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We explore the application of heterodyne interferometry for a weak-field coherent detection
scheme. The methods detailed here will be used in ALPS II, an experiment designed to search
for weakly-interacting, sub-eV particles. For ALPS II to reach its design sensitivity this detection
system must be capable of accurately measuring fields with equivalent amplitudes on the order of
10−5 photons per second or greater. We present initial results of an equivalent dark count rate on
the order of 10−5 photons per second as well as successful generation and detection of a signal with
a field strength equivalent to 10−2 photons per second.

OCIS codes: (040.2840) Heterodyne; (140.0140) Lasers and laser optics

I. INTRODUCTION

I.1. Axions and Axion-Like Particles

The Standard Model (SM) incorporates our current
knowledge of subatomic particles as well as their inter-
actions via three of the four fundamental forces of na-
ture. The SM is not complete, however, as it does not
contain gravity and does not explain certain observa-
tions. One notable unresolved issue is that of charge-
conjugation parity symmetry (CP-symmetry) violation.
The QCD Lagrangian includes terms capable of breaking
CP-symmetry for the strong force. In contrast, experi-
ments found that the strong forces respect CP-symmetry
to a very high precision [1].

The most prominent proposed solution, introduced by
Peccei and Quinn [2], involves spontaneously breaking a
global U(1) symmetry leading to a new particle, named
the axion [3, 4]. Interactions with the QCD vacuum cause
the axion to have a non-zero mass, ma [2]. While axions
may interact with SM particles, the interactions can be
weak. Most notably for experimental purposes, axion
mixing with neutral pions leads to a characteristic two
photon coupling, gaγγ [5]. This, in turn, constrains the
product of the axion mass and coupling such that these
two parameters are dependent. Experimental and obser-
vational factors place the axion mass between 1 and 1000
µeV. The corresponding range for gaγγ is 10−16 to 10−13

GeV−1.

While the QCD axion is confined to a specific band
in the parameter space, it might just be a member of a
larger class of axion-like particles, some with a stronger
two-photon coupling [6, 7]. The interactions between
these axions/axion-like particles and photons may pos-
sibly explain unanswered astronomical questions includ-
ing TeV photon transparency in the Universe [8] and
anomalous white dwarf cooling [9]. The intrinsic prop-
erties of axions and axion-like particles also make them
prime candidates for cold dark matter. This theoretical
motivation has led to the formulation of various experi-
ments designed to detect axions and axion-like particles

by utilizing their coupling to photons.
Although axions can naturally decay into two observ-

able photons, the rate at which this occurs is extremely
low, making detection by observing this decay impos-
sible. Axion search experiments therefore also rely on
the inverse Primakoff or Sikivie effect in which a strong
static magnetic field acts as a high density of virtual
photons. This field stimulates the axion/axion-like par-
ticle to convert into a photon carrying the total energy
of the axion/axion-like particle [10, 11]. A number of
strategies have been employed by these experiments to
search for axions from several sources. Haloscope exper-
iments, such as ADMX, use resonant microwave cavities
and strong superconducting magnets to search for ax-
ions comprising the Milky Way’s cold dark-matter halo
[12]. Helioscope experiments, such as CAST, look for
relativistic axions originating from the Sun that convert
into detectable X-rays as they pass through a supplied
magnetic field [13]. Differing from these types of axion
searches that rely on astronomical sources, “Light Shin-
ing through Walls” (LSW) experiments attempt to gen-
erate and detect axions in the laboratory and therefore
have the advantage of independence from models of the
galactic halo and models of stellar evolution [14–19].

I.2. ALPS II

LSW experiments use the axion-photon coupling first
to convert photons into axions under the presence of a
strong magnetic field. These axions then pass through
a light-tight barrier and enter another strong magnetic
field where some are converted back into detectable pho-
tons. Energy is conserved in the process so that the re-
generated photons behind the wall have the same energy
as those incident in front of it. The Any Light Parti-
cle Search (ALPS) is one such LSW experiment. The
first generation of this experiment, ALPS I, set the most
sensitive laboratory experimental limits of its time on
the coupling of axions to two photons, gaγγ , for a wide
range of axion masses [18]. ALPS I used a single opti-
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cal cavity placed before a light tight barrier to increase
the circulating power on the axion production side of the
magnet. The second iteration of the experiment, ALPS
II, will improve the sensitivity further with the addition
of an optical cavity after the barrier. The presence of
this cavity will resonantly enhance the probability that
axions/axion-like particles will reconvert to photons [20–
24]. ALPS II is currently being developed in two stages.
The first stage, ALPS IIa, will use two 10 m long resonant
cavities without magnets [25]. The second stage, ALPS
IIc, will use two 100 m long cavities with 5.3 T supercon-
ducting HERA dipole magnets. Longer cavity lengths
increase the interaction time between the photons and
the magnetic field.

Wall

Axion field

HERA dipole magnets
B = 5.3 T

1064 nm laser
P = 30 W

Detector

HERA dipole magnets
B = 5.3 T

FIG. 1. Simplified model of the ALPS IIc experiment. Axions
generated in the left-hand side cavity (the production cavity)
traverse the wall and some turn back into detectable photons
in the right-hand side cavity (the photon regeneration cavity).

