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For isentropic fluids, dynamical evolution of a binary system conserves the baryonic mass and circulation,
therefore sequences of constant rest-mass and constant circulation are of particular importance. In this work
we present the extension of our Compact Object CALculator (COCAL) code to compute such quasi-equilibria,
and compare them with the well-known corotating and irrotational sequences, the latter being the simplest,
zero-circulation case. The circulation as a measure of the spin for a neutron star in a binary system has the
advantage of being exactly calculable since it is a local quantity. To assess the different measures of spin, such
as the angular velocity of the star, the quasi-local, dimensionless spin parameter J/M2, or the circulation C,
we first compute sequences of single, uniformly rotating stars and descibe how the different spin diagnostics
are related to each other. The connection to spinning binary systems is accomplished through the concept of
circulation and the use of the constant rotational velocity formulation. Finally, we explore a modification of the
latter formulation that naturally leads to differentially rotating binary systems.

I. INTRODUCTION

Some of the most important problems in modern astro-
physics include: a) the origin of the heavy elements in the
periodic table (heavier than iron), b) the behaviour of mat-
ter at densities beyond the nuclear, and c) the mechanism be-
hind the powerful electomagnetic events known as gamma-ray
bursts which in a few seconds release as much energy as the
sun does throughout its entire life. The extreme conditions
necessary for the creation of these phenomena can be found
in a binary neutron star (BNS) system through the combina-
tion of immense gravity, electromagnetic fields, and nuclear
forces. The 2017 detection of GW170817 confirmed these
hypotheses and marked the birth of “multimessenger astron-
omy” since for the first time gravitational waves from a BNS
system were directly measured by the LIGO/VIRGO detec-
tor [1] together with a short duration gamma-ray burst by the
Fermi Gamma-Ray Burst Monitor [2] and INTEGRAL [3].

One of the most important characteristic of a neutron
star (NS) is its rotational frequency, which in isolation has
been observed to be as high as 716 Hz, corresponding to
a period of 1.4 ms for PSR J1748-2446ad [4]. In the 18
BNS systems currently known in the Galaxy [5, 6] the ro-
tational frequencies are typically smaller. The NS in the
system J1807-2500B has a period of 4.2 ms while systems
J1946+2052 [7], J1757-1854 [8], J0737-3039A [9] have peri-
ods 16.96, 21.50, 22.70 ms respectively.

Any evolution simulation of a BNS starts from initial
data that describe the system under consideration. The first
such binary initial data were calculated by Baumgarte et al.
[10, 11] and Marronetti et al. [12] and described two NSs
tidally locked, as for example the Earth-Moon system. These
were the so called corotating solutions and although they gave
a first insight into the problem they were rendered unrealistic
since viscosity is too small in NSs to achieve synchronization
[13, 14]. A more realistic scenario is the so called irrotational
state where the two NSs have zero vorticity. Such systems
were more difficult to descibe and required an additional po-
tential equation. Irrotational BNS systems using different nu-

merical methods were presented by Bonazzola et al. [15, 16],
Marronetti et al. [17, 18], and Uryū et al. [19, 20]. Even today
the majority of the BNS simulations adopt these methods and
therefore assume that the spin of the individual NSs is zero.
Such an assuption, although adequate in most cases, can-
not for example describe systems J1946+2052, J1757-1854,
J0737-3039A which, according to [6], will have periods at
merger of 18.23, 27.09, 27.17 ms, respectively. For accurate
gravitational wave analysis one cannot consider these binaries
to be irrotational and the spin of each NS must be taken into
account. Also, event GW170817 [1] was unable to rule out
high spin priors and thus two sets of data (for low and high
spins) were consistent with the observations.

Going beyond the two extreme cases of corotating and ir-
rotational BNS and constructing binaries with arbitrary spin
has proven to be more difficult due to the fact that the Eu-
ler equation does not yield a trivial integral. The first attempt
to address that problem was by Marronetti and Shapiro [21]
who used instead the Bernoulli equation (first integral along
flow lines and not globally) to construct sequences of constant
circulation. In [22, 23] Baumgarte and Shapiro presented an
alternative formulation to compute arbitrary spinning binaries
by constructing a new elliptic equation from the divergence
of the Euler equation. Although no solutions were presented
there, violations of the Euler equations were expected since
their rotational part was not required to vanish. The only self-
consistent formulation to obtain BNSs with arbitrary spinning
initial data was presented by Tichy [24] and quasi-equilibrium
sequences were computed in [25]. In these studies a first inte-
gral of the fluid flow was obtained under suitable assumptions
and binary sequences with approximately constant rotational
velocity (CRV approach) of each component were calculated.
From a different perspective, Tsatsin and Marronetti [26] pre-
sented a method to produce initial data for spinning BNSs that
allowed for arbitrary orbital and radial velocities, but without
satisfying the Hamiltonian and momentum constraints.

