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I. INTRODUCTION

With the discovery of black hole evaporation [1] came the fact that one can assign a temperature

to a black hole which is equal to the temperature of the thermal radiation that it emits. This

temperature is related to the surface gravity of the black hole. Two questions which have still

not been resolved were raised by this discovery: What is the end point of the evaporation process

and what happens to the information about how the black hole formed? It may be that a fully

quantum theory of gravity is necessary to answer these questions. However, black hole solutions

to the four dimensional semiclassical backreaction equations (SCE) have yet to be fully explored.

Thus it remains a possibility that semiclassical gravity has something significant to say.

One possible answer to both the end point and information issues that has been suggested is

that at late times the black hole evaporation process may shut off leaving a zero temperature black

hole remnant [2]. It is usually expected that such remnants would have sizes which are Planck scale

and thus would need to be described by a quantum theory of gravity. It has been argued [3] that

generically one might expect there to be an infinite amount of pair production of such remnants to

occur if the information is stored inside such remnants. However, it is also pointed out that there

may be situations in which such infinite pair production does not occur.

Although it would be attractive to solve both the information and end point issues using black

hole remnants, it is possible that they have separate solutions. In that case one can ask the question

of whether such remnants could exist without being concerned about whether the information about

how the black hole formed is inside of them. Here we take this approach and investigate solutions

to the semiclassical backreaction equations that correspond to static spherically symmetric zero

temperature black holes, SZTBHs. We focus on the solutions to the semiclassical backreaction

equations near the event horizons of such black holes and consider black holes with and without

electric charges. A macroscopic SZTBH must have an electric charge. However, we find that if

Starobinsky inflation [4, 5] occurred then the coefficient of one of the terms in the SCE is large

enough and of the right sign so that it is possible to have uncharged SZTBH solutions to the

semiclassical backreaction equations which are significantly larger than the planck scale in size.

There is a long history of studying quantum effects in four dimensional zero temperature black

hole spacetimes. The stress-energy for free massless quantized fields of spin 0 and 1
2 has been

numerically computed in extreme Reissner-Nordström (ERN) spacetimes in four dimensions and

found to be regular on the event horizon [6, 7]. It has also been analytically computed in Bertotti-

Robinson spacetime [8, 9] which becomes a good approximation to the ERN geometry near the
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horizon.

SZTBH solutions to the linearized SCE in four dimensions for conformally invariant fields were

investigated in [10, 11] and for massive fields were investigated in [12, 13]. In [11] and [13] it was

shown that solutions to the equations exist with different relationships between the mass of the

black hole, the electric charge, and the radius of the event horizon than occur for a classical ERN

black hole.

The first solutions to the full nonlinear SCE in four dimensions that we are aware of which are

relevant for SZTBHs, are for AdS2 × S2 spacetimes in the case that a massless minimally coupled

scalar field is present [14]. This is the asymptotic form of the geometry near the event horizon of a

SZTBH with a metric on the horizon which is of the same general form as that for an ERN black

hole near the horizon. Both exact and approximate solutions were found, with the approximate

ones being exact in certain limits. It was found for a large range of values of a coefficient of the

terms in the gravitational Lagrangian that are quadratic in the curvature that solutions exist with

no electric charge.

Constraints on the behaviors of possible solutions to the full nonlinear SCE near the event

horizons of SZTBHs were investigated in [15, 16]. Assuming the usual higher derivative terms in

the gravitational Lagrangian necessary for the renormalization of free quantum fields in curved

space along with conformally invariant fields and a possible electric charge for the black hole, the

trace of the SCE was solved near the horizon. It was shown that there is a range of sizes for which

no SZBHT solutions to the SCE are possible [16]. For metrics with power law behaviors for gtt and

grr near the horizon, constraints on the powers were obtained along with a relationship between

the form of the metric near the horizon and the radius of the horizon [15].

Here we continue the exploration of SZTBH solutions to the full nonlinear SCE. We first add a

constraint and then make the argument that the most likely form of the metric near the horizon is

one with gtt and grr quadratic in r− r0, with r0 the radius of the event horizon. Next we consider

metrics which have these forms near the horizon but different forms away from it. We compute the

stress-energy tensors for massless scalar fields with minimal and conformal coupling to the scalar

curvature in these geometries. Our results provide strong evidence that the values of the 〈Ttt〉,

〈Trr〉, and 〈Tθθ〉 components on the horizon only depend on the geometry near the horizon. This

appears to be true for massless scalar fields with other couplings to the scalar curvature as well. We

expect that this property will also hold for massless free fields of higher spin. Our results provide

evidence that the solutions mentioned above in [14] can be used to describe the near horizon regions

of SZTBH solutions to the SCE in the cases considered.
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We have also computed the quantity

〈Trr〉 − 〈Ttt〉
gtt

(1.1)

at the horizon. This is related to the energy density a freely falling observer who passes through

the horizon sees, and if it diverges at the horizon, then the observer sees an infinite energy density

there. We find that its value and in general the values of 〈Ttt〉,r and 〈Trr〉,r depend on the geometry

away from the horizon as well as that near it. Thus the quantity in (1.1) does as well. We find

that in some cases this quantity is finite on the horizon, but in many cases it is not.