Figure 1 shows a simplified layout of the ALPS IIc ex-
periment. Infrared laser light is injected into an optical
cavity whose eigenmode is immersed in a 5.3 T magnetic
field. The polarization of the injected light is set to be
linear. The direction of the polarization is oriented ei-
ther parallel or orthogonal to the direction of the external
magnetic field in order to search separately for pseudo-
scalar or scalar axion-like particles. Power buildup from
this cavity causes a high circulating laser power, increas-
ing the flux of axion-like particles through the wall. After
these particles traverse the light-tight barrier they enter
a second cavity, called the regeneration cavity, also sub-
ject to a 5.3 T magnetic field. The particles then have the
same probability to reconvert back into photons having
an energy identical to those in the production cavity.

The exclusion limits (95% confidence level) measured
by ALPS I for a 31 hour data run in vacuum is shown
by the green region of Fig. 2. Improvements in the opti-
cal design from ALPS I to ALPS IIc lead to a projected
2000-fold increase in sensitivity to the coupling parame-
ter, gaγγ .

ALPS IIc will inject a 30 W laser field into the 100
m long production cavity (PC) which is immersed in a
5.3 T magnetic field. The circulating power inside the PC
is expected to reach 150 kW. The 100 m long regenera-
tion cavity (RC) on the other side of the wall will have a
finesse of 120,000. The RC is also placed inside a similar
5.3 T magnetic field. Assuming a coupling strength of
gaγγ ∼ 2 × 10−11 GeV−1, the employed photon detector
has to be able to measure fields with a photon rate as low
as 2×10−5 photons per second [23]. For 1064 nm light,
this is equivalent to an average power on the order of
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FIG. 2. Parameter space of the axion mass (ma) and coupling
(gaγγ) showing projected improvements in sensitivity from
ALPS I (in vacuum) to ALPS IIc [24].

10−24 W. ALPS II is exploring two technologies for de-
tecting such weak signals. The first of these uses a transi-
tion edge sensor [26]. This technology utilizes a supercon-
ducting thin film operating near its critical temperature
to absorb the regenerated photons, thereby changing its
temperature and thus its resistance. An alternative ap-
proach, heterodyne interferometry, is the subject of this
paper [23].

I.3. Heterodyne Detection Principles

The principle of heterodyne interferometry requires
interfering two laser fields at a non-zero difference fre-
quency. Let one laser, L1, have frequency f , phase φ1,
and average power P̄1 and a second laser, L2, have fre-
quency f+f0, phase φ2, and average power P̄2. Optically
mixing these lasers at a photodetector yields the follow-
ing expression:∣∣∣√P̄1e

i(2πft+φ1) +
√
P̄2e

i[2π(f+f0)t+φ2]
∣∣∣2 =

P̄1 + P̄2 + 2
√
P̄1P̄2 cos (2πf0t+ ∆φ) . (1)

Here, we have written the laser field amplitudes as pro-
portional to the square root of the average power and
have set ∆φ = φ2 − φ1. While the first two terms on the
right side of the equation are the individual DC powers,
the third term is a time varying signal, called a beat note,
at the difference frequency, f0.

In our implementation of the heterodyne readout, the
detector photocurrent, represented by Eq. 1, is digitized
satisfying the Nyquist criterion for sampling signals at f0.
The band-limited signal is then mixed to an intermediate
frequency and written to file using a Field Programmable
Gate Array (FPGA) card. Then, a second mixing stage
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in post-processing shifts the signal to DC, splitting it into
two quadratures. Each resultant quadrature is continu-
ously integrated over the measurement time. In order
for the signal to accumulate, phase coherence between
the two laser fields must be maintained during this en-
tire process. The two quadratures are then combined to
give a single quantity proportional to the product of the
photon rate of each laser.

Implementation of a heterodyne detection scheme in
ALPS II will involve injecting a second laser, phase co-
herent with the signal field and resonant in the regenera-
tion cavity at a known offset frequency. The overlapped
beams are transmitted out of the cavity and are incident
onto the heterodyne detector.

In this report we present results from a test setup
which validates the approach and will guide its imple-
mentation in ALPS IIc. To begin, in Section II we mathe-
matically demonstrate how a coherent signal is extracted
from the input. In Section III, we then discuss the opti-
cal design created to test this technique and the digital
design which forms the core of heterodyne detection. Fi-
nally, in Section IV we present results on device sensitiv-
ity and coherent signal measurements.

