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Using a continuum approach to the hadron bound-state problem, we calculate γ∗γ → η, η′ tran-
sition form factors on the entire domain of spacelike momenta, for comparison with existing exper-
iments and in anticipation of new precision data from next-generation e+e− colliders. One novel
feature is a model for the contribution to the Bethe-Salpeter kernel deriving from the non-Abelian
anomaly, an element which is crucial for any computation of η, η′ properties. The study also de-
livers predictions for the amplitudes that describe the light- and strange-quark distributions within
the η, η′. Our results compare favourably with available data. Important to this at large-Q2 is a
sound understanding of QCD evolution, which has a visible impact on the η′ in particular. Our
analysis also provides some insights into the properties of η, η′ mesons and associated observable
manifestations of the non-Abelian anomaly.

I. INTRODUCTION

Quantum chromodynamics (QCD) describes the
strong interaction sector of the Standard Model and its
influence on hadron electroweak properties. Despite hav-
ing emerged more than forty years ago, from an array of
distinct ideas and discoveries [1, 2], there are few predic-
tions for processes that involve strong-QCD dynamics,
such as hadron elastic and transition form factors. The
cleanest relate to γ∗γ(∗) → M transition form factors,
GM (Q2), where M is a pseudoscalar meson.

Focusing on γ∗γ →M and considering any qq̄ compo-
nent of M , then ∃Q0 > ΛQCD such that [3]

Q2GqM (Q2)
Q2>Q2

0≈ 4π2 fqM e2
q w̃ q

M (Q2), (1)

where: ΛQCD ∼ 0.2 GeV is the empirical mass-scale of
QCD; fqM is the qq̄-component contribution to the pseu-
dovector projection of the meson’s wave function onto
the origin in configuration space, i.e. a leptonic decay
constant; eq is the electric charge of quark q; and

w̃ q
M (Q2) =

∫ 1

0

dx
1

x
ϕqM (x;Q2) , (2)

where ϕqM (x;Q2) is the dressed-valence q-parton con-
tribution to the meson’s distribution amplitude (DA).
The DA in Eq. (2) is determined by the meson’s light-
front wave function and relates to the probability that,
with constituents collinear up to the scale ζ =

√
Q2, the

dressed-valence q-parton carries light-front fraction x of
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the bound-state’s total momentum. The complete tran-
sition form factor is obtained as a sum over the various
qq̄ subcomponent contributions:

GM =
∑
q∈M

ψqMG
q
M , (3)

where ψqM is a flavour weighting factor originating in the
meson’s wave function.

Notably [3–5] (τ2 := Λ2
QCD/Q

2):

ϕM (x;Q2)
τ'0
≈ ϕ∞(x) = 6x(1− x) , (4)

i.e. the DA acquires its asymptotic profile and hence

Q2GqM (Q2)
τ'0
≈ 12π2 fqM e2

q . (5)

Consequently, on τ ' 0 the γ∗γ → M transition form
factor exhibits simple scaling; and the anomalous dimen-
sion, characteristic of gauge field theories quantised in
four dimensions, is “hidden” in the manner of approach
to the τ = 0 limit. (N.B. As will become clear, ow-
ing to the non-Abelian axial anomaly in QCD, Eq. (5) is
amended when M = η, η′ [6, 7].)

An array of experiments have been performed with a
view to testing Eqs. (1), (5) for the neutral pion [8–11].
Such measurements are difficult, typically involving the
study of e+-e− collisions, in which one of the outgoing
fermions is detected after a large-angle scattering whilst
the other is scattered through a small angle and, hence,
undetected. The detected fermion is assumed to have
emitted a highly-virtual photon, the undetected fermion,
a soft-photon; and these photons are supposed to fuse
and produce the final-state pseudoscalar meson. There
are many possible background processes and loss mecha-
nisms in this passage of events, and thus ample room for
systematic error, especially as Q2 increases [12].
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The potential for such errors probably plays a large
part in the controversy surrounding the most recent mea-
surements of γ∗γ → π0 [10, 11], which exhibit incompat-
ible trends in their evolution with photon virtuality [13]
and have drawn much attention, e.g. Refs. [14–23]. In
this connection, a theoretical framework that provides a
unified treatment of the charged-pion elastic electromag-
netic form factor, its valence-quark distribution function
and amplitude, and numerous other qualities, was found
[24] to deliver a prediction for Gπ(Q2) that agrees with all
available data, except that in Ref. [10], and is fully con-
sistent with Eq. (1). Moreover, it revealed that Eq. (1)
provides an accurate representation of the neutral-pion
transition form factor on Q2 & 15 GeV2.

Experimental data on the γ∗γ → ηc transition are also
available [25]. In this case, the computational frame-
work used for Gπ produces a result for Gηc(Q

2) which
matches the data and is broadly consistent with Eq. (1)
on Q2 & 30 GeV2 so long as the DA used to describe
the ηc is that appropriate to the experimental scale,
not the asymptotic limit [26, 27]. The predictions in
Refs. [26, 27] are confirmed by a recent next-to-next-to-
leading (NNLO) order analysis using nonrelativistic QCD
(nrQCD) [28].

There is no empirical information on the γ∗γ → ηb
transition, but the predictions in Refs. [26, 27] agree with
a NNLO nrQCD analysis [29]. They also reveal that,
at realistically accessible momentum transfers, owing to
the size of the ηb mass, Eq. (1) overestimates the direct
calculation by a factor of approximately two, even when
an ηb DA appropriate to the experimental scale is used.

These remarks show that a unified description of the
transitions γ∗γ → M , M = π0, ηc, ηb, is now avail-
able along with an understanding of the applicability
of Eq. (1) in each case [24, 26, 27]. Wanting, however,
are equivalent explanations of γ∗γ → (η, η′). Impor-
tantly, given that relevant data exist on the domain
Q2 ∈ [0, 112] GeV2 [9, 30, 31], then requiring a theoreti-
cal framework to unify the description of these transitions
with those reviewed above, on the entire domain Q2 ≥ 0,
is a severe test of the approach. The challenge is com-
pounded by the fact that the flavour structure of the η,
η′ mesons is a measure of the strength of the non-Abelian
anomaly and topological effects within hadrons [32, 33].
Hence, those truncations of the continuum two-valence-
body bound-state problem which are typically employed
cannot provide a realistic description of the η, η′ mesons.

Herein, we extend the approach of Refs. [24, 26], intro-
ducing contributions to the meson Bethe-Salpeter ker-
nels which express effects arising from the non-Abelian
anomaly, and deliver predictions for the γ∗γ → η, η′

transition form factors on Q2 ≥ 0. In doing so, we
complete a unified description of the two-photon transi-
tion form factors of all charge-neutral ground-state pseu-
doscalar mesons, including a discussion of the relevance
of Eq. (1) to understanding each case. Section II intro-
duces the η, η′-mesons as a continuum bound-state prob-
lem, reviewing the issue of flavour mixing, describing

the matter-sector equations relevant to mesons, and de-
tailing the kernels used in solving them. The solutions
are discussed in Sec. III, along with predictions for the
η, η′ masses and widths, and calculations of the dressed-
valence-quark DAs that represent the η, η′-mesons. (A
discussion of the topological charge contained within
these systems and detailed descriptions of the pertur-
bation theory integral representations (PTIRs) [34] used
to interpolate the numerical solution arrays are provided
in two separate appendices.) The γ∗γ → η, η′ transition
form factors are reported and analysed in Sec.IV, with
particular attention being paid to the impact of QCD
evolution on the Bethe-Salpeter wave functions and, con-
sequently, the transition form factors. Section V provides
a summary and perspective.

II. η, η′ AS TWO-BODY BOUND STATES

A. Flavour basis

We consider the limit of perfect isospin symmetry, in
which case the π0 does not mix with η, η′. As discussed
elsewhere [33], this is a good approximation: the ss̄ com-
ponent of the physical π0 Bethe-Salpeter amplitude is
roughly 1%, corresponding to a π0-η mixing angle of
. 1◦. These features were exploited in explaining the
γ∗γ → π0 transition [24].

In discussing η-η′ mixing, it is often convenient to work
with the U(Nf = 3) quark flavour basis [35, 36], in which
case the associated Bethe-Salpeter wave functions can be
written (l = u = d)

χη,η′(k;P ) = Flχlη,η′(k;P ) + Fsχsη,η′(k;P ) , (6a)

Fl =

 1 0 0
0 1 0
0 0 0

 , Fs =

 0 0 0
0 0 0
0 0

√
2

 . (6b)

The coefficients χl,sη,η′(k;P ) in Eq. (6a) are Bethe-
Salpeter wave functions which, respectively, describe the
momentum-space ll̄ or ss̄ correlations in the η, η′: k is
the relative momentum between the valence-quarks and
P is the bound-state’s total momentum.

