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Useful insights into the complicated physics of gravitational waves can often be drawn from ap-
proximations to analogous physics of electromagnetic waves. Here, we present a gravitational form
of the electromagnetic Chu limit that sets bounds on the achievable Q (quality factor) relating the
ratio of stored energy to radiated energy in the underlying fields. In particular, we answer two
fundamental physics questions: 1) what is the theoretical Q for gravitational quadrupole radiation
sources, and 2) can gravitational Q be observed from recent measured astronomical data? Gravita-
tional Q is shown to follow an inverse seventh-order power law, and gravitational-wave data is used
to find observed values of Q for GW170817. Inasmuch as electromagnetic Q serves a central role in
design and analysis of electrically-small antennas, the proposed gravitationalQ offers the potential
for a similar utility in the design and analysis of gravitationally-small detectors and quadrupoles.

I. INTRODUCTION

Einstein’s 1916 general relativity field equations pre-
dicted the gravitational waves first observed in 2015,
much as Maxwell’s electromagnetic theory in the 1860’s
predicted the radio waves first observed by Hertz in
1880’s and later applied by Marconi in the 1890’s [1–4].
Even before Einstein’s general relativity theory, similar-
ities between electrostatics and Newtonian gravity lead
Heaviside to propose a gravitational analog to electro-
magnetics [5]. Such parallels between gravitational and
electromagnetic phenomena continue to be useful in un-
derstanding and developing concepts within general rel-
ativity [6]. Therefore, we similarly explore the develop-
ment of the gravitational counterpart to a fundamental
and useful concept in the theory of electromagnetic fields
and antennas, the Chu limit [7–10].
For over 50 years, the Chu limit has been used to pro-

vide bounds on the Q, or quality factor, of antennas as a
function of antenna size, where Q is related to the ratio
of stored energy to radiated energy in electromagnetic
fields. For antennas, Q is of further practical signifi-
cance, since it corresponds to the ratio of antenna cen-
ter frequency to bandwidth. Thus, Q is of fundamental
importance in the design and analysis of antennas. Fur-
thermore, the Chu limit has also recently been shown to
roughly predict the quantum 1s-2p spontaneous emission
relaxation time of hydrogen atoms [11].
This wide-ranging utility of the Chu limit, from quan-

tum emission to antenna physics, raises the question of
whether a similarQ can be derived and observed for grav-
itational quadrupole sources of gravitational waves. A
second question is whether observation of such a grav-
itational Q may be out of reach, given the difficulty of
gravitational wave measurements.
Here, we show that it is not only possible to ana-

lytically derive Q for gravitational quadrupole radiation
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sources, but we also show that LIGO (Laser Interferom-
eter Gravitational-Wave Observatory) GW170817 data
can yield observed values for Q over a range of gravita-
tional quadrupole sizes [1, 12–15]. The proposed gravi-
tational Q depends on gravitational-wave frequency and
quadrupole size, and is shown to exhibit a different power
law than the electromagnetic antenna Chu limit [16].
In the following, the theoretical Q of gravitational

quadrupoles is derived, and observed values of gravi-
tational Q are computed from gravitational-wave data.
The combination of stored energy and radiation consid-
ered here is distinct from earlier results by Marengo and
Ziolkowski for purely non-radiating sources and purely
radiating sources in electromagnetics and general relativ-
ity [17]. As noted in earlier work by the author [18], the
notion of gravitational Q developed here is distinct from
the notion of mechanicalQ of cryogenic spherical gravita-
tional antennas in Merkowitz et al. [19]. Lastly, it should
also be noted that recent non-Foster and metamaterial
experiments show results much better than the electro-
magnetic Chu limit would permit, suggesting the poten-
tial that the proposed gravitationalQ concepts could lead
to similar gravitational detector enhancements [20–22].

II. THEORY

Before proceeding with the derivation of the Q of grav-
itational quadrupoles, it is helpful to first briefly re-
view the Chu limit for electromagnetic antennas. The
Chu limit (also known as Wheeler-Chu limit or Chu-
Harrington limit) sets a lower bound on lossless linearly
polarized electromagnetic antenna Q (quality factor) of
[7, 10]
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where B = ∆/f0 is fractional bandwidth, ∆ is antenna
bandwidth in Hz, f0 is antenna center frequency in Hz,
a is radius of a sphere that would enclose the antenna,
wavenumber k = 2πf0/c = 2πf0/3 × 108 = 2π/λ0
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FIG. 1. Binary star system with circular orbit, solar masses
m1 > m2, with barycenter denoted “B,” orbital separation
ds, and the larger orbital radius being as.

