due to lensing and hence quantifying the
errors on lensing information is important for its determi-
nation. Correspondingly, the constraints on the Hubble
constant change from H0 = (70.8± 2.1) km/s/Mpc to
(70.4± 2.3) km/s/Mpc.

This impact on lensing information of the ILC can be
best understood within the context of the model where
the gravitational lensing is separately parameterized in
terms of the lensing PCs Θ(i). In Fig. 5 we compare con-
straints on the best measured PC Θ(1) before and after
addition of the ILC effect into the covariance. As ex-
pected, adding ILC degrades the constraints, as we are
effectively adding uncertainty related to the unknown
lens fluctuations. In ΛCDM, gravitational lensing in-
formation is mainly used to constrain Ωch

2, which ex-
plains the observed effect. In extensions that change the
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FIG. 5. Comparison of Θ(1) posterior probability distribu-
tions from SPT TEEE for various models of the ILC effect:
original likelihood without ILC (gray), constant ILC evalu-

ated at the fiducial model (dotted) and Θ(1)-dependent ILC
(black solid).

low-redshift physics, such as by allowing the mass of the
neutrinos

∑
mν or equation of state of the dark energy

parameter w to vary, the ILC most affects constraints
on combinations of the ΛCDM and extension parameters
that are limited by the lensing information, see [29] for a
related discussion.

As evident from (16), the magnitude of the ILC effect
grows with increasing gravitational lensing power. For
SPT TEEE this dependence must be considered, because
the constraints on gravitational lensing from SPT TEEE,
shown in Fig. 5, are still rather weak. To partially ac-
count for this effect, we explicitly model the dependence

of CovXY,WZ
(ILC) on the dominant lensing component Θ(1):

we evaluate (16) for a representative set of gravitational
lensing potentials corresponding to Θ(1) in the range con-
strained by SPT TEEE (see Fig. 5). We then interpolate
to get a smooth dependence on Θ(1) of the ILC contri-
bution to the covariance matrix and reevaluate the co-
variance matrix in each point in the parameter space,
replacing the constant covariance matrix provided in the
SPT TEEE likelihood. This replacement also affects the
covariance matrix determinant term in the likelihood, al-
though we do not find the Θ(1)-dependence of this term
to be important.

The main effect of considering the Θ(1)-dependence in
ILC, as opposed to using ILC evaluated for the fiducial

lensing potential Cφφfid,L, is a suppressed probability of low

values of Θ(1) (Fig 5). This can be easily understood, as
lower values of Θ(1) correspond to smaller lensing power,
leading to smaller amplitude of the ILC effect; the con-
straints at low Θ(1) then effectively approach the case
without ILC. From this point forward we use this model
of ILC for the SPT TEEE analysis.

The addition of lensing-induced covariance to either of
the PP likelihoods is not necessary, as the lens variance
is already included in the Gaussian terms of their covari-
ance matrices. Furthermore, due to the larger sky cover-
age and correspondingly smaller lens variance (recall the
A−1 factor in (16)) and the fact that CTT` is less sensi-
tive to lensing effects than the polarization power spectra,
ILC modifications are not necessary for the Planck TT
and SPT TT likelihoods.

As a rule of thumb, the ILC effect has to be included
when the Θ(1) constraint from the given data set ap-
proaches

σAΘ(1) ≈ 0.048

√
4π

A
, (24)

which is the limiting error due to the sample variance of
Θ(1) in a given patch of the sky.