Meson Bethe-Salpeter amplitudes, Γ, are obtained
from the wave functions by amputating the quark legs:

χl,sη,η′(k;P ) = Sl,s(k+)Γl,sη,η′(k;P )Sl,s(k−) , (7)

where k± = k±P/2 and Sl,s are dressed-quark propaga-
tors. Defining S = diag[Sl, Sl, Ss], then

χη,η′(k; p) = S(k+)Γη,η′(k;P )S(k−) , (8a)

Γη,η′(k;P ) = FlΓlη,η′(k;P ) + FsΓsη,η′(k;P ) . (8b)

For any pseudoscalar meson, or flavour-separated sub-
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component, the amplitudes in Eq. (8b) have the form:

Γ(k;P ) =

4∑
i=1

gi(k;P )Di(k;P ) , (9a)

D1(k;P ) = iγ5 , D2(k;P ) = γ5γ · P ,
D3(k;P ) = γ5γ · k , D4(k;P ) = γ5σµνkµPν ,

(9b)

where {gi(k;P )|i = 1, . . . , 4} are scalar functions.

B. Gap equations

The natural first step in a continuum analysis of
the valence-quark+valence-antiquark bound-state prob-
lem is computation of the one-body propagators for the
fermions involved: in this case, l = u = d- and s-quarks.
These propagators can be obtained from the associated
gap equations:

S−1
l,s (k) = Z2(iγ · k +mbm

l,s ) + Σl,s(k) , (10a)

[Σl,s(k)]ι1ι2 =

∫ Λ

dq
l,sJ

ι′1ι
′
2

ι1ι2(k, q)[Sl,s(q)]ι′1ι′2 , (10b)

where: Z2 is the quark wave function renormalisa-

tion constant and mbm
l,s are the quark bare masses;

∫ Λ

dq

represents a symmetry-preserving regularisation of the

four-dimensional integral; and l,sJ
ι′1ι
′
2

ι1ι2 is the gap equa-
tion’s kernel, with the indices describing spinor struc-
ture (and colour and flavour, when required). We em-
ploy a mass-independent momentum-subtraction renor-
malisation scheme throughout, implemented by using the
scalar Ward-Green-Takahashi identity [37–39] and fixing
all renormalisation constants in the chiral limit [40], with
renormalisation scale ζ = 2 GeV=: ζ2.

The solutions of Eq. (10) take the following form:

Sl,s(k) = −iγ · k σl,sV (k2) + σl,sS (k2) , (11a)

= Zl,s(k
2)/[iγ · k +Ml,s(k

2)] , (11b)

where Ml,s(k
2) = σl,sS (k2)/σl,sV (k2) is the running mass

for the indicated quark.

C. Bethe-Salpeter equation

With the propagators in hand, one can obtain the
bound-state amplitudes from the Bethe-Salpeter equa-
tion (M = η, η′):

[ΓM (k;P )]ι1ι2 =

∫ Λ

dq

K ι′1ι
′
2

ι1ι2(k, q;P )[χM (q;P )]ι′1ι′2 , (12)

where K ι′1ι
′
2

ι1ι2(k, q;P ) is the renormalised, fully-amputated
quark-antiquark scattering kernel, which is two-particle
irreducible with respect to the external quark-antiquark

lines and does not contain quark-antiquark to single
gauge boson annihilation diagrams.

Bound-state solutions of Eq. (12) lie at isolated values
of P 2 < 0. In order to locate them, it is useful to insert
an “eigenvalue”, λ(P 2), as a multiplicative factor on the
right-hand-side. The resulting equation has a solution
at all values of P 2; and the true bound-state solution is
obtained at that P 2 = −m2

M for which λ(−m2
M ) = 1.

This procedure also has another use. Namely, in the
computation of observables, the canonically normalised
Bethe-Salpeter amplitude must be used [34, 41]. For the
flavour-mixed systems we consider, this means that the
Bethe-Salpeter amplitudes should be rescaled to ensure[

d lnλ(P 2)

dP 2

]−1

P 2=−m2
M

= 2 tr

∫
dk

[
Γ̄lM (k;−P )

× χlM (k;P ) + Γ̄sM (k;−P )χsM (k;P )
]
, (13)

where the trace is over colour and spinor indices.
Using the canonically normalised Bethe-Salpeter am-

plitudes, the leptonic decay constants in Eq. (1) can be
computed:

f l,sM Pµ = Z2 tr

∫ Λ

dk

γ5γµχ
l,s
M (k;P ) . (14)

These decay constants have been used to define a flavour-
mixing angle via [35, 36](

f lη fsη
f lη′ f

s
η′

)
=

(
f l cosφ −fs sinφ
f l sinφ fs cosφ

)
, (15)

where f l, fs are some “ideal” decay constants, which
exist in the absence of flavour mixing. These quantities
are not known a priori, but will be determined as part
of our analysis. We expect f l ≈ fπ, fs ≈ (2fK − fπ),
with the latter estimate based on an equal spacing rule
[42, 43].

It is also possible to describe η-η′ mixing via matrix el-
ements of the U(3) flavour-octet and -singlet axial-vector
currents [44]:(

f8
η f0

η

f8
η′ f

0
η′

)
=

(
f8 cos θ8 −f0 sin θ0

f8 sin θ8 f0 cos θ0

)
. (16)

The octet axial-vector current satisfies a standard Ward-
Green-Takahashi identity so f8 in Eq. (16) is independent
of the renormalisation scale, ζ. On the other hand, the
flavour-singlet axial-vector current is anomalous in QCD.
Consequently, the singlet decay constant, f0, and thus

f l,sη,η′ in Eq. (14) depend on ζ. Their decrease with ζ is
not too rapid, however, because the leading contribution
to the anomalous dimension is O(α2

S), where αS is the
QCD running coupling [6, 7, 36, 44]. Additionally, evo-
lution of the η, η′ DAs is more complicated than usual:
operator mixing plays a role even at leading order. As
will become apparent, these effects impact strongly upon
the η′ because θ0 ' 0.



4

FIG. 1. Any contribution to the Bethe-Salpeter kernel deriv-
ing from the non-Abelian anomaly must have the “hairpin”
structure depicted here; and any intermediate state (IS) must
involve infinitely many lines. (Straight lines denote quarks,
with f1 and f2 independent, and springs denote gluons.)

D. Kernels for the bound-state equations

1. General observations

A tractable system of bound-state equations is only
obtained once a truncation scheme is specified. A
symmetry-preserving approach is described elsewhere
[45–47]. The leading-order term is the rainbow-ladder
(RL) truncation. It is known to be accurate for
ground-state light-quark vector- and isospin-nonzero-
pseudoscalar-mesons, and related ground-state octet and
decouplet baryons [48–56] because corrections largely
cancel in these channels owing to the preservation of the
normal Ward-Green-Takahashi identities ensured by the
scheme [45–47]. As noted above, however, the RL trun-
cation and most known improvements thereof [47, 57–
59] fail for the η- and η′-mesons because they do not
produce vertices that satisfy the anomalous axial-vector
Ward-Green-Takahashi identities described in Ref. [33].
Consequently, they lead to ideal mixing in the η-η′ sec-
tor, represented by φ = 0 in Eq. (15), in which case one
has the unphysical results η ∼ uū+ dd̄ and η′ ∼ ss̄.

Considering the structure of the non-Abelian anomaly,
it readily becomes apparent that no related contribution
to the Bethe-Salpeter kernel can contain external quark
or antiquark lines which are simply connected to the in-
ternal lines: purely gluonic configurations must mediate,
as illustrated in Fig. 1. Moreover, no finite sum of di-
agrams can be sufficient. To understand this remark,
focus on any one such single contribution in the chiral
limit. It is necessarily proportional to the total momen-
tum and hence vanishes for P = 0, thus violating the
anomalous Ward-Green-Takahashi identity. Some coher-
ent effect is required to produce a nonzero contribution.
(As described elsewhere [32, 33], variants of the Kogut-
Susskind mechanism will suffice [60].)

Following this discussion, it is evident that the Bethe-
Salpeter kernel may be decomposed into a sum:

K = KN + KA , (17)

where: KN is that part which can readily be constructed
diagrammatically and involves all those contributions
that are accessible in perturbation theory and therefore
contribute at ultraviolet momenta; and KA is the non-
Abelian anomaly contribution, depicted in Fig. 1, which
is essentially nonperturbative and hence possesses mate-
rial support only at infrared momenta.