rad/m, vacuum wavelength is λ0 m, and size-parameter
k a ≪ 1 radian would constitute an electrically-small an-
tenna. Extending the result to certain circular polar-
ization cases results in a slightly altered cubic term of
0.5/(k a)3, as noted by Pozar [23]. Chu derived the limit
from the energy of components of the electromagnetic
field, and a summary in Sievenpiper [10] shows many
decades of experimental results where the Chu limit is
never violated.
Next, we derive the theoretical Q of gravitational

quadrupoles. In this, it is first useful to express
some gravitational-wave properties as a function of a
wavenumber-size product, similar to the k a parameter
in the electromagnetic Chu limit. To begin, consider the
binary circular orbit of Fig. 1. The luminosity in watts of
a gravitational wave produced by the inspiral and merger
of such a binary neutron star pair, or pair of black holes,
is [13, 24, 25]

L =
32

5

(m1 +m2)
5ν2G4

d5sc
5

(2)

where the binary star masses are m1 and m2 in kg, ν =
m1m2/(m1 + m2)

2, and G = 6.7 × 10−11 N·(m/kg)2 is
the gravitational constant. The orbital separation ds of
the two stars in meters is

ds =

(

(m1 +m2)G

ω2

orb

)1/3

, (3)

where orbital frequency ωorb = 2πforb in rad/s is

ωorb =
ωgw

2
=

2πfgw
2

=

(

(m1 +m2)G

d3s

)1/2

, (4)

for observed gravitational wave frequency ωgw rad/s.
Recalling that Chu parameter “a” is the radius of a

sphere enclosing an antenna, this would then correspond
to the larger orbital radius as in the binary star circular
orbit of Fig. 1, with

as = ds
m1

m1 +m2

=

(

m3

1
G

ω2

orb(m1 +m2)2

)1/3

, (5)

where m1 > m2 and the smallest sphere enclosing the
binary star orbits is of radius as m. Then, rearranging
(5), the orbital frequency becomes

ωorb =

(

m3

1G

a3s(m1 +m2)2

)1/2

. (6)

The proposed gravitational-antenna size parameter
“k as” is then

k as =
ωgw

c
as =

2ωorb

c
as =

(

4m3

1
G

asc2(m1 +m2)2

)1/2

(7)

It is also useful to rearrange (7) and solve for as as a
function of k as, giving

as =
4m3

1
G

(k as)2c2(m1 +m2)2
, (8)

and substituting for as in (6) yields orbital frequency ωorb

as a function of the k as size parameter:

ωorb =
(k as)

3c3

8G

(m1 +m2)
2

m3
1

. (9)

Alternatively, rearranging (9) gives size parameter k as
as a function of orbital frequency:

k as =

(

8ωorbGm3

1

c3(m1 +m2)2

)1/3

=
2m1

c

(

ωorbG

(m1 +m2)2

)1/3

. (10)

Similarly, first substituting ds = as (m1 + m2)/m1 in
(2), and then taking as from (8), the luminosity as a
function of size parameter k as is

L =
32

5

(m1 +m2)
5ν2G4

(as(m1 +m2)/m1)5c5

=
ν2c5

160G

(

m1 +m2

m1

k as

)10

, (11)

where L determines the gravitational radiation compo-
nent later used in determining gravitational Q.
Next, the total available potential and kinetic energy

of the gravitational system is determined. To begin, the
Newtonian orbital energy is [24]

EN = −
m1m2G

2ds
= −

m2

1
m2G

2as(m1 +m2)
. (12)

However, we propose that the total remaining available
energy is determined by the difference between the or-
bital energy at any given orbital separation ds and the
final orbital energy at final orbital separation dmin at
coalescence. Accordingly, the available orbital energy is
defined as

EA = −

(
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−
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(
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, (13)
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where the minimum orbital separation can be determined
from the observed gravitational wave data as dmin =
[

(m1 +m2)G/ω2

max

]1/3
m, where ωmax rad/s is the

maximum observed orbital frequency. For GW170817,
ωmax ≈ 600π rad/s, and dmin ≈ 47 km.
Using the definition Q = ωE/(dE/dt) noted by Sieven-

piper et al. [10], and substituting the foregoing results
gives

Q =
ωorbEA

dEA/dt
=

ωorbEA

L
(14)

=
20m7

1G

m2c2(m1 +m2)5

(

(k as)
−7

2amin

−
(k as)

−5c2(m1 +m2)
2

8m3

1
G

)