We use our results to solve the SCE near the horizon when only conformally invariant fields are

present along with the usual higher derivative terms which are necessary for the renormalization of

these fields. Since the values of 〈Ttt〉, 〈Trr〉, and 〈Tθθ〉 at the horizon depend only on the geometry

near the horizon, we can solve the SCE for the values of these components at the horizon. If

the stress-energy is finite on the horizon then 〈Ttt〉 = 〈Trr〉 there and it suffices to solve the trace

equation and the rr component of the SCE. Since the radial derivatives of these components depend

upon the geometry away from the horizon, we cannot say anything about SZTBH solutions to the

SCE away from the horizon. Therefore the solutions we find tell us about the properties that

physically acceptable SZTBH solutions to the SCE must have near the event horizon given the

types of quantum fields that we consider.

We restrict our attention to conformally invariant fields because most fields in the Standard

Model of particle physics are conformally invariant in the limit that their masses and interactions

vanish. It was shown in [17] that the relevant quantity in determining the importance of the mass

is mM in Planck units with m the mass of the scalar field and M the mass of the black hole. For

mM & 2 the DeWitt-Schwinger approximation, which is a large mass approximation, was found to

be valid. Thus we expect the stress-energy tensor near the horizon to be approximately the same

as that for a massless field if mM � 1.

For the form of the metrics that we use, the results of [15] for solutions to the trace equation

indicate that there is a minimum size that a SZTBH can have which is independent of the coeffi-

cients of the higher derivative terms in the equations. Solving the rr component of the SCE, we

find that in many cases there is a more severe lower bound on the size that a SZTBH can have.

This lower bound corresponds to the case of zero electric charge and thus a solution satisfying this

lower bound could serve as a black hole remnant. If the coupling constant for the higher derivative

term that leads to Starobinsky inflation [4, 5] has the right sign and magnitude for Starobinsky

inflation to occur in the early universe [18], and if it is significantly larger in magnitude than the
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other coupling constant, then the lower bound results in a black hole whose size is large enough

compared with the Planck scale that semiclassical gravity can be valid.

In Sec. II we review some results of [15, 16] and come up with a new constraint on SZTBH

solutions to the semiclassical backreaction equations. In Sec. III we argue that the most likely

form for a zero temperature black hole metric near the horizon is given by (3.1). We also show

the specific form of the metric that we use for the numerical computations. In Sec. IV we present

some of our numerical results for components of the stress-energy tensor in various candidate

geometries. Our solutions to the semiclassical backreaction equations near the horizon are given in

Sec. V. Sec. VI contains a summary and discussion of our results. Throughout we use units such

that ~ = c = G = kB = 1 and our sign conventions are those of Misner, Thorne, and Wheeler [19].

II. CONSTRAINTS ON STATIC SPHERICALLY SYMMETRIC ZERO

TEMPERATURE BLACK HOLES

In this section we first review constraints on the spacetime geometry near the event horizon of

a SZTBH and then add a new constraint.

A. Previous constraints

Some constraints on the geometry of a SZTBH near the event horizon were obtained in [15, 16]

by simply requiring that the components of the Riemann tensor in an orthonormal frame be finite

at the horizon. Writing the metric in the form

ds2 = −f(r)dt2 +
dr2

k(r)
+ r2dΩ2 , (2.1)

one finds the surface gravity is

κ =
v

2

√
fk , (2.2)

with

v ≡ f ′

f
. (2.3)

Here primes denote derivatives with respect to r. To have an event horizon it is necessary that

f = 0 there and therefore that v =∞. To avoid a divergence of the Kretchmann scalar RabcdRabcd

at the horizon it is necessary that k = 0 there as well. To have a zero temperature black hole it is

further necessary that k′ = 0 at the horizon. It is also necessary for zero temperature black holes



6

that kv2 be finite on the horizon and thus kv = 0 there. Finally, for all zero temperature black

holes �R cannot approach a constant on the horizon. It thus either diverges or vanishes there.