Finally, given that future experiments will have to in-
clude the ILC effect into their analysis but will also pro-
vide much tighter constraints on lensing effects as they
approach this sample variance limit, we conclude with
a simple approach to incorporating the ILC effect for
the purpose of cosmological parameter estimation. In

this context CovXY,WZ
(ILC)bb′ can be considered constant and

given by the best fit parameters. The addition of ILC
to the analysis can then be done in a way that parallels
the treatment of SSC through κ̄ by considering Θ̄(i) as
parameters that describe a local fluctuation in the lens
power spectra within the survey footprint, affecting the
CMB power spectra as

CXY` (pµ, Θ̄
(i)) = CXY` (pµ) +

∑
i

∂CXY`
∂Θ(i)

Θ̄(i). (25)

Here pµ are the cosmological parameters of the model
and the sum is over a sufficient number of principal com-
ponents, either constructed from a Fisher matrix for the
experiment as we have done here for Planck or by empir-
ically discovering them from simulations as described in
Appendix A 2. To account for the effect of ILC on cosmo-
logical parameter estimation, one then marginalizes over
Θ̄(i) given a theoretical prior on the amplitude of the lens
fluctuations within the window. Note however that this
procedure assumes that there is a consistent cosmologi-
cal model that describes all lensing effects in all datasets,
which is not currently the case, as we shall see next.

V. SPT-PLANCK LENSING TENSIONS

In this section we compare lensing constraints from the
various SPT and Planck data sets using the techniques
developed in the previous sections. In Fig. 6 we compare
lensing constraints from all five data sets investigated in
this work, including the SPT TEEE data set with a Θ(1)-
dependent covariance matrix.

All lensing constraints from SPT are mutually consis-
tent, while the Planck and SPT constraints seem to be
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FIG. 6. Constraints on Θ(1) from SPT (top) and Planck
(bottom, dashed): in blue, lensing constraints from lensing
reconstruction (SPT PP and Planck PP); in red, from temper-
ature power spectra (SPT TT and Planck TT); in black, from
SPT TEEE with the ILC effect included (black solid).

systematically offset, with SPT preferring lower values
of the lensing potential (see [39, 40] for related studies).
This difference corresponds to sharper acoustic peaks
in the SPT data compared to Planck data. Sharper
peaks cannot be caused by missing contributions from
the super-sample lenses in the smaller SPT sky area (see
Appendix B).

To quantify the significance of the tensions, we use a
generalization to non-Gaussian distributions of the com-
monly used “shift in the means” statistic; this general-
ization is described in the Appendix C. In this work we
assume all the measurements are independent.

Resulting tension significances are listed in Fig. 7.
The Planck TT constraint is in over 2σ tension with all
the other lensing constraints; its tension with SPT TEEE
reaching 3.0σ level. The constraint from this SPT likeli-
hood is also in a moderate 2.1σ tension with the Planck
lensing reconstruction constraint.

Had we not included the ILC effect into the covariance
matrix, as was the case with previous analyses, the ten-
sions between SPT TEEE and Planck TT or Planck PP
would noticeably increase from 3.0σ to 3.5σ and from
2.1σ to 2.5σ respectively. Fixing the strength of ILC at
its fiducial value rather than letting it scale with the lens
amplitude Θ(1) would increase these tensions by 0.05σ.
Finally, let us point out that had we used the 2015 Planck
lensing likelihood instead of the 2018 update, the tension
with SPT TEEE would increase by additional 0.05σ.

Tension between SPT TEEE and Planck TT was inves-
tigated using the standard AL parameter in [40]. By
comparing the SPTpol constraint AL = 0.81± 0.14 with
the Planck temperature constraints AL = 1.22 ± 0.10,
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FIG. 7. Significance of the tensions between constraints on
Θ(1) from various datasets. The numbers represent tensions
in the units of Gaussian standard deviations σ, so 1.0 in this
table corresponds to 31.7% chance probability to exceed.

the difference in means is in 2.4σ tension*8. This is sig-
nificantly less than the value 3.5σ we find when not in-
cluding the ILC effect and clearly shows that compar-
ison of AL is suboptimal, due to the fact that each AL
scales the lens potential of a different cosmological model,
i.e. those preferred by SPT and Planck respectively. We
checked explicitly that when one considers the full seven-
parameter posterior of the ΛCDM+AL model, SPT TEEE
and Planck TT constraints on one particular linear com-
bination of these seven parameters disagree at the 3.5σ
level. The tension is thus in principle discoverable also
in the standard approach using AL, but it is hidden in a
combinations of parameters and subject to interpretation
on parameter counting or the “look elsewhere” effect (see
[22] for a related study). Here we show that the tension is
associated directly with the lensing effect on power spec-
tra. Moreover, AL will not be adequate in the future,
when the CMB power spectra constrain more than just

the amplitude of CφφL .