,

which is the desired result giving theoretical gravi-
tational quadrupole Q as a function of gravitational
quadrupole wavenumber-size parameter k as. In partic-
ular, note that for k as ≪ 1, that Q tends to become
inversely proportional to the seventh power of k as. This
inverse seventh-order proportionality differs significantly
from the inverse cubic behavior of the electromagnetic
Chu limit. Preliminary results in in [18] did not pro-
vide the equation for Q given above in (2). Since the
luminosity in (2) and orbital energy in (13) account for
all radiation losses, Q would include both gravitational
quadrupole radiation polarizations, plus “+” and cross
“×.”
The result for gravitational Q in (14) is an equality

rather than a theoretical bound, since it was derived for
the particular binary orbit scenario of Fig. 1, rather than
an arbitrary gravitational-wave source. However, for a
given total mass m1 + m2 with m1 ≥ m2 and for some
given k as during inspiral, it can be shown that Q from
(14) is minimized when m1=m2 for k as ≪ 1. In addi-
tion, analogies with electromagnetics would suggest that
higher-order gravitational multipoles would tend to in-
crease Q, although general relativity leads to consider-
ably more complicated range of multipole expansions as
noted by Thorne in [26]. Notwithstanding, the result
in (14) is also limited by underlying slow-motion, weak-
field, post-Newtonian assumptions in the derivation of
(2), and is subject to non-relativistic limitations inher-
ent in (12) for orbital energy [24]. Therefore, scenarios
may exist where even lower values of Q are possible, and
so it remains to be seen whether a more general result
or lower bound for Q can be found, given the complex-
ities of general relativity. Despite the foregoing limita-
tions, the result for Q in (14) would seem appropriate for
the most common scenarios of gravitational wave events,
in light of Thorne’s [26] comment that all gravitational-
wave sources in the universe today are probably isolated
sources.

III. OBSERVED GRAVITATIONAL Q

The foregoing equations show that gravitational
quadrupole size parameter k as can be determined from
the gravitational wave frequency ωgw = 2ωorb, and that
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FIG. 2. Observed gravitational wave GW170817 frequency
fgw as a function of time t. (a) An extracted and thresholded
portion of the time-frequency representation from Abbott et
al. [16] where gray (magenta in color prints) regions are signals
above threshold, the dotted curve is fitted fgw, and the inset
shows portion from Abbott et al. used for threshold. (b)
Plot of final fitted fgw shown as solid curve, with thin gray
(magenta in color prints) curves indicating a two-standard-
deviation error. Coalescence is at t = 0.

gravitational quadrupole Q can then be determined from
k as. Therefore, estimation of ωgw from observed grav-
itational data will yield both k as and Q. We estimate
ωgw = 2πfgw from the known time response of the fre-
quency chirp as [25]

1

fgw
=

8π

1251/8

(

G5/3m1m2

c5 (m1 +m2)
1/3

t′

)3/8

, (15)

where the time before coalescence is t′ = −t. Taking the
logarithm yields

ln(fgw) = 4.88− 3ln(t′)/8 , (16)

for published GW170817 masses m1 ≈ 3.6× 1030 kg and
m2 ≈ 2.2× 1030 kg [13].
Fig. 2(a) shows a thresholded version of the LIGO-

Livingston time-frequency representation of gravitational
wave GW170817 from Abbott et al. [16], extracting the
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FIG. 3. Observed gravitational wave GW170817 gravitational
quadrupole size parameter k as as a function of time. Solid
curve is for fit to data, with thin gray (magenta in color prints)
curves indicating error in k as that would correspond to the
two-standard-deviation error in fgw of Fig. 2(b). Coalescence
is at t = 0.

strongest portions of the signal shown as the gray (ma-
genta in color prints) regions near the dotted black curve.
The upper left inset of Fig. 2(a) shows the portion of the
LIGO-Livingston time-frequency data that was thresh-
olded and used to generate Fig. 2(a). The vertical height
of the sample shown in the inset is approximately 70 pix-
els at every frequency, even though the curvature of the
chirp gives the illusion of a thinner vertical slice toward
the right side of the inset.

The dotted black curve of Fig. 2(a) results from a cu-
bic polynomial fit to the logarithm of gravitational fre-
quencies fgw above threshold in gray (magenta in color
prints) regions. A cubic fit was chosen to provide ex-
tra degrees of freedom, in case observed data deviated
significantly from the theoretical formula. The cubic fit
shown is found to be ln(fgw) = 4.884 − 0.3607 ln(t′) −
0.001378 [ln(t′)]2 +0.0002857 [ln(t′)]3, in good agreement
with the theoretical relation of (16). In fact, the last
two terms of the polynomial only contribute 2.8% to
fgw ≈ 38 Hz at t = −30 s, and only contribute 0.2%
to fgw ≈ 218 Hz at t = −0.25 s.