2. Rainbow-ladder kernel

The analyses that provided a unified description of
γ∗γ → π0, ηc, ηb [24, 26] used RL truncation for the gap
and Bethe-Salpeter equations, i.e.

l,sJ
ι′1ι
′
2

ι1ι2(k, q) = −[K N (k, q;P )]
ι′1ι
′
2

ι1ι2 , (18a)

[K N (k, q;P )]
ι′1ι
′
2

ι1ι2 = 4
3 Gµν(t)[iγµ]ι1ι′1 [iγν ]ι′2ι2 , (18b)

Gµν(t = k − q) = G̃(t2)Tµν(t) , (18c)

where t2Tµν = t2δµν − tµtν . In this case, Eqs. (10), (12),
as appropriate to π0, ηc, ηb, could then be solved once
G̃ was specified. Capitalising on two decades of study,
Refs. [24, 26] used the following form [61, 62] (s = t2):

1
Z2

2
G̃(s) =

8π2

ω4
De−

s
ω2 +

8π2γmE(s)

ln
[
t + (1 + s/Λ2

QCD)2
] , (19)

where: γm = 4/β0 = 12/(33 − 2Nf ), Nf = 4; ΛQCD =
0.234 GeV; t = e2−1; and E(s) = {1−exp(−s/[4m2

t ])}/s,
mt = 0.5 GeV. (At scales ζ > ζ2, all such truncations
receive corrections, which typically serve to alter the
anomalous dimensions of scale-dependent quantities [3].)

The development of Eqs. (18), (19) is summarised in
Ref. [61]. Their connection with QCD is described in
Ref. [63], but it is worth reiterating some points..

The interaction in Eqs. (18), (19) is deliberately con-
sistent with that determined in studies of QCD’s gauge
sector, which indicate that the gluon propagator is a
bounded, regular function of spacelike momenta that
achieves its maximum value on this domain at k2 = 0
[63–72], and the dressed-quark-gluon vertex does not pos-
sess any structure which can qualitatively alter these fea-
tures [73–79]. It is specified in Landau gauge because,
e.g. this gauge is a fixed point of the renormalisation
group and ensures that sensitivity to differences between
Ansätze for the gluon-quark vertex are least noticeable,
thus providing the conditions for which rainbow-ladder
truncation is most accurate. The interaction also pre-
serves the one-loop renormalisation group behaviour of
QCD so that, e.g. the quark mass-functions produced are
independent of the renormalisation point. On the other
hand, in the infrared, i.e. k2 . (4ΛQCD)2, Eq. (19) de-
fines a two-parameter model, the details of which deter-
mine whether confinement and/or dynamical chiral sym-
metry breaking (DCSB) are realised in solutions of the
dressed-quark gap equations.
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Computations [61, 62] reveal that observable prop-
erties of light-quark ground-state vector- and isospin-
nonzero pseudoscalar-mesons are practically insensitive
to variations of ω ∈ [0.4, 0.6] GeV, so long as

ς3 := Dω = constant. (20)

This feature also extends to numerous properties of the
nucleon and ∆-baryon [55, 56]. The value of ς is chosen
so as to obtain the measured value of the pion’s leptonic
decay constant, fπ; and in RL truncation this requires

ς = 0.80 GeV. (21)

Refs. [24, 26] employed ω = 0.5 GeV, the midpoint of the
domain of insensitivity.

Given the success of Refs. [24, 26], and many other
studies that have used the RL truncation to predict
hadron observables [48–54], we use Eqs. (18), (19) to de-
fine KN in Eq. (17). Implicit in this step is an assump-
tion (made by every practitioner) that all contributions
from the non-Abelian anomaly to the dressed-quark gap
equation can be – and are – absorbed into the value of
ς; and, hence, that KA in Eq. (17) describes only those
interactions which are essentially four-body in character
and therefore cannot be recast as regular corrections to
the gluon propagator or gluon-quark vertex.

3. Kernel representing the non-Abelian anomaly

Whilst the RL kernel is constrained by a large body of
successful phenomenology, the form of KA is unknown.
On general grounds, given Eq. (9), its contribution to the
Bethe-Salpeter equation for pseudoscalar mesons must
take the following form:

[KA(k, q;P )]
ι′1ι
′
2

ι1ι2 =

4∑
i=1

∑
f=l,s

a f
i (k, q;P )

× [FfDi(q;P )]ι′2ι′1 [FfDi(k;P )]ι1ι2 , (22)

where {a f
i (k, q;P )|i = 1, . . . , 4; f = l, s} are scalar func-

tions, which a detailed analysis of the non-Abelian
anomaly could reveal. That, however, is an independent
project. Required here is just a reasonable model for KA,
one that produces realistic masses and decay constants
for the η, η′, because such quantities are the primary
impacts of KA to which the spacelike behaviour of the
γ∗γ → η, η′ transition form factors are sensitive.

Following Ref. [33], we proceed by writing∑
fa

f
1[FfD1][FfD1]

= ξ(s) cos2 θξ[zD1]ι′2ι′1 [zD1]ι1ι2 , (23a)∑
fa

f
2[FfD2][FfD2]

=
1

x 2
ξ(s) sin2 θξ[zD2]ι′2ι′1 [zD2]ι1ι2 , (23b)

TABLE I. Parameters appearing in Eqs. (23), (24), which
specify the non-Abelian anomaly contribution to our Bethe-
Salpeter kernel for η, η′ mesons. (Dimensioned quantities
listed in GeV.)

x l
√
Dξ ωξ cos2 θξ rA

0.51 0.32 0.30 0.80 0.57

al,s3,4 = 0, where: x = Ml(k
2 = 0) is a com-

puted renormalisation-group-invariant mass-scale, char-
acteristic of DCSB; the parameter θξ controls the rel-
ative strength of the chosen tensor structures; z =
diag[1, 1, rA], with rA a parameter, introduces a depen-
dence on U(3) flavour-symmetry breaking which models
that arising from the dressed-quark lines which complete
a “U-turn” in the hairpin diagram in Fig. 1; and

ξ(s) =
8π2

ω4
ξ

Dξe
−s/ω2

ξ , (24)

with parameters Dξ, ωξ, provides a momentum-
dependent interaction strength for the anomaly contri-
bution whose support is localised in the infrared.

III. η, η′ COMPUTED STRUCTURAL
PROPERTIES

A. Masses and widths

Using the RL truncation parameters described in con-
nection with Eq. (21) to define KN in Eq. (17), and with

m̂l = 7 MeV, m̂s = 170 MeV , (25)

which correspond to evolved current-quark masses

mζ2
l = 5.1 MeV, mζ2

s = 125 MeV, (26)

the solution of the relevant coupled gap and Bethe-
Salpeter equations yields (in GeV):

mπ = 0.134 , fπ = 0.093 , mK = 0.496 , fK = 0.11 ,
(27)

in good agreement with experiment [80], and the value
of x l listed in Table I.

We choose the KA parameters, appearing in Eqs. (23),

(24), by requiring a fair description of mη,η′ , f
l,s
η,η′ : great-

est weight is given to the masses in this procedure be-
cause they are subject to little uncertainty. The values
listed in Table I deliver the results in Table II. For future
reference, we highlight that fsη shows the greatest vari-
ation amongst the various estimates, viz. it is the least
well determined by phenomenology.

Figure 2 depicts the evolution of mη,η′ with
√
Dξ when

all other entries in Table I are held fixed. The meson
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TABLE II. Solving the coupled gap and Bethe-Salpeter equa-
tions for the η, η′ mesons using the parameters described in
connection with Table I, we find mη = 0.56, mη′ = 0.96 cf.
experiment [80]: 0.55, 0.96, respectively; and the decay con-
stants listed in Row 1. Row 2 – Single mixing-angle fit to
the results in Row 1, discussed in connection with Eq. (28).
Row 3 – Estimates based on a sample of phenomenological
analyses. (All quantities in GeV.)

f lη fsη f lη′ fsη′

herein - direct 0.072 −0.092 0.070 0.104

herein - Eq. (28) 0.074 −0.094 0.068 0.101

phen. [36, 81, 82] 0.090(13) −0.093(28) 0.073(14) 0.094(8)

masses evolve smoothly with the anomaly-strength pa-
rameter in Eq. (24): in the absence of an anomaly con-
tribution one has ideal mixing, with mη = mπ, mη′ =
mss̄ = 0.7 GeV; and both masses grow uniformly with the
mixing strength until the empirical values are reached.