With the exception of Θ(1), constraints on all the
other parameters, i.e. the six ΛCDM parameters as de-
termined from the data through their effect on the un-
lensed CMB, from Planck TT and SPT TEEE are mu-
tually consistent; this is in agreement with findings of
[40]. For example, we find that after marginalizing
over Θ(i), the constraint on the Hubble constant be-
comes H0 = (68.1± 2.8) km/s/Mpc for SPT TEEE and
(69.0± 1.2) km/s/Mpc for Planck TT.

To gain additional insight into the 3σ tension between
SPT TEEE and Planck TT, in Fig. 8 we compare the con-
straints on Θ(1) from these likelihoods as a function of the

*8 There is a typo in [40], and the claimed 2.9σ tension should be
2.4σ.
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FIG. 8. Constraints on Θ(1) from SPT TEEE (black) and
Planck TT (red) likelihoods when only part of the data up to
the maximal multipole `max is used. The dashed lines show
maximum likelihood values and the solid lines mark 68% and
95% confidence intervals.

maximal `max considered in the analysis. The tension is
generated in the ` range between 1000 and 2000, with the
two likelihoods pulling in the opposite directions. While
the lensing constraining power of ` = 2000 − 3000 in
SPT TEEE is comparable to that of the ` ≤ 2000, there is
no additional shift in Θ(1).

In data space, the preference for high/low lensing
shows as anomalously smooth/sharp acoustic peaks,
which allows for a clear illustration of the tension. The
DXY
` = `(`+ 1)CXY` /2π residuals between the SPT data

and the best fit ΛCDM + 4 Θ(i) model to the Planck TT
data are shown in Figure 9. The residuals in CEE` ex-
hibit distinct oscillations in the ` range 1100-2200, with
enhanced power at EE peaks and reduced at troughs,
consistent with a deficit in lensing. Note that the TT
peaks are out of phase with EE so that the smoothing in
Planck TT and sharpening in SPT EE data occur at dif-
ferent multipoles, which makes this discrepancy difficult
to explain with any physical mechanism.

VI. DISCUSSION

In the first part of this work, we use simulated lensed
CMB data to perform the first investigation of covari-
ances between and within TT , TE and EE power spectra
measured by experiments observing a small patch of the
sky. We find that in general the lensing-induced covari-
ances are well described by a sum of the super-sample
covariance, parameterizing effects of lenses larger than
the footprint, and intra-sample lensing covariance, pa-
rameterizing effects of the smaller lenses.

As detailed in Appendix A 1, the amplitude of the ILC
portion of the covariance is consistent with theoretical ex-

pectations whereas the SSC portion is about 5% larger in
our simulations than theoretically expected. For a typical
analysis, this discrepancy does not have any important
consequence – at most it would increase the measurement
errors on the angular extent of the sound horizon θ∗ by
the same amount in cases when SSC limits such measure-
ments, i.e for small footprints. In Appendix A 2, we con-
firm and refine these results, expanding on the method
of [35] which empirically extracts smooth features from
a noisy estimate of a correlation matrix, effectively de-
creasing the numerical noise due to a limited number of
simulations. In this work we use it to extract the SSC
and ILC terms, ignoring terms close to the (sub)diagonals
where the Gaussian and window function effects domi-
nate, but this method is applicable to any noisy estimate
of a covariance matrix.

Likewise, the method of treating SSC by introducing
an auxiliary parameter in the window can be extended to
treat the principal modes of any such covariance matrix.
For example, while we have omitted an analysis of CBB`
here due to complications from removing the CEE` con-
tamination caused by intermixing due to the mask, this
technique can be straightforwardly implemented by mod-
eling lensing covariance as a set of extra parameters to
marginalize over in the model for CBB` . However, such an
analysis requires a known prior expectation for the dis-
tribution of these parameters, which in practice requires
first a resolution of lensing tensions in the current data.