In this work we present the extension of our Compact Ob-
ject CALculator (COCAL) code for BNSs [27–29] to compute
quasi-equilibrium binary sequences of constant rest-mass and
circulation. For isentropic fluids, dynamical evolution of a
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binary system conserves the baryonic mass and circulation,
therefore sequences that conserve these quantities can be con-
sidered as realistic “snapshots” of an evolutionary scenario.
We use Tichy’s spinning formulation [24] as we did in [28],
where sequences of constant rest-mass alone were computed,
but focus here on the different spin measures that are cur-
rently used [30–32] in order to make a critical assesment. Us-
ing the circulation and rest-mass as fundamental properties,
a connection between spinning companions in binaries and
single axisymmetric stars is established and differences are
discussed. Finally we present an alternative decomposition to
[24] which slightly simplifies the equations to be solved and
leads naturally to differentially rotating binary systems. Bi-
nary sequences of that kind are computed and compared with
the ones coming from the original formulation [24].

In this paper, spacetime indices are Greek, spatial indices
Latin, and the metric signature is − + ++. For writing the
basic equations, geometric units with G = c = 1 are used,
while in all numerical solutions, G = c = M� = 1 units are
used for convenience.

II. EQUATIONS AND GENERAL ASSUMPTIONS

According to the first law of thermodynamics for binary
systems by Friedman-Uryū-Shibata [33, 34], if one assumes a
spatial geometry Σt that is conformally flat, neighboring equi-
libria of asymptotically flat spacetimes with a helical Killing
vector satisfy

δM = ΩδJ +

∫
Σt

[T̄∆dS + µ̄∆dMB + V α∆dCα]

+
∑
i

1

8π
κiδAi. (1)

Here M and J are the Arnowitt-Deser-Misner (ADM) mass
and angular momentum of the spacetime while Ω is the or-
bital angular velocity; T̄ and µ̄ are the redshifted temperature
and chemical potential; dMB is the baryon mass of a fluid el-
ement; dCα is related to the circulation of a fluid element and
V α is the velocity with respect to the corotating frame; κi, Ai
are the surface gravity and the areas of black holes. For isen-
tropic fluids, dynamical evolution conserves the baryon mass,
entropy, and vorticity of each fluid element, and thus the first
law yields δM = ΩδJ . Eq. (1) implies that a natural mea-
sure to characterize the spin of a NS in a binary setting is its
circulation in a similar manner to the way rest-mass character-
izes the mass. Since different spin measures are used in BNS
studies [30–32] one question that arises is how all these di-
agnostics are related to the conserved quantity of circulation.
Before answering this question we will investigate the rela-
tionship of these quantities for single, axisymmetric, rotating
stars. We will adopt the 3+1 formulation of [35] in order to
make contact with the theory of a single rotating star, while
for BNS systems we will use the notation of [28]. The equa-
tions solved are reported in detail in those two papers, so here
we will only review the necessary definitions and assumptions
in a unified way.

We assume that the spacetimeM is asymptotically flat and
is foliated by a family of spacelike hypersurfaces (Σt)t∈R,
parametrized by a time coordinate t ∈ R as M = R × Σt
[36]. The future-pointing unit normal one form to Σt, nα :=
−α∇αt, is related to the generator of time translations tα as
tα := αnα + βα, where tα∇αt = 1. α and βα are, re-
spectively, the lapse and shift and βα is spatial, βα∇αt = 0.
The projection tensor to Σt γα

β is introduced as γαβ :=
gαβ + nαnβ . The induced spatial metric γab on Σt is the
projection tensor restricted to it. Introducing a conformal fac-
tor ψ, and a conformally rescaled spatial metric γ̃ab, the line
element on a chart {t, xi} of Σt is written

ds2 = −α2dt2 + ψ4γ̃ij(dx
i + βidt)(dxj + βjdt). (2)

The conformal rescaling is determined from a condition γ̃ =
f , where γ̃ and f are determinants of the rescaled spatial met-
ric γ̃ab and the flat metric fab. In what follows we will assume
that γ̃ij = fij for both single and binary star computations.

