
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Answering the parity question for gravitational wave
memory
Lydia Bieri

Phys. Rev. D 98, 124038 — Published 28 December 2018
DOI: 10.1103/PhysRevD.98.124038

http://dx.doi.org/10.1103/PhysRevD.98.124038


Answering the Parity Question for Gravitational Wave Memory

Lydia Bieri1, ∗

1Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109-1120, USA

Memory of gravitational waves in asymptotically-flat spacetimes that are solutions of the Einstein
vacuum equations is of purely electric parity, no magnetic parity memory can occur. We show this
by investigating what happens for various classes of asymptotically-flat Einstein-vacuum-spacetimes.
This is understood within such spacetimes that have been shown to be stable in the fully nonlinear
regime under perturbations away from Minkwoski space. We also lay open the structures at the
transition from spacetimes that have a well-defined memory to those for which the memory formula
cannot be retrieved due to their specific asymptotic behavior and the divergence of crucial integrals.
Moreover, for the Einstein equations coupled to other fields with a common stress-energy as well as
in the cosmological setting, we find that gravitational memory is of electric parity only.

I. INTRODUCTION

Gravitational waves in General Relativity (GR) are
known to exhibit a memory effect, that is a permanent
change of the spacetime, as found by Ya. Zel’dovich
and B. Polnarev in a linearized situation [31] and by D.
Christodoulou in the fully nonlinear setting [18]. There
are two types of this memory [11]. In this article, we show
that for spacetimes that are asymptotically-flat solutions
of the Einstein vacuum equations, for which stability has
been proven, memory is of electric parity only, magnetic
memory does not occur.
A great breakthrough in science happened in 2015 with

the first detection of gravitational waves from a binary
black hole merger in the two US-based LIGO facilities
[1] roughly 100 years after A. Einstein had formulated
the theory of general relativity. In the meantime, the
LIGO and Virgo detectors have observed further events,
of which the measurement in 2017 of waves generated in
a neutron star binary merger was another historic mile-
stone [2, 3].
In detectors like LIGO gravitational memory will show

as a permanent displacement of test masses, and in de-
tectors like NANOGrav as a frequency change of pulsars’
pulses.
In [23] P. Lasky, E. Thrane, Y. Levin, J. Blackman

and Y. Chen suggest a way to detect gravitational wave
memory with LIGO.
Such an effect was known in a linear theory since

1974, when Ya. Zel’dovich and B. Polnarev [31] found
it. The effect was believed to be tiny. Then in 1991
D. Christodoulou [18] derived within the full nonlinear
theory such a memory that was much larger than ex-
pected. More work by other authors followed at the
time [15–17, 22, 25, 26, 30], and recently there has
been more work by a growing number of authors [7–
9, 11, 13, 14, 20, 21, 23, 24, 27–29]. See the previous
works for more detailed references.
It was believed that the “linear” (= regular) effect by

Zel’dovich and Polnarev and the “nonlinear” (= null)
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effect by Christodoulou are two aspects of the same phe-
nomenon. The present author with D. Garfinkle showed
in [11] that these are indeed two different effects, the for-
mer related to fields that do not go out to null infinity,
the latter related to fields that do go out to null infin-
ity. Garfinkle and the present author derived [10] the
analogs of both of these phenomena outside GR for the
first time, namely for the pure Maxwell equations, which
are of course linear. A growing community has explored
other theories for analogs of the memory effect, see for
instance [24].

Several matter- or energy-fields coupled to the Ein-
stein equations contribute to the null memory. In collab-
oration with P.Chen and S.-T. Yau we showed that for
the Einstein-Maxwell system a specific component of the
electromagnetic field enlarges the null memory [7], [8].
With D. Garfinkle we proved that there is a contribu-
tion to the null memory from neutrino radiation [9] as it
occurs in a core-collapse supernova or a binary neutron
star merger. For the latter, we model the neutrinos by
introducing the energy-momentum tensor of a null fluid
into the Einstein equations.

As there is a large literature on various aspects of mem-
ory or its analogs in other theories, we refer to the above-
mentioned articles for detailed references. We do not dis-
cuss lower order effects such as angular momentum mem-
ory. This and many other aspects of gravitational waves
are most interesting. In this article, we concentrate on
the two types of gravitational wave memory that domi-
nate the lower order effects.

