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We propose a novel method to test the consistency of the multipole moments of compact binary systems with
the predictions of General Relativity (GR). The multipole moments of a compact binary system, known in terms
of symmetric and trace-free tensors, are used to calculate the gravitational waveforms from compact binaries
within the post-Newtonian (PN) formalism. For nonspinning compact binaries, we derive the gravitational wave
phasing formula, in the frequency domain, parametrizing each PN order term in terms of the multipole moments
which contribute to that order. Using GW observations, this parametrized multipolar phasing would allow us to
derive the bounds on possible departures from the multipole structure of GR and hence constrain the parameter
space of alternative theories of gravity. We compute the projected accuracies with which the second generation
ground-based detectors, such as Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), the
third generation detectors such as Einstein Telescope and Cosmic Explorer, as well as space-based detector Laser
Interferometer Space Antenna (LISA) will be able to measure these multipole parameters. We find that while
Advanced LIGO can measure the first two or three multipole coefficients with good accuracy, Cosmic Explorer
and Einstein Telescope may be able to measure the first four multipole coefficients which enter the phasing
formula. Intermediate mass ratio inspirals, with mass ratio of several tens, in the frequency band of planned
space-based LISA mission should be able to measure all the seven multipole coefficients which appear in the
3.5PN phasing formula. Our finding highlights the importance of this class of sources for probing the strong-field
gravity regime. The proposed test will facilitate the first probe of the multipolar structure of Einstein’s general
relativity.

I. INTRODUCTION

The discovery of binary black holes [1–4] and binary neu-
tron stars [5] by Advanced LIGO [6] and Advanced Virgo [7]
have been ground breaking for several reasons. Among the
most important aspects of these discoveries is the unprece-
dented opportunity they have provided to study the behavior
of gravity in the highly nonlinear and dynamical regime as-
sociated with the merger of two black holes (BHs) or two
neutron stars (see Refs. [8, 9] for reviews). The gravitational
wave (GW) observations have put stringent constraints on the
allowed parameter space of alternative theories of gravity by
different methods [3, 10, 11]. They include the parametrized
tests of post-Newtonian theory [12–18], bounding the mass of
the putative graviton and dispersion of GWs [19, 20], testing
consistency between the inspiral and ringdown regimes of the
coalescence [21] and the time delay between the GW and elec-
tromagnetic signals [22]. Furthermore, the bounds obtained
from these tests have been translated into bounds on the free
parameters of certain specific theories of gravity [23].

With improved sensitivities of Advanced LIGO and Virgo
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in the upcoming observing runs, the development of third
generation detectors such as the Einstein Telescope (ET) [24]
and Cosmic Explorer (CE) [25] and the approval of funding for
the space-based mission LISA [26], the field of gravitational
astronomy promises to deliver exciting science returns. In
addition to stellar-mass compact binaries, future ground-based
detectors, such as ET and CE, can detect intermediate mass
black holes with a total mass of several hundreds of solar mass.
Such observations will not only confirm the existence of BHs
in this mass range (see [27, 28] for reviews), but also facilitate
several new probes of fundamental physics via studying their
dynamics [29–32]. One of the most prominent, among these,
are those using intermediate mass ratio inspirals, which will
last longer (compared to the equal mass binaries), and hence
an accurate probe of the compact binary dynamics and the BH
nature of the central compact object [31, 33].

Space-based LISA mission, on the other hand, will be sensi-
tive to milli-Hertz GWs produced by the inspiral and merger
of supermassive BH binaries in the mass range ∼ 104-107M�.
These sources may also have a large diversity in the mass
ratios ranging from comparable mass (mass ratio . 10) and
intermediate mass ratios (mass ratio & 100) to extreme mass
ratios (mass ratio & 106) where a stellar mass BH spirals into
the central supermassive BH with several millions of solar
masses [34, 35]. This diversity together with the sensitivity
in the low frequency window makes LISA a very efficient
probe of possible deviations from GR in different regimes of
dynamics (see [8, 36–38] for reviews).
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Setting stringent limits on possible departures from GR as
well as constraining the parameter space of exotic compact ob-
jects that can mimic the properties of BH [39–46], are among
the principle science goals of the next generation detectors.
They should also be able to detect any new physics, or modifi-
cation to GR, if present.

Formulating new methods to carry out such tests is crucial
in order to efficiently extract the physics from GW observa-
tions. Dynamics of a compact binary system is conventionally
divided to adiabatic inspiral, rapid merger and fast ringdown.
During the inspiral phase the orbital time scale is much smaller
than the radiation back-reaction time scale. Post-Newtonian
(PN) approximation to GR has proved to be a very effective
method to describe the inspiral phase of a compact binary of
comparable masses [47]. Description of the highly nonlinear
phase of the merger of two compact objects needs numerical
solutions to the Einstein’s equations [48]. The ringdown radia-
tion of GWs by the merger remnant, can be modelled within
the framework of BH perturbation theory [49]. In alternative
theories of gravity, the dynamics of the compact binary dur-
ing these phases of evolution could be quite different from
that predicted by GR. Hence observing GWs is the best way
to probe the presence of non-GR physics associated with the
phenomenon.

One of the most generic tests of the binary dynamics has
been the measurement of the PN coefficients of the GW phas-
ing formula [12–16, 50, 51]. This test captures a possible
departure from GR by measuring the PN coefficients in the
phase evolution of the GW signal. In addition to the source
physics, the different PN terms in the phase evolution contain
information about different nonlinear interaction the wave un-
dergoes as it propagates from the source to the detector. Hence
the predictions for these effects in an alternative theory of grav-
ity could be very different from that of GR, which is what is
being tested using the parametrized tests of PN theory.

In this work, we go one step further and propose a novel
way to test the multipolar structure of the gravitational field of
a compact binary as it evolves through the adiabatic inspiral
phase. The multipole moments of the compact binary (and
interactions between them), are responsible for the various
physical effects we see at different PN orders. By measuring
these effects we can constrain the multipolar structure of the
system. The GW phase and frequency evolution is obtained
from the energy flux of GWs and the conserved orbital energy
by using the energy balance argument, which equates the GW
energy flux F to the decrease in the binding energy Eorb of the
binary [52]

F = −
d
dt

Eorb. (1.1)

In an alternative theory of gravity, one or more multipole
moments of a binary system may be different from those of
GR. For instance, in Ref. [53], the authors discuss how effec-
tive field theory-based approach can be used to go beyond
Einstein’s gravity by introducing additional terms to the GR
Lagrangian which are higher order operators constructed out
of Riemann tensor, but suppressed by appropriate scales com-
parable to curvature of the compact binaries. They find that

such generic modifications will lead to multipole moments of
compact binaries that are different from GR. Our proposed
method aims to constrain such generic extensions of GR by
directly measuring multipole moments of the compact binaries
through GW observations.