In [15, 16] further constraints were obtained by considering conformally invariant quantum

fields. The trace of the stress-energy tensor for such fields is the trace anomaly and is known in an

arbitrary spacetime. It is given in terms of the scalar curvature R, the Ricci tensor Rab and the

Weyl tensor Cabcd by

〈T q〉 = α�R+ β

(
RabR

ab − 1

3
R2

)
+ γCabcdC

abcd , (2.4)

with

α =
1

2880π2
[N(0) + 6N(1/2)− 18N(1)] , (2.5a)

β =
1

2880π2
[N(0) + 11N(1/2) + 62N(1)] , (2.5b)

γ =
1

2880π2
[N(0) +

7

2
N(1/2)− 13N(1)] . (2.5c)

Here N(0), N(1/2), and N(1) are the numbers of conformally invariant scalar fields, four compo-

nent spin 1/2 fields, and vector fields respectively. Thus for the trace of the stress-energy tensor

for a given type of conformally invariant field to be finite at the horizon of a SZTBH, it is clear

that �R cannot diverge there. Thus since there is also the constraint mentioned above that �R

cannot be constant on the horizon, it is necessary that �R = 0 there.

Solutions to the semiclassical backreaction equations were investigated when only conformally

invariant quantized fields are present. The general form of these equations can be written as

Gab = 8π[T cab + 〈T qab〉+ h1
(1)Hab + h2

(C)Hab] , (2.6)

where the superscripts c and q correspond to classical matter and quantum fields respectively and

(1)Hab = − 1√
−g

δ

δgab

∫
d4x
√
−g R2 = −2gab�R+ 2∇a∇bR− 2RRab + 1

2gabR
2 , (2.7a)

(C)Hab = − 1√
−g

δ

δgab

∫
d4x
√
−g CabcdCabcd = −4∇c∇dCabcd + 2RcdCabcd . (2.7b)

The coefficients h1 and h2 are constants which must in principle be determined experimentally.

An important constraint was obtained from the trace of the SCE. The only classical matter we

consider here is the classical electric field that occurs if the black hole has an electric charge Q.

Since the electromagnetic field is conformally invariant, the trace of T cab is zero. From (2.7b) one

sees that the trace of (C)Hab is also zero due to its dependence on the Weyl tensor. From (2.7a) is

it easily seen that (1)Ha
a = −6�R. Setting �R = 0 on the horizon gives

−R = 8π[〈T q〉] . (2.8)
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To derive the constraint the following component of the Riemann tensor in an orthonormal frame

was considered:

A(r) ≡ Rt̂r̂t̂r̂ =
v′k

2
+
vk′

4
+
v2k

4
. (2.9)

Clearly this must be finite or there is a curvature singularity at the horizon. Integrating one obtains

k =
B0

v2f
+

4

v2f

∫ r

r0

f ′(r2)A(r2)dr2 , (2.10)

where r0 is the radius of the event horizon. Multiplying by v2f and comparing with (2.2) one finds

that so long as A0 ≡ A(r0) is finite on the horizon, B0 = 4κ2. Thus for the zero temperature black

holes we are considering, B0 = 0. In [16] these results were used to solve (2.8) on the horizon with

the result that

A0 =
1

16π(β + 2γ)r20

[
3r20 − 32π(β − γ)±

(
768π2β2 − 3072π2βγ − 288πβr20 + 9r40

)1/2]
.(2.11)

For physically acceptable solutions A0 must be real which means there can be no solutions with r0

in the range r− < r0 < r+ with

r± = 4(πβ)1/2

[
1±

(
2

3β

)1/2

(β + 2γ)1/2

]1/2
. (2.12)

B. New constraints

A new constraint, that to our knowledge has not been presented elsewhere, can be obtained by

first requiring that the curvature seen by a freely falling observer in an orthonormal frame be finite.

In such a frame one component of the Einstein tensor near the horizon depends in part upon the

combination1

1

f
(Grr −Gtt) =

kf ′

rf2
− k′

rf
≡ −F (r) (2.13)

For the curvature to be finite at the horizon, it is clear that F (r0) must be finite. This equation

can be formally integrated with the result that

k = f

[
a1 +

∫ r

r0

r1F (r1)dr1

]
, (2.14)

1 This combination of components for the stress-energy tensor is part of the energy density and pressure seen by a

freely falling observer passing through the event horizon on a radial geodesic [20].