The extrinsic curvature of each slice Σt is defined by

Kab := −1

2
γαaγ

β
bLnγαβ ,

= − 1

2α
∂tγab +

1

2α
Lβγab; (3)

where ∂tγab is the pullback of Ltγαβ to Σt, Lt the Lie deriva-
tive along the vector tα defined on M, and Lβ is the Lie
derivative along the spatial vector βa on Σt. Hereafter we
denote the trace of Kab by K, and the tracefree part of Kab

by Aab := Kab − 1
3γabK. For both single and BNS systems

we will assume the maximal slicing condition

K = 0. (4)

In this paper, we consider perfect-fluid spacetimes in which
the stress-energy tensor is written as [28]

Tαβ := (ε+ p)uαuβ + pgαβ , (5)

where ε is the energy density, p the pressure, and uα the 4
velocity. The relativistic enthalpy h is defined as

h :=
ε+ p

ρ
, (6)

where ρ is the rest-mass density. The four-velocity of the fluid
can be written as uα = ut(1, vi) and, in analogy with a New-
tonian decomposition, we can split the spatial component vi

into two parts: one that follows the rotation around the cen-
ter of mass, Ωφi, and one that represents the velocity in the
corotating frame V i,

uα := ut(tα + vα) = ut(kα + V α), (7)

where vα = (0, vi) := Ωφα + V α, and

kα := tα + Ωφα = αnα + ωα . (8)

Here the helical Killing vector kα applies either to a binary
system having orbital angular velocity Ω, or to a single ro-
tating star (axisymmetric or not) having the same constant,



3

rotating angular velocity. The vector ωα := βα + Ωφα is the
so called corotating shift. For single rotating stars as well as
for corotating binaries V α = 0.

Fluid variables will be computed through the conservation
of the energy-momentum tensor

0 = ∇αTαβ
= ρ[uα∇α(huβ) +∇βh− T∇βs] + huβ∇α(ρuα)

= ρ[uαωαβ − T∇βs] + huβ∇α(ρuα) , (9)

and local conservation of rest-mass

∇α(ρuα) = 0 . (10)

Assuming isentropic configurations, the relativistic Euler
equation becomes uαωαβ = 0, where

ωαβ := ∇α(huβ)−∇β(huα) (11)

is the relativistic vorticity tensor, which is zero for irrotational
flow [37].

In 3+1 language the Euler equation and the rest-mass con-
servation equation become [28]

γαi Lk(huα) +Di

(
h

ut
+ hujV

j

)
+ V jωji = 0 , (12)

Lk(ρut) +
1

α
Di(αρu

tV i) = 0 , (13)

where D is the covariant derivative with respect to the spatial
metric, Daγij = 0.

For single rotating stars, as well as for corotating binaries
under the helical symmetry assumption, Eq. (13) is trivially
satisfied while the Euler equation results to a simple algebraic
equation

h

ut
= C , (14)

where C is a constant to be determined and ut =
1/
√
α2 − ωiωi.

For irrotational binaries [38–41] we have ωαβ = 0, so that
the specific enthalpy current huα can be derived from a po-
tential huα = ∇αΦ. In order to allow for arbitrary spinning
binary configurations a three vector si is introduced according
to [24]

ûi := γαi huα = DiΦ + si , (15)

where the DiΦ part corresponds to the “irrotational part” of
the flow and si the “spinning part” of the flow. In our code
vector si is the input quantity, and si = γijs

j . For a general
vector si one can have a binary system that exhibits differ-
ential rotation. Irrotational binaries are recovered for si = 0.
According to [25] a choice that minimizes differential rotation
is a rigid rotation law

si := Ωasφ
i
s(a) (16)

where φi(a)
s = εiajXj denotes the rotation vectors along the

NS’s three axes. The index i corresponds to the component of

the vector φ(a)
s , while the index inside the parenthesis names

the three different vectors. Vector φi(3)
s , which in the fol-

lowing sections is denoted by φis, is the rotation vector along
the star’s X3-axis, in contrast to φi which is the rotation vec-
tor along the z-axis. For single rotating stars these two vec-
tors are identical. We denote by xi = {x, y, z} the coordi-
nates around the center of mass of the binary system, and by
Xa = {X1, X2, X3} the coordinates centered at the maxi-
mum density point of each NS. The orbital vector φi refers
to {x, y, z} while the spin vector si refers to {X1, X2, X3}.
In this work we assume that the rotation of the neutron stars
is around X3. The z-axis and the X3 axis are parallel and
perpendicular to the orbital plane. The coefficients Ωas are pa-
rameters that control the rotational spin around the NS’s three
axes Xa. These parameters, although are lacking of physical
(i.e. invariant) meaning, approximately represent the angular
velocity of the rotating star.