In this work, we assume that the conserved orbital energy of
the binary is the same as in GR and modify the gravitational
wave flux by deforming the multipole moments which con-
tribute to it by employing the multipolar post-Minkowskian
formalism [47, 52]. We then re-derive the GW phase and
its frequency evolution (sometimes referred to as the phasing
formula) explicitly in terms of the various deformed multi-
pole moments (In the appendix we provide a more general
expression for the phasing where the conserved energy is also
deformed at different PN orders, in addition to the multipole
moments of the source.). We use this parameterized multipolar
phasing formula to measure possible deviations from GR and
discuss the level of bounds we can expect from the current
and next generation ground-based GW detectors, as well as
the space-based LISA detector. We obtain measurement accu-
racy of the system’s physical parameters and the deformation
of the multipole moments using the semi-analytical Fisher
information matrix [54, 55]. These results are validated for
several configurations of the binary system by Markov Chain
Monte Carlo (MCMC) sampling of the likelihood function
using emcee [56] algorithm.

We find that Advanced LIGO-like detectors can constrain at
most two of the leading multipoles, while a third generation
detector, such as ET or CE, can set constraints on as many as
four of the leading multipoles. The space-based LISA detector
will have the ability to set good limits on all the seven multipole
moments that contribute to the 3.5PN phasing formula, making
it a very accurate probe of the highly nonlinear dynamics of
compact binaries.

The organization of the paper is as follows. In Sec. II we de-
scribe the basic formalism to obtain the parametrized multipo-
lar GW phasing formula. In Sec. III we briefly explain the two
parameter estimation schemes (Fisher information matrix and
Bayesian inference) used in our analysis, followed by Sec. IV
where we discuss the results we obtained for various ground-
based and space-based detectors. Section V summarizes the
paper and lists some of the follow-ups we are pursuing.

II. PARAMETRIZED MULTIPOLAR GRAVITATIONAL
WAVE PHASING

The two-body problem in GR can be solved perturbatively
using PN theory in the adiabatic regime, where the orbital time
scale is much smaller than the radiation back-reaction time
scale (see Ref. [47] for a review). The PN theory has given
us several useful insights about various facets of the two-body
dynamics and the resulting gravitational radiation.

In the Multipolar post-Minkowskian (MPM) formalism [52,
57–67], the important quantities such as the gravitational wave-
form, energy and angular momentum fluxes can be expressed
using a combination of post-Minkowskian approximation (ex-
pansion in powers of G, the Newton’s gravitational constant,
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valid throughout the spacetime for weakly gravitating sources),
PN expansions (an expansion in 1/c that is valid for slowly
moving and weakly gravitating sources and applicable in the
near zone of the source) and multipole expansion of the grav-
itational field valid all over the region exterior to the source.
Coefficients of post-Minkowskian expansion and the multipole
moments of the source can be further expanded as a PN series.
Multipole expansion of the gravitational field plays a central
role in the analytical treatment of the two-body problem as it
significantly helps to handle the nonlinearities of Einstein’s
equations.

The MPM formalism relates the radiation content in the far-
zone (at the detector) to the stress-energy tensor of the source.
The quantities in the far-zone are described by mass- and
current-type radiative multipole moments {UL,VL}whereas the
properties of the source are completely described by the mass-
and current-type source multipole moments {IL, JL} and the
four gauge moments {WL, XL,YL,ZL} all of which are the mo-
ments of the relativistic mass and current densities expressed
as functionals of the stress-energy pseudo-tensor of the source
and gravitational fields. However, in GR, there is further gauge
freedom to reduce this set of six source moments to a set of two
“canonical” multipole moments {ML, S L}. The relations con-
necting these two sets of multipole moments can be found in
Eqs. (97) and (98) of [47]. Furthermore, the mass- and current-
type radiative multipole moments {UL,VL} admit closed-form
expressions in terms of {ML, S L}.

The source and the canonical multipole moments are usually
expressed using the basis of symmetric trace-free tensors [68].
The relationships between the radiative and the source type
multipole moments incorporate the various non-linear interac-
tions between the various multipoles, such as tails [52, 69, 70],
tails-of tails [71], tail-square [72], memory [73–76], . . . , as the
wave propagates from the source to the detector (see ref. [47]
for more details).

For quasi-circular inspiral, the PN expressions for orbital
energy and the energy flux, together with the energy balance ar-
gument is used in the computation of the GW phasing formula
at any PN order [52, 67, 77, 78]. The PN terms in the phasing
formula, hence, explicitly encode the information about the
multipolar structure of the gravitational field of the two-body
dynamics.

In this work, we separately keep track of the contributions
from various radiative multipole moments to the GW flux
allowing us to derive a parametrized multipolar gravitational-
wave flux and phasing formula, thereby permitting tests of
multipolar structure of the PN approximation to GR. We first
re-derive the phasing formula for non-spinning compact bina-
ries moving in quasi-circular orbits up to 3.5 PN order. The
computation is detailed in the next section. Before we pro-
ceed, we clarify that in our notation first post-Newtonian (1PN)
correction would refer to corrections of order v2/c2, where
v = (πm f )1/3 is the characteristic orbital velocity of the binary,
m is the total mass of the binary and f is the orbital frequency.

A. The multipolar structure of the energy flux

The multipole expansion of the energy flux within the MPM
formalism schematically reads as [52, 57]

F =
∑

l

[
αl

cl−2 U(1)
L U(1)

L +
βl

cl V (1)
L V (1)

L

]
, (2.1)

where αl, βl are known real numbers and UL,VL are mass- and
current-type radiative multipole moments with l indices; the
superscript (1) denotes the first time-derivative of the multi-
poles. The UL and VL can be re-written in terms of the source
multipole moments as

UL = M(l)
L + Nonlinear interaction terms, (2.2)

VL = S (l)
L + Nonlinear interaction terms, (2.3)

where the right hand side involves lth time-derivative of the
mass- and current-type source multipole moments and non-
linear interactions between the various multipoles due to the
propagation of the wave in the curved spacetime of the source.
(see [63, 65, 71, 72] for details.) The various types of interac-
tions can be decomposed as follows [52, 65]

F = Finst + Ftail + Ftail2 + Ftail(tail). (2.4)

As opposed to the Finst (a contribution that depends on the
dynamics of the binary at the purely retarded instant of time,
referred to as instantaneous terms), the last three contributions
Ftail, Ftail2 and Ftail(tail) contain nonlinear multipolar interac-
tions in the flux [71] that depend on the dynamical history of
the system, referred to as hereditary contribution.

In an alternative theory of gravity, the multipole moments
may not be the same as in GR; if the mass- and current-type
radiative multipole moments deviate from their GR value by
a fractional amount δUL and δVL, i.e., UL → UGR

L + δUL and
VL → VGR

L + δVL, then we can parametrize such deviations in
the multipoles by considering the scalings

UL → µl UL,

VL → εl VL, (2.5)

where the parameters µl = 1 + δUL/UGR
L and εl = 1 + δVL/VGR

L
are equal to unity in GR.

We first recompute the GW flux from non-spinning binaries
moving in quasi-circular orbit up to 3.5PN order with the
above scaling using the prescription outlined in [52, 64, 65, 67].
With the parameterizations introduced above, the computation
of the energy flux would proceed similar to that in GR but
contribution from every radiative multipole is now separately
kept track of.