We now return to Eq. (15) and address the question:
is there a single mixing angle and pair of ideal decay
constants that fairly describe the results in Table II? In
answer we report that the values

φ = 42.8◦, (28a)

f l = 0.101 GeV = 1.08 fπ, (28b)

fs = 0.138 GeV = 1.49 fπ, (28c)

yield Row 2 in Table II, reproducing our computed results
with a root-mean-square difference of 2.4%. Notably, the
computed values of the ideal decay constants match ex-
pectations: f l ≈ fπ and fs ≈ (2fK − fπ) ≈ 1.4fπ.

The results in Table II can readily be translated into
values associated with the octet-singlet basis, Eq. (16):

f8 = 1.34 fπ, θ8 = −21◦,

f0 = 1.26 fπ, θ0 = −2.8◦.
(29)

The small value of θ0 entails that the η is largely a
flavour-octet state whereas the η′ is primarily flavour-
singlet [83]. (We discuss the topological charge content
of these systems in Appendix A.) To provide a com-
parison, we report estimates based on a sample of phe-
nomenological analyses [36, 81, 82]: f8 = 1.34(8) fπ, f0 =
1.25(10) fπ; θ8 = −18(6)◦, θ0 = −6(6)◦; which are con-
sistent with a more recent analysis [84]: f8 = 1.27(2) fπ,
f0 = 1.14(5) fπ; θ8 = −21(2)◦, θ0 = −6.9(2.4)◦.

Adapting current algebra to the present case, one can
derive expressions for the η, η′ → γγ decay widths [6]:

Γη→γγ =
9α2

em

64π3
m3
η

[
cl

f lη
(f l)2

+ cs
fsη

(fs)2

]2

, (30a)

Γη′→γγ =
9α2

em

64π3
m3
η′

[
cl
f lη′

(f l)2
+ cs

fsη′

(fs)2

]2

, (30b)
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FIG. 2. Growth of mη (solid blue curve) and mη′ (dashed
green curve) with the anomaly-strength parameter in Eq. (24).
The vertical dotted line marks

√
Dξ = 0.32 GeV, the value

which generates are best description of mη,η′ .

where cl = 5/9, cs =
√

2/9, and αem ≈ 1/137 is the QED
coupling. These formulae are valid at the resolving scale
that defines the computation (in our case, ζ2); but owing
to the scale dependence of f0, as one evolves to a new,
larger scale, they receive corrections which ensure that
the observable widths are scale independent [44, 85, 86].
Using Eqs. (28) and the values in Table II, Eqs. (30) yield:

Γη→γγ = 0.42 keV , Γη′→γγ = 4.66 keV , (31)

predictions which are commensurate with the empirical
values, respectively [80]: 0.516(22) keV, 4.35(36) keV.

B. Integral Representations

We now wish to calculate the η, η′ leading-twist
dressed-valence-quark DAs and the integrals which de-
fine our approximation to the γ∗γ → η, η′ transition form
factors, Eq. (38) below. In computing the quantities dis-
cussed in Sec. III A, we worked directly with the matrix-
valued solutions of the gap and Bethe-Salpeter equations
stored simply as large arrays of numbers. Experience has
shown that such input is inadequate for the calculation
of DAs and form factors on Q2 & 4 GeV2. We there-
fore adopt the methods introduced in Refs. [87, 88] and
exploited in Refs. [24, 26]. Namely, we employ algebraic
parametrisations of each array to serve as interpolations.
They are detailed in Appendix B.

C. Distribution amplitudes

The DA that describes the light-front longitudinal-
momentum distribution for the dressed-quark/-antiquark
in a given meson can be obtained by projecting that sys-
tem’s Bethe-Salpeter amplitude onto the light-front, with
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an appropriate flavour projection. Herein, therefore, we
focus on the following expressions:

f fMϕ
f
M (x) = Z2tr

∫ Λ

dk

δxn(k+) γ5γ · nχf
M (k;P ) , (32)

where δxn(k+) = δ(n · k+−xn ·P ), n2 = 0, n ·P = −mM ,
and f f

M is the relevant decay constant from Table II,
Row 1.

Beginning with Eq. (32), it is straightforward to use
the method introduced in Ref. [87] and determine the
η, η′ DAs by reconstruction from their Mellin moments.

Namely, for each ϕl,sη,η′(x), we compute (y = 2x− 1)

〈ym〉fM =

∫ 1

0

dx ym ϕf
M (x) (33a)

=
1

f f
M

trZ2

∫ Λ

dk

(2n·k)m

(n·P )m+1
γ5γ·nχ f

M (k;P ) . (33b)

Using the interpolations detailed in Appendix B, one can
readily obtain any finite number of Mellin moments. We
typically use mmax = 50. Now, since Gegenbauer polyno-
mials of order α+ = α+1/2, {Cα+

n (y)|n = 0, . . . ,∞}, are
a complete orthonormal set on y ∈ [−1, 1] with respect

to the measure [(1− y2)/4]α, they enable reconstruction
of any function that vanishes at y = −1, 1. (N.B. The
DAs we consider are even under y → −y and vanish at
the endpoints.) Hence, we write

φGs(x) = nα [(1− y2)/4]α
js∑

j=0,2,...

aαj C
α+

j (y) , (34)

nα = Γ(2 + 2α)/Γ(1 + α)2, aα0 = 1, and minimise

εs =
∑

m=1,...,mmax

|〈ym〉Gs/〈ym〉 − 1| . (35)

In all cases, a value of js = 4 ensures

mean{|〈ym〉Gs/〈ym〉Gs−2 − 1|;m = 1, . . . ,mmax} < 1%.
(36)

In each instance, this level of accuracy is achieved with
small values of the coefficients aα2,4. We therefore take an
additional step, setting aαj≥2 ≡ 0 in Eq. (34) and recon-
structing pointwise approximations to the DAs solely by
fitting α. The results obtained in this way are not real-
istically distinguishable from those determined with the
more general procedure. Hence, in our subsequent anal-
ysis we used these simpler forms (depicted in Fig. 3):

ϕ f
M (x) = nα f

M
[x(1− x)]α

f
M , (37a)

αlη αsη αlη′ αsη′

0.70 0.77 1.05 1.10
. (37b)

It is worth reiterating that the DAs in Fig. 3 are predic-
tions, deriving from Bethe-Salpeter wave functions com-
puted using the same truncation scheme for the contin-
uum bound-state problem that successfully unified the

0 0.2 0.4 0.6 0.8 1.0
0

0.3

0.6

0.9

1.2

1.5

x

φ
ηl
,s
(x
)

0 0.2 0.4 0.6 0.8 1.0
0

0.3

0.6

0.9

1.2

1.5

x

φ
η
'
l
,s
(x
)

FIG. 3. Computed light-quark (solid blue curve) and s-
quark (dashed green curve) component DAs of the η-meson
(upper panel) and η′-meson (lower panel), determined at
ζ = 2 GeV =: ζ2, listed in Eqs. (37). For comparison: up-
per panel, dot-dashed (purple) curve – pion’s dressed-valence-
quark distribution amplitude [88, 89]; and both panels, dotted
black curve – asymptotic profile, Eq. (4).

pion’s elastic and transition form factors with those of
heavier pseudoscalar mesons [24, 26, 88, 89]. Evidently,
within each bound state, the light- and s-quark compo-
nent DAs have very similar profiles; but there are sig-
nificant differences between the mesons: the η-meson
DAs are both broader than the asymptotic distribution,
whereas the η′ distributions are narrower. Notwithstand-
ing this, all DAs are measurably narrower than that asso-
ciated with the pion’s valence dressed-quark distribution.
These features are consistent with the analysis in Ref. [90]
and Appendix A. They reflect structural differences be-
tween these systems, owing to an interplay between emer-
gent and explicit mass generation in the Standard Model,
which are expressed in their Bethe-Salpeter amplitudes
and hence affect the transition form factors on the en-
tire domain of accessible Q2 because QCD evolution is
logarithmic [3–5].

To implement such evolution, one simply projects a
given DA in Eqs. (37) onto the eigenfunctions of the QCD
evolution operator, evolves the associated coefficients,
then reconstructs the concave evolved DA. Using one-
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loop evolution, this can be accomplished with roughly
ten lines of computer code. An illustration is provided,
e.g. in Ref. [91].