8

where a1 is an integration constant. Equating (2.10) and (2.14) and using the definition (2.3)

gives

(f ′)2 =
4
∫ r
r0
f ′(r2)A(r2)dr2

a1 +
∫ r
r0
r1F (r1)dr1

. (2.15)

In [16] it was shown that for SZTBH solutions to the SCE when only conformally invariant fields

are present,

A0 > 0 . (2.16)

Then we find that to leading order near the horizon

(f ′)2

f
=

4A0

a1 +
∫ r
r0
r1F (r1)dr1

. (2.17)

Next we consider what this constraint implies for various values of a1 and F0 ≡ F (r0). First

it is necessary that a1 ≥ 0 since if a1 6= 0 then it dominates the denominator near the horizon. If

a1 > 0 then near the horizon

(f ′)2

f
=

4A0

a1
. (2.18)

Integrating and using (2.10) gives

f =
A0

a1
(r − r0)2 ,

k = A0(r − r0)2 . (2.19)

If a1 = 0 and F (r0) = F0 > 0 then one can integrate (2.17) and use (2.10) to show that

f =
4A0

r0F0
(r − r0) (2.20a)

k = 4A0(r − r0)2 (2.20b)

Finally if a1 = F0 = 0 then near the horizon

(f ′)2

f
=

4A0∫ r
r0
r2F (r2)dr2

. (2.21)

Computing the square root and integrating gives

2f1/2 =

∫ r

r0

[
4A0∫ r3

r0
r2F (r2)dr2

]1/2
dr3 . (2.22)

The minimum value of the right hand side would occur if F (r0) > 0 and one would the obtain

the result (2.20a) for which f ′ is constant at the horizon. Thus f ′ must have an infinite value on
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the horizon. Further the function F (r) cannot vanish too rapidly as the horizon is approached or

f would not be equal to zero at the horizon. As an example, suppose f = a4(r − r0)p near the

horizon with 0 < p < 1. Then it is not hard to show that near the horizon

k =
4A0

p2
(r − r0)2 ,

F (r) =
4A0

r0p2a4
(r − r0)1−p . (2.23)

III. METRICS CONSIDERED HERE

In the previous section constraints were found on the form of the metric for static spherically

symmetric zero temperature black holes near the event horizon. It was found that if only con-

formally invariant fields are present, then for SZTBH solutions to the semiclassical backreaction

equations metrics of the form (2.19) and (2.20) are allowed. It was shown that for all other solu-

tions f ′ →∞ at the horizon, which means there is no smooth way to continue f across the horizon,

and the coordinate system breaks down in a more significant way than it does for Schwarzschild or

Reissner-Nordström spacetimes. If f is linear and k is quadratic at the horizon then the obvious

way of continuing f and k across the horizon leads to Euclidean space. On the other hand if both

f and k are quadratic near the horizon, then the metric is of the same form as that of an extreme

Reissner-Nordström spacetime. From the point of view of the semiclassical backreaction equations,

this is clearly the form of most interest and the one which will be pursued here.

In general the stress-energy tensor for a quantum field is a nonlocal quantity. Therefore it is

necessary to know the geometry everywhere in the causal past of a given spacetime point in order

to compute the stress-energy tensor at that point. For a SZTBH solution to the SCE outside the

event horizon, this means knowing the geometry everywhere outside of the event horizon. One can

of course guess the geometry, but it is extremely unlikely that any guess would correspond to a

solution to the SCE. However, we have numerical evidence that for a SZTBH most components of

the stress-energy tensor on the horizon depend only on the geometry near the horizon. This allows

us to solve the semiclassical backreaction equations near the horizon to determine that geometry.

Our conjecture concerns metrics for SZTBHs which near the event horizon have the leading

order behaviors

f →
(
r − r0
r0

)2

, (3.1a)

k → b2

(
r − r0
r0

)2

. (3.1b)
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Note that the coefficient for f has been set to 1 here because it is always possible to do this by

rescaling the coordinate time t in (2.1). The conjecture states that for a massless scalar field with

arbitrary coupling to the scalar curvature, in SZTBH spacetimes for which f and k have the above

form near the horizon, the values of the components 〈Ttt〉, 〈Trr〉, 〈Tθθ〉, and 〈Tφφ〉 on the event

horizon depend on the coefficient b2, but not on the behaviors of f and k away from the horizon.

Previous work provides some evidence for this conjecture. In [6] it was shown numerically that

on the event horizon of an extreme Reissner-Nordström black hole (b2 = 1) one finds that for a

massless scalar field with arbitrary coupling to the scalar curvature

〈Ttt〉 = 〈Trr〉 = 〈Tθθ〉 = 〈Tφφ〉 =
1

2880π2M4
. (3.2)

It was also shown in [6] that these are the same values as those for the stress-energy tensor for

the conformally coupled (ξ = 1/6) massless scalar field in the Bertotti-Robinson spacetime which

is obtained by expanding the extreme Reissner-Nordström metric in a series about r = r0 and

keeping only the lowest order terms. In Section IV we give a more technical explanation of why

the conjecture works along with numerical results for other values of b2 that support it.