In order to calculate the fluxes up to the required PN or-
der, we need to compute the time derivatives of the multipole
moments as can be seen from Eqs. (2.1)-(2.3). These are com-
puted by using the equations of motion of the compact binary
for quasi-circular orbits given by [65, 79]

dv
dt

= −ω2 x, (2.6)
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where the expression for ω, the angular frequency of the binary,
up to 3PN order is given by [66, 78–83]

ω2 =
Gm
r3

{
1 + [−3 + ν] γ +

[
6 +

41
4
ν + ν2

]
γ2

+

[
−10 +

(
22 ln

(
r

r′0

)
+

41π2

64
−

75707
840

)
ν

+
19
2
ν2 + ν3

]
γ3 + O(γ4)

}
, (2.7)

where γ = Gm/rc2 is a PN parameter, r′0 is a gauge dependent
length scale which does not appear when observables, such as
the energy flux, are expressed in terms of gauge independent
variables.

The hereditary terms are calculated using the prescriptions
given in Refs. [52, 65, 70, 84] for tails, Ref. [71] for tails of
tails and Ref. [72] for tail-square. The complete expression for
the energy flux F in terms of the scaled multipoles is given as

F =
32
5

c5v10

G
ν2µ2

2

{
1 + v2

(
−

107
21

+
55
21
ν + µ̂2

3

[
1367
1008

−
1367
252

ν

]
+ ε̂2

2
[

1
36
−
ν

9

])
+ 4πv3 + v4

(
4784
1323

−
87691
5292

ν

+
5851
1323

ν2 + µ̂2
3

[
−

32807
3024

+
3515

72
ν −

8201
378

ν2
]

+ µ̂2
4

[
8965
3969

−
17930
1323

ν +
8965
441

ν2
]

+ ε̂2
2
[
−

17
504

+
11
63
ν −

10
63
ν2

]
+ε̂3

2
[

5
63
−

10
21
ν +

5
7
ν2

])
+ πv5

(
−

428
21

+
178
21

ν + µ̂2
3

[
16403
2016

−
16403
504

ν

]
+ ε̂2

2
[

1
18
−

2
9
ν

])
+v6

(
99210071
1091475

+
16π2

3
−

1712
105

γ −
856
105

log[16v2] +

[
1650941
349272

+
41π2

48

]
ν −

669017
19404

ν2 +
255110
43659

ν3

+µ̂2
3

[
7345
297

−
30103159

199584
ν +

10994153
49896

ν2 −
45311

891
ν3

]
+ µ̂2

4

[
−

1063093
43659

+
20977942

130977
ν −

12978200
43659

ν2

+
1568095

14553
ν3

]
+ µ̂2

5

[
1002569
249480

−
1002569

31185
ν +

1002569
12474

ν2 −
2005138
31185

ν3
]

+ ε̂2
2

[
−

2215
254016

−
13567
63504

ν +
65687
63504

ν2

−
853ν3

5292

]
+ ε̂3

2
[
−

193
567

+
1304
567

ν −
2540
567

ν2 +
365
189

ν3
]

+ ε̂4
2
[

5741
35280

−
5741
4410

ν +
5741
1764

ν2 −
5741
2205

ν3
])

+πv7
(

19136
1323

−
144449

2646
ν +

33389
2646

ν2 + µ̂2
3

[
−

98417
1512

+
55457
192

ν −
344447
3024

ν2
]

+ µ̂2
4

[
23900
1323

−
47800
441

ν

+
23900

147
ν2

]
+ ε̂2

2
[
−

17
252

+
9

28
ν −

13
63
ν2

]
+ ε̂3

2
[
20
63
−

40
21
ν +

20
7
ν2

])}
, (2.8)

where µ̂` = µ`/µ2, ε̂` = ε`/µ2, ν is the symmetric mass ratio
defined as the ratio of reduced mass µ to the total mass m. As
an algebraic check of the result, we recover the GR results of
[65] in the limit µl → 1, εl → 1.

B. Conservative Dynamics of the binary

A model for the conservative dynamics of the binary is also
required to compute the phase evolution of the system. This
enters the phasing formula in two ways. Firstly, the equation
of motion of the binary [79] in the center-of-mass frame is
required to compute the derivatives of the multipole moments
while calculating the energy flux. Secondly, the expression
for the 3PN orbital energy [78, 79] is necessary to compute
the equation of energy balance to obtain the phase evolution
(see Eqs. (2.13)–(2.14) below). As the computation of the
radiative multipole moments require two or more derivative
operations, they are implicitly sensitive to the equation of
motion. Hence, formally, a constraint on the deformation of the
radiative multipole moment does take into account a potential

deviation in the equation of motion from the predictions of
GR.

Here however we assume the conserved energy to be the
same as in GR. This assumption is motivated by practical
considerations. We could have taken a more generic approach
by deforming the PN coefficients in the equation of motion and
conserved energy as well. As the former is degenerate with the
definition of radiative multipole moments, one would need to
consider a parametrized expression for conserved energy which
will give us a phasing formula with four additional parameters
corresponding to the different PN orders in the expression for
conserved energy. Simultaneous estimation of these parameters
with the multipole coefficients would significantly degrade the
resulting bounds and may not yield meaningful constraints.
However, in the appendix, we present a parametrized phasing
formula where in addition to the multipole coefficients, various
PN order terms in the conserved 3PN energy expression is also
deformed (see Eq. (A.2) below). Interestingly, as can be seen
from Eq. (A.2), if there is a modification to the conservative
dynamics, they will be fully degenerate with at least one of the
multipole coefficients appearing at the same order. Due to this



5

degeneracy, such modifications will be detected by this test
as modifications to “effective” multipole moments. Further,
this degeneracy is not accidental. It can be shown that by
differentiating the expression for conserved energy, one can
derive the energy flux by systematically accounting for the
equation of motion, including radiation reaction terms [85, 86].
We are, therefore, confident that the power of the proposed test
is not diminished by this assumption. The conserved energy
(per unit mass) up to 3PN order is given by [66, 78–83]

E(v) = −
1
2
νv2

[
1 −

(
3
4

+
1
12
ν

)
v2 −

(
27
8
−

19
8
ν +

1
24
ν2

)
v4

−

{
675
64
−

(
34445

576
−

205
96

π2
)
ν +

155
96

ν2

+
35

5184
ν3

}
v6

]
. (2.9)

Using the expressions for the modified flux and the orbital
energy we next proceed to compute the phase evolution of the
compact binary.