II. MATHEMATICAL EXPECTATIONS

II.1. Signal Behavior

In our standalone experiment, two lasers are interfered
and incident onto a photodetector. Laser 1 acts as our
local oscillator (LO) with average power P̄LO while Laser
2 provides the signal field we wish to measure with av-
erage power P̄signal. The difference frequency is set such
that the generated beat note has frequency fsig. Once
the combined beam is incident onto a photodetector with
gain G in V/W, it is digitized into discrete samples, x[n],
where n is the individual sample number, at sampling fre-
quency fs. Sampling is done using an analog-to-digital
converter (ADC) with a 1 V reference voltage. In the
absence of noise, the AC component becomes

xsig[n] = 2G
√
P̄LOP̄signal cos (2π

fsig
fs

n+ φ) , (2)

where φ is an unknown but constant phase.
In order to recover amplitude information, the dig-

itized beat note signal is separately mixed with a co-
sine/sine wave at frequency fd = fsig in a process known
as I/Q demodulation:

I[n] = xsig[n]× cos (2π
fd
fs
n)

Q[n] = xsig[n]× sin (2π
fd
fs
n) .

(3)

Each quadrature is individually summed from n = 1 to N
samples. The squared sums are added together and nor-
malization is done through division by N2. This entire

quantity is given by the following expression,

Z(N) =
(
∑N
n=1 I[n])2 + (

∑N
n=1Q[n])2

N2
. (4)

The numerator is in fact the square of the magnitude
of the discrete Fourier transform (DFT) of the digitized
input1 evaluated at fd/fs:

Z(N) =
|X
[
fd
fs

]
|2

N2
, (5)

where

X

[
fd
fs

]
=

N∑
n=1

x[n]e−i2π
fd
fs

(n−1) . (6)

Setting fd = fsig and solving for Z(N) with an input
given by Eq. 2 yields,

Zsig(N) = G2P̄LOP̄signal . (7)

Demodulating at the beat note signal frequency causes
Z(N) to be proportional to P̄signal and constant with in-
tegration time, τ . The power in the local oscillator ampli-
fies the beat note amplitude and will be set to overcome
all technical noise sources.

II.2. Noise Behavior

We wish to set the signal field to compare with the
projected sensitivity of ALPS IIc on the order of a few
photons per week. Therefore, we must consider the in-
fluence of important noise sources such as laser relative
intensity noise and optical shot noise. In order to under-
stand the influence of such noise, let us determine Z(N)
in the absence of an RF signal (P̄signal = 0) but in the
presence of noise.

Consider the input x[n] to be a random stationary
process. The quantity Znoise(N) can be written in
terms of the single-sided analog power spectral den-
sity (PSD) evaluated at the demodulation frequency,
fd. To do so, we first convert the analog PSD in
V2/(cycles per second) to the digitized power spectral
density (DPSD) in V2/(cycles per sample) using the
sampling frequency fs [27].

DPSD

(
fd
fs

)
= fs PSD(fd) (8)

1 It must be noted that this is only exactly true in the case that
fd
fs

= k
N

for some integer k. If this requirement is not met

then the windowing process results in spectral leakage and Z(N)
becomes an estimate of the DFT. However, in the large N limit
this leakage becomes negligible.
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The DPSD is related to the expectation, E , of the DFT
of x[n] [27]:

DPSD

(
fd
fs

)
= lim
N→∞

E

 |X
[
fd
fs

]
|2

N

 . (9)

Using Eq. 5 we can solve for Z(N).

lim
N→∞

E [Znoise(N)] =
PSD(fd)

τ
, (10)

where we use the substitution N = τfs. It is important
to note that this only depends upon the PSD evaluated
at fd and not across the entire spectrum.

Although Eq. 10 exactly relates the expectation value
of Znoise(N) to the analog PSD, we are interested in
the result of a single trial. For such an individual trial,
Znoise(N) provides only an estimate of the analog PSD.
Because the noise is assumed to be stationary, the PSD
is by definition constant with time. The behavior of
Znoise(N) for a single trial therefore tends to fall off as
1/τ . However, for a set integration time the outcome
of multiple trials of Znoise(N) will have some non-zero
variance [27, 28].

lim
N→∞

σ2
Z =

(
PSD(fd)

τ

)2

(11)

A confidence threshold for a single run must therefore
be determined in order to distinguish between coherent
detection of a signal and the random nature of this noise.
From this point forward we assume N to be sufficiently
large such that Eq. 10 and its derivatives provide good
approximations to real world applications.

II.3. Detection Threshold

To simplify this calculation let us assume that the in-
put is appropriately band-pass filtered around fd and
downsampled such that the resulting frequency spectrum
is locally flat. It has been shown that in the large N limit
X [fd/fs] is a Gaussian random variable, independent of
the other X [f/fs] due to the central limit theorem [28].
Znoise(N) therefore follows an exponential distribution.
Using the cumulative distribution function [29], the prob-
ability, P, of measuring a final value of Znoise(N) between
0 and an upper limit u for a given τ is

P(u) = 1− e−u/σZ . (12)

From the inverse of Eq. 12, we can define a probability
range for individual outcomes of Znoise(N) to fall between
0 and an upper limit for any given probability P. For the
5-sigma limit (P5s = 0.9999994) this is

u(P5s)[Znoise(N)] = −ln(6× 10−7)
PSD(fd)

τ
. (13)

Noise (expected value) Coherent signal

5 sigma confidence level

– loge(6 × 10–7) PSD(fd) / τ
PSD(fd) / τ
PLO × Psignal

τ

τ5sτx

Integration time

FIG. 3. Expected behavior of noise, signal, and the 5-sigma
limit when plotting Z(N) vs. integration time τ . Noise and
the 5-sigma limit both go as 1/τ whereas the signal stays flat
with time. Because Z(N) is proportional to the power in the
signal field we can scale the y-axis accordingly using the gain
factors within our system in order to obtain a meaningful
photon rate of the weak field. Noise-level-dependent integra-
tion times τx (where the signal crosses the expected value of
noise) and τ5s (where a detection can be claimed with 5-sigma
confidence) are highlighted.