The solid black curve in Fig. 2(b) shows the fitted curve
to fgw on linear scales for the 30 seconds before coa-
lescence, along with thin gray (magenta in color prints)
curves that indicate a two standard deviation error. The
thin gray (magenta in color prints) curves in Fig. 2(b)
are two standard deviations from the fitted curve at each
time point, using the standard deviation of frequencies
above threshold at each time point. At time instants
where there are less than 6 frequency samples above
threshold in Fig. 2(a), the standard deviation is set to
zero in Fig. 2(b). However, the reader should note that
that the two-standard-deviation error indicators do not
include other error sources, such as uncertainty in masses
m1 and m2. Coalescence occurs at t = 0 in the plot of
Fig. 2(b).

To find the variation in k as as a function of time, sub-
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FIG. 4. Observed gravitational wave GW170817 quality fac-
tor Q as a function of time. Solid curve is for fit to data, with
thin gray (magenta in color prints) curves indicating error in
Q that would correspond to the thin gray (magenta in color
prints) curves of error for k as in Fig. 3. Coalescence is at
t = 0.

stituting ωorb = ωgw/2 in (10) gives

k as =

(

4ωgwGm3

1

c3(m1 +m2)2

)1/3

. (17)

Applying this to Fig. 2(b), the solid black curve in
Fig. 3 shows k as of GW170817 as a function of time,
corresponding to the solid black curve for the cubic fit to
fgw in Fig. 2(b). The thin gray (magenta in color prints)
curves provide an indicator of error, and are directly com-
puted from the thin gray (magenta in color prints) curves
of error for fgw in Fig. 2(b).
Lastly, the Q of the GW170817 gravitational

quadrupole can be computed from k as of Fig. 3, using
(14). The solid black curve in Fig. 4 shows Q as a func-
tion of time, corresponding to the solid black curve for
k as in Fig. 3. The thin gray (magenta in color prints)
curves provide an indicator of error, and are directly com-
puted from the thin gray (magenta in color prints) curves
of error for k as of Fig. 3. At times where there are no
frequency samples, the error is set to zero. Thus, the
Q of the gravitational quadrupole is seen to decrease
from approximately Q ≈ 7.1 × 104 where k as ≈ 0.15
at 30 seconds before coalescence, to Q ≈ 1.2× 103 where
k as ≈ 0.25 just before coalescence. As noted earlier, the
thin gray (magenta in color prints) error indicators do
not include other possibly significant error sources, such
as uncertainty in masses m1 and m2.

IV. CONCLUSION

The theoretical Q of a gravitational quadrupole has
been derived, and Q has been shown to be propor-
tional to (k as)

−7 for gravitationally-small sources hav-
ing k as ≪ 1 rad. As for electromagnetic antennas,
k as is the size of the gravitational source in radians
at the gravitational-wave frequency. The gravitational



5

wave data was used to find time-dependent observed val-
ues of k as for gravitational-wave GW170817. Impor-
tantly, k as was shown to vary over a range of values
from k as ≈ 0.15 rad to k as ≈ 0.25 rad using measured
GW170817 data. This, in turn, allowed the variation ofQ
for GW170817 to be observed as k as changed during the
inspiral of the binary neutron star. A somewhat counter-
intuitive observation is that k as of GW170817 increased
over time, even as as decreased during the inspiral. Be-
cause k as = ωgwas/c, this counterintuitive result shows
that ωgw increases faster than as decreases during the
inspiral of GW170817. We also note that alternative at-
tempts to determine Q by independently estimating the
luminosity numerator and the changing energy in the de-
nominator of (14) tended to lead toward more noisy Q
estimates, and such alternatives ultimately seemed to de-
pend on the observable of gravitational-wave frequency
and the fundamental result in (14).
The degree to which electrically-small antenna engi-

neering insights may be applied to the understanding
of binary inspiral gravitational fields and the design of
gravitational-wave detectors remains an open question.
In the results presented for GW170817, the binary neu-
tron star quadrupole remained gravitationally small with
k as ≪ 1 rad during the observed 30-second inspiral.
The analogous notion of electrically-small antennas with

k a ≪ 1 is an important concept for analyzing and un-
derstanding electromagnetic fields, and is a useful engi-
neering tool for designing better antennas, for enhanc-
ing antenna signal strength, and for improving antenna
bandwidth. Since Q provides a measure of the ratio of
stored energy to radiated energy in electromagnetic fields
of antennas, it is hoped that gravitational Q may offer
similar utility in gravitational field analysis. In addition,
Q is useful in the design of methods to enhance signal
coupling from electromagnetic antennas, such as non-
Foster, metamaterial, and passive-tuning methods [20–
22]. Although the focus of the present work has been
on gravitational radiation sources, similar results should
apply to gravitational detectors under reciprocity con-
siderations and the gravitationally-small dimensions of
terrestrial detectors. Finally, the proposed gravitational
Q concepts may lead to future gravitational detector de-
sign approaches, since recent non-Foster and metamate-
rial experiments have shown results much better than the
electromagnetic Chu limit would permit [20–22].
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