C. Computation of the parametrized multipolar phasing
formula

With the parametrized multipolar flux and the energy expres-
sions, we compute the 3.5PN, nonspinning, frequency-domain
phasing formula following the standard prescription [87, 88]
by employing the stationary phase approximation (SPA) [89].
Consider a GW signal of the form

h(t) = A(t) cos φ(t). (2.10)

The Fourier transform of the signal will involve an integrand
whose amplitude is slowly varying and phase is rapidly oscillat-
ing. In the SPA, dominant contributions to this integral comes
from the vicinity of the stationary points of its phase [87]. As
a result the frequency domain gravitational waveform may be

expressed as

h̃SPA( f )=
A(t f )√

Ḟ(t f )
ei[ψ f (t f )−π/4] , (2.11)

ψ f (t) = 2π f t − φ(t), (2.12)

where t f can be obtained by solving dψ f (t)/dt
∣∣∣
t f

= 0, F(t) is
the gravitational-wave frequency and at t = t f the GW fre-
quency coincides with the Fourier variable f . More explicitly,

t f = tref + m
∫ vre f

v f

E′(v)
F (v)

dv , (2.13)

ψ f (t f ) = 2π f tref − φref + 2
∫ vre f

v f

(v3
f − v

3)
E′(v)
F (v)

dv,(2.14)

where E′(v) is the derivative of the binding energy of the system
expressed in terms of the PN expansion parameter v. Expand-
ing the factor in the integrand in Eq. (2.14) as a PN series and
truncating upto 3.5PN order, we obtain the 3.5PN accurate
TaylorF2 phasing formula.

We follow the very same procedure, except we use Eq. (2.8)
to be the parametrized flux, F , and together with the leading
quadrupolar order amplitude (related to the Newtonian GW
polarizations), we derive the standard restricted PN waveform
in frequency domain, which reads as

h̃( f ) = A µ2 f −7/6eiψ( f ), (2.15)

with ψ( f ) being the parametrized multipolar phasing, A =

M
5/6
c /
√

30π2/3DL;Mc = (m1m2)3/5/(m1 + m2)1/5 and DL be-
ing the chirp mass and luminosity distance, respectively, and
m1,m2 denote the component masses of the binary. Note the
presence of µ2 in the GW amplitude, this is due to the mass
quadrupole that contributes to the amplitude at the leading PN
order. If we incorporate the higher order PN terms in the GW
polarizations [75, 90, 91], higher order multipoles will enter
the GW amplitude as well.

Finally the expression for 3.5PN frequency domain phasing
ψ( f ) is given by,

ψ( f ) = 2π f tc −
π

4
− φc +

3
128v5µ2

2ν

{
1 + v2

(
1510
189

−
130
21

ν + µ̂2
3

[
−

6835
2268

+
6835
567

ν

]
+ ε̂2

2
[
−

5
81

+
20
81
ν

])
−16πv3 + v4

(
242245
5292

+
4525
5292

ν +
145445

5292
ν2 + µ̂2

3

[
−

66095
7056

+
170935
3024

ν −
403405

5292
ν2

]
+ µ̂2

3ε̂2
2
[
6835
9072

−
6835
1134

ν +
6835ν2

567

]
+ µ̂4

3

[
9343445
508032

−
9343445

63504
ν +

9343445
31752

ν2
]

+ µ̂2
4

[
−

89650
3969

+
179300
1323

ν −
89650

441
ν2

]
+ε̂2

2
[
−

785
378

+
7115
756

ν −
835
189

ν2
]

+ ε̂2
4
[

5
648
−

5
81
ν +

10
81
ν2

]
+ ε̂3

2
[
−

50
63

+
100
21

ν −
50
7
ν2

])
+πv5

(
3 log

[
v

vLSO

]
+ 1

)( 80
189

[
151 − 138ν

]
−

9115
756

µ̂2
3

[
1 − 4ν

]
−

20
27
ε̂2

2
[
1 − 4ν

])
+ v6

(
5334452639

2037420

−
640

3
π2 −

6848
21

γ −
6848

21
log[4v] −

[
7153041685

1222452
−

2255
12

π2
]
ν +

123839990
305613

ν2 +
18300845
1222452

ν3
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+µ̂2
3

[
−

4809714655
29338848

+
8024601785

9779616
ν −

19149203695
29338848

ν2 −
190583245

7334712
ν3

]
+ µ̂2

3ε̂2
2
[
−

656195
95256

+
229475ν

3888

−
3369935ν2

23814
+

82795ν3

1323

]
+ µ̂2

3ε̂2
4
[

6835
108864

−
6835
9072

ν +
6835
2268

ν2 −
6835
1701

ν3
]

+ µ̂2
3ε̂3

2
[
−

34175
7938

+
170875

3969
ν

−
375925

2646
ν2 +

68350
441

ν3
]

+ µ̂2
3µ̂

2
4

[
−

61275775
500094

+
306378875

250047
ν −

674033525
166698

ν2 +
122551550

27783
ν3

]
+µ̂4

3

[
868749005
10668672

−
2313421945

3556224
ν +

191974645
148176

ν2 +
9726205
666792

ν3
]

+ µ̂4
3ε̂2

2
[
9343445
3048192

−
9343445
254016

ν

+
9343445

63504
ν2 −

9343445
47628

ν3
]

+ µ̂6
3

[
12772489315

256048128
−

12772489315
21337344

ν +
12772489315

5334336
ν2 −

12772489315
4000752

ν3
]

+µ̂2
4

[
−

86554310
916839

+
553387330

916839
ν −

289401650
305613

ν2 −
4322750
101871

ν3
]

+ µ̂2
4ε̂2

2
[
−

89650
35721

+
896500
35721

ν

−
986150
11907

ν2 +
358600ν3

3969

]
+ µ̂2

5

[
1002569

12474
−

4010276
6237

ν +
10025690

6237
ν2 −

8020552
6237

ν3
]

+ε̂2
2
[
3638245
190512

−
2842015

31752
ν +

760985
13608

ν2 −
328675
23814

ν3
]

+ ε̂2
2ε̂3

2
[
−

50
567

+
500
567

ν −
550
189

ν2 +
200
63

ν3
]

+ε̂2
4
[
−

265
1512

+
20165
13608

ν −
5855
1701

ν2 +
310
243

ν3
]

+ ε̂2
6
[

5
11664

−
5

972
ν +

5
243

ν2 −
20

729
ν3

]
+ε̂3

2
[
27730
3969

−
179990

3969
ν +

341450
3969

ν2 −
51050
1323

ν3
]

+ ε̂4
2
[
5741
1764

−
11482

441
ν +

28705
441

ν2 −
22964
441

ν3
])

+πv7
(

484490
1323

−
141520

1323
ν +

442720
1323

ν2 + µ̂2
3

[
−

88205
2352

+
63865

252
ν −

182440
441

ν2
]

+ µ̂2
3ε̂2

2
[
54685
9072

−
54685
1134

ν +
54685

567
ν2

]
+ µ̂4

3

[
6835

254016
−

6835
31752

ν +
6835

15876
ν2

]
+ µ̂2

4

[
−

400
3969

+
800
1323

ν −
400
441

ν2
]

+ε̂2
2
[
−

1570
63

+
7220

63
ν −

3760
63

ν2
]

+ ε̂3
2
[
−

400
63

+
800
21

ν −
400
7
ν2

]
+ ε̂2

4
[
10
81
−

80
81
ν +

160
81

ν2
])}

. (2.16)

This parametrized multipolar phasing formula constitutes one
of the most important results of the paper and forms the basis
for the analysis which follows.