Consequently, when Z(N) has a value above this limit
for a predefined number of samples N , we can claim with
99.99994% confidence that a coherent signal is present.

The expected behaviors of Z(N) and the 5-sigma limit
are plotted vs integration time τ in Fig. 3. When a beat
note signal is present at frequency fsig = fd (Eq. 7), the
expectation value, shown in red, is constant with integra-
tion time and scales linearly with the power of the signal
field, P̄signal. This power can be expressed in terms of
photons per second, our quantity of interest.

Following Eq. 10, the expectation value of Znoise(N)
(signal absent), shown as the solid green line, goes as 1/τ .
Similarly the 5-sigma limit falls off as 1/τ according to
Eq. 13.

II.4. Fundamental limits

From now on, we will scale Zsignal(N) to photons per
second in the signal field, P̄signal/hν. A scaling factor of
1/(G2hνP̄LO) is applied to Eq. 7 such that

Zsignal(N)

G2hνP̄LO
=
P̄signal

hν
. (14)

where h is the Planck constant and ν is the laser fre-
quency, so that hν is the photon energy. Scaling the
noise (Eq. 10) and 5-sigma limit (Eq. 13) by the same
factor yields

E [Znoise(N)]

G2hνP̄LO
=

PSD(fd)

G2hνP̄LO × τ
, (15)
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and

u(P5s)

G2hνP̄LO
=
−ln(6× 10−7) PSD(fd)

G2hνP̄LO × τ
. (16)

The fundamental noise source in our optical hetero-
dyne detection setup as well as in ALPS IIc is shot noise
(sn). This type of noise is well characterized and follows
Poisson statistics [30]. Experimentally we ensure that
our system is shot-noise limited at the demodulation fre-
quency. We may then use the known PSD for shot noise
in A2/Hz [31],

PSDsn = 2qIDC , (17)

where q is the electron charge. The DC photocurrent,
IDC, is related to the total input average optical power.
With P̄LO � P̄signal the photocurrent becomes,

IDC = η
q

hν
P̄LO , (18)

where η is the quantum efficiency of the photodetector.
Finally, we use the photodetector gain G in order to con-
vert this to V2/Hz.

PSDsn = 2G2hνP̄LO
1

η
(19)

Substituting this quantity into Eq. 15 yields the ex-
pected behavior when shot noise is the dominant source
at the demodulation frequency.

E [Zsn(N)]

G2hνP̄LO
=

2

ητ
(20)

Because the left-hand side of this equation is equal to
the photon rate of the signal field if a signal is present,
using Eq. 14 we can predict the time at which a signal
will cross the expected value of this fundamental noise
limit,

τx,sn = 2
hν

ηP̄signal
. (21)

Similarly from Eq. 16, we find that the time required for
the signal to cross the 5-sigma detection threshold is

τ5s,sn = −2 ln(6× 10−7)
hν

ηP̄signal
≈ 29

hν

ηP̄signal
, (22)

in the case of a shot-noise limited input.
In conclusion, for a weak field with a power equivalent

to 1 photon per second it takes 2 seconds for the ex-
pected value of shot noise to decrease to the signal level
with η = 1. However, it takes ∼ 29 seconds in order to
claim a detection of a signal with 5-sigma confidence. For
arbitrary noise input, both integration times, as depicted
in Fig. 3, can be generalized to

τx =
PSD(fd)

G2
× 1

P̄LOP̄signal
, (23)

and

τ5s =
PSD(fd)

G2
×
−ln

(
6× 10−7

)
P̄LOP̄signal

, (24)

if the noise is locally flat around fd. The factor between
τ5s and τx

τ5s
τx

= − ln
(
6× 10−7

)
≈ 14 , (25)

does not depend on the PSD, the average power of either
laser, or the sampling frequency fs.

Additionally, Eq. 23 shows the importance of a higher
power P̄LO when the system is not dominated by shot
noise. The larger the LO power, the less time required
for the signal to cross the expected noise limit, thus im-
proving the SNR. However, once P̄LO is large enough
such that the system is shot-noise limited, τx and, con-
sequently, the SNR no longer depend on the LO power.