From Eqs. (7),(15) the spatial velocity V i of the flow is

V i =
DiΦ + si

hut
− ωi . (17)

For arbitrary spinning binaries the Euler equation (12) be-
comes

γαi [Lk(huα) + LV (sα)] +Di

(
h

ut
+ V jDjΦ

)
= 0 , (18)

which under the assumptions of helical symmetry and the ad-
ditional assumption of

LV (sα) = 0 , (19)

yields

h

ut
+ V jDjΦ = C , (20)

where again C is a constant to be determined. Although the
Euler integral has the same form for both irrotational and spin-
ning binaries, it produces a different equation since the three-
velocity V i is different in these two cases. Assumption (19)
means that changes of the spin vector with respect to the coro-
tating velocity are small.

The normalization condition uαu
α = −1, together with

Eqs. (15), (17), and (20), yield

hut =
λ+

√
λ2 + 4α2si(DiΦ + si)

2α2
, (21)

h =
√
α2(hut)2 − (DiΦ + si)(DiΦ + si). (22)

Here λ := C+ωiDiΦ. For purely irrotational binaries hut =

λ/α2 and h =
√
λ2/α2 −DiΦDiΦ. The fluid potential Φ is

computed from the conservation of rest mass (13) and the use
of Eqs. (20), (17) [28].

III. MEASURES OF SPIN AND CONSTANT
CIRCULATION SEQUENCES

A. Single stars

For single rotating stars one has a variety of ways to char-
acterize the spin. Among them are its angular velocity Ω (we



4

0.001 0.002 0.003 0.004
ρ

1.5

2.0

2.5
M

TOV
Keplerian
J=const
M0=const

C=const
Ω=const
J/M 2=const

FIG. 1. Mass versus rest-mass density for sequences of uniformly
rotating single stars with constant angular momentum J , rest-mass
M0, circulation C, angular velocity Ω, dimensionless spin J/M2,
together with the spherical (TOV) and mass-shedding (Kepler) lim-
its.

assume constant rotation), its ADM angular momentum J

J =
1

8π

∫
S∞

Ka
bφ
bdSa (23)

or the dimensionless spin J/M2, where M the ADM mass.
Using Gauss’s theorem Eq. (23) can be written as

J =
1

8π

∫
Vt

Da(Ka
bφ
b)dΣ− 1

8π

∫
S

Ka
bφ
bdSa

=
1

8π

∫
Vt

Ka
b∂aφ

bdΣ− 1

8π

∫
S

Ka
bφ
bdSa (24)

where ∂Vt = S∞ ∪ S. To go from the first volume integral
to the second we used the maximal slicing assumption and the
momentum constraint with zero sources since S is taken to be
outside the fluid volume. Without loss of generality we can
assume the S is a sphere just outside the surface of the NS.

When the conformal geometry is flat (as in happens in most
binary neutron star calculations) φa is a Killing vector of the
conformal geometry and therefore the volume integral in Eq.
(24) is zero. We call the remain integral the quasi-local spin
angular momentum

Jql =
1

8π

∫
S

Ka
bφ
bdSa (25)

where here the unit normal is outwards. Thus under the as-
sumptions of conformal flat geometry and maximal slicing,

J = Jql (single stars) . (26)

Another way to measure the spin of a rotating star is by its
circulation. For rotation around the z-axis

C :=

∮
c

huαdx
α =

∮
c

hutψ4δij(β
i + Ωφi)dxj , (27)

where c can be taken to be a fluid equatorial ring. One of
the advantages of using the circulation as a spin diagnostic is
the fact that Eq. (27) is local in character and involves quan-
tities that are exactly known (essentially the fluid velocity).
Although all single rotating star models reported in this paper
are axisymmetric we have checked our circulation code in the
case of single triaxial stars [35, 42], where the curve c is no
longer a circle but close to an ellipse.

In order to understand how the different measures of spin
are related to each other for single uniformly rotating stars we
use the COCAL code [35] to build sequences of constant an-
gular momentum J , circulation C, angular velocity Ω, dimen-
sionless spin J/M2, together with the spherical (TOV) and
mass-shedding (Kepler) limits as in Fig. 1. For the EoS we
have chosen the piecewise representation of ALF2 [43, 44],
which according to event GW170817 it is still a viable choice.
Having said that we point out that the results of this work do
not depend on this choice and any other EoS would have been
as good for conveying the ideas we put forward here. In our
code we compute the circulation both as the line integral (27)
but also as a surface integral using Stokes’s theorem. Both
quantities agree to the precision of our calculation which is
less than 1%. The curve c is chosen to be along the surface
of the star in the xy plane which according to our normaliza-
tion scheme (use of surface fitted coordinates) is the unit circle
[35]. From the computational point of view one important as-
pect of the COCAL code is the use of normalized coordinates
for both single rotating stars [35] as well as binaries [28],

x̂i :=
xi

R0
, Ω̂ := ΩR0 . (28)

The normalization factor that determines the length scale R0,
is only found at the end of the iteration procedure and varies
at every iteration. The constants R0, Ω̂, and C (from the hy-
drostatic equlibrium Eq. (14), (20)) are determined through a
solution of a nonlinear 3× 3 system as described in [28, 35].