If the conjecture is correct then the following procedure will work to solve the semiclassical

backreaction equations near the horizon. Choose metric functions which approach (3.1) near the

horizon for various values of b2 and which have any convenient form away from it. Then compute

the stress-energy tensors for the quantum fields and evaluate their components at the horizon.

Next evaluate the left hand sides of the trace and rr components of the SCE. They depend only

on r0 and b2 at the horizon. Finally, since the ERN black hole has an electric charge, include

on the right-hand side of the SCE the classical electromagnetic stress-energy tensor which occurs

if the black hole has an electric charge Q. Then the trace of the SCE will be independent of Q

and should yield a relationship between r0 and b2. The rr component should yield a relationship

between r0, b2, and Q2. Thus, for any desired size for the black hole, one could find the magnitude

of the resulting electric charge and the leading order behavior of the metric near the horizon.

In this paper we use the dimensionless radial coordinate

s ≡ r − r0
r0

, (3.3)

and consider metrics of the following power series form near the event horizon

f = a2s
2 + a3s

3 + . . . , (3.4a)

k = b2s
2 + b3s

3 + . . . . (3.4b)
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Note that without loss of generality we can absorb the value of the coefficient a2 into the definition

of the time coordinate t. We do this for the computations discussed here.

To compute the components of the stress-energy tensor it is necessary to specify the metrics

everywhere outside of the event horizon. So the actual metrics we consider are of the general form

f =
s2

(s+ 1)2
+

s3

(s+ 1)3
A33 + . . . , (3.5a)

k =
s2

(s+ 1)2
b2 +

s3

(s+ 1)3
B33 + . . . , (3.5b)

Note that for an asymptotically flat spacetime f → c for some constant c > 0 and k → 1 as

s→∞. The first condition is automatically satisfied by these metrics. For the second

b2 +B33 + . . . = 1 . (3.6)

Since b2 > 1 it is necessary that at least one of the other terms in the sum be negative.

It is tempting to make the conjecture that the first radial derivatives of the components of the

stress tensor at the horizon depend only on the values of r0, b2, a3, and b3. However we have found

that this is not the case. Thus it appears that this approach only allows one to find the behaviors

of solutions to the SCE when its trace, rr, and tt components are evaluated at the horizon.

IV. NUMERICAL RESULTS

We begin with a constraint on two components of the stress-energy tensor at the horizon. The

radial component of the conservation equation 〈Tab〉;b = 0 is

〈Trr〉,r +
1

2f

df

dr
(〈Trr〉 − 〈Ttt〉) +

2

r
(〈Trr〉 − 〈Tθθ〉) = 0 . (4.1)

Note that since we consider only states which respect spherical symmetry, 〈Tφφ〉 = 〈Tθθ〉. For the

metrics we consider f−1 dfdr ∼ (r−r0)−1 near the horizon. Thus for 〈Trr〉,r to be finite at the horizon

it is necessary that 〈Ttt〉 = 〈Trr〉 there. This result is well known and our numerical results confirm

that for the vacuum state this condition is always satisfied.

In the previous section a conjecture was presented which states that for a massless scalar field

the components 〈Ttt〉, 〈Trr〉, 〈Tθθ〉, and 〈Tφφ〉 depend only on r0 and the metric parameter b2 when

the metric is of the form (3.1) near the horizon. It is possible to show using the general static

spherically symmetric form of the expressions for 〈Tab〉 [17], the definition

r = r0(1 + s) , (4.2)
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and the scaling ω → ω/r0, that the entire r0 dependence for each of these components is r−40 .

In this section we first discuss the computation of these components on the horizon. In the

process we provide a technical explanation for why the conjecture should be correct. Then we

present the results of some of our numerical computations.

The method we use to compute the stress-energy tensor for a massless scalar field in a SZTBH

spacetime is given in detail in [17]. In this approach the mode equation in the Euclidean space

associated with the exterior region of the black hole is solved. For each value of the frequency ω

and the angular momentum parameter ` there are two linearly independent solutions. One of them

we call pω` and it is regular at the horizon2 but diverges at infinity. The other we call qω`. It is

well behaved at infinity but diverges at the horizon. The two-point function 〈{φ(x), φ(x′)}〉 is a

sum and integral over the product of these two mode functions. The unrenormalized stress-energy

tensor involves spacetime derivatives of the two-point function.