III. EXPERIMENTAL SETUP

III.1. Optical Design

To demonstrate this concept experimentally, we assem-
bled the optical setup shown in Fig 4. This apparatus
allows us to measure the resultant beat note generated
from interfering a weak signal field with our LO. There

BS

PM Fiber

Mirror

Servo Loop

Laser 1 Laser 2

PI

λ/2λ/2

λ/2

λ/2

BS

PolBS

PolBS

EOM

to Data
Acquisition

PD1

PD2

sin(2π fcc t)

sin(2π fEOM t)

ND

Mixer

FIG. 4. Optical layout of the heterodyne interferometer used
for single photon detection. λ/2 denotes a half-wave plate,
PolBS refers to a polarizing beam splitter, BS denotes a 50/50
power beam splitter, ND refers to the neutral density filters,
EOM is the electro-optic modulator, PM fiber is the polar-
ization maintaining optical fiber, and PD is a photodetector.

are two 1064 nm lasers used, L1 and L2. L1 is our LO and
L2 provides the field used for weak signal generation. A
half-wave plate and polarizing beam splitter (PolBS) pair
is placed at the start of each beam path for power con-
trol purposes. This combination also causes the outgo-
ing light to be linearly polarized. Laser 2 passes through
an electro-optic modulator (EOM) which generates side-
bands to be used as the weak signal. This will be dis-
cussed in more detail later in this section. Laser 2 then
passes through two neutral density (ND) filters with a
combined attenuation factor of ∼ 2× 105 in order to fur-
ther reduce the weak-field signal to an appropriate level.
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The two fields are interfered at a 50/50 power beam
splitter (BS) and the combined beam is sent into a single-
mode polarization-maintaining fiber. By sending both
beams into the same single-mode fiber we ensure com-
plete overlap of the spatial eigenmodes at the output cou-
pler. After the fiber, the combined beam passes through
another 50/50 power BS. Each path is then focused in-
dividually onto separate photodetectors. PD1 is used to
lock the two lasers to the constant difference frequency.
This is done via feedback to the laser controller for L2

using a phase lock loop (PLL) setup. PD2 is a homemade
photodetector used for our signal measurements. For a
large enough local oscillator power the shot noise level
exceeds the noise equivalent power (NEP) of the pho-
todetector and PD2 produces shot-noise limited signals.
We set the average local oscillator power to 5 mW and
observe a shot noise to NEP ratio of 6 at the measure-
ment frequency.

Overlapping the two lasers generates a beat note be-
tween L1 and L2, called the carrier-carrier (CC) beat
note at frequency fCC. The error signal for the PLL
feedback comes from mixing the carrier-carrier beat note
with a numerically controlled oscillator (NCO), also at
frequency fCC, synchronized to a master clock. This
feedback is controlled by the FPGA card and keeps the
CC beat note stable at frequency fCC.

III.2. Digital Design

The electrical signal from PD2 is digitized via an ADC
on-board an FPGA card at a rate of fs = 64 MHz. A
simplified digital layout following the path of the pho-
todetector signal is detailed in Fig. 5.

FPGA

Data Processing (20 Hz)Data Acquisition (64 MHz)

from
Optical Setup

PD2

∑

∑

ADC

CIC Filter

1 х cos(2π  f1 / fs n)

A х sin(2π  fsig / fs n)

1 х sin(2π  f2/ fs' n')

1 х cos(2π  f2 / fs' n')

FPGA

FIG. 5. Digital layout of detection scheme describing the dig-
ital processing techniques involved. The photodetector signal
is digitized via an analog-to-digital converter at a rate of 64
MHz after which it is mixed with a sine wave, produced by a
numerically controlled oscillator, at frequency f1. A cascaded
integrated comb filter is used to remove the higher frequency
components due to mixing and downsample the data to 20
Hz, where is it written to file. f ′s and n′ are used to ref-
erence the lower sampling rate. I/Q demodulation is done
onboard a desktop computer, and the quadratures are indi-
vidually summed and Z(N) is computed.

The signal at frequency fsig is mixed down to an inter-

mediate frequency, fδ, on the order of a few Hz. This is
done via multiplication with a sinusoid from an NCO at
frequency f1 = fsig − fδ generated with a look-up table
on the FPGA card.

While it is possible to demodulate directly down to
DC during the first demodulation stage simply by set-
ting the NCO frequency to f1 = fsig, we observed spu-
rious DC signals generated within the FPGA card when
tested with this configuration. The strength of these sig-
nals are orders of magnitude larger than the beat notes of
interest thus preventing any useful measurements. This
issue is solved by mixing the beat note signal down to the
intermediate frequency, writing the data to file, and per-
forming a second demodulation stage on a desktop PC.
This double demodulation shifts the unwanted spurious
signal to a non-zero frequency where it integrates away.
With this configuration, the beat note can be accurately
measured.

A cascaded integrated comb (CIC) filter [32], removes
the higher frequency components resulting from the mix-
ing process. The CIC filter also downsamples the data
to a rate of f ′s ≈ 20 Hz at which they are written to file.

The signal at fδ is decomposed into its in-phase (I) and
quadrature (Q) components via separate mixing with a
cosine and sine NCO at f2 = fδ, respectively. Consider-
ing the same signal input from Eq. 2, this process refer-
enced to the higher sampling rate, fs, is equivalent to:

I2[n] = xsig[n] sin (2π
f1
fs
n)× cos (2π

f2
fs
n)

Q2[n] = xsig[n] sin (2π
f1
fs
n)× sin (2π

f2
fs
n) .