Memory, as known in the pioneering articles, is of elec-
tric parity. Recently, there has been a lot of discus-
sion whether memory can also exhibit magnetic parity.
In the following, we show that for spacetimes that are
asymptotically-flat (AF) solutions of the Einstein vac-
uum (EV) equations, for which stability has been proven,
memory is of electric parity only, thus magnetic memory
does not occur. Moreover, this is still true for most cou-
pled Einstein-matter systems. However, an “unusual”
form of stress-energy could in principle contribute to
magnetic ordinary memory. An interesting example was
produced by R. Wald and G. Satishchandran.

Isolated gravitating systems in GR are described by
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asymptotically-flat solutions of the Einstein vacuum
equations, or Einstein equations coupled to correspond-
ing matter or energy. This has been understood in de-
tail (in the fully nonlinear regime) through the proofs
of global nonlinear stability of Minkowski space. Here,
small AF initial data (controlled via weighted Sobolev
norms) evolve under the EV equations to globally AF
spacetimes that are causally geodescially complete (thus
without any singularities). The first such global proof
was given by D. Christodoulou and S. Klainerman in
[19]. It was generalized to Einstein-Maxwell equations
by N. Zipser in [32], [33] and by the present author in
[4], [5] to the borderline case for the EV equations as-
suming one less derivative and less fall-off by one power
of r than in [19] obtaining the borderline case in view
of decay in power of r, indicating that the conditions in
our main theorem on the decay at infinity of the initial
data are sharp. Many proofs or partial results have been
obtained by many authors in various directions. The
above results are obtained via geometric-analytic invari-
ant methods and solve the equations in full nonlinearity.
(That is, no approximation was used, all the results are
complete.) These proofs not only establish stability for
large classes of important physical systems, but they also
provide an exact knowledge of these spacetimes, includ-
ing the null asymptotic behavior and gravitational radi-
ation. Whereas the smallness of the initial data was re-
quired to establish existence and uniqueness of solutions,
the null asymptotic behavior is largely independent from
the smallness. Thus, we can allow for large data like
black holes and derive results for these at null infinity,
including radiation and memory. One may want to take
a double-null foliation near scri and find that the asymp-
totic results still hold for the portion of null infinity that
remains in these spacetimes with large data.

We look at the most important classes of AF space-
times. We refer to the situation as in [19] by D.
Christodoulou and S. Klainerman as (CK), and the most
general situation proven to be stable in [4], [5] by the
present author is denoted as (B). As the data in (B) de-
cay very slowly to Minkowski at infinity, the description
of the asymptotic behavior of the curvature components
is less precise than in (CK). However, it is as precise as
it can be for these spacetimes. Moreover, we use (B2)
to refer to the case treated in [6] by the present author.
In (B2) we have slightly stronger decay on the data than
in (B), but are still more general than (CK). Stability of
(B2) is implied by (B), but more can be retrieved from
null infinity due to stronger decay of the data. In (CK)
as well as in the more general (B2) ordinary and null
memory can be computed and are of electric type, mag-
netic memory does not occur. In (B) some quantities
have non-trivial limits at null infinity and corresponding
structures are obtained, whereas others do not have any
limits. Due to the very general setting, a crucial integral
in the memory formula diverges. Thus, no finite memory
in the case (B). More can be said: even though null infin-
ity is too rough to extract this information on memory,

a crucial local relation shows that the magnetic part of
the curvature that would be related to magnetic mem-
ory has to decay in the optical function u. The weighted
Sobolev norms to control the data in all these cases are
very different.
The proofs of stability, [19], [4], [5], [6], are mathe-

matically involved and rely on the investigation of ana-
lytic and geometric structures of solutions of the Einstein
equations. In this paper, we build on these results to
show that gravitational memory is of electric type only.
For the purpose of this article we do not need the meth-
ods that led to these results but make use of their physical
relevance. Here, we give a self-contained description of
these spacetimes from which we derive our new results in
a straightforward way.