The fact that the stress-energy tensor depends only on the geometry near the horizon for ERN

spacetimes and our conjecture that this is the case in general for SZTBHs can be understood in

two different ways. First, it is easy to show that the proper distance to the horizon along a radial

spacelike geodesic from any point outside of it is infinite [16]. In Euclidean space the distance is

infinite for any path from outside the horizon to the horizon. Thus it makes sense qualitatively

that the stress-energy tensor might depend only on the geometry near the horizon.

From a more technical point of view it is found that to leading order near the horizon pω` and

qω` have exponential factors of the form

exp(±ω/(r − r0)) . (4.3)

Since the boundary conditions for qω` are fixed away from the horizon, changing these conditions

simply amounts to adding some part of the pω` mode to the original qω` mode. Then a product

of the pω` and qω` modes simply results in the original product plus a term which is damped

exponentially as the horizon is approached. Therefore it is plausible that in the limit that the

horizon is approached this exponentially damped term does not contribute to leading order to the

mode sum that makes up the stress-energy tensor.

The method in [17] allows us to compute the components of the stress-energy tensor anywhere

outside the event horizon. The results can be extrapolated to the horizon. There is a well known

ambiguity which occurs for the value of 〈Tab〉 which comes from the renormalization counter terms.

2 There can be spacetimes where there are exceptions to this for small values of ω. However, in these cases the

divergence is still less strong than for qω` at the horizon.
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FIG. 1. The quantity 〈Trr〉 is plotted near the horizon for a massless scalar field with ξ = 1
6 when b2 = 2.

All of the curves have the series (3.5) truncated at A33 and B33. The solid curves have A33 = 0 and thus

a3 = −2. From top to bottom they have B33 = 0 (b3 = −4), B33 = 1 (b3 = −3), B33 = 2 (b3 = −2). The

dashed curve has A33 = B33 = 2 (a33 = 0, b3 = −2).

For the conformally invariant scalar field this results in a finite renormalization of the parameter h2

in the semiclassical backreaction equations (2.6). For the massless minimally coupled field it results

in finite renormalizations of both h1 and h2. For the method we use there is an arbitrary constant

in one term of the stress-energy tensor which multiplies (C)Hab in the case of the conformally

invariant field and which multiplies a linear combination of (1)Hab and (C)Hab for the massless

minimally coupled scalar field. More details are given in [17]. For the numerical results shown we

chose the value of this constant to be zero.

The field is conformally invariant if it is massless and ξ = 1
6 . In this case the 〈Tθθ〉 component

on the horizon is related through the trace anomaly with the 〈Trr〉 component, see the next section

for details. Some of our results for 〈Trr〉 are shown in Fig. 1.
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FIG. 2. Components of the stress-energy tensor are plotted near the horizon for a massless scalar field with

ξ = 1
6 when b2 = 2. All of the curves have the series (3.5) truncated at A33 and B33. The upper solid and

dashed curves show 〈Trr〉 and 〈Ttt〉 respectively for A33 = B33 = 0 (a3 = −2, b3 = −4). The lower solid

curve and lower dashed curve show 〈Trr〉 and 〈Ttt〉 respectively for A33 = 0 and B33 = 2 (a3 = b3 = −2).

Note that in both cases the slope of the curve for 〈Trr〉 near the horizon is different from that of the curve

for 〈Ttt〉.

A. Results for another component

Computation of the stress-energy tensor in an orthonormal frame attached to a freely falling

observer moving in the radial direction shows that as the observer falls through the horizon, the

observer will observe an infinite stress-energy unless both 〈Ttt〉, 〈Trr〉, and g−1tt (〈Trr〉 − 〈Ttt〉) are

finite on the horizon [20]. Since gtt ∼ (r− r0)2, this component is divergent unless 〈Ttt〉,r = 〈Trr〉,r

on the horizon. From Fig. 2 it is clear that this is not the case for all geometries of the form (3.5).

In fact we have not found an example where this condition is satisfied for conformal coupling ξ = 1
6 .

However, as shown in Fig. 3 we have found examples where it appears to be satisfied for minimal

coupling ξ = 0.

The values of 〈Ttt〉 and 〈Trr〉 on the horizon depend only on the geometry near the horizon and

in particular on the values of b2 and r0. However, some of our numerical results indicate that the
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FIG. 3. Components of the stress-energy tensor are plotted near the horizon for a massless scalar field with

ξ = 0 when b2 = 2. All of the curves have the series (3.5) truncated at A33 and B33. The upper solid and

dashed curves show 〈Trr〉 and 〈Ttt〉 respectively for A33 = B33 = 0 (a3 = −2, b3 = −4). The lower solid

curve and lower dashed curve show 〈Trr〉 and 〈Ttt〉 respectively for A33 = 4 and B33 = 6 (a3 = b3 = 2).