(26)

The DFT of the recorded data at the lower sampling rate,
|X [f2/f

′
s] |2, is then computed. The expectation values

of Z(N) from Section II must be rewritten to include this
second demodulation stage. We denote these equations
with a subscript 2. The total number of samples written
to file is N ′ = τf ′s.

With a signal present at the demodulation frequency
in the absence of noise we find

Z2,sig(N ′) =
G2

4
P̄LOP̄signal . (27)

The photon rate in the signal field is

4 Z2,sig(N ′)

G2hνP̄LO
=
P̄signal

hν
. (28)

Using this new scaling factor of 4/(G2hνP̄LO), we obtain
a quantity equal to the photon rate of the signal field
after two demodulation stages.

In the case where there is only noise at the input, the
PSD when the data are recorded (DPSD′) must be re-
lated to the original DPSD right after the ADC. Multi-
plication by a sine wave reduces the DPSD by a factor of
2. The decimation stage reduces the level of the DPSD



7

by a factor of f ′s/fs. For |f2| ≤ f ′s/2,

DPSD′
(
f2
f ′s

)
=

1

2

f ′s
fs

DPSD

(
fd
fs

)
=
f ′s
2

PSD(fd) .

(29)
This quantity is related to the DFT by

DPSD′
(
f2
f ′s

)
= E

 |X
[
f2
f ′
s

]
|2

N ′

 = E{Z2(N ′)×N ′} .

(30)
Solving for E [Z2(N ′)] in terms of the analog PSD evalu-
ated at fd = f1 + f2 gives

E [Z2,noise(N
′)] =

PSD(fd)

2τ
, (31)

where we use the substitution N ′ = τf ′s. In order to com-
pare the expectation value of noise to that of the signal,
we must apply the new scaling factor of 4/(G2hνP̄LO).
Doing so, we arrive at

4 E [Z2,noise(N
′)]

G2hνP̄LO
=

2 PSD(fd)

G2hνP̄LO × τ
. (32)

For the shot-noise-limited case with PSDsn given by
Eq. 19, this calculation yields

4 E [Z2,sn(N ′)]

G2hνP̄LO
=

4

ητ
. (33)

Comparing to Eq. 20, the introduction of a second de-
modulation stage causes the sensitivity to decrease by a
factor of 2. This decrease, in turn, also causes the 5-
sigma limit to increase by a factor of 2. Therefore, using
two demodulation stages requires twice as long an inte-
gration time (when compared to a single stage setup) to
detect confidently a signal.2

Signal and noise add linearly in the PSD:

4 E [Z2,total(N
′)]

G2hνP̄LO
=
P̄signal

hν
+

4

ητ
. (34)

For short integration times and a low photon rate, 4/ητ
is the dominating term. After long enough integration,
P̄signal/hν becomes dominant causing the curve to remain
constant with time.

These equations now reflect the result of adding a sec-
ond demodulation stage, however, one final experimental
consideration must be taken into account. Simply lower-
ing the power of Laser 2 to sub-photon per second levels

2 In principle, it is possible to regain the earlier sensitivity while
still using two demodulation stages. This is done by taking both
I and Q out of the FPGA. Then a second I/Q demodulation is
performed on each output channel. This results in four terms II’,
IQ’, QI’, and QQ’ where the prime indicates the second demod-
ulation stage. Using a specific combination of these terms yields
the same set of equations described in Section II [33]. This con-
cept is currently being tested and has not yet been implemented.

reduces the CC beat note below the point at which the
PLL becomes unstable. Experimentally, a stable lock can
be maintained with P̄LO = 5 mW and P̄L2 = 60 pW mea-
sured at PD1. This leads to a minimum CC beat note
amplitude on the order of 1 µW. Increasing P̄LO any fur-
ther pushes the photodetector past the level at which it
begins to saturate. Therefore, the minimum photon rate
of Laser 2 at PD2, such that the PLL remains stable, is
3× 108 photons per second. In order to generate signals
with field strengths below this value, while still maintain-
ing a stable PLL between the two lasers, we make use of
phase modulation from an EOM.

III.3. EOM Sideband Generation

As mentioned earlier, the EOM shown in Fig. 4 was
used to generate sidebands on Laser 2. The EOM is
driven at frequency fEOM using a sine wave from a func-
tion generator that is synchronized to a maser clock. This
voltage modulates the phase of the beam as it passes
through the EOM. Phase modulation generates side-
bands both above and below the laser frequency. These
sidebands occur at k integer multiples of the drive fre-
quency, fEOM. The amount of light power in the kth

order sideband is [34]

P̄SB,k = Jk(m)2P̄L2 , (35)

where Jk(m) is the kth order Bessel function and m is
the modulation depth, dependent on the drive amplitude
of the modulation. All of these sidebands beat with the
LO to produce AC signals with peak amplitudes given
by the following,

Ak = 2
√
P̄SB,k P̄LO . (36)

The two ND filters directly after the EOM attenuate
the power of Laser 2 and all of the subsequent sidebands
by a factor of ∼ 2×105. The addition of these ND filters
is necessary to reduce the sideband power of interest to
the desired level.