II. EQUATIONS AND SPACETIME
STRUCTURES

We consider the Einstein vacuum equations

Rµν = 0 , (1)

for µ, ν = 0, 1, 2, 3.
(M, g) denotes our solution spacetimes. We denote by

t a maximal time function and by u the optical function,
Ht will be the spacelike slices given by the t-foliation and
Cu the outgoing null hypersurfaces of the u-foliation. We
denote the corresponding intersection by St,u = Ht∩Cu.
Quantities with a bar refer to Ht. For now, the zero-
coordinate will be the time-coordinate, and indices 1, 2, 3
refer to spatial coordinates.
The Weyl tensor Wαβγδ is decomposed into its electric

and magnetic parts, which are defined by

Eab := Watbt (2)

Hab :=
1
2ǫ

ef
aWefbt (3)

Here ǫabc is the spatial volume element and is related
to the spacetime volume element by ǫabc = ǫtabc. The
electric part of the Weyl tensor is the crucial ingredient in
the equation governing the distance between two objects
in free fall. In particular, their spatial separation ∆xa is

d2∆xa

dt2
= −Ea

b∆xb (4)

In order to solve the initial-value problem for the Ein-
stein vacuum equations, we have to specify initial data.
We are going to consider three large classes of initial data
yielding corresponding classes of spacetimes.

Definition 1 (Christodoulou-Klainerman (CK), [19])
(SAFCK) We define a strongly asymptotically flat ini-
tial data set in the sense of [19] and in the following
denoted by SAFCK initial data set, to be an initial data
set (H, ḡ, k), where ḡ and k are sufficiently smooth and
there exists a coordinate system (x1, x2, x3) defined in a
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neighborhood of infinity such that,
as r = (

∑3
i=1(x

i)2)
1

2 → ∞, ḡij and kij are:

ḡij = (1 +
2M

r
) δij + o4 (r−

3

2 ) (5)

kij = o3 (r−
5

2 ) , (6)

where M denotes the mass.

In their work, weighted Sobolev norms of appropriate
energies are assumed to be controlled. This induces the
above class of initial data.

Definition 2 (Bieri (B), [4], [5]) (AFB) We define
an asymptotically flat initial data set to be a AFB
initial data set, if it is an asymptotically flat ini-
tial data set (H0, ḡ, k), where ḡ and k are sufficiently
smooth and for which there exists a coordinate system
(x1, x2, x3) in a neighborhood of infinity such that with

r = (
∑3

i=1(x
i)2)

1

2 → ∞, it is:

ḡij = δij + o3 (r−
1

2 ) (7)

kij = o2 (r−
3

2 ) . (8)

Here, other weighted Sobolev norms of appropriate ener-
gies are assumed to be controlled, yielding this class of
initial data.
As a consequence from imposing less conditions on the

data in (B), the spacetime curvature is not in L∞(M),
as opposed to (CK). (B) only controls one derivative of
the curvature (Ricci) in L2(H).
Moreover, in [4], [5], energy and linear momentum are

well-defined and conserved, whereas the (ADM) angular
momentum is not defined. This is different to the situ-
ation investigated in [19], where all these quantities are
well-defined and conserved.
We work with the null frame e4, e3, e2, e1. That is, e4

and e3 form a null pair which is supplemented by eA, A =
1, 2, a local frame field for St,u = Ht ∩ Cu. Given this
null pair, e3 and e4, we can define the tensor of projection
from the tangent space of M to that of St,u.

Πµν = gµν +
1

2
(eν4e

µ
3 + eν3e

µ
4 ).

Denote by N the outward unit normal vector of St,u in
Ht and by T the future-directed unit normal to Ht. Then
we see that e3 = T − N is an incoming null vectorfield,
and e4 = T + N an outgoing null vectorfield. We will
make use of N = a−1 ∂

∂u with lapse a = |∇u|−1. To de-
note operators on the surfaces St,u we use a slash, thus
div/ , curl/ are the corresponding divergence and curl oper-
ators, respectively. For a p-covariant tensor field t that is
tangent to S we denote by D4t and D3t the projections
to S of the Lie derivatives Le4 t, respectively Le3t.