Finally extra sharpening of the acoustic peaks related
to missing peak smoothing by the super-sample lenses
is not detectable in our suite of simulations and is con-
strained to be negligible even for cosmic variance lim-
ited experiments in the investigated range of survey foot-
prints, 150 deg2 – 1000 deg2.

In the second part of this work, we apply our lensing
induced covariance analysis to South Pole Telescope mea-
surements. We find that the South Pole Telescope po-
larization constraints [40] have reached the levels of pre-
cision where the lensing-induced covariance terms have
to be included in the analysis. Starting with the current
generation of the CMB experiments, these effects will
thus have to become a standard part of CMB data likeli-
hoods. We show how the non-Gaussian ILC effect can be
added in an analytic way to a covariance matrix based on
Gaussian CMB assumptions, for example from Gaussian
realizations of the power spectra. When the covariance
matrix is calculated using lensed CMB simulations, the
lensing-induced covariance in automatically included. In
this case, the technique of Appendix A 2 can be used to
diminish the numerical noise.

Parameterizing the mean lensing convergence in the
SPTpol field κ̄SPTpol and modelling it explicitly, instead
of including the super-sample lensing into the SSC co-
variance matrix, leads to identical results when consid-
ering the SPTpol results alone – a nearly 60% increase
in the uncertainty on θ∗. When combined with Planck
information on θ∗ within the ΛCDM model, it enables
us to constrain this parameter κ̄SPTpol from the data.
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FIG. 9. Points show the difference between the SPT measured values of DEE
` (left) and DTE

` (right) and the best fit ΛCDM

+ 4 Θ(i) model to the Planck TT. For comparison, in blue we show −7× ∂CXY` /∂Θ(1), binned with the same binning scheme.

The SPT TEEE data hint at underdensity in the SPTpol
region, which is in agreement with the convergence calcu-
lated directly from the Planck lensing map. Adding ILC
within ΛCDM leads to approximately 10% increase of the
error bars of Ωch

2, which is the parameter for which the
gravitational lensing information is the most important.

Using the technique from [28] and including both the
SSC and ILC effects, we obtain direct constraints on
gravitational lensing for the various South Pole Telescope
likelihoods and compare them against the Planck satellite
constraints [38]. Because of non-Gaussian posteriors, we
generalize the standard “shift in the means” statistic to
determine tensions between the individual data sets, see
Appendix C. While the various constraints from SPT are
mutually consistent, we confirm that the SPT data sets
prefer relatively low lensing power; the tension between
SPT TEEE and Planck TT or Planck PP is significant at
3.0σ or 2.1σ respectively. Preference of SPT data for low
lensing power was previously found in analyses based on
the scaling parameter AL [39, 40], however we find that
when lensing tension between SPT TEEE and Planck TT
is investigated using AL, its significance is severely un-
derestimated. Using the technique from [28] reveals the
full lensing tension, and is thus recommended for com-
paring lensing constraints across various data sets. The
inclusion of the ILC into the SPT TEEE likelihood strongly
affects the probabilities to exceed the observed tensions.
Had we not included it, the tensions between SPT TEEE
and Planck constraints would grow by about 15%, reach-
ing 3.5σ or 2.5σ between SPT TEEE and Planck TT or
Planck PP respectively.

Constraints on CφφL from ongoing and upcoming CMB
experiments such as SPT 3G [15], Advanced ACT [16],
Simons Observatory [18] and CMB-S4 [44] are expected
to significantly improve the lensing constraints. The
techniques developed in this work should prove even more
important in quantifying and resolving these tensions in

the future.
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Appendix A: Simulated vs. theoretical covariances

In this Appendix we quantify the agreement between

the simulated covariance matrices CovXY,WZ
bb′ and their

theoretical expectations. In the first part of the Ap-
pendix, we model the lensing-induced covariance as a sum
of SSC and ILC terms with undetermined amplitudes and
determine these amplitudes by minimizing the residuals
versus the simulations. In the second part we present
results based on an alternative quantification approach,
expanding an eigenmode decomposition idea from [35],
which empirically isolates the SSC and ILC effects.