The power in the kth sideband, P̄SB,k, can be fine
tuned by adjusting the drive amplitude to the EOM, thus
changing the modulation depth, m. To set the modu-
lation depth to a specific value, the two ND filters are
removed such that both the CC and sideband beat notes
are visible on a spectrum analyzer. The ratio between
the two beat note amplitudes is adjusted in order to ob-
tain the desired modulation depth. The ND filters are
then placed back into the beam path.

Using this configuration, the average power of Laser 2
is set to maintain a stable PLL. Higher order sidebands
fall off in power to levels comparable to the projected
sensitivity of ALPS IIc. The interference between these
sidebands and the LO form beat notes at known, fixed
frequencies.
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IV. RESULTS

IV.1. Noise Behavior and Device Sensitivity

We first performed a measurement with no signal field
present to study the behavior of the noise in our system.
Only the LO beam with power P̄LO = 5 mW is inci-
dent onto PD2. The photodetector is shot-noise limited
at this level of incident light power. The photodetector
has gain G = 1.44 × 103 V/W and quantum efficiency
η = 0.7. After both demodulation stages, Z2(N ′) is com-
puted and the result is scaled to an equivalent photon
rate using the factor stated in Eq. 33. The result of this
19-day measurement, plotted against integration time τ ,
is shown in Fig. 6.

τIntegration time

5 sigma confidence level
Expected value

Measurement data (2.5 Hz)
50 run average (2.5-3.0 Hz)
Double demodulation limit

Shot noise limit

FIG. 6. Shot-noise limited measurement with no signal field
present. After the second demodulation at f2 = 2.5 Hz,
Z2(N ′) is computed and the resultant is scaled to an equiva-
lent photon rate, shown in light blue. Z2(N ′) is also computed
for 50 separate demodulation frequencies near 2.5 Hz. These
data are then averaged to produce the dark blue curve. This
average follows the expected value line, shown in solid green,
based on the PSD of the noise. The dashed green line shows
the 5-sigma limit that the measurement curve would cross if a
signal was present. The fundamental shot-noise limit (if only
one demodulation stage was required) is drawn as the solid
orange line for comparison. The second demodulation stage
increases the shot-noise limit by a factor of 2 (dashed red).
Because the expected value of the measurement sits on top of
this theoretical limit we show that shot noise is the dominant
noise source in our setup.

Z2(N ′) was computed 50 additional times using differ-
ent second demodulation frequencies near 2.5 Hz. The
results are then scaled to the photon rate and averaged.
This average is identical to the curve representing the
expectation values for different integration times. Both
have essentially the same amplitude and fall off as 1/τ
as expected. The data stream demodulated at f2 = 2.5
Hz shows one representation of a shot noise dominated

signal over the integration time. In addition, the 5-sigma
threshold is plotted.

The solid orange line shows the expected fundamental
shot-noise limit for the given optical power if only one
demodulation stage was used. As our measurement re-
quires a second demodulation stage, the amount of shot
noise returned by the measurement, scaled to photons
per second, increases by a factor of 2 (Eq. 33), shown as
the dashed red line. Because the expectation value of our
data lies on top of the theoretical shot-noise limit after
the second demodulation stage, shot noise is in fact the
dominant noise source in our setup.

This measurement verifies that our system is shot-
noise limited and behaves as expected. Because the mea-
surement does not cross the 5-sigma threshold, this also
shows that no spurious signals are picked up over the
entire 19 day integration time when Laser 2 was turned
off.

IV.2. Weak Signal Generation and Detection

In order to demonstrate that a signal is observable us-
ing heterodyne detection, we generate a beat note be-
tween the LO and an ultra-weak sideband of the second
laser. We choose a sideband power equivalent to ∼ 10−2

photons per second. Reducing the signal further was not
possible in our current setup as we started to pick up
spurious signals electronically. While this has been ob-
served we want to stress that the spurious signal vanishes
when the EOM phase modulation is turned off. Thus, it
is not an artifact of the second laser field but rather a
result of the modulation itself. We assume the issue to
be cross-talk between the function generator driving the
EOM and the FPGA data acquisition and signal process-
ing card. Further work on generating ultra-weak laser
fields without electrical interference is required.

In order to generate a sideband with the specified
power, we first remove the ND filters and set the lo-
cal oscillator to P̄LO = 5 mW and L2 to P̄L2 = 6 µW.
Both of these measurements are taken at the photode-
tector input. The modulation depth is set to m = 0.0109
by adjusting the drive amplitude to the EOM. Using
Eq. 35, the power in the 2nd order sideband (k = +2)
is calculated to be on the order of 10−15 W. The ND
filters are placed back into the beam path attenuat-
ing the sideband by a factor of ∼ 2 × 105, yielding
P̄signal = P̄SB,2 = 6.33 × 10−21 W. For 1064 nm light,
this is equivalent to 3.39 × 10−2 photons per second in
the sideband we wish to measure.