Note that the slopes of the upper curves approach each other near the horizon but that for the lower curves

the slope of the curve for 〈Trr〉 near the horizon is different from that of the curve for 〈Ttt〉.

values of 〈Ttt〉,r and 〈Trr〉,r at the horizon appear to depend on the geometry away from the horizon

as well. Thus it is quite possible that there are spacetime geometries for which 〈Ttt〉,r = 〈Trr〉,r on

the horizon for ξ = 1
6 .

V. SOLUTIONS TO THE SEMICLASSICAL BACKREACTION EQUATIONS NEAR

THE HORIZON

In this section we solve the semiclassical backreaction equations near the horizon using our

results in Sec. IV which assume a metric of the form (3.5). We begin by reviewing the solution to

the trace equation. If only conformally invariant quantum fields are present then the trace equation

is given by substituting (2.4) into (2.8). Evaluating at the horizon and recalling that �R = 0 there,
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one finds that the resulting equation can be solved for r0 as a function of b2 with the result that

r20 =
π

3(b2 − 1)

[
8(β + 2γ)(b22 + 1) + 32(β − γ)b2

]
. (5.1)

It is easy to show from (2.5) that β + 2γ > 0 and β − γ > 0. Thus physically acceptable solutions

only exist if b2 > 1. It is worth noting that for an ERN black hole, b2 = 1. Thus the ERN solution

to the classical Einstein equations is not a solution to the SCE if only conformally invariant fields

are present.

There is a minimum radius which occurs for

(b2)min = 1 +

√
6β

β + 2γ
. (5.2)

It is

(r20)min = 16π

(√
2

3

√
β(β + 2γ) + β

)
. (5.3)

For the Standard Model N0 = 4, N1/2 = 45, and N1 = 12 so

β =
1243

2880π2
, (5.4a)

γ =
11

5760π2
, (5.4b)

and

(b2)min = 1 +

√
113

19
≈ 3.4

(r0)min =
1√
π

√
1243

180
+

11
√

2147

90
≈ 2.0 . (5.5)

Thus for the Standard Model the minimum size is of order the Planck length. However there are

many more particles in Grand Unified Theories, so the minimum size could be significantly larger

than the Planck scale. Further this minimum is really only a constraint because it comes from just

one of the backreaction equations. The actual minimum could be larger. Note that it does not

depend on the coefficients h1 and h2 of the higher derivative terms in the semiclassical backreaction

equations nor does it depend on the charge of the black hole.

Continuing the analysis of the solutions to the trace equation at the horizon, for small values

of b2 − 1 > 0 the radius is

r20 ≈
16πβ

b2 − 1
. (5.6)
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and the scalar curvature at the horizon is

R = −2(b2 − 1)

r20
≈ −(b2 − 1)2

8πβ
. (5.7)

Thus for 1 < b2 ≤ (b2)min the size of the event horizon ranges from infinity to its minimum value

and the scalar curvature is small when the horizon size is large. Thus these values of b2 result in

physically acceptable solutions.

For very large values of b2,

r20 ≈
8π

3
(β + 2γ)b2 , (5.8)

and

R ≈ − 3

4π(β + 2γ)
. (5.9)

Since R does not get small as r0 gets large, the solutions with b2 � (b2)min are probably not

physically acceptable.

To go further we examine the “rr” component of the semiclassical backreaction equations. At

the horizon the equation is

− 1

r20
= 8π

[
− Q2

8πr40
+ (Tr

r)0 +
2

r40
(b22 − 1)

(
h2
3
− h1

)]
. (5.10)

Here (Tr
r)0 is the value of 〈Trr〉 evaluated at r = r0. Thus the charge of the black hole which

corresponds to a given value of r0 and hence b2 is

Q2 = r20 + 8π

[
r40(Tr

r)0 + 2(b22 − 1)

(
h2
3
− h1

)]
. (5.11)

Note that r40(Tr
r)0 depends on b2 and not r0. Thus this equation gives a relationship between the

charge Q, the radius r0, and the metric parameter b2 for fixed values of h1, and h2.

It is of interest to see whether it is possible to have Q = 0. Since b2 > 1 it is clearly not possible

if h2 > 3h1 and (Tr
r)0 > 0. Even for values of these quantities where it is possible to have Q = 0,

the resulting radius of the black hole will be of the Planck scale or smaller unless there is a large

number of fields and (Tr
r)0 < 0, and/or h1 − h2/3 � 1. The latter condition can be satisfied if

h2 � h1 and the universe underwent Starobinsky inflation which requires h1 ∼ 109 [18].