1. Template fitting

In Fig. 10 we show the residuals between the correla-

tion matrix R̂XY,WZ
bb′ obtained from simulations for the
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rectangular window function and the theoretical expec-

tation used throughout the main text, RXY,WZ
(theory)bb′ . The

residuals are small and appear noise-like, with the pos-
sible exception of RTT,TT at high ` which show hints of
structure unrelated to the SSC or ILC template forms.
As similar residuals do not appear for the other window
functions considered here, indicating that it may be an
artifact of the limited number of simulations, we do not
investigate this issue further.

On the other hand, we can test the amplitude of the
SSC and ILC effects considering their form as given. To
do so, we look at the matrix elements away from the di-
agonals, where the Gaussian terms and window function
effects are negligible. We focus on bins |b − b′| > 2 and
model the covariance there as

CovXY,WZ
(model)bb′ = A1CovXY,WZ

(SSC)bb′ +A2CovXY,WZ
(ILC)bb′ (A1)

with undetermined A1, A2 and construct the model cor-

relation matrix RXY,WZ
(model)bb′ by generalizing (17).

We can quantify the level of agreement in the ampli-
tudes by determining the values A1, A2 that minimize
the residuals between the correlation matrix from simu-
lations and the model,∑

XY,WZ
|b−b′|>2

(
RXY,WZ

(model)bb′ − R̂
XY,WZ
bb′

)2

, (A2)

and their uncertainties by bootstrap resampling with re-
placement from our 2400 simulations. We consider only
multipoles up to ` = 3000 in the minimization.

Allowing Ai to vary does not substantially decrease
the residuals plotted in Fig. 10. The resulting values
of Ai with the bootstrapped error bars are shown in
Fig. 11 for all five window functions. While the ILC
amplitudes are in good agreement with the theoretical
expectation A2 = 1, the SSC amplitudes show a clear
positive bias. Due to super-sample lensing, the acoustic
peaks thus shift around their fiducial positions slightly
more than predicted by (14), though this does not have
significant bearing on cosmological inferences, see § IV A.
One possible explanation of this discrepancy is complica-
tions arising from the edge effects, not considered in the
derivation of (14).

2. Empirical determination of SSC, ILC modes

In this section we present an alternative method to as-
sess how well the covariance matrix for the binned full sky
power spectra ĈXYb estimated from the simulations agree
with the theoretical predictions of the lensing-induced ef-
fects.

The method extends the ideas presented in [35], where
the aim was to parameterize features found in a corre-
lation matrix Rij obtained from an ensemble of simula-

tions R̂ij and to decrease the numerical noise due to the

finite number of simulations. The authors assumed that
beyond the diagonal elements, which are equal to one
by definition, the correlation matrix is relatively smooth.
Their analysis proceeds as follows:

1. Initialize the k = 0 step by setting Rkij = R̂ij for

i 6= j and Rkij = 0 for i = j.

2. Decompose Rkij into orthonormal eigenmodes as

Rkij =
∑
K

λkKv
k
K,iv

k
K,j . (A3)

Examine the eigenvalues for a break in the spec-
trum and identify the N signal dominated modes
(see below for an example).

3. Set Rk+1
ij = R̂ij for i 6= j and update its diagonal

using the contribution of the N signal eigenmodes
from step 2,

Rk+1
ii =

N∑
K=1

λkK
(
vkK,i

)2
. (A4)

4. Repeat steps 2 and 3 with k → k + 1 until the
elements on the diagonal converge to the required
precision*9.

5. Approximate the correlation matrix with the eigen-
values and eigenvectors of Rkmax

ij as

Rij ≈
{∑N

K=1 λ
kmax

K vkmax

K,i v
kmax

K,j i 6= j

1 i = j
, (A5)

Because of the convergence of λkK and vkK,i, the diago-

nal elements (A4) themselves converge and the estimate
of the off-diagonal structure is not biased by the initial
omission of the diagonal.