Definition 3 We define the null components of the Weyl

curvature W as follows:

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ eγ3 eδ3 (9)

β
µ
(W ) =

1

2
Π ρ

µ Wρσγδ eσ3 eγ3 eδ4 (10)

ρ (W ) =
1

4
Wαβγδ eα3 eβ4 eγ3 eδ4 (11)

σ (W ) =
1

4
∗Wαβγδ eα3 eβ4 eγ3 eδ4 (12)

βµ (W ) =
1

2
Π ρ

µ Wρσγδ eσ4 eγ3 eδ4 (13)

αµν (W ) = Π ρ
µ Π σ

ν Wργσδ eγ4 eδ4 . (14)

As we are dealing with the Einstein vacuum equations,
the Riemannian curvature tensor Rαβγδ is identically the
Weyl curvature tensor Wαβγδ.
Thus we have the following with the capital indices

taking the values 1, 2:

RA3B3 = αAB (15)

RA334 = 2 β
A

(16)

R3434 = 4 ρ (17)
∗R3434 = 4 σ (18)

RA434 = 2 βA (19)

RA4B4 = αAB (20)

with
α, α : S-tangent, symmetric, traceless tensors
β, β : S-tangent 1-forms
ρ, σ : scalars .

Let τ2
−

= 1 + u2 and r(t, u) is the area radius of the
surface St,u.

The proof by Christodoulou and Klainerman in [19],
thus for situation (CK), yields the decay behavior:

α(W ) = O (r−1 τ
−

5

2

−
)

β(W ) = O (r−2 τ
−

3

2

−
)

ρ(W ) = O (r−3)

σ(W ) = O (r−3 τ
−

1

2

−
)

α(W ), β(W ) = o (r−
7

2 )

The proof by the present author in [4, 5], thus for sit-
uation (B), yields the decay behavior:

α = O (r−1 τ
−

3

2

−
)

β = O (r−2 τ
−

1

2

−
)

ρ, σ, α, β = o (r−
5

2 )

The shears χ̂, χ̂ with respect to the null vectorfields
e4 and e3 generating the corresponding outgoing, respec-
tively incoming null hypersurfaces (“light cones”) are the
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traceless parts of the second fundamental forms defined
as follows: Let X,Y be arbitrary tangent vectors to St,u

at a point in this surface. Then the second fundamental
forms are defined to be

χ(X,Y ) = g(∇Xe4, Y ) χ(X,Y ) = g(∇Xe3, Y ).

The shears satisfy the following equations on St,u.

div/ χ̂ = β + χ̂ · ζ +
1

2
(∇/ trχ− trχζ) (21)

div/ χ̂ = −β − χ̂ · ζ +
1

2
(∇/ trχ+ trχζ) (22)

where ζ denotes the torsion-one-form.

III. SCRI

Along the null hypersurfaces Cu as t → ∞, it is true
in both cases (CK) as well as (B) that

lim
Cu,t→∞

(rtrχ) = 2, lim
Cu,t→∞

(
rtrχ

)
= −2

(23)

A. Situation (CK)

On any null hypersurface Cu, the normalized curvature
components rα, r2β, r3ρ, r3σ, have limits as t → ∞, in
particular

lim
Cu,t→∞

rα = A (u, ·) ,

lim
Cu,t→∞

r2β = B (u, ·)

lim
Cu,t→∞

r3ρ = P (u, ·) ,

lim
Cu,t→∞

r3σ = Q (u, ·)

with A a symmetric traceless covariant 2-tensor, B a 1-
form and P , Q functions on S2 depending on u. Denote
by P , respectively Q, the mean values of P , respectively
Q, on S2. The following decay properties hold:

|A (u, ·)| ≤ C (1 + |u|)−5/2

|B (u, ·)| ≤ C (1 + |u|)
−3/2

∣∣P (u, ·)− P (u)
∣∣ ≤ C (1 + |u|)

−1/2

∣∣Q (u, ·)−Q (u)
∣∣ ≤ C (1 + |u|)

−1/2

From the structure equations one has,

∇/ N χ̂ =
1

2
α+ l.o.t. (24)

∇/ N χ̂ =
1

4
trχχ̂ + l.o.t. (25)

Taking into account that far away from the source,
namely on each Cu as t → ∞ the lapse a tends to 1,
the following holds at large distances from the source of
the radiation:

∂

∂u
χ̂ =

1

2
α+ l.o.t. (26)

∂

∂u
χ̂ =

1

4
trχχ̂+ l.o.t. (27)

On the null hypersurface Cu, the shear r2χ̂ (as well as
the normalized shear) has a limit as t → ∞:

lim
Cu,t→∞

r2χ̂ = Σ(u, ·)

with Σ being a symmetric traceless covariant 2-tensor on
S2 depending on u.