D. Multipole structure of the post-Newtonian phasing formula

We summarize in Table I the multipole structure of the PN
phasing formula based on Eq. (2.16). The various multipoles
which contribute to the different PN phasing terms are listed.
The main features are as follows. As we go to higher PN
orders, in addition to the higher order multipoles making an
appearance, higher order PN corrections to the lower order
multipoles also contribute. For example, mass quadrupole and
its corrections (terms proportional to µ2) appear at every PN
order starting from 0PN. The 1.5PN and 3PN log terms contain
only µ2 and are due to the leading order tail effect [70] and
tails of tails effect [71], respectively. The 3PN non-logarithmic
term contains all the seven multipole coefficients.

Due to the aforementioned structure, it is evident that if one
of the multipole moments is different from GR, it is likely to
affect the phasing coefficients at more than one PN order. For

instance, a deviation in µ2 could result in dephasing of each
one of the PN phasing coefficient. There are seven independent
multipole coefficients which determine eight PN coefficients.
The eight equations which relate the phasing terms to the multi-
poles are inadequate to extract all the seven multipoles. This is
because three of the eight equations relate the PN coefficients
only to µ2, and another two relate the 1PN and 2.5PN logarith-
mic terms to a set of three multipole coefficients {µ2, µ3, ε2}.
It turns out that, in principle, by independently measuring the
eight PN coefficients, we can measure all the multipoles except
µ5 and ε4. It is well-known that measuring all the eight phasing
coefficients together provides very bad bounds [12, 13]. The
version of the parametrized tests of Post-Newtonian theory,
where we vary only one parameter at a time [13, 16], cannot
be mapped to the multipole coefficients, as varying multipole
moments will cause more than one PN order to change, which
conflicts with the original assumption.

Though mapping the space of PN coefficients to that of the
multipole coefficients is not possible, it is possible to relate
the multipole deformations to that of the parametrized test. If,
for instance, µ2 is different from GR, it can lead to dephasing
in one or more of the PN phasing terms depending on what
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PN order frequency dependences Multipole coefficients

0 PN f −5/3 µ2

1 PN f −1 µ2, µ3, ε2

1.5 PN f −2/3 µ2

2 PN f −1/3 µ2, µ3, µ4, ε2, ε3

2.5 PN log log f µ2, µ3, ε2

3 PN f 1/3 µ2, µ3, µ4, µ5, ε2, ε3, ε4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ε2, ε3

TABLE I. Summary of the multipolar structure of the PN phasing
formula. Contribution of various multipoles to different phasing coef-
ficients and their frequency dependences are tabulated. Following the
definitions introduced in the paper, µl are associated to the deforma-
tions of mass-type multipole moments and εl refer to the deformations
of current-type multipole moments.

the correction is to the mass quadrupole at different PN orders.
This motivates, based on the multipolar structure, to perform
parametrized tests of PN theory while varying simultaneously
certain PN coefficients1.

III. PARAMETER ESTIMATION OF THE MULTIPOLE
COEFFICIENTS

In this section, we will set up the parameter estimation prob-
lem to measure the multipolar coefficients and present our
forecasts for Advanced LIGO, Einstein Telescope, Cosmic
Explorer and LISA. Using the frequency-domain gravitational
waveform, we study how well the current and future generation
of GW detectors can probe the multipolar structure of GR. To
quantify this, we derive the projected accuracies with which
various multipole moments may be measured for various de-
tector configurations by using standard parameter estimation
techniques. Following the philosophy of Refs. [12, 15, 16],
while computing the errors we consider deviation of only one
multipole at a time.

An ideal test would have been where all the coefficients are
varied at the same time, but this will lead to almost no mean-
ingful constraints because of the strong degeneracies among
different coefficients. The proposed test, however, would not
affect our ability to detect a potential deviation because in
the multipole structure, a deviation of more than one multi-
pole coefficients would invariably show up in the set of tests
performed by varying one coefficient at a time [15–18].

We first use Fisher information matrix approach to derive
the errors on the multipole coefficients. Fisher matrix is a
useful semi-analytic method which uses a quadratic fit to the
log-likelihood function to derive the 1 − σ error bars on the
parameters of the signal [54, 55, 92, 93]. Given a GW signal

1 We thank Archisman Ghosh for pointing out this possibility to us.

h̃( f ;~θ), which is described by the set of parameters ~θ, the Fisher
information matrix is defined as

Γmn = 〈h̃m, h̃n〉, (3.1)

where h̃m = ∂h̃( f ;~θ)/∂θm, and the angular bracket, 〈..., ...〉,
denotes the noise-weighted inner product defined by

〈a, b〉 = 2
∫ fhigh

flow

a( f ) b∗( f ) + a∗( f ) b( f )
S h( f )

d f . (3.2)

Here S h( f ) is the one-sided noise power spectral density (PSD)
of the detector and [ flow, fhigh] are the lower and upper limits
of integration. The variance-covariance matrix is defined by
the inverse of the Fisher matrix,

Cmn = (Γ−1)mn,

where the diagonal components, Cmm, are the variances of θm.
The 1 − σ errors on θm is, therefore, given as

σm =
√

Cmm . (3.3)

Since Fisher matrix-based estimates are only reliable in the
high signal-to-noise ratio limit [92, 94, 95], we spot check
representative cases for consistency, with estimates based on a
Bayesian inference algorithm that uses an MCMC method to
sample the likelihood function. This method is not limited by
the quadratic approximation to the log-likelihood and hence
considered to be a more reliable estimate of measurement
accuracies one might have in a real experiment. In this method
we compute the probability distribution for the parameters
implied by a signal h(t) buried in the Gaussian noise d(t) =

h(t) + n(t) while incorporating our prior assumptions about
the probability distribution for the parameters. The Bayes’
rule states that the probability distribution for a set of model
parameters ~θ implied by data d is

p(~θ|d) =
p(d|~θ) p(~θ)

p(d)
, (3.4)

where p(d|~θ) is called the likelihood function, which gives the
probability of observing data d given the model parameter ~θ,
defined as

p(d|~θ) = exp
[
−

1
2

∫ fhigh

flow

|d̃( f ) − h̃( f ;~θ)|2

S h( f )
d f

]
, (3.5)

where d̃( f ) and h̃( f ;~θ) are the Fourier transform of d(t) and
h(t), respectively. p(~θ) is the prior probability distribution
of parameters ~θ and p(d) is an overall normalization constant
known as evidence,

p(d) =

∫
p(d|~θ) p(~θ) d~θ . (3.6)