In terms of the normalized quantities

C = R0

∮
c

hutψ4δij(β
i + Ω̂φ̂i)dx̂j . (29)

As one can see from Fig. 1 all curves that measure the spin
of a rotating star are in general distinct. If a set of curves A,
is “parallel” to another set of curves B, this means that a star
that is moving along a constant A sequence will also move
along a constant B sequence or in other words, conservation
of quantity A will imply the conservation quantity B. As far as
the different spin measures J,Ω, C, J/M2 for rotation close to
the mass-shedding limit (red curve) this cannot happen since
all sets of curves are distinctly different. By contrast, close
to the spherical limit one can see that constant circulation se-
quences are almost “parallel” to constant J/M2 sequences.
This means that the curve C = c1 will nearly coincide with
a curve J/M2 = c2, (for two constants c1 6= c2) when rota-
tion is slow, and therefore if during a process one parameter is
conserved so is the other. In Fig. 2 we plot the dimensionless
spin J/M2 and angular velocity Ω versus the circulation for
a sequence of constant rest-mass M0 = 1.5. Dashed black
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FIG. 2. Dimensionless spin parameter J/M2, and angular velocity
Ω versus circulation C along a sequence of uniformly rotating, single
stars with constant rest-mass M0 = 1.5.

lines connect the first points of the sequences to the static
limit (TOV). Along that sequence the ADM mass varies ap-
proximately from 1.35 to 1.39. As we can see for dimension-
less spins up to ∼ 0.4 the two quantities vary linearly but for
higher spins, especially close to the mass-shedding limit, this
dependence becomes quadratic. Beyond this point increasing
the circulation results to a smaller increase in J/M2.

B. Binary stars

For a corotating binary the circulation of each star is given
by the same formula as in a single rotating star Eq. (27) where
now the vector φi is the z-rotational vector (we assume the bi-
nary orbit to be in the xy-plane) around the center of mass.
In Fig. 3 top panel we plot the circulation C and the “co-
ordinate circulation” Cβ :=

∮
c
hutψ4δijβ

idxj for a constant
rest-mass sequence with M0 = 1.5 as a function of Ω. In the
bottom panel we plot the approximate coordinate equatorial
area of each starA ≈ 2πRxRy , normalized by its initial value
in the sequence A0. As we can see the circulation increases
linearly with respect to the angular velocity, which provides
yet another argument why the corotating state is not realis-
tic for BNS systems with isentropic fluids. In the Newtonian
limit C = 2AΩ where A the equatorial area of the NS. From
the bottom panel of Fig. 3 we see that the equatorial area is
approximately conserved along the sequence. Therefore the
circulation of the corotating sequence follows essentially the
Newtonian law apart from a redshift factor. We also observe
that even when they are close to each other the circulation
of the corotating binaries is relatively small comparing to the
maximum circulation Cmax ≈ 30 for the ALF2 EoS for single
rotating stars. From Fig. 2 this implies dimensionless spins
lower than say ∼ 0.4 (we calculate below the exact values).
The “coordinate circulation” Cβ (green curve) has opposite

sign from C and typically grows also linearly and is∼ 20% of
C. For all binary calculations in this work we used grid values
as reported in Table I. In order to create binaries at different
separations we choose rc ∈ {1.125, 1.25, 1.50, 1.75} where
1.125 leads to close binaries, while 1.75 to widely separated
ones [28].

For an irrotational binary the circulation is zero since the
enthalpy current huα is a total derivative. For spinning bina-
ries with 4-velocity (15) and spin along the orbital axis, the
circulation becomes

C =

∮
c

sidx
i = R0

∮
c

ψ4δijΩ̂sφ̂
i
sdx̂

i , (30)

where code (normalized) coordinates Eq. (28) are used. Here
Ωas = (0, 0,Ωs) and si := Ω3

sφ
i
s(3). Sequences of constant

rest-mass for fixed values of Ω̂s have been calculated in [28].
Here we have extended our COCAL code [27, 28] in order to
compute binary sequences of both constant circulation and
rest-mass. In order to do that a multi-root secant method
was implemented which in priciple can iterate over different
quantities like densities, spins, or distances in order to achieve
some target values. The computational cost though for such
a finder increases considerably. In particular the method con-
verges after approximately 10 cycles and for each cycle one
needs Ni converged solutions, where Ni is the number of
quantities that we are targeting. For equal-mass binaries that
we calculate here, in order to find a sequence of constant rest-
mass and circulation (Ni = 2) ∼ 20 converged solutions are
needed. If one also insists these binary separations are at a cer-
tain distance (or angular velocity) then Ni = 3. For each con-
verged solution one needs ∼ 500 iterations. Also in this work
we assume symmetric aligned or anti-aligned binaries i.e. we
only have to search for one out of the six spin components.
For the general case the computational cost will increase by
an order of magnitude.