IV. η, η′ TRANSITION FORM FACTORS

A. Triangle diagram

As outlined in Sec. I, the γ∗γ → η, η′ transitions are
each described by a single form factor, GM (Q2), M =
η, η′. In RL truncation, GM (Q2) is obtained from the
following expression:

e2

8π2 εµναβ k1αk2β GM (k2
1, k1 · k2, k

2
2)

= e2

8π2 εµναβ k1αk2β [GlM (Q2) +GsM (Q2)] (38a)

= trD

∫
d`

[
cliχ

l
µ(`, `1)ΓlM (`1, `2)Sl(`2)iΓlν(`2, `)

+ csiχ
s
µ(`, `1)ΓsM (`1, `2)Ss(`2)iΓsν(`2, `)

]
, (38b)

where: the trace is over spinor indices; `1 = `+ k1, `2 =
` − k2; the kinematic conditions are k2

1 = Q2, k2
2 = 0,

(k1 + k2)2 = −m2
M ; and Γ f

ν and χ f
µ are, respectively, the

flavour-dependent amputated and unamputated dressed-
photon-quark vertices.

The photon-quark vertices in Eq. (38) may each be ob-
tained by solving a RL-truncation of the associated in-
homogeneous Bethe-Salpeter equation [48, 92]; but we
adopt a simpler approach, which has hitherto proven
effective. Namely, emulating Refs. [24, 26, 88], we use
the following Ansätze for the unamputated vertices, ex-
pressed completely in terms of the functions which char-
acterise the dressed-quark propagators, Eq. (11a):

χ f
µ(ko, ki) = γµ∆k2σ f

V

+ [sf γ · koγµγ · ki + s̄fγ · kiγµγ · ko]∆σf
V

+ [sf (γ · koγµ + γµγ · ki)
+ s̄f (γ · kiγµ + γµγ · ko)] i∆σf

S
, (39)

where ∆F = [F (k2
o)−F (k2

i )]/[k2
o−k2

i ], s̄ f = 1− s f . Like-
wise, our Ansätze for Γf

ν , based on Eq. (3.84) in Ref. [93],
are analogues for the amputated vertex.

Owing to the Abelian anomaly [94–96], it is impossible
to simultaneously conserve the vector and axial-vector
currents associated with the triangle-diagram integral in
Eq. (38).1 This has a measurable effect in the neighbour-
hood of Q2 = 0 and that is why we have included a
momentum redistribution factor in Eq. (39) [24]:

sf = 1 + sf0 exp(−Ef/M
E
f ) , (40a)

Ef = [Q2/4 + (ME
f )2]1/2 −ME

f , (40b)

1 The manner by which the chiral-limit version of Eq. (38) pro-
vides for a parameter-free realisation of the Abelian anomaly
constraint is detailed in Refs. [97–100].

where Ef is a Breit-frame kinetic energy and ME
f =

{p|p2 = M2
f (p2), p > 0} is our calculated value of the

Euclidean constituent-mass associated with the valence
f-quark in the pseudoscalar meson [90, 101],

ME
l = 0.41 GeV, ME

s = 0.57 GeV. (41)

Up to transverse pieces associated with sf , χf
µ(ko, ki)

and Sf(ko)Γ
f
µ(ko, ki)Sf(ki) are equivalent. All differ-

ences are power-law suppressed in the ultraviolet; and
while Fig. 4 (below) reveals that making them identical
might lead to modest improvements in the description of
γ∗γ → η, η′ transitions at infrared momenta, the com-
putational effort would increase substantially. Since the
cost outweighs the gain, we omit this step herein.

Each element in Eq. (38) is now expressed via a PTIR:
Sec. III B and Eqs. (39)–(41). Hence, the computation of
GM (Q2) reduces to the task of summing a series of terms,
all of which involve a single four-momentum integral.
The integrand denominator in every term is a product
of `-quadratic forms, each raised to some power. Within
each term, one uses a Feynman parametrisation in or-
der to combine the denominators into a single quadratic
form, raised to the appropriate power. A suitably cho-
sen change of variables then enables routine evaluation
of the four-momentum integration using algebraic meth-
ods. After calculation of the four-momentum integra-
tion, evaluation of the individual term is complete after
one computes a finite number of simple integrals; namely,
the integrations over Feynman parameters and the spec-
tral integral. The complete result for GM (Q2) follows
after summing the series. Following this procedure, one
may fix the redistribution factors in Eq. (40). Using

ΓM→γγ =
1

4
πα2

emm
3
M |GM (Q2 = 0)|2 (42)

and requiring reproduction of the results in Eq. (31), then
s l0 = 1.21, ss0 = 0.48.

B. Evolution and asymptotic limits

Before displaying our complete results for Gη,η′(Q
2),

it is sensible to discuss their asymptotic limits and the
implementation and impact of QCD evolution [3–5]. Ab-
sent the non-Abelian anomaly, the asymptotic limits of
Gη,η′ would simply be obtained from Eq. (5). However,
as described in Sec. II C, owing to the anomaly, the sin-

glet decay constant, f0, and thus f l,sη,η′ in Eq. (5) depend
on ζ. Writing, for notational convenience,

Fη,η′(Q
2) =

1

2π2
Gη,η′(Q

2) , (43)

the impact of f0 → f0(ζ) can be exhibited as follows
(again, τ2 = Λ2

QCD/Q
2):

Q2FM (Q2)
τ'0
≈ 6

[
clf

l
M (Q2) + csf

s
M (Q2)

]∣∣
τ=0

(44a)

= 2
[
c8f

8
M + 2c0f

0
M (Q2)

]∣∣
τ=0

, (44b)
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c8 = 1/
√

3, c0 =
√

2/3, where [7]

f0
M (ζ2) = f0

M (ζ2
2 )

(
1 +

2Nf
πβ0

[
αS(ζ2)− αS(ζ2

0 )
])

, (45)

with ζ0 the scale at which the calculation is normalised.
Using our computed values for the leptonic decay con-

stants at ζ2, Eqs. (16), (29), and a one-loop running cou-
pling defined consistent with Eq. (19):

Q2Fη(Q2)
τ'0
≈ 0.15 GeV , (46a)

Q2Fη′(Q
2)

τ'0
≈ 0.30 GeV . (46b)

The evolution of f0
M in Eq. (45) reduces the η-meson limit

by 1% and that of the η′ by 10%. (This does not alter
their ordering with respect to the neutral pion, for which
the result is 2fπ ≈ 0.186 GeV.) Notably, our starting
scale is fixed: we know the point at which the prop-
agators, vertices and amplitudes are renormalised i.e.
ζ0 = ζ2. This is not the case with estimates based on
Ansätze for the DAs, in which the scale ζ0 is a model
parameter. Were one to use our computed DAs, but
associate them with a scale ζ0 = 1 GeV, then the sup-
pressions would naturally be greater: 1.5% for the η and
15% for the η′. Existing data cannot distinguish between
effects on this scale. On the hand, as we shall see, they
are sensitive to the ζ = ζ0 values of the decay constants
and mixing angles. Our computed values, Eqs. (28), (29),
control the Q2-dependence of the results for Fη,η′ because
they are encoded in the Bethe-Salpeter wave functions for
these bound states.

The evolution of a flavour nonsinglet DA with the
resolving scale ζ is explained in Refs. [3–5]. It is log-
arithmic; and whilst Poincaré covariant computations
using a renormalisation-group-improved RL truncation
produce the same matrix-element power-laws as pertur-
bative QCD, they fail to reproduce the full anomalous
dimensions [3]. Typically [87, 88, 98], the RL approxi-
mation to a form factor, such as that defined by Eq. (38),
underestimates the rate of its logarithmic flow with the
active momentum scale because the approximation omits
gluon-splitting diagrams.

As explained elsewhere [24], this defect of RL trun-
cation can be corrected by recognising that, owing to
Eq. (32), a given meson’s Poincaré covariant wave func-
tion must evolve with ζ in the same way as its DA.
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ζ2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are incorporated naturally in bound-state problems
when the complete quark-antiquark scattering kernel is
used; but aspects are lost when that kernel is truncated,
and so it is with the truncation used herein.