In this paper, we use uniform prior on all the parameters we are
interested in and used python-based MCMC sampler emcee
[56] to sample the likelihood surface and get the posterior
distribution for all the parameters.
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We use noise PSDs of advanced LIGO (aLIGO) and Cosmic
Explorer-wide band (CE-wb) [25], Einstein Telescope-D (ET-
D) [96] as representatives of the current and next generation
of ground-based GW interferometers and LISA. We use the
noise PSD given in [96] for ET-D, analytical fits of PSDs given
in [97] and [98] for aLIGO and LISA respectively, and the
following fit for CE-wb noise PSD ,

S h( f ) = 5.62 × 10−51 + 6.69 × 10−50 f −0.125 +
7.80 × 10−31

f 20

+
4.35 × 10−43

f 6 + 1.63 × 10−53 f + 2.44 × 10−56 f 2

+ 5.45 × 10−66 f 5 Hz−1 , (3.7)

where f is in units of Hz. We compute the Fisher matrix (or
likelihood in the Bayesian framework) considering the signal
to be described by the set of parameters {lnA, lnMc, lnν, tc, φc}

and the additional parameter µl or εl. In order to compute the
inner product using Eq. (3.2), we assume flow to be 20 Hz, 1
Hz, 5 Hz and 10−4 Hz for aLIGO, ET-D, CE-wb and LISA
noise PSDs respectively. We choose fhigh to be the frequency
at the last stable circular orbit of a Schwarzschild BH with a
total mass m given by fLSO = 1/(πm 63/2) for aLIGO, ET-D
and CE-wb noise PSDs. For LISA, we choose the upper cut
off frequency to be the minimum of [0.1, fLSO].

All of the parameter estimations for aLIGO, CE-wb and
LISA, we carry out here, assume detections of the signals with
a single detector, where as for ET-D, due to it’s triangular
shape, we consider the noise PSD to be enhanced roughly by a
factor of 1.5. As our aim is to estimate the intrinsic parameters
of the signal, which directly affect the binary dynamics, the
single detector estimates are good enough for our purposes and
a network of detectors may improve it by the square root of
the number of detectors. Hence the reported errors are likely
to give rough, but conservative, estimates of the expected accu-
racies with which the multipole coefficients may be estimated.

IV. RESULTS AND DISCUSSION

In this section, we report the 1 − σ measurement errors on
the multipole coefficients introduced in the previous section,
obtained using the Fisher matrix as well as Bayesian analysis
and discuss their implications.

Our results for the four different detector configurations are
presented in figures 1, 3 and 5 which show the errors on the
various multipole coefficients µl, εl for aLIGO, ET-D, CE-wb
and LISA, respectively. For all of these estimates we consider
the sources at fixed distances. In addition to the intrinsic
parameters there are four more (angular) parameters that are
needed to completely specify the gravitational waveform. More
specifically one needs two angles to define the location of
the source on the sky and other two angles to specify the
orientation of the orbital plane w.r.t the detector plane [8].
Since we are using a pattern averaged waveform [87] (i.e., a
waveform averaged over all the four angles), the luminosity
distance can be thought of as an effective distance which we
assume to be 100 Mpc for aLIGO, ET-D and CE-wb, and 3

Gpc for LISA. For aLIGO, ET-D and CE-wb, we explore the
bounds for the binaries with total mass in the range [1,70] M�
and for LISA detections in the range [104, 107] M�.

A. Advanced LIGO

In Fig. 1 we show the projected 1-σ errors on the three
leading order multipole moments, µ2, µ3 and ε2, as a function
of total mass of the binary for aLIGO noise PSD using the
Fisher matrix. Different curves are for different mass ratios,
q = m1/m2 = 1.2 (red), 2 (cyan) and 5 (blue). For the multipole
coefficients considered, low mass systems obtain the smallest
errors and hence the tightest constraints. This is expected as
low mass systems live longer in the detector band and have
larger number of cycles, thereby allowing us to measure the
parameters very well. The bounds on µ3 and ε2, associated
with the mass octupole and current quadrupole, increase mono-
tonically with the total mass of the system for a given mass
ratio. However, the bounds on µ2 show a local minimum in
the intermediate mass regime for smaller mass ratios. This is
because, unlike other multipole parameters, µ2 appears both in
the amplitude and the phase of the signal. The derivative of the
waveform with respect to µ2 has contributions from both the
amplitude and phase. Schematically, the Fisher matrix element
is given by

Γµ2µ2 ∼

∫ fupper

flow

A2 f −7/3

S h( f )

(
1 + µ2

2ψ
′2
)

d f , (4.1)

where ψ′ = ∂ψ/∂µ2. As the inverse of this term dominantly
determines the error on µ2, the local minimum is a result of
the trade-off between the contributions from the amplitude and
the phase of the waveform. Interestingly, as we go to higher
mass ratios, this feature disappears resulting in a monotonically
increasing curve (such as for q = 5).

We find the mass multipole moments µ2 and µ3 are much
better estimated as compared to the current multipole moment
ε2. Another important feature is that the bounds µ3 and ε2
are worse for equal mass binaries. Mass octupole and current
quadrupole are odd parity multipole moments (unlike, say,
mass quadrupole which is even)2. Every odd parity multipole
moment comes with a mass asymmetry factor

√
1 − 4ν that

vanishes in the equal mass limit, and hence the errors diverge.
Consequently, the Fisher matrix becomes badly conditioned
and the precision with which we recover these parameters
appears to become very poor, but this is an artifact of the
Fisher matrix.

In order to cross-check the validity of the Fisher matrix-
based estimates, we performed a Bayesian analysis to find the
posterior distribution of the three multipole parameters, for
the same systems as in the Fisher matrix analysis. Moreover
we considered flat prior probability distribution for all the six

2 Mass-type multipoles with even l and current-type moments with odd l are
considered ‘even’ and odd l mass multipoles and even l current moments
are ‘odd’.
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FIG. 1. Projected 1 − σ errors on µ2, µ3 and ε2 as a function of total mass for aLIGO noise PSD. Results from Bayesian analysis using MCMC
sampling is given as dots showing good agreement. All the sources are considered to be at a fixed luminosity distance of 100 Mpc.

parameters {lnA,Mc, ν, tc, φc, µ` or ε`} in a large enough range
around their respective injection values. Given large number of
iterations, once the MCMC chains are stabilized, we find good
agreements with the Fisher estimates as in the case of µ3 for
q = 2 and 5, shown in Fig. 1. As an example, we present our
results from MCMC analysis for µ3 with m = 5 M� and q = 2,
in the corner plots in Fig. 2. In Fig. 1 we see that the 1−σ errors
in µ3 from Fisher analysis agree very well with the MCMC
results for q = 2 and 5. We did not find such an agreement
for q = 1.2. We suspect that this is because for comparable
mass systems the likelihood function, defined in Eq. (3.5),
becomes shallow and it is computationally very difficult to find
its maximum given a finite number of iterations. As a result,
the MCMC chains did not converge and 1−σ bounds cannot be
trusted for such cases. We find the non-convergence of MCMC
chains for all the cases of µ2 and ε2 and hence we do not show
those results in Fig. 1. To summarize, our findings indicate that
one can only measure µ2 and µ3 with a good enough accuracy
using aLIGO detectors.