The CC beat note between L1 and L2 is set to 30 MHz.
Phase modulation is done by driving the EOM with a sine
wave at 23 MHz + 1.2 Hz. This choice of frequency sets
the beat note between the 2nd order sideband and L1 to
be at fsig = 16 MHz + 2.4 Hz. With the first demod-
ulation frequency set to f1 = 16 MHz, the beat note of
interest is therefore at 2.4 Hz when the data are writ-
ten to file. These data are then imported into MATLAB
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where the second demodulation is performed. Finally,
we compute Z2(N ′) and scale the result to photons per
second.

τIntegration time

Signal present at 2.4 Hz

3.33 x 10-2 photons
per second

5 sigma detection limit
Demodulation at exactly 2.4 Hz

Demodulation at 2.4003 Hz
Demodulation 2.5 Hz

Expected value (no signal)

FIG. 7. Shot-noise limited signal measurement scaled to pho-
tons per second. Two demodulation stages are used with a
signal present at 2.4 Hz when the data are written to file.
When second demodulation is at a frequency f2 6= 2.4 Hz,
the result yields the behavior of noise, shown in light blue.
The trend of the expectation value for this level of noise is
shown in solid green. The 5-sigma confidence line is shown in
dashed green. The result when demodulating at the beat note
signal frequency, f2 = 2.4 Hz is shown as the dark blue curve.
This curve crosses the 5-sigma line, demonstrating a confident
detection. The level that this curve flattens out to yields a
rate in the sideband of interest of 3.33 × 10−2 photons per
second, shown as the red line. Demodulating at a frequency
300 µHz away from the beat note signal, shown in yellow,
highlights the energy resolution of this detection method.

The results of this measurement are shown in Fig. 7.
Demodulating at a frequency not equal to any beat note
signal frequency demonstrates the expected behavior of
noise. This is shown by the light blue curve for which
a demodulation 0.1 Hz away from the 2.4 Hz beat note
signal was used. In this case, no coherent signal can
accumulate and the only influence at the demodulation
frequency is noise. This matches the trend of the expec-
tation value of the noise, shown in solid green.

Demodulating at the beat note signal frequency of
fδ = 2.4 Hz, shown as the dark blue curve, initially be-
haves as noise. The noise dominance continues until the
signal begins to take over, causing the curve to flatten
out and subsequently cross the 5-sigma threshold. The
level at which this curve flattens out yields a rate for
the sideband of 3.33 × 10−2 photons per second. The
measured photon rate differs from expectation by 2%, a
difference that we find acceptable. This error arises from
both laser power measurements and modulation depth
measurements. The constant level crosses the solid green
expected noise curve at ∼ 170 seconds, in agreement with
the expected τx. A 5-sigma confidence detection is made

after ∼ 2500 seconds of integration time, in agreement
with the expected τ5s. We therefore demonstrate that
our experimental setup is viable for both generating and
detecting sub-photon per second level signals using opti-
cal heterodyne interferometry.

Demodulation 300 µHz away from the beat note sig-
nal demonstrates the importance of maintaining phase
coherence throughout the entire measurement. In this
case, shown in yellow, the demodulation waveform drifts
in and out of phase with the beat note signal. When this
happens, the integrated I and Q values begin to oscil-
late with the difference frequency, |fδ − f2|. This causes
Z2(N ′) to fall off as a sinc function, preventing it from
crossing the 5-sigma threshold.

V. CONCLUSION

These measurements demonstrate that heterodyne in-
terferometry can be applied as a single photon detec-
tor. It however requires that the demodulation waveform
maintains phase coherence with the signal during the en-
tire integration time. Measurements at the shot-noise
limit with Laser 2 off did not reveal any spurious sig-
nals that would degrade the sensitivity of our setup after
19 days of integration. Therefore we can detect coher-
ent signals with field strengths equivalent to about 10−5

photons per second (1-sigma limit). In order to claim 5-
sigma confident detection for such signals we require an
integration time of approximately 47 days.

We also demonstrate successful generation and detec-
tion of a signal with a field strength on the order of 10−2

photons per second. Longer integration times and im-
provements in the generation of ultra-weak laser fields are
required to achieve lower power levels which are compa-
rable to the projected sensitivity of ALPS IIc. Work on
the generation, implementation, and detection of weaker
signal fields is currently ongoing.

Our results also highlight the importance of maintain-
ing phase coherence and stability throughout the mea-
surement. These limitations to heterodyne detection
must be taken into account during implementation into
ALPS II. For example, while our measurements are per-
formed using free field propagating beams, ALPS II will
make use of two Fabry Perot cavities. The phase noise
induced by these cavities must be kept at a low enough
level to prevent any notable degradation of the signal.

While this detection method emerged from the need
of a single photon detector for the ALPS II experiment,
heterodyne interferometric detection of weak fields can
be modified for a variety of applications. Although this
technique is demonstrated here using 1064 nm laser light,
it can be extended to any wavelength provided that noise
and the coherent signal can be decoupled. The versatil-
ity of heterodyne detection makes it applicable to a broad
range of fields including astronomy, classical communica-
tions, and biomedical imaging [35], as long as the signal
field is coherent and its frequency is known.
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