Similar to the decay constants, the non-Abelian
anomaly complicates evolution of the DAs and Bethe-
Salpeter wave functions of the η- and η′-mesons. This

is most readily explained by shifting to the octet-singlet
basis at ζ2:

f8
Mϕ

8
M = c8f

l
Mϕ

l
M − c0fsMϕsM , (47a)

f0
Mϕ

0
M = c0f

l
Mϕ

l
M + c8f

s
Mϕ

s
M . (47b)

Defined in this way, ϕ8
M (x) evolves without mixing at

leading-order. However, ϕ0
M (x) mixes with a two-gluon

DA, ϕgM , under leading-order evolution [7]. To imple-
ment the effect, one would need either to compute ϕgM
or employ a reliable model. No calculations are currently
available and few constraints exist that can be used to aid
in developing a good Ansatz. Hence, we set ϕgη,η′ ≡ 0 and
thereby suppress mixing. Whilst this may seem a drastic
step, considering the impact of analogous effects on the
decay constants and the analysis in Ref. [7], we expect it
to have little impact on Fη and to introduce an uncer-
tainty of only ±10% in Fη′ on the empirically accessible
domain. This uncertainty also absorbs any contribution
from a cc̄ component in the η, η′-meson Bethe-Salpeter
wave functions. In any event, we expect this type of
intrinsic charm contribution to be small, owing to the
quark-line hairpin structure of the anomaly kernel, Fig. 1,
which suppresses such mixing [33], and the absence of any
need for an intrinsic light-quark component in describing
the γ∗γ → ηc transition [26]. Since mb � mc � ms, any
contribution to Fη,η′ from a bb̄ component is implausible.

Following these observations, we implement evolution
of the Bethe-Salpeter amplitudes (and transition form
factors) as follows. (i) Write

χ8
M = c8χ

l
M − c0χsM , χ0

M = c0χ
l
M + c8χ

s
M , (48)

and hence, equally,

F 8
M (Q2) = c8F

l
M (Q2)− c0F sM (Q2) , (49a)

F 0
M (Q2) = c0F

l
M (Q2) + c8F

s
M (Q2) ; (49b)

(ii) on Q2 > ζ2
2 ,

F 8
M (Q2)→ F 8

M (Q2)[κ8
M (Q2)/κ8

M (ζ2
2 )] , (50a)

F 0
M (Q2)→ F 0

M (Q2)[f0
M (Q2)κ0

M (Q2)/f0
M (ζ2

2 )κ0
M (ζ2

2 )] ,
(50b)

where

κ8,0
M (Q2) = 1

2

∫ 1

0

dxϕ8,0
M (x;Q2)[1/x+ (2x− 1)2] ; (51)

and (iii) rebuild the transition form factors in the quark
flavour basis, viz.

F lM (Q2) = c8F
8
M (Q2) + c0F

0
M (Q2) , (52a)

F sM (Q2) = −c0F 8
M (Q2) + c8F

0
M (Q2) , (52b)

and therefrom, using Eqs. (38), the final results for
FM (Q2). In this way, we generalise the procedure in-
troduced and explained in Refs. [24, 26].
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C. Calculated transition form factors

1. Low Q2

We have computed Fη,η′(Q
2) using the inputs and

method described above; and in Fig. 4 we depict their
behaviour on a low-Q2 domain: our predictions are indi-
cated by the solid (black) curves in each panel.2

In these calculations we used Ansätze for χf
µ, Γf

ν in
Eq. (38) instead of solutions of the relevant inhomoge-
neous Bethe-Salpeter equations. Whilst they are effi-
cacious, with longitudinal parts constrained completely
by Ward-Green-Takahashi identities, they are not per-
fect: as noted above, there are model uncertainties in the
transverse pieces which may affect the Q2-dependence of
the results on Q2 . m2

V , where mV is the appropriate
vector meson mass (mρ ≈ 2ME

l , mφ ≈ 2ME
s ). Notably,

however, such uncertainties had neither a visible impact
on the γ∗γ → π0, ηc, ηb transition form factors [24, 26]
nor on the charged-pion and -kaon elastic form factors
[88, 102]. Relative to these systems, a difference herein
is the non-Abelian anomaly, which affects η, η′ struc-
ture and conceivably, therefore, generates corrections to
Eq. (38) at infrared momenta. This will be explored else-
where. Here, we simply estimate the sensitivity of our re-
sults to neglected infrared effects by supposing that any
such uncertainty is maximal on Q2 ' (ME

l +ME
s )2/4 (as

much as 30% in total) and vanishes smoothly either side
of this domain because: (i) the η, η′ → γγ widths con-
strain Fη,η′(Q

2 = 0); and (ii) our form factor predictions
match data on Q2 & 2 GeV2. This procedure produces
the (grey) bands in the panels of Fig. 4.

Globally, the sensitivity to potential infrared correc-
tions is negligible; but it is apparent in our estimates of
the interaction radii:

r2
M :=

−6

FM (0)

d

dQ2
FM (Q2)

∣∣∣∣
Q2=0

, (53)

rη = 0.83+0.40
−0.22 fm, rη′ = 0.73+0.34

−0.19 fm. (54)

Empirically, extracted from measurements of the Dalitz
decays η, η′ → γe+e−: rη = 0.67(3) fm [103], r′η =
0.61(3) fm [104]; and [84] rη = 0.667(5) fm, r′η =
0.578(7) fm. Our calculated value for the ratio

rη/rη′ = 1.14(1) , (55)

which matches experiment: 1.13(7), has little uncertainty
because any change in the computed value of one radius
is compensated by that in the other.

2 The PTIRs detailed in Appendix B enable a direct evaluation of
the integral in Eq. (38) on P 2 > −(0.85 GeV)2. For the η′, we
therefore evaluate this integral on P 2/GeV2 ∈ (−0.852,−0.752)
and extrapolate to P 2 = −(0.96 GeV)2 using [n, n] Padé approx-
imants, n = 1, 2, 3, 4, with the difference between the extrapo-
lated values being used to estimate the error in the procedure.
That error is small, lying within the line-width of all η′ curves.
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FIG. 4. γ∗γ → η, η′ transition form factors, normalised ac-
cording to Eq. (43): upper panel, η; lower panel, η′. Solid
(black) curves – our predictions, with the bracketing (grey)
bands indicating an estimate of uncertainty associated with
the photon-quark vertex Ansätze in Eq. (38). Dotted (green)
curve – for comparison, π0 result computed in Ref. [24];
and associated experimental data – (green asterisks) from
“CELLO” [8] and “CLEO” [9]. The η, η′ data are: diamonds
(blue) CLEO [9]; circles (red) “BaBar” [30].

The calculated η, η′ interaction radii are plotted in
Fig. 5. We also include another set, viz. those of differ-
ent neutral pseudoscalar mesons for which the transition
form factors have been computed (π0, ηc, ηb) [24, 26] and
the electric-charge radii of pion-like mesons with masses
m0−/GeV = 0.47, 0.69, 0.83 [89]: where comparisons are
possible, the charge-radii agree with those computed us-
ing lattice-QCD [105, 106]. The dashed curve in Fig. 5 is
the following interpolation of these additional results:

rM (mM ) =
r0

1 + (mM/m) ln[1 +mM/m ]
, (56)

where r0 = 0.67 fm, m = 1.01 GeV ≈ mφ. The kaon point
[102]: (mass = 0.49 GeV, charge-radius = 0.58 fm), also
sits on this curve. Evidently, for systems not affected by
the non-Abelian anomaly, a standard pattern of damping
with Higgs-generated current-quark mass is established
once mM exceeds that of the (fictitious) ss̄ bound-state
[90]. On the other hand, the η, η′ interaction radii do
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FIG. 5. Interaction radii of neutral pseudoscalar mesons,
Eq. (53), plotted versus meson mass. For clarity, the η, η′

values are labelled and offset slightly from their true masses:
our results (blue asterisks) are compared with empirical esti-
mates (red circles), drawn from Refs. [84, 103, 104]. The π0,
ηc, ηb values (green asterisks) are taken from Refs.[24, 26].
Five-point stars (olive): computed charge radii of pion-like
mesons with masses m0−/GeV = 0.47, 0.69, 0.83 [89]. No-
tably, all radii are well described by Eq. (56) (dashed black
curve) except those of η, η′.

not fit this pattern: they are larger by 24% and 48%.
This effect is greater in the η′, which is predominantly a
U(3) flavour-singlet state and, hence, that system most
affected by the non-Abelian anomaly. (See Appendix A.)

2. Large Q2

Our predictions for the large-Q2 behaviour of the tran-
sition form factors are depicted in Figs. 6, 7: with the
normalisation in Eq. (43), the asymptotic value of the
π0 form factor is 2fπ = 0.186 GeV, drawn as the dotted
(red) curve in all panels.

Consider first Fη(Q2) in Fig. 6. There are marked sim-
ilarities with the π0 transition form factor (see Ref. [24],
Fig. 2.). Namely, the asymptotic limit, Eq. (46a), is only
slightly exceeded on Q2 & 13 GeV2; and, including nec-
essary evolution of the meson wave function, that limit
is approached uniformly from above with increasing mo-
mentum transfer.