In Fig. 4 we plot the total angular momentum of the sys-
tem for a sequence of constant circulation C = 4, together
with the familiar irrotational and corotating sequences. Also
the corresponding PN curves are plotted. The qualitive fea-
tures of a constant circulation curve is that it runs “parallel” to
the irrotational curve at a higher angular momentum level for
aligned spin binaries. This is not surprising since an irrota-
tional curve has constant circulation C = 0. Higher spinning
binaries have curves shifted upwards, and anti-aligned spin-
ning binaries have curves “parallel” and below the level of
the irrotational one. Another feature is that at large separa-
tions the constant circulation curve does not converge to the
PN curves, which is also expected since these binaries have
spin angular momentum independent of the orbital angular
momentum. That is also the reason why they intersect the
corotating sequence curve which has small spin angular mo-
mentum at infinity and becomes larger as one moves towards
smaller distances. Given the fact that a dynamical evolution
conserves the rest-mass, entropy, and circulation, a physical
spinning sequence representing a merging binary is going to
be like the red or blue one in Fig. 4. Points marked with
a larger black circle denote the approximate innermost stable
circular orbit (ISCO). Locating the ISCO is not essential for
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Type Patch ra rs rb rc re N f
r N1

r Nm
r Nr Nθ Nφ L

Hd2.0 COCP− 1 0.0 varies 102 varies 1.125 50 64 80 192 48 48 12

COCP− 2 0.0 varies 102 varies 1.125 50 64 80 192 48 48 12

ARCP 5.0 − 106 6.25 − 16 − 20 192 48 48 12

TABLE I. Grid structure parameters used for the binary computation in COCAL. ra is the radial coordinate where the grids start, rb the radial
coordinate where the grids end, rc the center of mass point (excised sphere is located at 2rc), re radius of the excised sphere, rs radius of
the sphere bounding the star’s surface, Nr number of intervals ∆ri in r ∈ [ra, rb], N1

r number of intervals ∆ri in r ∈ [0, 1], N f
r number of

intervals ∆ri in r ∈ [0, rs], Nm
r number of intervals ∆ri in r ∈ [ra, rc], Nθ number of intervals ∆θj in θ ∈ [0, π], Nφ number of intervals

∆φk in φ ∈ [0, 2π], L order of included multipoles. Distances are in normalized quantities and rs varies during the iterations in order for a
specific distance (angular velocity) to be reached. For more details see [27, 28].
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FIG. 3. Top panel shows circulation C and “coordinate circulation”
Cβ for a corotating BNS sequence of constant rest-mass M0 = 1.5.
Bottom panel shows the approximate equatorial area A ≈ 2πRxRy
of the each NS along the sequence. Values are normalized byA0, the
area of the first member of the sequence.

this work therefore its location as denoted in Figs. 4,5 can be
further refined.

In Fig. 5 different spin measures are plotted along constant
circulation sequences as well as a corotating one. M1 = 1.36
corresponds to the ADM mass of a single star at infinity and
J1,ql to its quasilocal spin as calculated from Eq. (25) but with
the rotational vector φis (which generates rotations around the
star’s center) instead of φi. J is the total angular momentum
of the binary system and Jirr the total angular momentum of
the irrotational binary at the same angular velocity. From the
corotating (purple) sequence one can see that the dimension-
less spin J1,ql/M

2
1 grows linearly as the separation decreases.