If Q2 = 0 then (5.11) gives a second equation for r0. Combining (5.1) and (5.11) gives

(β + 2γ)(b22 + 1) + 4(β − γ)b2 + 3r40(Tr
r)0(b2 − 1) + 6

(
h2
3
− h1

)
(b2 + 1)(b2 − 1)2 = 0 . (5.12)
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For a black hole much larger than the Planck scale, Eq. (5.1) implies that b2 ≈ 1 which in turn

implies that the metric near the horizon is nearly the same as that of the extreme Reissner-

Nordström metric. In that case one expects (Tr
r)0 to be approximately equal to its value in an

ERN spacetime which for conformally invariant fields is3

(Tr
r)0 =

β

r40
. (5.13)

Using this as an approximation for (Tr
r)0 in (5.12) along with b2 ≈ 1 gives

(b2 − 1)2 =
β

2h1
. (5.14)

Substituting this into (5.1) gives

r0 ≈ (512π2βh1)
1/4 . (5.15)

Using 109 for h1 and the value of β for the Standard Model (5.4a) gives r0 ≈ 700 which is well

above the Planck scale where r0 ∼ 1. For Grand Unified Theories β and hence r0 are even larger.

Thus if Starobinsky inflation occurred it is possible that black hole remnants could exist which are

compatible with and predicted by semiclassical gravity.

VI. SUMMARY AND CONCLUSIONS

We have examined constraints on the form of the metric for static spherically symmetric zero

temperature black hole solutions to the semiclassical backreaction equations and found that the

most likely form the metric would take is that both gtt and grr are quadratic in r − r0 near the

horizon. Restricting our attention to metrics of this form, we have numerically computed the stress-

energy tensor for both the conformally invariant scalar field and the massless minimally coupled

scalar field in spacetimes with metrics of the form (3.5). It has been found in all cases considered

that the value of 〈Ttt〉 = 〈Trr〉 on the horizon depends only on the metric parameter b2 and on the

radius r0 of the event horizon. This makes it possible to determine the leading order behaviors of

solutions to the SCE near the horizon.

We have examined the solutions to the SCE near the horizon when only conformally invariant

quantum fields are present. It was shown in [17] that for a massive scalar field the large mass

condition is given by mM ∼ 2 in Planck units. For the small mass limit (mM � 1), most massive

3 The ERN value for massless scalar fields was computed in [6] and for the spin 1
2

was computed in [7]. In [10] it

was argued from the conformal invariance of the spacetime near the horizon that for conformally invariant fields

in general it is given by (5.13).
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free fields are approximately conformally invariant. For small enough black holes this includes

most of the fields in the Standard Model if their interactions can be neglected. We have found

that near the horizon zero temperature solutions to the SCE can exist even if the black hole has

no electric charge. Of course only knowing their behaviors near the horizon does not guarantee

that these solutions have physically realistic geometries far from the horizon and that they could

thus correspond to realistic zero temperature black holes. Even if the geometries are physically

realistic, it does not guarantee that the black hole evaporation process really does shut off at late

times when the black hole is small and therefore that black hole remnants exist. What one does

expect however, is that backreaction effects due to quantum fields should be larger for black holes

of smaller sizes. Thus it is possible that such effects could result in progressively smaller surface

gravities and hence progressively lower temperatures for such black holes with the limit being the

uncharged SZTBH solutions being discussed here.

The rr component of the semiclassical backreaction equations provides a relation between b2, r0,

and the black hole charge Q along with the coefficients h1 and h2 of the R2 and Weyl squared terms

in the gravitational Lagrangian. If only conformally invariant fields are present, we have shown

that this relationship allows for an electric charge of zero for the black hole if 〈Trr〉 on the horizon

has a large enough negative value and/or h2−3h1 has a large enough negative value. For values of

|h1| and |h2| less than or of order unity there would need to be an enormous number of quantum

fields for the corresponding black hole to be larger in size than the Planck scale. However, if

Starobinsky inflation occurred so that h1 ∼ 109, and if h2 � h1, then zero temperature black holes

with sizes significantly above the Planck scale could exist even for the number of quantum fields

in the Standard Model. Thus if Starobinsky inflation occurred then it is possible that black hole

remnants could exist which are large enough that semiclassical gravity could be used to describe

them. As such they could provide an answer to the question of what the end state of the black

hole evaporation process is.
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