In our case, a similar procedure can be used with only a
small alteration. Unlike in [35], in the correlation matrix
(12) there are features we are not interested in probing

not only on the main diagonal RXY,XYbb , but due to Gaus-

sian covariance terms also on the sub-diagonals RXY,WZ
bb

and due to the window function effects also on the neigh-

boring bins RXY,WZ
bb′ . In practice, we generalize the pro-

cedure by zeroing out the b−2 ≤ b′ ≤ b+2 elements for all
XY,WZ and replacing them with the iterative construc-
tion above. This is conservative as we only see evidence
for window function effects in the nearest neighboring
bin with the fiducial bin width and windows. With this

*9 For the covariance matrices investigated in this work we find
that relative error on λkK,i, v

k
K,i for K = 1, 2 drops by about a

factor of three with each additional iteration. We performed 15
iterations for each covariance matrix.
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FIG. 10. Left: Residuals between the correlation matrix R̂XY,WZ
bb′ obtained from simulations and the theoretical expectation

for the lensing-induced correlation with no rescaling of the SSC and ILC effects. Residuals are on a substantially smaller scale
than the effects shown in Fig. 1 and are mainly consistent with noise (see text). The gray region hides elements dominated
by Gaussian covariance terms and the window function effects. Right: Analogous residuals between the correlation matrix
R̂XY,WZ
bb′ obtained from simulations and its approximation through (A6), again for the rectangular window function.
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FIG. 11. Constraints on the amplitude parameters A1, A2 parameterizing the lensing induced covariance effects in the full
covariance matrix (A1), as determined from the simulations. Black symbols represent values obtained by minimization of (A2),
red symbols values obtained using the alternative method from the Appendix A 2. Each point represents a different window
function, the circles denote disk-shaped window functions and the squares the SPT-like rectangular window function. Error
bars show 68% confidence limits obtained by bootstrapping. Theoretical expectations Ai = 1 are marked with the dashed line.

procedure, we isolate the lensing-induced features of the
correlation matrix.

In analyzing the simulated covariance matrices

R̂XY,WZ
bb′ we find that with 2400 simulations we can only

detect two features – the SSC and ILC effects. This is

illustrated in Fig. 12, where we show distribution of con-
verged eigenvalues λK for the 1000 deg2 disk window
when using N = 2 in the algorithm above. The two
eigenvalues corresponding to SSC and ILC are clearly
separated from the other eigenvalues. We infer that the
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FIG. 12. Distribution of eigenvalues λK obtained from the
simulated covariance for the 1000 deg2 disk window using the
method described in Appendix A 2. The eigenvalue corre-
sponding to the SSC effect is colored in black, while the one
corresponding to the ILC effect in red. The other eigenvalues
arise from numerical noise and potentially other features of
the covariance matrix that are not distinguishable with 2400
simulations.

others are too small to be detectable with 2400 simula-
tions. When using other values of N , Fig. 12 or other
results further below do not appreciably change, we thus
quote results for N = 2 in what follows. The situation is
identical for the other window functions.

For each window function, we use the iterative proce-
dure to find vectors V1, V2 that approximate the lensing-
induced structure of the correlation matrix as

RXY,WZ
bb′ ≈ V XY1b VWZ

1b′ +V XY2b VWZ
2b′ (|b− b′| > 2) . (A6)

These vectors are related to the expansion (A5) through

V XYKb =

√
λkmax

K vkmax,XY
Kb . (A7)

In Fig. 10, we compare the residuals between the simu-
lations and (A6) (right) with those between the simula-
tions and the theory from the previous section (left). The
residuals for the two approaches are qualitatively similar
with a slightly higher residuals for the latter as would be
expected from a theoretical as opposed to phenomeno-
logical model.

We can gain further insight about the relationship be-
tween the first two eigenmodes V XY1,2 and the theoretical
expectations of the SSC and ILC effects by examining
eigenvectors of the latter. From (13) we see the contri-
bution of the SSC term to the correlation matrix can be
factored into

CovXY,WZ
(SSC)bb′√

CovXY,XYbb CovWZ,WZ
b′b′ .