Further, our full Fη(Q2) result (solid, black curve)
agrees well with existing data [9, 30, 31]. Looking at de-
tails, it might appear that there is a mismatch between
our curve and the largest-Q2 CLEO and BaBar results.
Pursuing this, a review of the results in Table II and
Eqs. (28) may suggest that our prediction for the mag-
nitude of fsη is ∼ 15% too high. To explore the impact
of such an overestimate, we changed fsη → 0.85 fsη and
recomputed both the width in Eq. (30a) and asymptotic
limit in Eq. (46a), with the results 0.42 → 0.46 keV and
0.15 → 0.17 GeV, respectively. Such a 10% increase in
Γη→γγ would bring our result into better agreement with
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FIG. 6. γ∗γ → η transition form factor, normalised ac-
cording to Eq. (43). Upper panel. Curves: solid (black), our
prediction with complete evolution, described in Sec. IV B;
dot-dashed (purple), results without evolution; long-dashed
(cyan), 1-loop evolution only; and dashed (blue), asymptotic
limit from Eqs. (45), (46). The grey bands bracketing our full
prediction indicate the uncertainty owing to omission of ϕ0

M -
ϕgM mixing: in this case, it is negligible. Lower panel. The
shaded (green) band indicates an uncertainty in our predic-
tion for Fη owing to variations in the value of fsη (see text).
In both panels, the dotted (red) curve is the π0 asymptotic
limit, 2fπ; and the data are: diamonds (blue) CLEO [9]; cir-
cles (red) BaBar [30, 31], where the timelike datum from the
latter is plotted at Q2 = −q2.

experiment. Hence, the increase in Eq. (46a) might also
be realistic. It could be achieved by fine-tuning the pa-
rameters that specify KA in Eq. (17), listed in Table I. In-
stead of doing that, however, in the lower panel of Fig. 6
we choose to place an uncertainty on our prediction for
Fη(Q2); namely, the shaded (green) band. Evidently, this
does not materially affect the comparison with data; so
we remain confident of our prediction. A plausible con-
clusion is that the largest-Q2 BaBar datum [31] is too
large by ∼ 50%. This would resolve the mismatch with
our prediction and solve the puzzle of its near equality in
magnitude with the analogous η′ datum, which is other-
wise difficult to explain.

Turning now to Fig. 7, upper panel, the behaviour of
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FIG. 7. γ∗γ → η′ transition form factors, normalised ac-
cording to Eq. (43). Upper panel, Curves: solid (black), our
prediction with complete evolution, described in Sec. IV B;
dot-dashed (purple), results without evolution; long-dashed
(cyan), 1-loop evolution only; and dashed (blue), asymptotic
limit from Eqs. (45), (46). The grey bands bracketing our full
prediction indicate an uncertainty owing to omission of ϕ0

M -
ϕgM mixing. Lower panel. The shaded (green) band indicates
an uncertainty in our prediction for Fη′ owing to variations
in the value of fsη (see text). The broader, shaded (grey)
band combines this with the uncertainty owing to omission
of ϕ0

M -ϕgM mixing. The (blue) banded-shading indicates the
impact of uncertainty in fsη on the asymptotic behaviour of
Fη′ , Eq. (46b). In both panels, the dotted (red) curve is the
π0 asymptotic limit, 2fπ; and the data are: diamonds (blue)
“CLEO” [9]; circles (red) “BaBar” [30, 31], where the timelike
datum from the latter is plotted at Q2 = −q2.

Fη′(Q
2) also matches expectations based upon studies of

γ∗γ → π0, ηc, ηb, e.g. as with γ∗γ → ηc, ηb, here the
asymptotic limit is approached uniformly from below.
The new feature is the impact of the scale dependence
of f0

η′ . It generates a suppression of the transition form
factor, which serves to improve the agreement between
our result and available experimental data. At asymptot-
ically large momentum transfers, i.e. on τ ' 0, our full
result (solid black curve) meets the asymptotic trajectory
(dashed blue curve).

Any overestimate of the size of fsη also has an im-

pact on Fη′ through its effect on f0, θ0 in Eq. (16).
This is illustrated in the lower panel of Fig. 7. For
fsη → 0.85fsη , the asymptotic limit in Eq. (46b) is re-
duced: 0.30→ 0.28 GeV, indicated by the (blue) banded-
shading extending below the dashed (blue) curve. Like-
wise, our prediction for Fη′(Q

2) is suppressed, as shown
by the (green) shading extending below the solid (green)
curve. Our estimate for the combined effect of ≤ 15%
uncertainty in fsη and omitting ϕ0

M -ϕgM mixing is rep-
resented by the broad grey band. Within errors, there
is agreement between our prediction and all data on the
γ∗γ → η′ transition.

V. EPILOGUE

Conscious of their importance in validating QCD hard
scattering formulae; a need to unify their analysis with
the transition form factors of other neutral pseudoscalar
mesons and thereby identify remaining challenges to
achieving a sound global understanding; and the possibil-
ity of much more data from new-generation e+e− collid-
ers [107–109]; we employed a continuum approach to the
hadron bound-state problem to calculate the γ∗γ → η, η′

transition form factors.
Our starting point was the Bethe-Salpeter kernel used

successfully to explain the γ∗γ → π0, ηc, ηb transitions.
(The same kernel was used with equal success in many
other applications, e.g. charged-pion and -kaon elastic
form factors [88, 102] and nucleon observables [110].) We
augmented this with a four-parameter model for the con-
tribution to this kernel deriving from the non-Abelian
anomaly, an improvement necessary for any computation
of η, η′ properties: the parameters were fixed by requiring
that the solutions of the coupled-channels bound-state
problems reproduce the empirical η, η′ masses and the
four phenomenologically-determined values of the light-
and strange-quark η, η′ decay constants.

With the bound-state kernel thus defined, we de-
livered predictions for: the η, η′ → γγ decay widths
– Sec. III A; the four amplitudes that characterise the
light-front longitudinal momentum distributions of the
light- and strange-quarks within the η, η′ – Sec. III C; the
γ∗γ → η, η′ transition form factors, the associated elec-
tromagnetic interaction radii and, at the other extreme,
their large-Q2 limits – Sec. IV. Where available, our re-
sults compare favourably with existing data. Important
to this at large-Q2 is a sound understanding and imple-
mentation of QCD evolution, which has a visible impact
on the η′. Furthermore, our analysis provides some novel
insights into the properties of η, η′ mesons and associated
observable manifestations of the non-Abelian anomaly.

This completes a unified description of a large ar-
ray of pseudoscalar meson properties, ranging from low-
energy ππ scattering [111] to the large-Q2 behaviour of
the transition form factors of heavy-heavy systems [26],
and visiting many stations in between, e.g. Refs. [53, 102].
The related body of analysis delivers an understand-
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ing of the distribution of valence-quarks within mesons
that smoothly joins Goldstone modes, constituted from
the lightest-quarks in Nature, with systems that are
markedly affected by the non-Abelian anomaly and hence
topological features of QCD, and also mesons containing
the heaviest valence-quarks that can today be studied ex-
perimentally. The positive comparison with data in all
sectors confirms that the dressed-valence-quark DAs of
light-quark mesons are dilated with respect to the asymp-
totic profile, ϕ∞(x) = 6x(1 − x); those of systems af-
fected by the anomaly may usefully be approximated by
ϕ∞; and those for heavy-heavy systems are compressed,
becoming narrower as the current-mass of the valence-
quarks increases at any given resolving scale.

This particular study can nevertheless be improved.
Most immediately, by developing better Ansätze for the
photon-quark vertices used in computing the transition
form factors, e.g. by implementing features of solutions of
the associated inhomogeneous Bethe-Salpeter equations
or by using such solutions directly, possibly after building
their perturbation theory integral representations; and
also by analysing the impact of corrections induced by
the non-Abelian anomaly to our approximation for the
γ∗γ → η, η′ transition current. These steps would enable
reliable predictions to be made for the timelike behaviour
of those transition form factors that are accessible via the
related Dalitz decays, for which contemporary data exist
[103, 104, 112].