Also even at very close separation (ISCO) this dimensionless
spin is relatively small < 0.35. This linear growth of the
quasilocal spin is consistent with Figs. 2 (and 3) which also
shows that behaviour for small J/M2 in single rotating stars.
Sequences of constant circulation C = 4, 8 are also plotted
in Fig. 5. The curves (blue,red) show that within the accu-
racy of our computation the dimensionless quasilocal spin (or
equivalently the quasilocal angular momentum) is also con-
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2

spinning = 4
corotating
irrotational
irrotational 4PN
corotating 3PN

FIG. 4. Angular momentum curve for a binary sequence with con-
stant circulation C = 4, and rest-mass M0 = 1.5, along with
the typical corotating and irrotational sequences of the same rest-
mass. Points marked with a larger black circle denote the approx-
imate ISCO. Realistic physical sequences have constant circulation
and rest-mass, such as the red or blue one.

served along these sequences when the binaries are widely
separated. As one moves towards the ISCO we observe a
∼ 10 − 15% increase which is consistent with the increase
found in evolutions [45]. This behaviour is also consistent
with Fig. 1 that shows that for slowly rotating single stars se-
quences of constant circulation are “parallel” to sequences of
constant J/M2. Another measure of spin typically quoted in
the literature is the difference between the angular momentum
at infinity of the irrotational solution from the corresponding
spinning solution. In Fig. 5 we plot this spin measure of the
C = 4 sequence by comparing it with the corresponding irro-
tational sequence (green curve). The plot shows that although
at larger separations the two diagnostics agree with each other,
as one moves to closer separations they start to diverge. This
is to be expected since the J − Jirr angular momentum con-
tains negative terms (1.5 PN) related to the spin orbit coupling
[46].
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FIG. 5. Spin measures for an individual star in a binary setting. M1

corresponds to the ADM mass of a single star at infinity and J1,ql
to its quasilocal spin. Except for the green curve all others show the
quasilocal spin of a single star along a sequence. The green curve
estimates the spin by comparison with an irrotational sequence at the
same orbital angular velocity points. Points marked with a larger
black circle denote the approximate ISCO.
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FIG. 6. Angular momentum curve for a binary system with constant
circulation C = 4, and rest-mass M0 = 1.5, using decomposition
Eq. (31), along with the same sequence as presented in Fig. 4 which
uses the original decomposition Eq. (15). Also shown is the corotat-
ing sequence.

IV. MODIFIED SPIN FORMULATION

Motivated by the circulation expression for single stars and
corotating binaries Eq. (27) we investigate a modification for
the decomposition Eq. (15) proposed by Tichy [24], i.e. we
take

ûi := γαi huα = DiΦ + hutsi , (31)

but otherwise adopt the same asumptions. In doing so the
circulation of a spinning star in a binary will be

C = R0

∮
c

hutψ4δijΩ̂sφ̂
i
sdx̂

i , (32)

which apart from the coordinate terms (due to shift βi) closely
matches Eq. (27) of the circulation of a single rotating star.
Now the velocity with respect to the corotating frame now
becomes

V i =
DiΦ

hut
− (ωi − si) . (33)

which can be thought as the same with the irrotational case
and a replace

ωi ←→ ωi − si , (34)

where again here ωi = βi + Ωφi is the corotating shift. The
Euler first integral now becomes

h2 +DiΦD
iΦ = λhut (35)

where λ := C + (ωi − si)DiΦ. It turns now that the equa-
tions are simplified and the relative quantities can be com-
puted through a linear equation in hut

hut =
λ+ 2siDiΦ

α2 − sisi
. (36)

The denominator in the expression above is larger than zero,
since even for very compact stars α2 > 0.1 which is approx-
imately one order of magnitude larger than the square of the
spin magnitude. Once hut is computed from Eq. (36) the
enthalpy is calculated from Eq. (35).

The velocity potential is determined from the conservation
of rest-mass

∇2Φ = − 2

ψ
∂iψ∂iΦ + ψ4∂i[hu

t(ωi − si)]

+ 6hutψ3(ωi − si)∂iψ

− ∂i ln

(
αφ

h

)
[∂iΦ− ψ4hut(ωi − si)] (37)

with boundary condition

{[−∂iΦ + ψ4hut(ωi − si)]∂iρ}surface = 0 (38)

In Fig. 6 we plot a sequence of constant rest-mass M0 =
1.5 and constant circulation C = 4 using decomposition Eq.
(31) along with the same sequence using the original decom-
position Eq. (15) that we plotted in Fig. 4. We also show the
corotating sequence for comparison. It is evident that the way
one decomposes the velocity ûi introduces an arbitrariness in
the circulation which in the present case results to a higher an-
gular momentum for the system. This is not difficult to explain
since the parabolic functional form of the hut factor in Eq.
(31) results in a differentially rotating BNS which increases
the angular momentum of the system. On the other hand this
differential rotation, which naturally results from Eq. (31),
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can be canceled or modified by an appropriate choice of the
input vector si, which necessarily must have a varying param-
eter Ωs. Since spinning BNSs are expected to have a rota-
tion law which is close to rigid rotation decomposition (15) is
closer to astrophysical expectations over (31). The latter can
still produce almost uniformly rotating objects but the spin in-
put vector si is nontrivial.