−
1

2
lim

Cu,t→∞

rχ̂ = lim
Cu,t→∞

rη̂ = Ξ(u, ·)

with Ξ being a symmetric traceless 2-covariant tensor on
S2 depending on u and having the decay property

|Ξ (u, ·)|◦
γ
≤ C (1 + |u|)

−3/2
.

Moreover, the following relations hold (as a consequence
of equations (26) and (27) and the asymptotic properties
of the spacetimes):

∂Ξ

∂u
= −

1

4
A (28)

∂Σ

∂u
= −Ξ. (29)

B. Situation (B)

On any null hypersurface Cu, the following limits are
attained:

lim
Cu,t→∞

rα = A(u, ·) , (30)

lim
Cu,t→∞

r2β = B(u, ·) , (31)

with

|A(u, ·)| ≤ c(1 + |u|)−
3

2 , (32)

|B(u, ·)| ≤ c(1 + |u|)−
1

2 . (33)

Moreover, from (21) it follows that the next relation
holds even in this general case:

B = −2div/ Ξ (34)

IV. GRAVITATIONAL RADIATION

Working with the asymptotics of the situation in
(CK), proven by Christodoulou and Klainerman in [19],
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Christodoulou derives in [18] the null and ordinary mem-
ory. The details for Christodoulou’s work are given in
[18] and the asymptotic ingredients are derived in the
last chapter of [19].

From the asymptotics of the situation (B), proven by
the present author in [4], [5], it follows that the mem-
ory integral diverges. We will consider a third situation
treated by the present author in [6] and call it (B2). This
is more general than (CK) but has more decay than (B)
and a finite memory can be computed.

In (B), due to the slow decay of the data, a certain in-
tegral in u diverges that is the heart to compute memory.
In view of this, note that the null limit of the r−1 piece
of the curvature behaves like in (32). Integrating w.r.t. u
twice gives a growth in u. Other important quantities do
not have limits at null infinity. In particular, the shear χ̂
does not have a null limit. For these reasons, the memory
formula at null infinity cannot be finite. (B) is an inter-
esting borderline case in many ways: First, error terms
have to be controlled in order to establish the stability
result, many of which would diverge if the decay of the
initial data were to be relaxed by a small epsilon. These
are the borderline error estimates. Second, at null infin-
ity we encounter different behavior for many interesting
quantities. However, the Bondi energy is finite and non-
negative. The integral over u of the news tensor in the
energy formula is finite but borderline.

In order to further investigate the nature of gravita-
tional wave memory, let us consider (B2) that lies be-
tween (CK) and (B). Thus, stability of such systems is
implied by the result (B), but the asymptotics are dif-
ferent and more information can be retrieved from this
situation. The data for (B2) are as follows: In definition
2 above replace the data by the following

ḡij = δij + lij + o3 (r−
3

2 ) (35)

kij = o2 (r−
5

2 ) , (36)

with lij being homogeneous of degree −1, that is
non-isotropic. Again, these are consequences of other
weighted Sobolev norms to be controlled. In particular,
it follows from an analysis of the Einstein equations to-
gether with the Bel-Robinson energies controlled in (B2)
that the most important curvature components as well
as the shears χ̂ and χ̂ reach finite limits at null infinity.
Consequently, all the terms in the memory formula are
finite and the computation of memory is straightforward.

Also note that relations (28)-(29) still hold for (B2).

Thus, we have introduced three classes of spacetimes
for which stability proofs have been established. We are
going to investigate their structures to derive insights on
the nature of gravitational memory.

Next, we will explain what happens in the situations
(B) and (B2) and compare these to (CK).