= UXY1b UWZ
1b′ (A8)

with

UXY1b =
∑
`

UXYb`√
CovXY,XYbb

∂`2CXY`
∂ ln `

σκ
`2
. (A9)

The ILC covariance including only TT, TE and EE is well
captured by a single eigenvector [21]. Its contribution to
the correlation matrix can be then well approximated by

CovXY,WZ
(ILC)bb′√

CovXY,XYbb CovWZ,WZ
b′b′ .

≈ UXY2b UWZ
2b′ (A10)

for some UWZ
2b that can be obtained using eigenvalue de-

composition. Because the leading lensing principal com-
ponent Θ(1) captures most of the lensing effect, UXY2 can
be well approximated by

UXY2b ≈
∑
`

UXYb`√
CovXY,XYbb

∂CXY`
∂Θ(1)

σAΘ(1) , (A11)

where σA
Θ(1) is the sample variance of Θ(1) in the footprint

(24). We checked (A11) explicitly, but use the numeri-
cally obtained value UXY2 in what follows.

If the theoretical predictions for ILC and SSC are cor-
rect, we expect

V XYKb ≈ UXYKb , K = 1, 2. (A12)

In Figure 13 we compare these two vectors and find that
the agreement is indeed very good, confirming in a differ-
ent way that our theoretical understanding of the lensing-
induced terms in the simulated covariance matrix is sat-
isfactory.

Similarly to before, we can introduce amplitudes A′1,2
to quantify agreement between V XYKb and UXYKb and esti-
mate their values by minimizing∑

XY,b

(
V XY1b −

√
A′1U

XY
1b

)2

(A13)

and similarly for A′2. The square root is used so that in
an ideal case, where the two techniques for comparing
simulated and theoretical covariance matrices produce
identical results, we would get AK = A′K . We can es-
timate uncertainties on A′1,2 again using bootstrap. The
results are plotted in Fig. 11, where they can be com-
pared against results of the method introduced in the
Appendix A 1. The difference between the two methods
is much smaller than the uncertainties for the amplitude
of the SSC term A1, but there seem to be a small bias for
A2, with the method presented in this section obtaining
smaller values.

Resolution of this issue could lie in the relative detec-
tion significance of these two effects. From Fig. 12 it is
clear that the SSC effect is detected with a higher sig-
nificance and that the eigenvalue corresponding to the
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FIG. 13. The two leading scaled eigenmodes V XYKb (for
K = 1, 2) determined from the simulated covariance matrix
using the method of Appendix A 2 (red) against the theoret-
ical expectations (black). The top plot shows agreement for
the SSC effect, while the lower for the ILC effect. Simulated
results were obtained for the 1000 deg2 disk window function.

ILC effect is notably closer to the noise-fitting eigenval-
ues clustered around zero. Our hypothesis is that V2 ob-
tained from the simulations contains an admixture of the
noisy modes. This then leads to misalignment of V2 and
U2, and a decrease in A′2. This hypothesis is corroborated
by the fact that the agreement between the two methods
of obtaining A2 improves when we drop the temperature
data, where the ILC signal is relatively weaker. Addition-
ally, the difference between the two methods increases
when the analysis is repeated with a smaller number of
simulations, in which case we expect larger admixture of
the noisy modes into V2.

Overall, the differences in the amplitudes Ai of ILC
and SSC determined from simulations from the theoreti-
cal expectation of unity are small and so in the main text
we simply set Ai = 1.

Appendix B: Sharpening of windowed peaks

As explained in the main text, we expect cut sky power
spectra to exhibit sharper peaks than the full sky power
spectra, because lenses larger than the survey footprint
do not average out to cause peak smoothing, but act as
a coherent (de)magnification. Since this is also the sense
in which the SPT data are in tension with Planck, in
this Appendix we demonstrate that it cannot reduce the
tension.