V. DISCUSSION

Dynamical evolution of isentropic fluids conserves the
baryon mass, entropy, and vorticity. Therefore along with the
rest-mass one can use the circulation of a neutron star to com-
pute realistic sequences of binary neutron stars and measure
their individual spin. In this paper we extended our Compact
Object CALculator (COCAL) code to compute such equilibria
and used it to make a critical assesment of various spin mea-
sures for BNS, as well as a connection with the spin of single
rotating stars.

By computing sequences of constant angular momentum J ,
angular velocity, circulation, and dimensionless spin J/M2

for single axisymmetric stars we showed that in general all
such family curves are distinct. For small spins though, curves
of constant circulation “run parallel” to those of constant
J/M2 therefore conservation of circulation implies conserva-
tion of J/M2 and vice versa. Using the approximation of con-
formal flatness and maximal slicing (which is typically used
for BNS calculations) the angular momentum J equals the
quasilocal spin Jql which is widely used to measure the an-
gular momentum of a compact body in a binary scenario. For
BNSs, neighbouring equilibria satisfy the first law of thermo-
dynamics by Friedman-Uryū-Shibata and by computing se-
quences of constant rest-mass and circulation we show that the
dimensionless spin is also approximately, conserved at least
for low spin binaries.

Motivated by the expression of circulation in single rotat-
ing stars we explored an alternative decomposition for the
4-velocity than the one originaly proposed by Tichy, which
naturally leads to differentially rotating binary systems and
discussed a potential ambiguity that results from any such de-
composition.
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Research (C) 15K05085 and 18K03624 to the University of
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Appendix

In Fig. 7 we plot the spin parameter, both the original Ωs,
and the normalized one Ω̂s, for the C = 4 sequence. To a
high degree, a constant circulation sequence corresponds to
a constant spinning parameter Ωs for widely separated bina-

ries (see Eq. (16)) but the normalized parameter Ω̂s, which
is used in our code, varies considerably along the sequence.

0.020 0.024 0.028 0.032 0.036 0.040 0.044
M

0.4
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1.0
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s/ s0
s/ s0

FIG. 7. Spin parameter Ωs and the normalized parameter Ω̂s along
the constant circulation C = 4, and the constant rest-mass M0 = 1.5
sequence of Fig. 4.

Along a constant circulation sequence the maximum variation
of Ωs happens at the ISCO and is ∼ 4%. Having said that we
must keep in mind that Fig. 7 corresponds to C = 4 or ac-
cording to Fig. 5 quasilocal spin of ∼ 0.17. For high enough
spins (> 0.5) this behaviour may not be true. Also if for the
spin vector si, Eq. (16), one uses a more compicated expres-
sion (for example with multiple parameters) the behaviour can
change analogously. For the new sequence plotted in Fig. 6
using decomposition Eq. (31), the variation of Ωs is twice
of that of Fig. 7 using Eq. (15). In other words the de-
composition (15) introduces an arbitrariness to ûi through the
input spin vector si which is necessary for computing the cir-
culation. In a realistic scenario any given spinning BNS has
a particular ûi which is the result of hydrostatic equilibrium
and its evolutionary history and this determines its circulation.
Targeting the circulation alone does not uniquely specify the
velocity profile in the configuration. Hence we can construct
two sequences with the same circulation one with constant the
other with differential angular velocity, as we have seen in the
last section above.
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K. Uryū, Phys. Rev. D94, 044049 (2016), arXiv:1605.07205
[gr-qc].

[30] S. Bernuzzi, T. Dietrich, W. Tichy, and B. Brgmann, Phys. Rev.
D89, 104021 (2014), arXiv:1311.4443 [gr-qc].

[31] T. Dietrich, N. Moldenhauer, N. K. Johnson-McDaniel,
S. Bernuzzi, C. M. Markakis, B. Brgmann, and W. Tichy, Phys.
Rev. D92, 124007 (2015), arXiv:1507.07100 [gr-qc].

[32] N. Tacik et al., Phys. Rev. D92, 124012 (2015), [Erratum: Phys.
Rev.D94,no.4,049903(2016)], arXiv:1508.06986 [gr-qc].

[33] J. L. Friedman, K. Uryu, and M. Shibata, Phys. Rev.
D65, 064035 (2002), [Erratum: Phys. Rev.D70,129904(2004)],
arXiv:gr-qc/0108070 [gr-qc].

[34] J. L. Friedman and N. Stergioulas, Rotating Relativistic Stars,
Cambridge Monographs on Mathematical Physics (Cambridge
University Press, 2013).
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