In all these situations, we can derive the following (div/ -
curl/ ) system on St,u for the torsion 1-form ζ. Here, µ

denotes the conjugate mass aspect function.

curl/ ζ = σ −
1

2
χ̂ ∧ χ̂ (37)

div/ ζ = µ+ ρ−
1

2
χ̂ · χ̂ (38)

Note that ρ is the component ENN of the electric part
of the Weyl tensor, and σ the HNN -component of the
magnetic part. Whereas in the situation of (CK) and
(B2) this system (multiplied by r3) has well-defined limits
at null infinity, in the situation of (B) that is not the

case, because the leading order behavior is r−
5

2 . Thus
we cannot directly work with these. However, something
else can be done and the system’s lower order terms can
be investigated more closely.
The following different treatment works for all three

cases (B), (B2) and (CK).
Consider the highest order terms in the Bianchi equa-

tions for β
3
in (39) and ρ3 in (40). Note that in [19], [4],

[5], [6] the full equations are used and β
3
as well as ρ3

involve lower order terms, whereas in the following it is
simply β

3
= D3β and ρ3 = D3ρ.

β
3

= −div/ α (39)

ρ3 = −div/ β −
1

2
χ̂ · α (40)

For all (B), (B2) and (CK), (39) is O(r−2). The situation
is different for (40). In (CK) and (B2) all the terms in
(40) are O(r−3). In (B) we have for (40)

ρ3 = − div/ β
︸ ︷︷ ︸

=O(r−3)

−
1

2
χ̂ · α

︸ ︷︷ ︸
=O(r−

5

2 u−
3

2 )

A short computation shows that

ρ3 = − div/ β
︸ ︷︷ ︸

=O(r−3)

−
∂

∂u
(χ̂ · χ̂)

︸ ︷︷ ︸
=O(r−

5

2 u−
3

2 )

+
1

4
trχ|χ̂|2

︸ ︷︷ ︸
=O(r−3)

Thus

ρ3 +
∂

∂u
(χ̂ · χ̂) = −div/ β +

1

4
trχ|χ̂|2 = O(r−3)

Then we multiply this equation by r3 and take the limit
as t → ∞ on Cu. We call Ll the corresponding limit on
the left hand side and obtain the asymptotic equation

Ll = −div/ B + 2|Ξ|2 (41)

Ll is a function on S2 consisting of terms depending on
u. Integrating with respect to u, noting that the contri-
bution to Ll from the shears goes to zero as |u| → ∞.
The resulting term after integration we denote by P . In
the cases (CK) and (B2) we obtain

− (P+−P−) = −div/

∫ +∞

−∞

B du +

∫ +∞

−∞

|Ξ|2 du (42)
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where all the terms are well defined and finite. In the
situation (B), if one takes the integral with respect to u
of equation (41), then the integral of the first term on
the right hand side diverges, the integrand being of order
|u|−

1

2 . The integral of the last term on the right hand
side is finite, in fact it is borderline. Next, we consider
the cases (CK) and (B2). From (42) we compute the null
as well as the ordinary memory of gravitational waves as
follows. Using (34) as well as relations (28) and (29), we
have

div/ div/ (Σ− −Σ+) = (P− − P+) −

∫ +∞

−∞

|Ξ|2du (43)

On S2 we define the function

F =
1

2

∫ +∞

−∞

|Ξ|2du (44)

Then F
4π is the total energy radiated to infinity per unit

solid angle in a given direction. We also obtain the Bondi
mass loss formula in a straightforward manner where |Ξ|2

is integrated over S2. From (39) we obtain

B(u) = −div/

∫ u

−∞

A(u′) du′

From the Bianchi equation

σ3 = −curl/ β −
1

2
χ̂ · ∗α+ · · · (45)

and the properties of the terms involved as
|u| → ∞ we have

curl/

∫
∞

−∞

B du = 0

We find that there exists a function Φ such that

div/ (Σ− − Σ+) = ∇/ Φ (46)

div/ div/ (Σ− − Σ+) = △/ Φ

= (P − P̄ )− − (P − P̄ )+

−2(F − F̄ ) (47)