B. Third generation detectors

Third generation detectors such as CE-wb (and ET-D) can
place much better bounds on µ2, µ3 and ε2 compared to aLIGO.
Additionally, they can also measure µ4 with reasonable accu-
racy, as shown by darker (and lighter) shaded curves in Fig. 3.
The bounds on µ2, µ3 and ε2 show similar trend as in the case
of aLIGO except accuracy of the parameter estimation is much
better overall. For few cases in low mass regime, µ2 and µ4 are
better estimated for comparable mass binaries (i.e., q = 1.2).
We also find that the bounds (represented by the lighter shaded
curves in Fig. 3) obtained by using ET-D noise PSD are even
better than the bounds from CE-wb, though the other features
are more or less similar for both the detectors. This improve-
ment in the precision of measurement is due to two reasons.
The triangular shape of ET-D enhances the sensitivity roughly
by a factor of 1.5 and its sensitivity is much better than CE-wb
in the low frequency region.

For few representative cases, we compute errors in µ2, ε2

and µ3 using Bayesian analysis and the results are shown as
dots with the same color in Fig. 3. The MCMC results are
in good agreement with the Fisher. Unlike aLIGO PSD, for
CE-wb the MCMC chains converge quickly in the case of
µ2 and ε2 because of the high signal-to-noise-ratios, which
naturally lead to high likelihood values. As a result, it becomes
relatively easier for the sampler to find the global maximum
of the likelihood function in relatively fewer iterations. We
also show an example corner plot for CE-wb PSD with q = 2,
m = 10 M� in Fig. 4.

C. Laser Interferometer Space Antenna

In this Section, we discuss the projected errors on various
multipole coefficients for the LISA detector. Here we consider
four different mass ratios, q = 1.2 (red), 2 (cyan), 10 (blue) and
50 (green). The first three are representatives of comparable
mass systems, while q = 50 refers to the intermediate mass
ratio systems. We do not consider here the extreme mass ratio
systems, the analysis of these systems needs phasing infor-
mation at much higher PN orders such as in Ref. [99] which
is beyond the scope of the present work. Moreover, in such
systems, the motion of the smaller BH around the central com-
pact object is expected to help us understand the multipolar
structure of the central object and test its BH nature [33]. This
is quite different from our objective here which is to use GW
observations to understand the multipole structure of the grav-
itational field of the two-body problem in GR. The q = 50
case, in fact, falls in between these two classes and hence has
a cleaner interpretation in our framework.

In Fig. 5 we show the projected bounds from the observa-
tions of supermassive BH mergers detectable by space-based
LISA observatory. The error estimates for multipole moments
with LISA are similar to that of CE-wb for mass ratios q = 1.2,
2. For q = 10 all the parameters except ε4 are estimated very
well. For q = 50, we find that LISA will be able to measure
all the seven multipole coefficients with good accuracy. It is
not entirely clear whether PN model is accurate enough for
detection and parameter estimation of super massive binary
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FIG. 2. The posterior distributions of all the six parameters {lnA, tc, φc,Mc, ν, µ3} and their corresponding contour plots obtained from the
MCMC experiments (see Sec. III for details) for a compact binary system at a distance of 100 Mpc with q=2, m = 5 M� using the noise PSD of
aLIGO. The darker shaded region in the posterior distributions as well as in the contour plots shows the 1-σ bounds on the respective parameters.

BHs with q = 50, for which the number of GW cycles could be
an order of magnitude higher than it is for equal mass configu-
rations. However our findings carry importance as it points to
the huge potential such systems have for fundamental physics.

To summarize, we find, in general, that even parity multi-
poles (i.e., µ2 and µ4) are better measured when the binary
constituents are of equal or comparable masses, whereas the
odd multipoles (i.e., µ3, µ5, ε2 and ε3) are better measured

when the binary has mass asymmetry. This is because the
even multipoles are proportional to the symmetric mass ratio ν,
whereas the odd ones are proportional to the mass asymmetry
√

1 − 4ν, which identically vanishes for equal mass systems
(see, e.g., Eq. (4.4) of [52]).
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FIG. 3. Dark shaded curves correspond to the projected 1 − σ error bars on µ2, µ3, µ4 and ε2 using the proposed CE-wb noise PSD as a function
of total mass, where as lighter shades denote the bounds obtained using ET-D noise PSD. All the sources are considered to be at a fixed
luminosity distance of 100 Mpc. The higher order multipole moments such as µ4 and ε2 cannot be measured well using aLIGO hence it may be
a unique science goal of the third generation detectors.

V. SUMMARY AND FUTURE DIRECTIONS

We have proposed a novel way to test for possible deviation
from GR using GW observations from compact binaries by
probing the multipolar structure of the GW phasing in any
alternative theories of gravity. We compute a parametrized
multipolar GW phasing formula that can be used to probe po-
tential deviations from the multipolar structure of GR. Using
Fisher information matrix and Bayesian parameter estimation,
we predict the accuracies with which the multipole coefficients
could be measured from GW observations with present and
future detectors. We find that the space mission LISA, cur-
rently under development, can measure all the multipoles of
the compact binary system making it a unique fundamental
science that LISA will be able to deliver.

In deriving the parametrized multipolar phasing formula,
we have assumed that the conservative dynamics of the binary
follow the predictions of GR. In the appendix, we have pro-
vided a phasing formula where we also deform the PN terms
in the orbital energy of the binary. This should be seen as a
first step towards a more complete parametrized phasing where
we separate the conservative and dissipative contributions to
the phasing. A systematic revisit of the problem starting from
the foundations of PN theory as applied to the compact binary
is needed to obtain a complete phasing formula parametrizing

uniquely the conservative and dissipative sectors in the phasing
formula. This we postpone for a follow up work.

The present results using non-spinning waveforms should
be considered to be a proof-of-principle demonstration, to be
followed up with a more realistic waveform that accounts for
spin effects, effects of orbital eccentricity and higher modes.
Incorporation of the proposed test in the framework of Effective
One-Body formalism [100] is also among the future directions
we plan to pursue. There are ongoing efforts to implement
this method in the framework of LALInference [101] so that it
can be applied on the compact binaries detected by advanced
LIGO and Virgo detectors.
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Appendix: Frequency domain phasing formula allowing for the
deformation of conservative dynamics

Binding energy parametrized at each PN order by four dif-
ferent constants {α0, α1, α2, α3} used in the computation of
parametrized GW phasing considering deviation in the con-
served energy (mentioned in Sec. II B), is given by
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The resulting phase is quoted below,
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The GW phasing for compact binaries can be represented
by various PN approximants depending on the differences in
which they treat the energy and flux functions. We redirect
the reader to Refs. [88, 102] for a detailed discussion of these
various approximants. We provide the input functions required

for the computation of the phasing for TaylorT2, TaylorT3
and TaylorT4 in a Mathematica file (supl-Multipole.m) which
serves the supplemental material to this paper. We closely
follow the notations of [88] in this file.