To do that, we compare the unbiased estimates of the
binned power spectra ĈXYb against the theoretically ex-
pected value UXYb` CXY` . Here CXY` are the theoretically
predicted full sky power spectra for our fiducial cosmo-
logical model. If the amount of lensing in ĈXYb is indeed

smaller, it should be possible to detect nonzero Θ(1) in
the difference

∆CXYb = ĈXYb −
∑
`

UXYb` CXY` . (B1)

We model this difference as

∆CXY(model)b =
∑
`

UXYb`

(
∆Θ(1) ∂C

XY
`

∂Θ(1)
+ ∆θ∗

∂CXY`
∂θ∗

)
,

(B2)
to account for the two effects lensing has on power spectra
in a cut sky experiment.

From the simulated ∆CXYb we then constrain

∆Θ(1),∆θ∗ for each simulation and each window func-
tion by minimizing∑

XY,WZ
bb′

∆XY
b

(
CovXY,WZ

bb′

)−1

∆WZ
b′ , (B3)

where the residuals are

∆XY
b = ∆CXYb −∆CXY(model)b; (B4)

this minimization can be done algebraically. For each
window we can then read off mean values of ∆Θ(1) and
∆θ∗ and their variance from the obtained distribution.

As expected, mean shift of the peaks 〈∆θ∗〉 is con-
sistent with zero. So is the mean shift in 〈∆Θ(1)〉 that
quantifies the extra sharpening of the peaks; in Fig. 14
we show constraints on 〈∆Θ(1)〉 for all the window func-
tions considered in this work. Even though on theoreti-
cal grounds the sharpening of the peaks is expected to be
present, our simulations limit the magnitude of this effect
to be a small fraction of the Θ(1) standard deviation due
to lens sample variance (24), i.e. |〈∆Θ(1)〉| � σA

Θ(1) .

Appendix C: Tension significance for non-Gaussian
posteriors

Determining the level of agreement between two mea-
surements of a variable x is an often encountered prob-
lem. The approximation usually employed is to as-
sume independence of these measurements and approx-
imate the corresponding posterior probability densities



16

0 200 400 600 800 1000 1200

sky area [deg2]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03
〈∆

Θ
(1

) 〉

FIG. 14. Constraints on extra sharpening of the peaks in
cut-sky simulations, studied in Appendix B. Each point rep-
resents a different window function, the circles denote disk-
shaped window functions and the square the SPT-like rect-
angular window function. For each window, the central value
represents a mean of the 2400 values of ∆Θ(1) obtained
from our simulations. The error bars represent error on this
mean, standard deviation of the ∆Θ(1) distribution divided
by
√

2400.

P1(x), P2(x) as two Gaussians with means µi and vari-
ances σ2

i . The tension in the units of the total variance
σ is then calculated using the difference of the means
formula

T =
|µ1 − µ2|√
σ2

1 + σ2
2

. (C1)

In the case where the two posteriors are not Gaussian,
it may be possible to apply a nonlinear transformation
of the variable x, after which the posteriors are better
approximated by Gaussians. This was the path taken
for example in [38]. Finding such a transformation can
be time consuming and may not be always possible. For
that reason we introduce here a tension statistic that can
be directly used in the general case.

Let us assume the two measurements are in princi-
ple correlated and described by the posterior probability
density P (x1, x2), where x1, x2 label results of the two
measurements. For such P we evaluate

P(2 > 1) =

∫ ∞
0

d∆

∫
P (x, x+ ∆)dx

P(1 > 2) =

∫ 0

−∞
d∆

∫
P (x, x+ ∆)dx

= 1− P(2 > 1) (C2)

and calculate T from

min
[
P(2 > 1),P(1 > 2)

]
=

∫ ∞
T

dx√
2π
e−x

2/2. (C3)

The tension significance is then marked as Tσ.

For the special case where P factorizes into two in-
dependent Gaussians this definition is equivalent to the
standard formula (C1). Additionally, this tension signif-
icance is invariant with respect to reparameterizations of
the measured variable x.
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