where barred quantities denote mean value on S2. Φ
has vanishing mean on S2 and its projection to the first
eigenspace of △/ on S2 is zero, which are precisely the
intergrability conditions for the system. Thus, by Hodge
theory we solve the system. Through the geodesic devi-
ation equation and relations (28) and (29) the quantity
(Σ− − Σ+) in (47) multiplied by a factor including the
initial distance of the test masses encodes the perma-
nent displacement of test masses given by the ordinary
and the null memory, giving the well-known memory for-
mula. Note that we use a different convention for the
optical scalar u than in [19] that leads to opposite signs.
Thus the solution of ((46), (47)) gives the electric parity
memory. This is consistent with the results of [18] for
spacetimes with fall-off properties as in (CK). For both

classes of spacetimes (CK) and (B2) the memory given
by ((46), (47)) has two parts, namely the null memory
sourced by F and the ordinary memory sourced by P .
For the Einstein vacuum equations F is given by (44),
and P is the null limit of r3ρ as explained above.
Equations ((46)-(47)) can also be obtained using the

system ((37)-(38)) for the torsion-1-form ζ. This was
done by D. Christodoulou in [18] for spacetimes of type
(CK). In particular, the computation uses the relation
between Σ and Z for the left hand side as well as the
relation between the null limit of the conjugate mass as-
pect function µ and the shear at null infinity Ξ. We will
make use of that in the following part.
What about magnetic parity memory? In order to an-

swer this question, we investigate the Bianchi equations
again and focus on the highest order terms in the equa-
tion for σ3 as follows. Recall (45). Integrating with re-
spect to u from −∞ to +∞ and taking into account the
behavior of the terms involved, this yields

curl/

∫
∞

−∞

β du = 0

For (B) the same problem occurs, namely that the main
components do not have limits at null infinity. Therefore,
the information cannot be retrieved in this case. Let us
focus on (B2). As this can be treated easily with the
system ((37)-(38)) we consider this now. We recall:

curl/ ζ = σ −
1

2
χ̂ ∧ χ̂

div/ ζ = µ+ ρ−
1

2
χ̂ · χ̂

Denote limCu,t→∞ r3σ = Q and limCu,t→∞ r3ρ = P .
From the result (B2) it follows that these equations mul-
tiplied by r3 have well-behaved limits at null infinity.
When integrating the limits on S2 we obtain the mean
values. It turns out that P̄ has (different) nonzero val-
ues for u → ∞ respectively, u → −∞, but Q̄ → 0 for
|u| → ∞.
We use the fact that from this system we can directly

derive ((46)-(47)) and solve it to obtain the memory for-
mula. (See above.)
We recall that ρ is the electric and σ the magnetic part

of the Weyl tensor in these equations. Consider equation
(37) with the magnetic part σ. The first thing to notice
is that there is no term that would contribute to null
memory. The second observation is that if there were
ordinary memory of magnetic type, then Q should have
non-vanishing and different limits as u → −∞ respec-
tively u → ∞ much like we find it for P in the equation
for electric parity memory. That is not the case because
Q, respectively σ, decays in u for large |u|.
The crucial observation of the system ((37)-(38)) is,

that in all 3 cases (B), (B2) and (CK) the shear χ̂ de-
cays in u. In the borderline case, (B), we have χ̂ =

O(r−1u−
1

2 ). In (B2) it is χ̂ = O(r−1u−
3

2 ). For (B2) and

(CK) multiply equations ((37)-(38)) by r3 and take its
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limits at null infinity. Then their mean values on the
sphere S2 at infinity are computed to be

Q̄ = −Σ ∧ Ξ (48)

P̄ = −M− Σ · Ξ (49)

where M is the limit of the conjugate mass aspect func-
tion µ, namely M = limCu,t→∞ r3µ. Moreover, we have

M = 2MB with MB denoting the Bondi mass. It also
follows that M tends to limits M → M+ as u → ∞ and
M → M− as u → −∞, and we have M−−M+ = −2F .
With the decay in u of the shear term Ξ it follows from
(48) that for all spacetimes of type (B2) or (CK) Q̄ → 0
as |u| → ∞. For the spacetimes of type (CK) it is a direct
consequence from [19], namely from the control of the en-
ergy using rotational vectorfields, that the magnetic cur-
vature component σ, respectively its null limit Q decays
in u as |u| → ∞. It follows that (Q−Q̄)+ = (Q−Q̄)− = 0.
Now, the spacetimes of type (B2), see (35)-(36), are more
general involving the non-isotropic term hij in the metric.
From [6] it follows that the behavior of ρ and therefore
its limit P is different than in the situation (CK), but it
does give the non-trivial limits as |u| → ∞ and an elec-
tric memory as described above. However, it also follows
from [6] that σ and therefore its null limit Q do decay in
u as |u| → ∞. To see this, consider the following demon-
stration: As we do not have the rotational symmetry in
this case, the decay of σ follows from its relation to k. In
particular, we have for Einstein-vacuum spacetimes on
each spacelike hypersurface Ht