[1] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 061102 (2016), 1602.03837.
[2] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241103 (2016), 1606.04855.
[3] B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017), 1706.01812.
[4] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 141101 (2017), 1709.09660.
[5] B. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017), 1710.05832.
[6] T. L. S. Collaboration, J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, et al.,

Classical and Quantum Gravity 32, 074001 (2015).
[7] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, et al.,

Classical and Quantum Gravity 32, 024001 (2015).
[8] B. Sathyaprakash and B. Schutz, Living Rev.Rel. 12, 2 (2009), arXiv:0903.0338.
[9] N. Yunes and X. Siemens, Living Rev. Rel. 16, 9 (2013), 1304.3473.

[10] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 221101 (2016), 1602.03841.
[11] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6, 041015 (2016), 1606.04856.
[12] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Class. Quantum Grav. 23, L37 (2006), gr-qc/0604018.
[13] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Phys. Rev. D 74, 024006 (2006), gr-qc/0604067.
[14] N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003 (2009), 0909.3328.
[15] C. K. Mishra, K. G. Arun, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev. D 82, 064010 (2010), 1005.0304.
[16] M. Agathos, W. Del Pozzo, T. G. F. Li, C. V. D. Broeck, J. Veitch, et al., Phys.Rev. D89, 082001 (2014), 1311.0420.
[17] T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Phys.

Rev. D85, 082003 (2012), 1110.0530.
[18] J. Meidam et al., Phys. Rev. D97, 044033 (2018), 1712.08772.
[19] C. M. Will, Phys. Rev. D 57, 2061 (1998), gr-qc/9709011.
[20] S. Mirshekari, N. Yunes, and C. M. Will, Phys. Rev. D 85, 024041 (2012), 1110.2720.
[21] A. Ghosh et al., Phys. Rev. D94, 021101 (2016), 1602.02453.
[22] B. P. Abbott et al. (Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific), Astrophys. J. 848, L13 (2017), 1710.05834.
[23] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D94, 084002 (2016), 1603.08955.
[24] M. Abernathy et al., Einstein gravitational wave Telescope: Conceptual Design Study (Document number ET-0106A-10) (2010),

ET-0106A-10.
[25] B. P. Abbott et al. (LIGO Scientific), Class. Quant. Grav. 34, 044001 (2017), 1607.08697.
[26] http://lisa.jpl.nasa.gov.
[27] M. C. Miller and E. J. M. Colbert, Int. J. Mod. Phys. D13, 1 (2004), astro-ph/0308402.
[28] R. P. van der Marel, in Carnegie Observatories Centennial Symposium. 1. Coevolution of Black Holes and Galaxies Pasadena, California, October 20-25, 2002

(2003), astro-ph/0302101.
[29] J. M. Fregeau, S. L. Larson, M. C. Miller, R. W. O’Shaughnessy, and F. A. Rasio, Astrophys. J. 646, L135 (2006), astro-ph/0605732.
[30] P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Phys. Rev. D92, 022002 (2015), 1504.04766.
[31] D. A. Brown, H. Fang, J. R. Gair, C. Li, G. Lovelace, I. Mandel, and K. S. Thorne, Phys. Rev. Lett. 99, 201102 (2007), gr-qc/0612060.
[32] K. Chamberlain and N. Yunes, Phys. Rev. D96, 084039 (2017), 1704.08268.
[33] F. Ryan, Phys. Rev. D 56, 1845 (1997).
[34] K. S. Thorne, in Particle and nuclear astrophysics and cosmology in the next millennium. Proceedings, Summer Study, Snowmass, USA, June 29-July 14, 1994

(1995), pp. 0160–184, gr-qc/9506086.
[35] B. F. Schutz, Classical and Quantum Gravity 13, A219 (1996).
[36] J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker, Living Rev. Rel. 16, 7 (2013), 1212.5575.
[37] E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, U. Sperhake, L. C. Stein, N. Wex, K. Yagi, T. Baker, et al., Classical and Quantum

Gravity 32, 243001 (2015), 1501.07274.
[38] K. G. Arun and A. Pai, Int.J.Mod.Phys. D 22, 1341012 (2013), 1302.2198.
[39] G. F. Giudice, M. McCullough, and A. Urbano, JCAP 1610, 001 (2016), 1605.01209.
[40] C. Chirenti and L. Rezzolla, Phys. Rev. D94, 084016 (2016), 1602.08759.
[41] V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116, 171101 (2016), 1602.07309.
[42] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo, Phys. Rev. D95, 084014 (2017), [Addendum: Phys.

Rev.D95,no.8,089901(2017)], 1701.01116.
[43] N. K. Johnson-Mcdaniel, A. Mukherjee, R. Kashyap, P. Ajith, W. Del Pozzo, and S. Vitale (2018), 1804.08026.
[44] N. V. Krishnendu, K. G. Arun, and C. K. Mishra, Phys. Rev. Lett. 119, 091101 (2017), 1701.06318.
[45] S. Dhanpal, A. Ghosh, A. K. Mehta, P. Ajith, and B. S. Sathyaprakash (2018), 1804.03297.
[46] N. V. Krishnendu, C. K. Mishra, and K. G. Arun (2018), 1811.00317.

http://lisa.jpl.nasa.gov


16

[47] L. Blanchet, Living Rev. Rel. 17, 2 (2014), 1310.1528.
[48] F. Pretorius (2007), relativistic Objects in Compact Binaries: From Birth to Coalescence Editor: Colpi et al., arXiv:0710.1338.
[49] M. Sasaki and H. Tagoshi, Living Rev. Rel. 6, 6 (2003), gr-qc/0306120.
[50] L. Blanchet and B. S. Sathyaprakash, Class. Quantum Grav. 11, 2807 (1994).
[51] L. Blanchet and B. S. Sathyaprakash, Phys. Rev. Lett. 74, 1067 (1995).
[52] L. Blanchet, T. Damour, and B. R. Iyer, Phys. Rev. D 51, 5360 (1995), gr-qc/9501029.
[53] S. Endlich, V. Gorbenko, J. Huang, and L. Senatore, JHEP 09, 122 (2017), 1704.01590.
[54] C. Rao, Bullet. Calcutta Math. Soc 37, 81 (1945).
[55] H. Cramer, Mathematical methods in statistics (Pergamon Press, Princeton University Press, NJ, U.S.A., 1946).
[56] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publications of the Astronomical Society of the Pacific 125, 306 (2013),

1202.3665.
[57] K. Thorne, Rev. Mod. Phys. 52, 299 (1980).
[58] L. Blanchet and T. Damour, Phys. Lett. A 104, 82 (1984).
[59] L. Blanchet and T. Damour, Phil. Trans. Roy. Soc. Lond. A 320, 379 (1986).
[60] L. Blanchet, Proc. Roy. Soc. Lond. A 409, 383 (1987).
[61] L. Blanchet and T. Damour, Phys. Rev. D 37, 1410 (1988).
[62] L. Blanchet and T. Damour, Annales Inst. H. Poincaré Phys. Théor. 50, 377 (1989).
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