The scope of the analysis herein could also be extended
to include the doubly off-shell γ∗(k1)γ∗(k2) → M tran-
sition form factors, where M is any neutral pseudoscalar
meson. This process, too, is described by only one form
factor, Fγ∗M (k2

1, k
2
2). However, whereas vector meson

dominance (VMD) models and QCD-connected analy-
ses both describe the same large-Q2 behaviour for the
singly off-shell form factor, viz. Fγ∗M (Q2, 0) ∼ 1/Q2 ∼
FM (Q2), albeit with different normalisations, the large-
Q2 predictions of VMD [113] and QCD [114–116] for the
doubly off-shell form factor are distinctively different:

FVMD
γ∗M (k2

1, k
2
2) ∼ 1/(k2

1k
2
2) (57a)

cf. FQCD
γ∗M (k2

1, k
2
2) ∼ 1/(k2

1 + k2
2) . (57b)

The first data that can distinguish between these predic-
tions now exist for γ∗(k1)γ∗(k2)→ η′ [117]. They favour
the QCD result, with behaviour qualitatively similar to
that obtained with our method for γ∗(k1)γ∗(k2) → π0

[99, 100]. However, there are currently no such discrimi-
nating data for the π0 transition and no related compu-
tations for M 6= π0.
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Appendix A: Topological Charge

Beginning with the axial-vector Ward-Green-
Takahashi identities, including that which is anomalous,
general mass formulae for the neutral pseudoscalar
mesons were derived in Ref. [33]. In the isospin-
symmetry limit, those for M = η, η′ are

m2
M

[
f8
M

f0
M

]
=

[
0

nM

]
+

[
1
3m12

√
2

3 m1−1
√

2
3 m1−1

1
3m21

][
ρ8
M

ρ0
M

]
(A1)

where mM are the meson masses; f8,0
M are the octet-

singlet leptonic decay constants discussed in Eqs. (16),
(29); mαβ = 2(αml + βms);

nM =
√

3
2νM , νM = 〈0|Q = i

αS
16π

F̃ aµνF
a
µν |M〉 , (A2)

with F aµν being the gluon field-strength tensor and Q ,
therefore, the topological charge density operator; and
ρ8,0
M are kindred to f8,0

M , viz. pseudoscalar projections of
the Bethe-Salpeter amplitudes onto the origin in config-
uration space.

Since we favoured the quark flavour basis, Sec. II A,
then to obtain ρ8,0

M we first compute

iρl,sM = Z4 tr

∫ Λ

dk

γ5χ
l,s
M (k;P ) , (A3)

where Z4 is the Lagrangian-mass renormalisation con-
stant evaluated in the chiral limit, and obtain (in GeV2

at ζ2)

ρlη ρsη ρlη′ ρsη′

0.382 −0.452 0.442 0.552
. (A4)

For comparison, ρζ2π = (0.41 GeV)2. Using an obvious
analogue of Eq. (47), these values translate to (again,
GeV2)

ρ8
η ρ0

η ρ8
η′ ρ0

η′

0.502 0.0332 −0.372 0.572
. (A5)
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Subsequently, adapting Eq. (16) to the present case, one
finds

ρ8 = 1.7ρπ , θ
ρ
8 = −28◦,

ρ0 = 2.0ρπ , θ
ρ
0 = −0.19◦.

(A6)

It follows from the relevant axial-vector Ward-Green-
Takahashi identities that the mixing angles defined this
way do not need to match those in Eq. (29); but it is sup-
portive for the usual understanding of mixing that they
are qualitatively equivalent.

One can now compute the octet-singlet in-hadron con-
densates [118]:

κ8 = f8ρ8 = (0.33 GeV)3 = 2.3κπ , (A7a)

κ0 = f0ρ0 = (0.34 GeV)3 = 2.5κπ , (A7b)

κπ = (0.25 GeV)3. For any given system, the in-hadron
condensate measures the coherent sum of emergent and
Higgs mass generation, i.e. the nonperturbatively com-
bined influence of dynamical and explicit chiral symme-
try breaking. Notably, however, since the light-quark
current-mass is very small, DCSB is overwhelmingly re-
sponsible for the size of κπ, which may therefore be used
to benchmark the scale of emergent mass generation. In
this connection, our computed value of κK = 1.5κπ indi-
cates that while Higgs-mass effects are noticeable, emer-
gent mass is still dominant in the kaon, whose flavour
content is ls̄ or l̄s. On the other hand, if the non-Abelian
anomaly is suppressed so that the Bethe-Salpeter equa-
tions produce ideally-mixed pseudoscalar bound-states,
then one finds

κss̄ = 2.2κπ . (A8)

Evidently, like the DAs in Fig.3 and the radii in Fig. 5,
using the in-hadron condensate, one also finds that the
s-quark defines a boundary: emergent mass generation
dominates for m̂ < m̂s, but the Higgs-mass prevails on
m̂ & m̂s.

At this point, using the current-quark masses in
Eq. (26), our results for mη,η′ , f

8,0
M , and Eqs. (A1), we

find

νη = (0.29 GeV)3 , νη′ = (0.37 GeV)3; (A9)

and hence the topological charge content of the η′ is 2.1-
times that of the η. These results are commensurate with
those obtained using a variety of other methods, e.g.,
drawing from Table I in Ref. [119]: νη = (0.28(2)GeV)3,
νη′ = (0.36(3)GeV)3, νη′/νη = 2.1(4).

Appendix B: Interpolating Functions for
Propagators and Bethe-Salpeter Amplitudes

For the quark propagator, we write [120]

Sf(k) = −iγ · k σf
V (k2) + σf

S(k2) , (B1a)

=

jm∑
j=1

[
zfj

iγ · k +mf
j

+
zf∗j

iγ · k +mf∗
j

]
, (B1b)

TABLE B1. Representation parameters. Upper panel :
Eq. (B1b) – the pair (x, y) represents the complex number
x + iy. Lower panel : Eqs. (B3)–(B5). In all cases, a = 2.75;
and l u

g1,2 = 1.1, l u
g3 = 2.2. Also, g2 has dimension 1/GeV

and g3, 1/GeV3. Consequently, the listed values of cg2 should
each be divided by the correlated value of Λi

g2 and each cg3
by [Λi

g3 ]3. Λi is listed in GeV.

f z1 m1 z2 m2

l (0.37, 0.32) (0.52, 0.29) (0.12, 0.11) (−1.31,−0.90)

s (0.41, 0.32) (0.74, 0.39) (0.12, 0.10) (−1.57,−0.95)

ci cu νi Λi

gl1η 0.94 0.06 −0.60 1.35

gl2η 0.65 0.006 3.60 1.07

gl3η 0.48 0.04 0.10 1.10

gs1η −2.12 −0.12 −0.40 1.35

gs2η −0.94 −0.01 1.20 1.18

gs3η −0.48 −0.09 0.10 1.30

gl1η′ 0.93 0.07 −0.40 1.30

gl2η′ 0.72 0.008 0.40 1.12

gs1η′ 1.94 0.19 −0.22 1.53

gs2η′ 1.12 0.03 1.60 1.30

with =mf
j 6= 0 ∀j, f. Hence, σV,S are meromorphic func-

tions with no poles on the real k2-axis, a feature con-
sistent with confinement [50–53]. Typically, jm = 2 is
sufficient to provide a pointwise accurate interpolation
of the numerical solutions to Eq. (10) (see, e.g. Ref. [87],
Fig. 1, and Ref. [121], Fig. 1). That is also true herein and
we list the interpolation parameters in Table B1.

Turning now to the Bethe-Salpeter amplitudes in
Eq. (9). There are four independent scalar functions.
However, in all cases, g4(k;P ) is uniformly small and
is therefore neglected, as is usual [24, 26, 87, 88]. The

same statements hold for gl,s3η′ . We represent the remain-
ing functions, F = g1,2,3, as a sum of two terms:

F(k;P ) = F i(k;P ) + Fu(k;P ) , (B2)

where that describing the infrared behaviour, labelled
“i”, is expressed via the following PTIR:

F i(k;P ) = ciF

∫ 1

−1

dz ρνi
F

(z)

×
[
a∆̂4

Λi
F

(k2
z) + (1− a)∆̂5

Λi
F

(k2
z)

]
, (B3)

and the ultraviolet “u” term is expressed analogously:

Fu(k;P ) = cuF

∫ 1

−1

dz ρ1(z) ∆̂
l uF
1 (k2

z) . (B4)

Here,

ρν(z) =
Γ( 3

2 + ν)
√
π Γ(1 + ν)

(1− z2)ν , (B5)



15

∆̂Λ(s) = Λ2∆Λ(s) = Λ2/[s + Λ2], kz = k − (1 − z)P/2.
The interpolation parameters for these scalar functions,
listed in Table B1, were obtained by fitting their low-

order Chebyshev moments:

Fn(k2) =
2

π

∫ 1

−1

dx
√

1− x2 Un(x)F(k;P ) , (B6)

n = 0, 2, x = k · P/
√
k2P 2, where Un is a Chebyshev

polynomial of the second kind.
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