(curl k)lm = Hlm (50)

where H is the magnetic part of the Weyl curvature as
defined in (3), and k behaving as in (36). Note that we
can decompose this equation into its parts tangential to
and orthogonal to the surfaces St,u, but the full details
are not needed right now. The NN -component of equa-
tion (50) reads

(curl k)NN = σ (51)

Now, we recall the initial data for the (B2) spacetimes,
in particular the decay of k at spatial infinity as required
by (36). It is shown in [6] that this behavior is preserved
under the evolution by the Einstein equations. Thus,
from the fall-off of k in (36) and equation (51) it follows
directly that σ and therefore also its limit Q decay in u
as |u| → ∞ for spacetimes (B2). Moreover, (Q − Q̄)+ =
(Q − Q̄)− = 0 for (B2). As a consequence, there cannot
be any ordinary memory of magnetic type either.
Even for spacetimes of type (B) with very slow fall-

off where the null limits of σ, respectively ρ do not exist,
looking at equations ((37)-(38)) and the properties of the
quantities involved, we conclude that σ̄ decays in u.
We conclude that magnetic parity memory does not

exist in all these situations.

General Remark: When assuming the smallness
conditions, all the mass will be radiated away and there

will be no ordinary memory, only null memory. As the
null asymptotic behavior is largely independent from the
smallness of the data, we can work with large data. In
a typical merger of two black holes or neutron stars the
objects will radiate away mass and momenta. And the
final object will be left with the remaining mass and mo-
menta. In these cases, we find null memory and ordinary
memory. All memory is of electric parity only.

V. STRESS-ENERGY

Finally, we say a few words about stress-energy if the
Einstein equations are coupled to another system. If
“regular” matter or energy is coupled to the Einstein
equations, then stress-energy terms appear in the Hodge
system above, but only the electric part contributes to
memory.
Note that for the general Einstein equations coupled to

a common matter or energy field, the analog of equation
(50) reads

(curl k)lm = Hlm +
1

2
ǫ j
lm R0j (52)

where via the Einstein equations the Ricci tensor on the
right hand side is given by the stress-energy under con-
sideration. However, the NN -component is still given by
(51).
An interesting example of a stress-energy that would

be “unusual” was put forward by R. Wald and G.
Satishchandran (personal communication), whereas null
magnetic memory does not occur, this example suggests
a magnetic ordinary memory.

VI. ASYMPTOTICALLY-FLAT VERSUS
COSMOLOGICAL SPACETIMES

The treatment above has been for asymptotically flat
systems. From our results [13, 14] it follows directly that
also in the common cosmological settings gravitational
wave memory has null and ordinary memory coming from
the ρ-equation only. Thus, there is electric parity only.

VII. CONCLUSIONS

We showed that it is an intrinsic feature of large classes
of solutions of the Einstein equations describing the phys-
ical world that gravitational wave memory is of electric
parity, that is, magnetic parity memory does not occur.
This holds for the Einstein vacuum equations as well as
it includes all known types of matter or energy, that pro-
duce a memory.
General relativity has enjoyed considerable leaps for-

ward in the last decades on all its frontiers, combining
new insights from physics, astrophysics and mathemat-
ics. Recent experiments and observations have opened
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the gate to new physical data and new methods in mathe-
matics, in particular in geometric analysis and numerical
relativity, have made it possible to answer burning ques-
tions. In particular, the LIGO/Virgo detections mark
the beginning of a new era where we gain information
from the universe directly rather than via electromag-
netic waves. Making full use of all these resources and
combining the various techniques from different fields,
ranging from experiment to pure mathematics, will be

essential to solve the challenging problems in the future.
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